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The theory of polarizable anisotropic fluids is developed on the basis of a model fluid consisting 
of anisotropic Drude oscillators with embedded permanent dipoles. A matrix theory is 
developed. The dielectric tensor is derived and a matrix Monte Carlo method is used to calculate 
the optical absorption and birefringence of ordered fluids. 

II. MATRIX FORMULATION OF ANISOTROPIC I. INTRODUCTION 

Nematic and smectic liquid crystals consist of axially 
symmetric molecules. A useful class of potential models for 
these systems is the Gaussian overlap models introduced 
by Beme and Pechukas.’ These were later improved by 
Gay and Beme. Molecular dynamics studies using these 
potentials have successfully simulated the nematic- 
isotropic and the smectic-nematic phase transitions. The 
phase diagram and thermodynamics of these systems have 
been thoroughly investigated.‘-’ 

The optical properties of liquid crystals are of consid- 
erable interest. Optical birefringence is a consequence of 
the orientational ordering of the molecules.6*7 It would be 
of interest to see if the anisotropy of optical absorption 
gives a signature of the orientational ordering. Can one use 
the absorption spectrum to discriminate between the smec- 
tic, nematic, and isotropic phases? 

In this paper, we study a simple viable model of the 
optical properties of anisotropic liquids. We assume that 
the molecules are ellipsoidal and interact through the 
Beme-Pechukas and Gay-Beme Gaussian overlap models. 
Each of the ellipsoids has an implanted axially symmetric 
Drude oscillator embedded in it with the principal axis of 
the oscillator parallel to the principal axis of the Gaussian 
ellipsoid. The fluctuations of the Drude oscillators give rise 
to spontaneous dipole moments which interact with each 
other through dipole-dipole forces. We devise matrix 
methods to simulate the fluid of Drude oscillators and 
show how the refractive index anisotropy, the dielectric 
constant anisotropy, and the anisotropy of the absorption 
spectrum can be calculated. Monte Carlo simulations are 
used to study the optical properties of these fluids as a 
function of the orientational order parameter. 

It is found that there are characteristic differences in 
the absorption spectra of the smectic and nematic phases. 
It is argued that these differences are a generic consequence 
of the dipole-dipole interactions and thus should be a use- 
ful signature of the spatio-orientational ordering in me- 
sophases. 

“In partial fulfiIlment of the Ph.D. in the Department of Physics, Co- 
lumbia University. 

LIQUIDS 

The internal Hamiltonian of a single Drude molecular 
ellipsoid labeled i in an external field E” is 

H=Ho(Pi,Oi) --P~*EO= 
&.$p .& pi. $g-*‘pi 

2ao2 + za -pi&, 
0 

(2.1) 

where pi is the instantaneous dipole and pi its associated 
velocities. 

In the body-fixed coordinate frame in which the prin- 
cipal axis (the direction of the permanent dipole) is labeled 
z and the two other orthogonal axes are labeled x and y, the 
dimensionless polarizability tensor % ’ is 

a1 0 0 
gtEi i 0 al 0 1 , 

0 O alI 

(2.2) 

where a,=all and aXX=a,,=al ; and the polarizability 
matrix in the body-fixed frame is a%“. In the laboratory 
fixed coordinate frame, the polarizability matrix is a%‘i in 
which the matrix ‘Zi is related to 55 through a transfor- 
mation ~i=~~Ce ‘pi where the rotational matrix pi is 

9i(~i/$i) 

KX3 (+i) Sin(4i) 0 

= -cos(Bi>sin(4j) COS(0i>COS($f> -sin(&) , 
-Sin(f3j)Sin(&) SiIl(0i)COS($j) cos ( ei) 1 

(2.3) 
in which ei and 4i are the Euler angles formed by the 
body-fixed reference frame of molecule i with respect to the 
lab reference frame. 

The Hamiltonian for a Auid composed of N axially 
symmetric Drude molecules is then 

C uo(Rij,Ci,fijij) + 2 Ho(pi,fii) 
i>j i 

- & pi l rij.pj- C Pi*$‘, i 
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where (Pi, Ji) are respectively the linear and angular mo- 
menta of the molecule i, Rij =Ri-R is the vector connect- 
ing particle i to particle j, G is a uni/t vector specifying the 
orientation of the principal axis of the ellipsoid, U. (Rij , 
fi,,fij) is the short range interaction potential between par- 
ticles i and j, arising from the overlap interactions between 
the particles, and where the dipole-dipole propagator is 

3RP.Jg.-&q?. 
T?Y= V IJ lJ 

IJ R5 ’ 
Tensors and matrices in this paper are represented by cal- 
ligraphic symbols; S is the identity tensor or matrix; the 
upper indices pv stand for coordinate components; the 
lower indices i or j stand for particles. 

The dielectric response of polar polarizable fluids re- 
flects two time scales-a slow time scale characterizing the 
reorientations of the permanent dipoles and a fast time 
scale characterizing the response of the embedded Drude 
oscillators. Thus the frequency dependent dielectric con- 
stant will reflect this separation of time scales by having 
low frequency bands arising from the reorientation of the 
permanent dipoles (rotational relaxation) and high fre- 
quency bands corresponding to charge redistribution in the 
molecules. The zero frequency (static) dielectric constant 
will of course have contributions from both of these time 

scales. Given the separation in time scales, the charge re- 
distribution should rapidly follow changes in the nuclear 
positions. Thus the system will be well approximated by 
the adiabatic approximation, i.e., the Born-Oppenheimer 
approximation.8’9 

In the adiabatic approximation, the nuclear degrees of 
freedom need not be treated as dynamical viariables. Thus 
the conjugate momenta of the nuclear positions and orien- 
tations in Eq. (2.4) are omitted giving the Bom- 
Oppenheimer Hamiltonian 

HBO= C Uo(Ru,u^i,fij) -t&o, (2.6) 
i>j 

where the Drude oscillator Hamiltonian is 

HDo= C Ho(pi,Qi)- C Pi’rij*Pj- C Pi*@) (2.7) 
i i>j i 

and where ui and uj are unit vectors specifying the orien- 
tations of molecules i and j, respectively. The first term U. 
in Eq. (2.6) determines the distribution of the nuclear con- 
figuration and the second term HDo determines the dynam- 
ics of the system. 

~The expectation of observables 0[ (Ri), (Ui), (pi), 
(hi>19 is 

(o) =Sd(Ri)d(Ui)d(pi)d(Zi)o[ (Ri),(Ui)t(Pi),(lji) lexpt-HdkT) 
Sd(Ri)d(ui)d(pi)d(~iji)exp( -H&kT) ’ 

1 

j (2.8) 

where the denominator in Eq. (2.8) is the canonical par- 
tition function ZBo, in the BO approximation. It is a simple 
matter to express ZBo as 

ZBO= s d(Ri)d(Ui)ZDO[(Ri),(Ui) 1 

Xexp -fl C U(Rij,fii,t;i) 3 
I I 

(2.9) i>j 
where Z,,[(R,), (Ui)] is the partition function of the 
Drude oscillators for a fixed nuclear configuration. 

Because HDo is quadratic in both (pi) and (iii), the 
multivariate Gaussian integral can be evaluated exactly, 
giving 

=cN(det $~)1’2exp[~(Eo*&-1*Eo)], (2.10) 

where C, is the normalization constant, the matrix .& is 
given by 

d=Ce-‘--cry, (2.11) 

and 5%’ is given by 

(2.12) 

These definitions of LZ? and 55’ will be particularly conve- 
nient for the calculation of the electronic absorption spec- 
tra of liquid crystals. 

It is simple to show that the potential of mean force for 
the nuclear coordinates in the BO approximation is9 

W(Ri,ui)= C Uo(Rij,u^i,u^j)+~kT ln[det(&)] 

-;~z (E”.a!-l l Eo), 
‘,I 

where the second term arises from the prefactor 
(det .&)*” in Eq. (2.10). 

The second term on the right-hand side in Eq. (2.13) 
gives the classical many-body dispersion energy of the sys- 
tem. In classical theory, this is small because the vibra- 
tional’ amplitudes of the Drude oscillators are very small 
0( JZF) . Zero point fluctuations in quantum systems give 
larger amplitudes and correspondingly much larger disper- 

J. Chem. Phys., Vol. 99, No. 3, 1 August 1993 

Downloaded 27 Mar 2001 to 18.60.2.110. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



sion interactions (see Ref. 10). In simulations, only the 
two-body part of the dispersion interaction is usually in- 
cluded by incorporating it into the simple pairwise poten- 
tials, but is should be recognized that the above expression 
contains many-body effects to all orders. 

As can be seen here and later on, all the relevant quan- 
tities can be determined by applying proper matrix tech- 
niques. In this paper and other papers of the series, these 
matrices are evaluated both analytically and numerically. 

The frequency response functions of a system consist- 
ing of Drude oscillators is the same for classical and quan- 
tum systems because the Hamiltonian is quadratic.“‘12 A 
fluid of Drude oscillators driven by a monochromatic elec- 
tromagnetic field Ej(w)e-‘“’ obeys the set of linear equa- 
tions of motion 

(2.14) 

where o. is the intrinsic frequency of the harmonic oscil- 
lator and a is the static polarizability. We make a further 
assumption here that although the polarizability is anisa- 
tropic, the intrinsic frequency which describes the molec- 
ular Drude oscillator is isotropic. (In reality, one should 
use an anisotropic Drude oscillator in which not only 
al #all , but also the frequencies parallel and perpendic- 
ular to the principal axis of the molecule are different. This 
would not be difficult to incorporate.) 

The particular solution of Eq. (2.14) 

pi(t) =a(O)~-‘(w)ijEj(w)e-‘O’ (2.15) 

gives the frequency dependent response function, or the 
susceptibility matrix, ’ r-l4 

xij(O) =pa(o) (d-'(w>)ij, (2.16) 

where p is the density and the matrix JY is defined as 

d(o) =%-‘-a(w)F (2.17) 

the frequency dependent analog of Eq. ( 2.11) , where a (o > 
is the frequency dependent polarizability 

a 
a(w) = l- (o/wc)z (2.18) 

and a is the static polarizability. 
We will study cylindrically symmetrical ellipsoids with 

the polarizability tensor in the body-fixed frame given by 
Eq. (2.2). Let us write ali =a’Xa and al =a, so that the 
inverse matrix of Eq. (2.2) can be expressed as %? ‘-’ 
=J2, where J is the scaling matrix defined by 

10 0 
A=01 0. 

( 1 
(2.19) 

0 0 l/a 

The rotational matrix 9 for the whole fluid is a block 
diagonalized matrix 

(2.20) 

where Rj is the 3 X 3 rotational matrix for ith molecule 
given in Eq. (2.3). 

Since V-‘=&VT%‘-1~=Z?T&2~, it follows that 
the matrix (2.17) can be expressed as 

d(w) =S?T.k[~-a(w)~]~S?, (2.21) 

where the resulting 7’ is given by 
‘$-=&-‘SYgJT&-l. (2.22) 

This 7’ matrix can be easily diagonized, i.e., 
7’ = YA Y-‘, where Aij =n,sij is the diagonal matrix, iii 
is the ith eigenvalue, and Y is the transformation matrix. 
Thus 

d(w) =Y’[X-a(w)A]Y’-‘, (2.23) 

in which the .Y” matrix is 

‘Y’=S?=JfY. (2.24) 
The spectral density matrix of the fluid is defined as 

&j(A) = (Y;@(a-&)Y;p) (2.25) 

in terms of which Eq. (2.16) becomes 

Xij(d= &j(n) " s l- (o/wo)2-aA 
dA. (2.26) 

In Eq. (2.25), the average denoted by the bracket (. . * > is 
taken over the spatial and orientational configurations of 
the fluid determined by U. of Eq. (2.6). This gives the 
optical spectrum of unpolarized light. Here we are inter- 
ested in the absorption of light polarized parallel and per- 
pendicular to the order parameter of the liquid crystal. 
Therefore we define the parallel and perpendicular compo- 
nents of the spectral density as 

and 

(2.27) 

FL (A.)= 
Z,[syjyA> +F$(‘(;l) ] 

IiN 
_, . . 9 (2.28) 

where z is the spatial direction we specified. In an isotropic 
fluid PI, =F, , whereas in a liquid crystal Fll #$1 . 

Because the dipole-dipole interaction is long ranged, 
the calculations will be very sensitive to the system size and 
geometry and thus to the boundary conditions.15-‘7 Fol- 
lowing the discussion in the paper by de Leeuw et al., in 
Ewald summation’7 the dipole propagator Eq. (2.5) must 
be replaced by Eq. (3.10) in Ref. 18. Because the Ewald 
summation is a function of e. , the dielectric constant of the 
surrounding medium, the frequency dependent response 
function (2.26) is also a function of eo. However, the fre- 
quency dependent dielectric constant E(W) is an intrinsic 
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property of the liquid which does not depend on the 
boundary conditions despite the fact that the boundary 
conditions affect the long range potential. 

Consider a large spherical sample of polarizable mate- 
rial immersed in a medium of dielectric constant eo.1611p It 
is a standard exercise to solve the Maxwell equations for 
this system and obtain the frequency dependent generali- 
zation of the Kirkwood relation’5”p’20 

[E(W) - 1](2ee+ 1) 
=4rrp lim 

zpzij$,‘(@,%) 

d@> +2Eo N-m 3N-. > 
(2.;9) 

where e. is the dielectric constant of the surrounding me- 
dium. In our simulations, the surrounding medium is taken 
as a perfect conductor with eo= 00. 

Once the absorption spectral density function is 
known, we can determine the frequency dependent dielec- 
tric constant 

e(w) = 1+4?rpa I 
q(a 

l- (w/wo)‘-aa 

and the power spectrum 

(2.31) 

where c refers to the parallel and perpendicular compo- 
nents and x” is the imaginary part of the response function 
which can be obtained by adding an infinitesimal imagi- 
nary part to the variable w in Eq. (2.26) giving 

lim x(o+iq) = s a@‘@) {p ’ 
g40+ l- (w/wo)2-aA 

+i?rs[ l- (w/oo)‘-aA] d/z. 

(2.32) 
From Eq. (2.30), we can determine the static dielectric 
constant. e&w=O) 
= &m. 

and the refractive index q&w) 

III. RESULTS FOR THE BERNE-PECHUKAS FLUID 

The Bernc-Pechukas Gaussian overlap potential takes 
the form of a Lennard-Jones potential’ 

V(u^l,G2,r> =4E($1,c2) I[ ~yy2~ [ ~y2~il”j , 

(3.1) 
where til and u^, are the orientation vectors of the two 
molecules, r is a vector connecting their centers, and i is a 
unit vector along r. The potential parameters E and o are 
the functions of the relative position and orientation of the 
two molecules 

E(U^I,U^2)=EO[1-K2(U^1.ti2)2]-1’2 

and 
(3.2) 

K (i* u^l+i- u”2)2 
a(fi~&,i)=ao l-- I I 2 l+K(Z-& ‘?.&) 

.- 

+( p. 4-F. C2)2 II 112 

l--K(U^1’2&) ’ (3.3) 

where e. and a0 are two constants and K is determined by 
the anisotropy of the ellipsoids 

+4 
.=m ~~ (3.4) 

Here (~11 is the length scale along the molecular axis and 
a1 is the length scale perpendicular to the axis. 

The polarizability components alI and aL are, respec- 
tively, proportional to the mean-square ,dipole fluctuation 
along the principal axis and one of the other symmetry 
axes. Thus we expect that the ratio a2=all /aI will scale 
with 011 /a, . Here we chose this scaling to be 

71 a= - , 
( 1 *1 

which relates the anisotropy of the polarizability to the 
geometry of the molecule. The actual scaling is a rather 
complicated problem and depends on how aromatic the 
molecule is. Generally the polarizability anisotropy will be 
considerably smaller than predicted on the basis of this 
scaling. 

Molecular dynamics studies of anisotropic fluids of el- 
lipsoidal molecules interacting through the overlap poten- 
tial indicate that a 2D system of ellipses of axial ratio a = 3 
can exist in a stable nematic phase at densities intermediate 
between the solid and isotropic liquid states.3 Similarly it 
has been shown that the overlap model also leads to nem- 
atic ordering in 3D systems. The isotropic-nematic phase 
transition must be accompanied by changes in the optical 
and dielectric properties. The purpose of this work is to 
simulate these changes. 

Configurations of a Gaussian overlap fluid are gener- 
ated by Monte Carlo importance sampling. Moves of the 
molecular position and orientation are adjusted to yield a 
40%-60% acceptance rate. At the beginning of the run, 
following Kushick and Berne, an external electric field 
along the z axis is applied to the fluid. All the molecules 
align with the direction of the field. The field is then turned 
off. Initially, the body-fixed frame of all the molecules co- 
incides with the lab frame. After the field is switched off, 
we determine the relaxation of the order parameter of the 
system. As the system is equilibrated, the order parameter 
reaches a plateau. The rotational order parameter mea- 
sures the global orientational order and is defined by 

5=Pz(u^-fi)), (3.5) 
where P2 is the second order Legendre polynomial and ii is 
the space fixed axis specified by the initial direction of 
molecules. c is monitored as the system is relaxing. At 
some densities, the system stays at a metastable state for 
some time before it reach a new plateau value. Therefore 
because of long relaxation times, very long runs are re- 
quired before equilibrium is achieved. 
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FIG. 1. The parallel component F,l (the solid curve) and the perpen- 
dicular component FL (the bold curve) of the spectral density for the 
Beme-Pechukas potential described in the text. The four panels from the 
top to the bottom correspond to reduced densities of 0.3, 0.25,‘0.2, and 
0.1, respectively. 

The system simulated is at a reduced temperature of 
kT/e=0.8 and reduced density of p*=pd. The axial ra- 
tio a is taken to be 3.5. The system is composed of 108 
particles. We find a transition from an isotropic system to 
an anisotropic system at a reduced density of 0.2 to 0.1. 

The results for several densities are compared in Fig. 1. 
As expected, at high density the system is strongly ordered 
and we observe two distinct curves for PII and F1 . Be- 
cause the molecules are highly anisotropic, the polarization 
is much stronger in that direction than in the orthogonal 
directions. Figure 1 shows that F;I~ is broader and more 
intense than F1 . As the order parameter decreases with 
the density, the differences between these two components 
diminishes. When c approaches zero, the system becomes 
isotropic and PII and F1 become identical. 

In Fig. 2, the perpendicular and parallel components of 
the static dielectric constant tensor ~11 ,I are plotted as a 
function of density. Clearly, the transition from the isotro- 
pic to the nematic phase is accompanied by a bifurcation in 
the dielectric constant. In the isotropic phase, the dielectric 
constant is a slowly increasing function of density. After 
the transition, the curve splits into two branches-the per- 

30 , .“_ I 1 1 / 

25 - 

20 - 

c 15 - 

10 - 

O- , I I 
0.1 0.15 0.2 

Pi 
0.25 0.3 0.35 

FIG. 2. The parallel component ~1, (0) [cf. Eq. (2.27)] and perpendic- 
ular component ( + ) [cf. Eq. (2.28)] of the dielectric tensor as a function 
of density for the Bem+Pechukas fluid. 

pendicular component and the parallel component. In the 
nematic phase, the molecular principal axes align. Since 
aI1 B-q , the parallel component of the static dielectric 
constant will increase strongly with the density; on the 
other hand, the perpendicular component will decrease 
with the density. 

An interesting and important property of liquid crys- 
tals is their optical birefringence. The refraction index for 
light propagating parallel to the axis of the fluid is different 
from light propagating perpendicular to this direction617 
This is obviously due to the anisotropy in the dielectric 
response function. The refractive index is related to the 
frequency dependent dielectric constant by ne( o) 
= @&.Th b’ f e ire ringence can therefore be determined 
from Eq. (2.30). 

De Jeu studied the anisotropy of the properties of liq- 
uid crystals theoretically and showed how they correlate 
with the orientational order parameter.’ Let us introduce 
the anisotropy of the dielectric constant 7 as 

rl= 
q --El -. ;..-L.. s :- ---.. 

Z-1 ’ 
(3.6) 

in which F= ( eI +2e11 )/3. According to De Jeu, q should 
be a linear function of the second order parameter c. We 
plot q defined above as a function of the order parameter c 
from our simulations in Fig. 3. Clearly the prediction of De 
Jeu is completely consistent with our results. A simple 
symmetry argument shows that the anisotropy of a second 
rank tensor must be proportional to the second order Leg- 
endre polynomial which defines the order parameter (see 
Berne and Pecora2’). 

IV. RESULTS FOR THE GAY-BERNE MODEL 

The BernePechukas potential is unrealistic in that for 
certain orientations it is too long range. To rectify this flaw, 
Gay and Berne modified the Berne-Pechukas model to2 
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3. I I I t I I I I 

2.5 - 

FIG. 3. 7, the anisotropy of the dielectric constant defined by Eq. (3.6) 
as a function of order parameter for the Berne-Pechukas fluid. 

I( 1 

) 

12 
V(u^l,U^Z,r)=4E(U^1,U^2,i) r-o(u^r,z&,i)+l 

( 
1 6 - 

r-c7(u^l,z&,i) + 1 )I ’ (4.1) 

where a(~?~,&,?> is still given by Eq. (3.3), but the depth 
parameter has the new form 

E(U^1,UA2,3)=Ev(U11,UI~)E’P(U^1,a~,i), (4.2) 
where e(Zii,&) is given by Eq. (3.2) and E’ defmed by 

E’y z&,z&,i) = +( 
i* z&--3* z&p 1 I-K’(Z& . 122) ’ 

(4.3) 
where the parameter K’ which reflects the anisotropy in the 
well depth is defined as 

+4’pe :- 
K’= I/~ q +P ’ _~ ~~ -~ (4.4) 

in which ~11 is the strength parameter along the molecular 
axis and eI is the strength parameter perpendicular to the 
axis. The Gay-Berne potential agrees well with a site-site 
potential. A satisfactory fit is found to the four Lennard- 
Jones (L-J) site-site potentials by setting Y= 1, ,Q = 2, the 
axial ratio cII /a1 = 3, and the well-depth ratio ~11 /eI = 3. 
These parameters are chosen to model a typical mesogenic 
molecule. 

Molecular simulation of the Gay-Berne fluid has been 
performed and reported in ,great detail. Adams et aL4 
found that the system exhibits a nematic to isotropic phase 
transition at the reduced temperature T* between 1.7 to 
1.8 and reduced density p*=O.32. They claimed that this 
relatively realistic model should be of considerable value in 
the investigation of nematogenic behavior using computer 
simulation techniques. 

More recently, Miguel et al. presented a systematic 
study of the phase diagram of the Gay-Berne fluid.5 They 
determined the vapor-liquid coexistence region using 
Gibbs ensemble Monte Carlo. From the coexistence curve, 
they determined the critical values of the density, temper- 
ature, and pressure. The triple point was approximately 

located. Extensive simulations were employed to explore 
the rest of the phase diagram in which isotropic, nematic, 
and smectic phases were identified. The results indicated 
that above the triple point temperature T"zO.8, the sys- 
tem can form a nematic phase which under further com- 
pression becomes a smectic phase, while below the triple 
point temperature, the nematic phase is unstable and the 
isotropic liquid undergoes a direct transition to the smectic 
~phase. 

We simulated a system consisting of 256 particles in- 
teracting under the Gay-Berne potential with the param- 
eters given above with constant volume Monte Carlo. Pe- 
riodic boundary conditions and minimum image 
summation are employed. The interaction potential is trun- 
cated and shifted up at r,=4.0ao. The trial step sizes in 
position and orientation are adjusted to yield an acceptance 
rate of 50%. We start with a low density molecular con- 
figuration and gradually compress the volume while keep- 
ing the temperature constant. We choose to study the spec- 
trum along the isotherm at T*=OS, which is below the 
triple point temperature. To determine the absorption 
spectral densities and other equilibrium properties, lo5 un- 
correlated configurations are sampled. 

Unlike simulations of the Berne-Pechukas model in 
the preceding section, we do not apply a weak external field 
to align the system initially, but instead start with a disor- 
dered system. As the whole system may rotate in space, we 
cannot specify a space-fixed direction as n^ in the calcula- 
tion of the rotational order parameter of Eq. (4.2). In- 
stead, we introduce the second rank orientational pair cor- 
relation function given as 

G2( jr1 >=(P2(U^i’lii)S(rii-r)), (4.5) 

which measures the orientational correlation as a function 
of the separation. In the case of the isotropic fluid, G2 
decays to zero at large Y because there long-range order 
does not exist, but for the nematic and smectic phases, the 
Y+ to limit of G2 does not vanish and is equal to the square 
of the order parameter c [cf. Eq. (3.5)]. 

We also determine the pair correlation function g(r). 
In the smectic phase, the molecules form a layered struc- 
ture with a spatial order along the interlayer direction and 
the pair correlation function of the smectic liquid exhibits 
pronounced peaks and structures at long distance, while 
the pair correlation function of the isotropic fluid and the 
nematic fluid shows a decaying oscillation around unity at 
long distances. 

The smectic phase has both translational and orienta- 
tional long-range order, the nematic phase has only long- 
range orientational order, and the isotropic liquid has nei- 
ther. From the long distance behavior of G2 (r) and g(r), 
we can easily identify these phases. 

In Fig. 4, we plot G,(r) and g(r) at reduced densities 
0.3, 0.29, 0.28, and 0.26 along the isotherm T*=O.5. As 
was pointed out by Miguel et al., as the Gay-Berne fluid is 
compressed from a density of 0.26-0.30, it goes from an 
isotropic fluid at low density directly to a smectic phase at 
the three higher densities. The orientational ordering sets 
in at a density of 0.28 as indicated by a nonvanishing order 
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FIG. 4. The pair correlation function g(r) (the solid curve) and the FIG. 5. The parallel component p,l (the solid curve) and the perpen- 
second rank orientational pair correlation function G*(r) defined by I!+ dicular component p1 (the bold curve) of the spectral density function 
(4.5) (the bold curve) for the Gay-Beme fluid described in the text. The [cf. Eq. (4.6)] for the Gay-Beme fluid. The four panels from the top to 
four panels from the top to the bottom correspond to the reduced densi- the bottom correspond to the reduced densities at 0.3, 0.29, 0.28, and 
ties at 0.3, 0.29, 0.28, and 0.26, respectively. 0.26, respectively. 

parameter. The order parameter is 0.9, 0.7, 0.4, and 0.0 for 
these four densities. In going from the low to the high 
density, g(r) starts to develop structural features which 
demonstrate the spatial correlation typical of smectic flu- 
ids. A peak sets in at the spacing of the smectic layers. At 
p*=O.30, the coincidence of G2(y) and g(r) clearly indi- 
cates a well-defined alignment of the molecules, and the 
growth of the peak at 3.0~ indicates the formation of a 
layered structure. All these observations agree well with 
the conclusions of Miguel et al. 

In these simulations, the ordering takes place sponta- 
neously and it is useful to adopt a procedure for resolving 
observables into components parallel and perpendicular to 
the axis of the liquid crystal. This is done as follows: The 
spectral density matrix is defined as 

where i and j are the particle indices, and Y and r(l are the 
coordinate indices. We diagonalize the matrix p. Then the 
maximum eigenvalue is taken as Fll and the average of the 
two other eigenvalues values is taken as F1 . In Fig. 5, we 
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plot the two components of the spectral density functions 
at the four densities defined above. In Fig. 6, we calculate 
the two components of the dielectric constant ~11 ,I using 
Eq. (2.30). 
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P’ 

FIG. 6. The parallel component ~1, (0) and perpendicular component 
eL ( + ) of the dielectric tensor for the Gay-Beme fluid as a function of 
reduced density. 
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Comparing Fig. 5 with the results of the isotropic nem- 
atic phases in Fig. 1, we ascertain the following distinct 
characteristics of the smectic phase: 

(a) A common property of the spectral density of an- 
isotropic fluids is that the parallel component has a higher 
and broader peak than the perpendicular component. In 
the smectic phase, this prominent parallel component is 
blue shifted from the perpendicular component, while it is 
red shifted from the perpendicular component in the nem- 
atic phase. [The frequency spectrum is related to the spec- 
tral density through w2=wi( 1 -ail) .] This is due to the 
layered structure of the smectic phase. Because the dis- 
tance between the layers is much larger than the distance 
between the molecules of the same layer, the many-body 
polarization of the particles in the same layer is dominant. 
One can solve the simple problem of three molecules in the 
xy plane. It is found that the zz element of the matrix Y- is 
opposite in sign and smaller in value than the XX or yy 
elements. This explains the differences of the spectral peaks 
between the nematic and smectic phases. This qualitative 
difference between the nematic and smectic phases should 
allow one to use the spectrum to distinguish between these 
different states of orientational order. 

(b) In the upper two plates of Fig. 5, there are notice- 
able small bands besides the main peak. These small bumps 
probably arise from the periodicity in the z direction in the 
smectic phase, where there is translational disorder in the 
xy plane and periodicity along the z axis. 

(c) In Fig. 6, ~11 decreases with density (or order 
parameter). This can be attributed to the fact that the 
dipole-dipole interaction makes the parallel component 
larger than the perpendicular component, but as the smec- 
tic ordering grows stronger, the layering along the z axis 
becomes more pronounced thereby increasing the separa- 

tions along the z axis and reducing the z-z dipole-dipole 
interactions without changing the dipoledipole interac- 
tion in the xy plane. 

We believe that the Gay-Beme potential gives an ac- 
curate view of the isotropic-smectic transition. The char- 
acteristic properties demonstrated in these simulations 
should provide general rules for smectic liquids and can be 
observed in experiments. 
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