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A theoretical analysis suggests that the path centroid variable in Feynman path integration 
occupies a central role in the behavior of the real time position autocorrelation function. Based 
on this analysis, an intriguing quasiclassical perspective on quantum correlation functions 
emerges. 

One of the most challenging problems in condensed 
matter theory is the computation of quantum time corre- 
lation functions. The satisfactory solution of this problem 
will require a theoretical formalism which, to within an 
acceptable degree of accuracy, can be implemented effi- 
ciently on a computer for general many-body systems. The 
present Communication is devoted to one such formalism 
which is based on the properties of the path centroid vari- 
able in Feynman path integration’ which is defined within 
the context of the imaginary time path integral as 

1 f@ 
go=- 

s tip 0 
drq(r) . (1) 

In his derivation of an approximate quasiclassical expres- 
sion for the partition function,’ Feynman recognized that 
the path centroid was a particularly useful classical-like 
variable about which to define a quantum density, often 
called the “centroid density,” defined as 

Pc(4e) = J- I 
**a aq(~)S(q,--qo)exp{--S[q(7)l/~i), 

(2) 
where S[q(T)] is the imaginary time action functional. 
[The quantum partition function can be obtained from Eq. 
(2) by integration over the position of the centroid, qc] 
Feynman determined a variational effective potential for 
the centroid variable using the approximation of free par- 
ticle motion to describe the action for the imaginary time 
path fluctuations about the centroid. Since Feynman’s sem- 
inal work, several authors* have improved upon his theory 
by employing quadratic variational action functionals 
which more accurately approximate the exact action for 
the imaginary time path fluctuations about the centroid 

variable. The latter approach, therefore, improves the ac- 
curacy of the resulting variational partition function. More 
recently, the path integral centroid perspective has been 
extended to calculate equilibrium averages (A), the central 
result being that the quantum operator A^ is replaced by a 
Gaussian averaged effective classical function3 The cen- 
troid density has also become the centerpiece of a path 
integral formulation of quantum mechanical transition 
state theory.4 To our knowledge, however, there has been 
little progress in the formulation of quantum dynamics 
from the path centroid perspective. 

We have recently developed a theory’ for quantum 
imaginary time correlation functions in terms of the cen- 
troid variable and its corresponding density function [Eqs. 
( 1) and (2)]. Quite accurate analytic expressions are ob- 
tained through the use of general quadratic action func- 
tionals, a properly formulated diagrammatic perturbation 
theory, and suitable renormalization techniques. In princi- 
ple, once a good approximation to the exact imaginary 
time correlation function is obtained, the real time corre- 
lation function can then be determined by the inverse Wick 
rotation r-it (i.e., by analytic continuation). In the 
course of this research, however, an even more promising 
perspective has begun to emerge on the role of the centroid 
variable in the theory of quantum time correlation func- 
tions. This perspective, which is the subject of the present 
Communication, offers a computationally powerful algo- 
rithm to calculate quantum time correlation functions in 
many-body systems. 

To begin the analysis, it proves particularly useful to 
define the centroid-constrained imaginary time correlation 
function’ 

c 
c 
(r q ) = S ** *S ~q(~)Nq,--qO) (q(r) -GJ (q(O) -&)expC--S[q(~)/tilI 9 c J***J Bq(~)S(q,--%)expC--S[q(7)1/~) ’ (3) 

I 

This correlation function, which describes the correlations where the subscript “p;’ denotes averaging with the 
of the imaginary time paths about the centroid variable, normalized centroid distribution p,( qc)/J dq, p,( qC) 
is related to the usual correlation function [cf. Eq. (2)]. 
C(r) = (q(r)q(O)) by the relationship By definition, the centroid variable plays a central role 

C(r) = (Cc(79qJ +&, 9 
in the behavior of the centroid-constrained correlation 

(4) function in Eq. (3). A more subtle issue, however, is the 
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role of the centroid variable in the real time quantum cor- 
relation function. In a formal sense, this information can 
be extracted from the exact centroid-constrained correla- 
tion function CJ T,qC) through the analytic continuation 
r-~it. In a practical sense, however, such a procedure, 
whether analytic or numerical, is not tractable unless there 
is some prior simplification of the problem. Fortunately, 
such a simplification can be achieved through the varia- 
tional determination of an effective quadratic action func- 
tional, given for a single degree-of-freedom by2P5 

&,dq(~) I= Jo@dT(; 4Cd*+ vedqc) 

where V&co) is the variational effective centroid potential 
and i3, is the variationally determined effective harmonic 
frequency, both quantities being evaluated at a given cen- 
troid position. As in other work, the latter parameter is 
determined with the help of the properly formulated1’2 
Gibbs-Bogoliubov-Feynman (GBF) variational principle6 
for the centroid density in Eq. (2). The optimized fre- 
quency is given by the solution of the transcendental equa- 
tion 

-2 
1 

moc= 2~ci, 7-J 
dq V”(qc+q)exp( -82/2E,> , (6a) 

where the effective thermal width factor in the optimized 
reference system for a particular position of the path cen- 
troid is given by 

WV2 
tanh(wZJ2) - ’ * 1 

With the above quadratic reference system in hand, the 
imaginary time correlation function in Eq. (4) can be de- 
termined analytically for the reference system, giving’ 

(6b) 

C(7) =; 
s 

fi cosh[w,(r-m/2)] 
&c pc(qc) 2mw c sinh ( @3ZJ2) 

- ((m@)-‘)pc+ <c73p,f (7) 

where Z= J’pJqJdq, is the partition function. The com- 
bined and second and third term in Eq. (7) can be shown’ 
to be a representation in the effective quadratic reference 
system of the simple constant (q)‘, where (q) is the ther- 
mal average of the variable q. From now on, those two 
terms will be replaced by (q)2. 

Based on the expression in Eq. (7), it is now straight- 
forward to analytically continue the above function to ob- 
tain the real time correlation function, the real part of 
which is given by 

C(t) =; s ++I kc pc(qc) 2mG, tanh( @3&jJ2> 

XCOS(&4 + w2. (8) 

At this level of the theory, the real time correlation func- 
tion is seen to be the superposition of centroid correlation 
functions for effective harmonic oscillators defined at dif- 
ferent centroid positions qC In turn, each centroid correla- 
tion function is weighted by the centroid density for that 
value of qC The above expression for the correlation func- 
tion is therefore a quantum mechanical generalization of 
the classical “instantaneous normal mode” perspective for 
condensed matter systems.7 

Up to this point, the arguments have remained within 
the limits of rigorous mathematical analysis. On the other 
hand, if the bounds of rigor are “loosened” a bit, one can 
arrive at an even more compelling result. In order to pro- 
ceed in such a fashion, it proves beneficial to first introduce 
another real time centroid correlation function, given by 
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c?(t) =; dq, pC(qJ +& cos(@) +(q)* 9 (9) 
c 

which is the exact analog of the classical correlation func- 
tion for an effective harmonic oscillator with the centroid 
“frequency” W,. Due to the properties of the Dirac delta 
function, the above correlation function is related5 to the 
one in Eq. (8) through their Fourier transforms, i.e., 

w4= 
tanh (X@/2) E 

(wm,2) C(w) . (10) 

By noting that the first term on the right-hand side of Eq. 
(9) describes the correlation of fluctuations about the 
mean value (qC)p,= (q), Eq. (9) can then be rewritten as 

P(t) =; j- dq, p&c) k(th,Wicc 9 (11) 

where ( qC( t) qC( 0) ) G?e is a quasiclassical position correlation 
function calculated for dynamics on the locally quadratic 
potential energy surface defined for each initial centroid 
coordinate through the GBF variational procedure. The 
symbol ( * . *)Gc denotes initial condition averaging using 
the quadratic approximation to the centroid density. 

At this point, however, one might ask whether Eq. 
( 11) is, in fact, an approximation to some more accurate 
expression. Some insight into the answer is provided by an 
examination of the limiting behavior of Eq. ( 11) for (a) 
globally harmonic potentials and (b) exact classical dy- 
namics. In the case of a global harmonic potential, the 
correlation function (qC( t)qc( 0) )G, in Eq. ( 11) is the same 
everywhere [i.e., independent of the qC in Eq. ( 1 1 )]. Since 
Z- ’ J dq, pc( qC) equals unity, Eq. ( 11) then reduces to the 
correlation function ( qc( t)qJ 0) ) Pc. In the global harmonic 
limit, therefore, one can simply propagate the centroid 
variable classically using forces derived from the effective 
centroid potential, average the initial conditions using the 
centroid density, and calculate the classical-like centroid 
correlation function 

C3t) = (q,(t)q,(0)),C. (12) 

The exact quantum harmonic correlation function is then 
determined from this centroid correlation function via Eq. 
( 10). It should be noted that for general nonlinear poten- 
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tials the analytically continued effective quadratic result in 
Eq. (9)) which should be understood as a relatively short 
time approximation to the exact correlation function, fur- 
ther supports the notion of a quasiclassical time propaga- 
tion of the centroid. 

The second limiting behavior to consider is the case of 
exact classical dynamics. The approximate correlation 
function in Eq. (9) is given classically by 

cr;W =& j- da, pc1(qcJ (qc,WdWzc, 7 (13) 

where the trajectories qcl(t) are generated by an effective 
quadratic classical potential with frequency G,. The distri- 
bution based on this potential is used to average the initial 
conditions in the correlation function, while the second 
level of averaging is performed with the exact classical 
density pCl (qCl) . The exact classical correlation function 
can be related to Eq. ( 13) by some mental mathematics. In 
particular, if the potential which generates the dynamics 
and averaging in the correlation function ( qCl ( t ) qCl (0) ) GC, 
is transformed into the exact potential, that correlation 
function becomes the exact classical correlation function. 
The “exterior” integration over classical distribution 
pCl(qCl) then becomes inconsequential and can be removed. 
The important point here is that the forces which generate 
the classical trajectories in (qCl( t)qcl( 0) ) are no longer the 
approximate linear ones as in Eq. ( 13)) but are instead 
derived from the same nonlinear potential which generates 
the exact equilibrium distribution. The latter distribution is, 

I 

of course, the classical limit of the centroid density. One 
might then argue that an analogous quantum mechanical 
limit of Eq. ( 11) is one in which the forces which generate 
the centroid trajectories in qC( t) are derived from the same 
effective potential which gives the exact centroid distribu- 
tion. This notion is, of course, rigorously correct in the 
globally harmonic limit. It also seems logical that the 
forces which generate the centroid trajectory at some later 
time and position in space should be no different from the 
forces experienced by a centroid trajectory which is initi- 
ated at that same point in space. 

Based on the above arguments and Eqs. (9)-( 12), the 
following picture emerges for a centroid density-based cal- 
culation of the position time correlation function in quan- 
tum mechanics: The correlation function c(t) in Eq. ( 12) 
should, in fact, be a centroid correlation function which is 
calculated using the exact centroid density to average the 
initial conditions. The centroid trajectories are to be calcu- 
lated from effective classical equations of motion, given by 

dvc(q,) miC( t) = _- 
4, ’ 

(14) 

where the effective centroid potential is given by 

V,(q,) = --k,T ln[p,(q,) 1 . (15) 
The centroid force F,( qC) defined in the right-hand side of 
Eq. (14) is a kind of quantum mechanical potential of 
mean force, given explicitly by 

F Cq )= -S...S ~q(T)S(q,--q0)V’[q(O)lexpC--S[q(~)/~]) 
c c 

S***S ~q(T)S(q,--qo)exp{--S[q(7)]/~} * (16) 

To determine the functional form of the centroid momentum distribution used to average the centroid trajectory initial 
momenta, one needs only to examine the action functional for the imaginary time phase-space path integral,8 given by 

Sdp(~),q(~) l/fi=; 
w 

s I d7 P(r)* 
0 

x+ V[q(7) 1 --ip(~MT) 
1 W 1 J +z d- V[q(T)l , 

0 

(17) 

where Gn,Gn} are the Fourier modes of the momentum and 
position paths, respectively. Remarkably, the momentum 
centroid PO is decoupled from position coordinates and 
generates precisely the classical momentum distribution. 
As the final step after the centroid correlation function 
c(t) in Eq. (12) is calculated, the real part of the quan- 
tum position correlation function c(t) can be determined 
through the Fourier transform relationship in Eq. (10). 

The above “centroid molecular dynamics” prescription 
for calculating the quantum position correlation function 
has both rigorous and ad hoc elements to it, though it is 
exact for globally harmonic systems and clearly has the 
correct classical limit. In order to subject centroid molec- 
ular dynamics (MD) to a numerical test, the above algo- 
rithm was applied to a quartic oscillator potential given by 

I 

(18) 

with the parameters g=2.4, m= 1.0, fi= 1.0, and fi=S.O. 
The exact results were obtained by finding the eigenvalues 
and eigenvectors of the quartic Hamiltonian in a harmonic 
oscillator basis set. One hundred eigenstates were em- 
ployed to yield the spectrum and time correlation function. 
The ground state energy was found to increase by 12% due 
to the quartic perturbation which is equivalent to a large 
anharmonic shift of a molecular vibrational spectrum. The 
centroid MD results were computed using the centroid 
forces from the variationally optimized quadratic reference 
system in Eq. ( 5). This reference system is extremely ac- 
curate for the potential in Eq. ( 18) and easy to implement 
numerically. 
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FIG. 1. A plot of the real time position autocorrelation function for the 
quartic oscillator described in Eq. (18). The stars show the numerically 
exact results, the solid line is for the centroid molecular dynamics method 
[Fqs. (12), ( 14)-( 17)], the dashed line is for the analytically continued 
effective quadratic theory [Eq. (S)]. and the dot-dashed line is for clas- 
sical molecular dynamics. 

In Fig. 1, the real part of the time correlation function 
is shown for the exact dynamics (stars), the centroid MD 
result (solid line), the analytically continued effective har- 
monic result in Eq. (8) (dashed line), and the classical 
limit (dot-dashed line). The centroid MD is clearly the 
superior result, capturing the shift of the quantum coher- 
ence and the (smaller) dephasing relative to the classical 
limit. The results shown in Fig. 1 are for a very low tem- 
perature system, the dynamics of which are dominated by 
only the ground and first excited vibrational states. The 
agreement between the centroid MD and the exact results 
will become even better at higher temperatures. 

The present Communication has contained only a pre- 
liminary description of the centroid molecular dynamics 
method, the emphasis being on the position time correla- 
tion function. Future research will focus on an extension of 

the method to calculate more general correlation func- 
tions,5’9 a more rigorous mathematical justification of the 
theory,5 the development of practical algorithms for com- 
puting centroid dynamics, and applications of centroid 
MD to study the vibrational, activated, and diffusive dy- 
namics of quantum particles in condensed phase systems. 
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