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A system of atoms with embedded Drude dispersion oscillators interacting through 
dipole-dipole forces is simulated. Using path integrals it is shown that after the coordinates 
of the dispersion oscillators are integrated out, the atoms interact through many-body 
dispersion forces to all orders of the dipole-dipole interaction. Simulations are carried out on 
clusters to see if the presence of many-body forces leads to ground state geometries 
different from those predicted from two-body potentials. In addition, the polarizability tensor 
of clusters is determined as a function of cluster size. Simulations are also carried out 
for fluids to see how many-body forces affect the pair correlation function. Lastly, the long- 
range interaction between van der Waals clusters is compared with the predictions of 
a summation over site-site two-body interactions. It is found that many-body forces have only 
a minor effect on the low energy geometries of van der Waals clusters, a somewhat 
surprising result given that many-body forces do give an important contribution to surface 
free energies of clusters and liquids. The vibrational frequencies of the breathing 
mode decrease by approximately 10%. 

I. INTRODUCTION 

The structure and dynamics of condensed systems is 
determined by the total intermolecular interaction poten- 
tial. In theoretical and numerical studies the total potential 
is often approximated as a superposition of pair potentials 
consisting of a short-range repulsive part (r-12) arising 
from overlap and exchange interactions and a long-range 
attractive part (rm6) arising from correlated dipole- 
induced-dipole interactions. Although this approximation 
often suffices for the determination of the thermodynamic 
properties of simple dense fluids, it fails to adequately ac- 
count for gas phase properties* and for surface properties 
of liquids.2 It is now well known that the surface tension 
predicted by a pairwise additive potential of the Lennard- 
Jones (12-6) [L-J ( 12-6)] form gives surface tensions in 
error by as much as 50%. In this case the use of the 
Axilrod-Teller three-body potential corrects the surface 
tension. ’ 

Hoare and Pal3 have determined the geometries of van 
der Waals clusters as a function of cluster size for atoms 
interacting through the L-J (12-6) potential. These are the 
so-called minimum energy geometries. Because surface 
properties are sensitive to many-body forces one wonders if 
these geometries will be the same if many-body forces are 
included. 

In this paper we incorporate many-body forces in a 
simple way by implanting in each atom a three dimensional 
isotropic Drude dispersion oscillator of mass m, charge q, 
frequency w, and polarizability a=2/mco2. Although 
these dispersion oscillators interact through Coulomb’s 
law, we consider a simplified model in which they interact 
through dipole-dipole forces. This model has been widely 
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used to calculate the dielectric properties and absorption 
spectra of nonpolar polarizable fluids and clusters.b7 Path 
integral methods allow us to formulate this many-body 
problem as a matrix problem when the dipole-dipole ap- 
proximation is used. We are able to transform the dipole- 
dipole interaction to normal modes and thus find the in- 
teraction energy in a simple, computationally efficient way. 
Solution of the resulting matrix problem allows us to de- 
termine the lowest energy geometries of van der Waals 
clusters including three-body, four-body, . . . . N-body inter- 
actions as well as many-body effects on the structure of 
bulk liquids. The same analysis allows us to determine the 
many-body contribution to the polarizability tensor of 
clusters. 

We find that the lowest energy geometries of van der 
Waals clusters with many-body forces are essentially the 
same as those for clusters with two-body interactions as 
given by Hoare and Pa1,3 but that these clusters are ex- 
panded by up to 3% in volume. Furthermore we find that 
the vibrational frequencies of the clusters are smaller by 
10%. This insensitivity of structure to the presence of 
many-body forces is surprising given that in liquids they 
lead to a dramatic reduction in the surface free energy of 
the gas-liquid interface. We also find that many-body 
forces perturb the radial distribution function of liquids by 
slightly decreasing the size of the first peak and leads to an 
increase in the attractive interaction between clusters at 
large separations over what would be predicted by the su- 
perposition of site-site two-body forces. 

There have been several papers on the many-body in- 
teractions in clusters8-12 The three-body correction for the 
helium trimer has been the topic of considerable inter- 
est.12,13 Given that the polarizability of helium is small, it is 
not likely that a dispersion oscillator model will be a good 
approximation to it. The dominant contribution to the in- 
teraction in helium is the exchange potential, a topic not 

8628 J. Chem. Phys. 97 (ll), 1 December 1992 0021-9606/92/238628-09$006.00 @  1992 American Institute of Physics 

Downloaded 27 Mar 2001 to 18.60.2.110. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



treated in this paper. Recently, it was found that three- 
body forces give important corrections to the vibrational 
spectrum of Ar3.10 Also, many-body polarization is a crit- 
ical factor in constructing nonpairwise interaction poten- 
tials of large clusters from information about small clus- 
ters9*14 This paper presents a systematic study of the 
dipolar polarization effects on clusters ranging from 7 to 26 
rare gas atoms. 

II. THE DISPERSION OSCILLATOR MODEL 

The Hamiltonian for a Drude oscillator of charge q, 
mass m, frequency w, and polarizability a=$/mw2, i.e., a 
dispersion oscillator, with instantaneous dipole Pi is7,” 

(2.1) 0=--m 

The Hamiltonian for a fluid composed of N harmonious 
atoms (atoms with implanted Drude oscillators) coupled 
through their instantaneous dipole moments is then 

H= 5 ‘+ C uo(R~)+ C Ho(Pbii) 
j=1 2M i>j i 

- 1 pi’h7G*pj * 
i>j 

(2.2) 

Here {R, Pi} are the positions and linear momenta of the 
atoms, Rii= Ri- Rj is the vector connecting atoms i and j, 
{ph Pi} are the instantaneous dipoles and their associated 
velocities, Uo( Rii) is the short-range interaction potential 
between atom i and j arising from the overlap interactions 
between the atoms, and the dipole-dipole propagator is 

3Ry$R;-tYR; 
l-p R5 . 
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Z({Ri})=exp -/3 1 f-Jo(Rg) I [=@Pl (II) 
h-i II 

xexp[+J~ du[ F j&2 (F)2 

2 

+ C, pi(u)- 2a 1 Pi(U)‘F~‘Pj(U) 
i 

11 9 (2.6) 
i>j 

where b=& is the ratio of the phonon energy of the 
Drude oscillator to the average thermal energy. For b>l 
quantum effects are important. 

Transformation to the normal-mode coordinates pi de- 
fined by 

pi(u) = C pine--r21mu 

diagonalizes the kinetic and quadratic potential terms al- 
lowing immediate integration of each mode independently. 
The quantum partition function thus takes the form of a 
product of classical partition functions for the individual 
modes 

ZDo(CRJ)= ‘rr” ZL/‘({Ri}) exp 1 1 -P c Uo(R,$ , fl=--CO i>j 1 
(2.8) 

where the partition function for a particular mode is 

(2.9) 

in which an, given by 

$=A [ (T)2+1], (2.10) 

(2.3) 

In this paper, tensors are represented by caligraphic sym- 
bols, upper indices ,QY stand for coordinate components 
and the lower indices i and j stand for particles. 

is the generalization of the classical static polarizability a 
and JZ’,, is defined as 

daP,=N-afl, (2.11) 

The large separation between the time scales of the 
dispersion oscillator motion and the “nuclear” motion per- 
mits us to treat the nuclear motion adiabatically. In this 
Born-Oppenheimer approximation, we can omit the nu- 
clear kinetic energy term, F$/2M, from Eq. (2.2). We can 
study the dynamics of the instantaneous dipoles for each 
liquid configuration and average over all possible arrange- 
ments. In other words, the nuclear degrees of freedom need 
not be treated as dynamical variables. In this approxima- 
tion the Hamiltonian is 

where .Y is the matrix defined in Eq. (2.3). Obviously, a0 
is the classical polarizability a. 

The potential of mean force of the nuclear coordinates 
after averaging over the quantum paths for the Drude os- 
cillators is 

W(CRJ)= C U,(R,)+ikT +$ ln(det ,PP,), 
i>j ?I=-CO 

(2.12) 

Hm= 1 Uo(Rg) +HDO 3 (2.4) 
i>j 

where the Drude oscillator Hamiltonian is 

HDo= C Ho(Pi,lii) - C Pi-7ilpi * (2.5) 
i i>j 

The imaginary time path integral representation of the 
quantum partition function of the Drude oscillator system 
isI 

where the last term gives the quantum many-body disper- 
sion energy of the system which adds to the two-body re- 
pulsive energy given by the first term. In simulations only 
the two-body part of the dispersion interaction is usually 
included by incorporating it into a simple pairwise poten- 
tial. On the other hand, the above expression contains 
many-body effects to all orders in the dipole-dipole inter- 
action. 

Dipolar interactions between dispersion oscillators 
shift the ground state energy. This shift gives the dispersion 
energy of the system and can be computed from the quan- 
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turn partition function. The dispersion interaction is then 
given by the last term in Eq. (2.12)) 

+CO 

U,rsr(CR,))=+ikT C In(det &,). 
ll=-CO 

(2.13) 

Introducing the operator identity, 

ln[det .G?] =Tr In &’ 

and using the Taylor expansion of In .&=ln[X-aa we 
rewrite Eq. (2.13) as 

Li,,s~({RJ)=-kTn~<a lb1 &Tr(anr)m. 
(2.14) 

The summation over the modes, n, can be carried out using 
the identity 

+a 
lE 

1 1 

i 
(b/2) (b/2)2 

n=--m [1+(2~~/b)2]2=z coth(b/2)-[sinh(b/2)12 * I 
(2.15) 

For atomic or molecular systems studied here, the factor b 
is very large, normally of order 103. The limit of the sum- 
mation Eq. (2.15) for large b is b/4. Consequently, the 
leading two-body interaction term can be reduced to 

UDISP<{RJ>=-kTC ‘aZTrJc$ ii 16 

-5, &a$,. 
II 

(2.16) 

This is exactly the asymptotic ground state energy shift 
that can be derived from second-order quantum perturba- 
tion theory. In the (b+ CO ) limit when quantum effects 
dominate, the N-body Drude system remains in its ground 
state for every nuclear configuration. In this limit the elec- 
trons move so fast that they are always in the ground state 
at every instant of nuclear motion. 

Equation (2.16) can be easily generalized to interac- 
tion potentials between different kinds of atoms. In this 
case, we have 

T-JDIs, ( IRJ I= - C 
I>J 

i ~wy%j $. 2 
r/ 

(2.17) 

where wii=2wp/(oi+oi) and subscripts i and j denote 
the parameters of the specified particles. If Oi=Wj and 
a,++ 

UDISP({R~})=- xCFj$,m ~ (2.18) 
i>j ‘J 

which is the same form as proposed by Dykstra.14 
The next order in the expansion series of Eq. (2.14) 

gives the three-body quantum correction. In principle, we 
can carry on the procedure and obtain all the many-body 
interaction terms. The high performance of the modern 
computer makes it possible to diagonize the matrix S? 
exactly for a reasonably large system that resembles a fluid 
and thus makes it possible to simulate polarizable fluids 
including both many-body dispersion forces and many- 

body electrical induction. However, in most calculations, 
the ground state energy shift is incorporated in the pair 
potential of the nuclear degree of freedom, such as a hard 
sphere or Lennard-Jones potential. 

The summation over the normal modes in Eq. (2.14) 
can be simplified using 

00 1 

= -( -n=--m m =bC,(b), (2.19) 

where 

(2m-3)!! 
Ez Cm(b)= (2m)!! ’ (2.20) 

Therefore, the ground state energy shift can be expressed 
as 

(2.21) 
L m=2 

The m = 1 term vanishes because 7 is traceless, the second 
term yields the two-body London dispersion potential, and 
the third term yields the three-body Axilrod-Teller poten- 
tial. The above equations give the many-body dispersion 
potential in terms of 7 and serve as the basis of our nu- 
merical calculations. 

For finite systems such as clusters, the matrix 7 can 
be diagonalized, yielding eigenfrequencies and normal 
modes of the Hamiltonian. The ground state energy shift is 
then given by the shift of the frequencies 

v= E -2 (&&-1), 
i=l L 

where {;li} are the eigenvalues of 7. By expanding the 
perturbed frequencies in powers of a and recognizing that 
the trace is invariant under rotations of the whole system 
weare able to recover Eq. (2.21). The two expressions are 
identical for clusters. 

Equation (2.21) explicitly gives the contributions from 
two-body forces, three-body forces, etc., and converges 
very rapidly. This treatment is general and can be applied 
to other problems such as the one presented in the next 
section of this paper where the usage of Eq. (2.22) is lim- 
ited by numerical accuracy (because the interaction energy 
is then a small difference between two large quantities). 

It is a simple matter to determine the electrical re- 
sponse of clusters in a static external field. For a single 
Drude oscillator the response coefficient is the polarizabil- 
ity a. In a cluster of N Drude oscillators, the total induced 
dipole will again be proportional to the external field and 
the response coefficient will be the polarizability tensor of 
the cluster. If one ignores the interaction between the in- 
duced dipoles the polarizability tensor of the cluster will be 
spherical with magnitude Na, but when dipole-dipole in- 
teractions are included, the polarizability tensor is deter- 
mined by the inverse of the matrix d defined in Eq. 
(2.11). The components of the polarizability tensor of the 
cluster divided by Na, denoted by Kc”“, are 
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flL$ c (.d{‘)$y (2.23) 
0 

and the total induced dipole of a cluster due to an external 
field is 

(2.24) 

Clearly, P’ will be a unit tensor if we ignore many-body 
interactions in the cluster. 

In the next section we apply the matrix expansion ap- 
proach to predict the leading term of the interaction energy 
between two clusters. This matrix approach is applied to 
clusters and fluids in the final section. 

111. THE INTERACTION BETWEEN TWO CLUSTERS 

Consider two clusters composed, respectively, of N, 
and N2 interacting Drude oscillators. Each cluster re- 
sponds to an external field as a whole, not as N indepen- 
dently fluctuating dipoles. If two such clusters are sepa- 
rated by a large distance R, the leading long-range term in 
the potential is proportional to Re6 and the proportional- 
ity constant will reflect the full many-body polarization of 
each cluster. The long-range potential can thus be written 
as 

3 1 
VN,,N~(R) = -4 N,N&a2J’2, (3.1) 

where F represents the deviation of the interaction from 
the value obtained from the summation of the independent 
site interactions between the atoms on one cluster and the 
atoms on the other. If the many-body effects are unimpor- 
tant then F= 1, and its deviation from unity gives a mea- 
sure of the importance of these effects. 

Since the distances between molecules inside the clus- 
ters are much smaller than those between the clusters, the 
intermolecular interaction between clusters can be re- 
garded as a small perturbation of the energy and the dis- 
tances between all intercluster pairs can be approximated 
by the distance between cluster centers of mass. Thus V’ = 
-&,~2pil* T,,*p,,, where the index i is summed over all 
atoms on cluster 1, j is summed over all atoms on cluster 2 
and T12 is the dipole propagator between the centers of 
mass of clusters 1 and 2. Therefore, the ground state en- 
ergy shift can be expressed as 

e -BAE= (e-S;V’bi)du ), (3.2) 
where the average is taken over the path summations of the 
two noninteracting clusters. We show in the Appendix that 
the asymptotic potential now takes the form of Eq. (3.1) 
with 

F=& 1 [4(r::r::--r::r::-r::r:l) 
I 2 A*A* 2 

+(r~~r~~+r::r::+r::r::)if~,n2, (3.3) 

where the quantities l?f and fn,A2 are defined in the Ap- 
pendix. It can be easily verified that Eq. (3.3) yields F= 1 
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when many-body polarization is ignored. F- 1, which is 
the measure of the importance of many-body effects, will 
be an increasing function of the polarizability (Y. 

IV. NUMERICAL RESULTS 

A. Clusters 

The structure of van der Waals clusters has been the 
subject of numerous important theoretical studies. Most of 
these studies are based on a pairwise additive L-J poten- 
tia13 It was found that three symmetry patterns based on 
pentagonal, tetrahedral, and icosahedral growth, give par- 
ticularly stable structures and low energies. It is known 
that many-body forces give significant contributions to the 
surface tension of liquids and thus it is of interest to deter- 
mine if they might play an important role in determining 
the structures of small clusters where surface energies 
should be relatively more important than in liquids. 

The many-body polarization contributions to the po- 
tential energy of compact clusters should be repulsive. This 
is because the leading many-body term, the three-body 
Axilrod-Teller potential, l7 is positive on the average and 
the expansion series, Eq. (2.21) for m>4 has alternating 
signs and converges to small values. Thus it is to be ex- 
pected that the many-body contribution to the potential 
will reduce the attractions between the clusters, thereby 
giving rise to smaller binding energies. The changes in clus- 
ter energetics induced by many-body forces will be mani- 
fested in several ways: the total potential energy including 
the full many-body contribution will be higher than the 
total L-J potential for the same nuclear configuration, the 
minimum energy configurations will be less compact than 
for the L-J potential, and the clusters will be softer, i.e., 
they will have smaller force constants and lower vibra- 
tional frequencies. 

In the following we adopt a simple model for the po- 
tential parameters. The Lennard-Jones dispersion parame- 
ter is C,=4e06. This model overestimates the contribution 
from the lowest-order two-body dipole-dipole approxima- 
tion because it attempts to include the effect of the higher 
dispersion forces arising from the dipole-quadrupole, 
quadrupole-quadrupole, etc., interactions, terms that 
make the potential more negative than the dipole-dipole 
term as the internuclear distance becomes smaller. Since 
for the Drude oscillator C6=&‘fiw [see Eq. (2.16)], we fit 
the Drude oscillator parameters so that 

4~a~=$a~ficd (4.1) 

or 

166 
&=3a*2’ 

where a*=a/d is the reduced polarizability. For this 
choice of parameters {a*,@} the Drude oscillator model 
Eq. (2.21) will reduce to the L-J 12-6 potential when the 
many-body and higher-order effects are ignored. A good 
example of this is xenon {e=229 K, a=4.055, a*=O.O6} 
where it is found that w= 1.035 in atomic units. It is im- 
portant to recognize that this choice may overestimate the 
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TABLE I. Total energy and many-body contributions of minimum energy configurations according to the 
pentagonal growth sequence. 

n 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

E,(Total) E,,,(Many-body) E,(Three-body) -%A WE, 

- 15.418 63 1.086 710 1.434 358 7.048 032 9.302 759 
-18.51245 1.308 970 1.750 403 7.070 755 9.455 275 
-22.428 48 1.684 784 2.268 168 7.511 806 10.112 89 
-26.351 10 2.071 318 2.806 570 7.860460 10.650 67 
-30.298 52 2.467333~ 3.356 192 8.143 410 11.077 08 
-34.917 39 3.050014 4.156696 8.734 943 11.!%4 37 
-40.47784 3.848 748 5.252 208 9.508 284 12.975 51 
-43.78237 4.062 518 5.581 526 9.278 890 12.748 34 
-47.895 18 4.427 030 6.1iO 723 ~~ 9.243 164 12.758 54 
-52.01631 4.798 719 6.653 8.00 9.225~411 12.791 76 
-56.115 87 5.190 215 7.221983 9.249 104 12.869 77 
-60.76153 5.768 747 8.038 955 9.494078 13.230 34 
-66.11731 6.541 793 9.097469 9.894220 13.759 59 
-70.283 04 6X93 072 9.630-052 9.807 590 13.70182 

9.786=ti78 -74.40244 7.281 527 10.210 01 13.72268 
-78.48178 7.666 101- 10.785 44 9.768 001 13.742 60 
-82.52207 8.035 690 ~11.338 84 9.737 625 13.740 37 
-86.56402 8.433032 11.929 89 9.741 961 13.781-58 
-91.30486 8.954021 12.682 16 9.806~731 13.889 91 
-96.135 96 9.439 398 13.384 73 9.818 800 13.9227i 

many-body dipole-dipole interaction and better choices are 
possible as we will show in another publication.‘* 

To illustrate these effects quantitatively, we have per- 
formed calculations for clusters of N= 7 to 26 atoms whose 
configurations are generated according to the pentagonal 
growth sequence outlined by Hoare and Pal.3 Initial con- 
figurations based on the pentagonal geometry are gener- 
ated from approximate minimum energy coordinates. The 
Monte Carlo method is then employed to search for the 
minimum energy configuration of the system with L-J 
forces. The minimum energies thus obtained agree well 
with those provided by Hoare and Pal in their review pa- 
per.3 The polarization energies were calculated with both 
Eqs. (2.21) and (2.22) and with the static polarizability 
a* =0.06. The series expansion method converges very 
rapidly and terms with m > 10 in Eq. (2.21) are negligible 
so that the two methods agree with each other to within 
the limits of computer precision. In Table I, we list various 
contributions to the total energies of the clusters: Et the 
energy of the full potential, E3 the contribution of the 
three-body Axilrod-Teller potential, Em the contribution 
of all the many-body terms, the percentage ratio of Em to 
E, and the percentage ratio of E3 to Ep In Fig. 1 we plot 
these data vs n, the number of particles in the clusters. 
Obviously, the three-body contribution is about 13 %  of the 
total energy, but when all the many-body terms are in- 
cluded the total many-body contribution falls to approxi- 
mately 10% of the total energy. These curves show sharp 
changes at cluster sizes of N=7, 13, and 19 where the 
structures shrink a bit because of icosahedral shell closure. 
These sharp features are much more pronounced when 
many-body polarization energy is included. This indicates 
that the many-body polarization energy is more sensitive to 
the nuclear configuration than the Lennard-Jones energy. 
We also calculate the many-body polarization energy as a 
function of polarizability. In Fig. 2 these results for clusters 

14 L I  I  I  I  I  

2 
6 8 10 12 14 16 La 20 22 24 26 

" 

E/m 

-3.8 - 

6 8 10 12 14 16 18 20 ~22 24 26 
" 

E/n 0.35 - 

0.25 - 

O,l5 
6 a 10 12 14 16 18 20 22 24 26 

n 

FIG. 1. Data listed in Table I plotted as a function of the number of 
particles. The top panel gives the polarization energy as a percentage of 
the total energy (which includes the two-body short range interaction) 
where the upper curve is for three-body correction, the middle curve is for 
many-body correction, the low one is for the contribution from terms 
other than the three body. In the next panel, the solid curve is the total 
energy (including many-body correction) per particle, and the bold curve 
is the L-J potential per particle. In the last panel, the solid curve is the 
three-body polarization energy per particle, and the bold curve is the 
many-body polarization energy per particle. 
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N=13 
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N=19 

E 1: 
0 1 2 3 4 d(x5100) 6 7 8 9 10 

22 1 1 1 3 ! 1 1 1 1 
/ 4 

E I:: 
I-I 1 2 3 4 5 6 7 8 9 10 

a’( x 100) 

FIG. 2. The many-body corrections (the solid curve) and the three-body 
corrections (the bold curve) plotted as a function of the polar&ability a. 
The four panels from the top to the bottom correspond to the clusters 7, 
13, 19, 26, respectively. 

N=7, 13, 19, and 26 are plotted along with the three-body 
corrections. The three-body correction is linear in CY, while 
the higher order corrections grow nonlinearly with Q. 

We now address the question of how the polarizability 
of clusters varies with cluster size and geometry. Since the 
cluster is generally not isotropic we perform a rotational 
transformation to diagonalize the tensor K defined in Pq. 
(2.23). In Fig. 3, we plot the three principle values of the 
tensor K as functions of the “atomic” polarizability a for 
cluster N=7, 13, 19, and 26. The configurations of these 
clusters are the same as the minimum energy structures 
discussed in the preceding paragraph. The more aniso- 
tropic the cluster the larger will be the differences between 
the principle values of the polarizability. Thus we see that 
because the cluster N= 13 is a closed shell icosahedron the 
principle polarizabilities are equal whereas for the open 
clusters N=7, 19, and 26 the principle moments are more 
degenerate. The N= 7 and 19 clusters are symmetric tops 
and thus have two distinct principle values whereas the 
N=26 cluster is fully anisotropic. 

Next we try to locate the minimum energy configura- 
tion under the full potential. Because the CPU time re- 
quired for the calculation of the polarization energy is 
large, we have simplified the calculation by scaling the 
coordinates of the whole cluster while fixing the geometry. 

c 
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0 1 2 3 4 5 6 7 8 9 10 
a-(x100) 

0 1 2 3 4 &o) 6 7 8 9 10 

FIG. 3. The three principal values of the normalized polarizability tensor 
K defined in ELq. (2.23) are plotted as functions of the single atom polar- 
izability a. The four panels from the top to the bottom correspond to the 
clusters 7, 13, 19, 26, respectively. In the first panel the upper curve 
corresponds to two degenerate principle values (bold curve) and the 
lower curve corresponds to one nondegenerate principle value; and in the 
second panel the bold curve is three-fold degenerate; in the third panel the 
lower curve is doubly degenerate and the upper curve (bold curve) is 
singly degenerate; in the fourth panel all the principle values are different 
(nondegenerate). 

The minimum energy geometry thus found, although not 
exact is very close to the real minimum. In Fig. 4 we plot 
the total L-J energy and the energy including many-body 
polarization vs the scaling parameter s. The energy zero 
corresponds to the minimum energy configuration for the 
clusters interacting through the two-body L-J potential (s 
= 1). We list the scaling parameters and energies corre- 
sponding to the minimum potential energy for clusters N 
=7, 13, 19, and 26 in Table II. The energy reaches a 
minimum at about s= 1.01 which implies the volumes of 
the clusters expand ~3% after the many-body polariza- 
tion energy is taken into account. Finally, in Table II we 
list the force constant K=a* V/a?, which correspond to 
the symmetric stretch frequencies of these cluster at their 
potential minima. It can be seen that the force constant 
softens by =: 10% when many-body polarizations are in- 
cluded. We have also found the true minimum energy con- 
figuration for the N= 7 cluster. In a pentagonal bipyramid, 
there are only two parameters to scale, the side of the 
pentagon and the distance between the axial particles. The 
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FTG. 4. The L-J energy (the solid curve) and the total energy including 
many-body corrections (the bold curve) versus the scaling parameter s. 
The energy zero is taken to be the minimum energy for the s= 1 config- 
uration, which is the minimum configuration for the two-body L-J poten- 
tial. The four panels from the top to the bottom correspond to the clusters 
7, 13, 19, 26, respectively. 

scaling parameters thus found are 1.006 for the side and 
1.0135 for the axial distance and the minimum energy is 
- 15.453 compared to - 16.505 for the L-J potential. Al- 
though there is a distortion of the geometry due to the 
many-body effects, the effect is minor and the preceding 
conclusions based on one-parameter scaling calculations 
are expected to be valid. 

The minimum energy configurations generated by a 
tetrahedral growth process are also changed little from the 
two-body structures. More significantly, the observation 
that the pentagonal structure is more stable than other 
structures for small clusters3 remains valid when many- 
body forces are included. 

TABLE II. The minimum energy BE inluding the many-body correc- 
tion,the scaling parameter s, and the force constant K. 

B. Liquids 

The effect of many-body polarization on polarizable 
liquid xenon was also studied. For this liquid, we use a 
reduced density p*=pa3=0.38, and a reduced tempera- 
ture P=O.612, where the L-J parameters are a=4.05 A 
and e=299 K and the reduced polarizability a*=O.O6. A 
108-particle system with periodic boundary conditions was “. . 
simulated. Configurations are generated according to the 
L-J potential using a Metropolis Monte Carlo method with 

;-the step size adjusted to yield about 50% acceptance rate. 
IL The effects of periodic boundary conditions on the dipoles 

were included using Ewald summation techniques.” The 
extra potential due to the many-body polarization was in- 
cluded as a weighting function for each nuclear configura- 
tion (umbrella sampling). The average of an arbitrary 
property A is then given by 

wmany-body= (A expi% Vmany-body- VJ.J> I)LJ 

(exp[-P( Vmany-body- &J) 1 h ’ 
(4.3) 

where the subscripts on () indicate the potential used in 
the Monte Carlo sampling. This is the standard umbrella 
sampling technique. After equilibrium was reached, the 
many-body correction was calculated after every 100 
passes and data was accumulated over 1000 noncorrelated 
configurations. In Fig. 5 the pair correlation function is 
given for the two-body L-J and many-body simulations. 
We observe a decrease of the peak heights and a shifting 
out of the peak positions. These changes are attributable to 
the repulsive nature of the many-body polarization force. 

In Fig. 5 we also plot the absorption spectrum of the 
interacting Drude oscillators for both the liquid whose 
structure is determined only by the two-body L-J forces 
and for the liquid whose structure is determined by the full 
many-body force. For the definition of the absorption spec- 
trum and related matters we refer the reader to a forth- 
coming paper.7 We observe that the spectrum of the liquid 
with many-body polarization effects included has a nar- 
rower bandwidth and a higher peak. This is consistent with 
the conclusion that the many-body correction is repulsive 
and tends to loosen the structure by as much as 10% in 
xenon. 

C. Attractive interaction of two clusters 

n s(min) AE K( total) K(LJ) 

7 1.0075 -0.032 0.0024 0.0027 
13 1.01 -0.145 0.0063 0.0072 
19 1.0105 -0.225 0.0103 0.0118 
26 1.0105 -0.368 0.0154 0.0174 

Following the above formulation, we are able to cal- 
culate the long-range attraction potential between two po- 
larizable clusters. The two clusters are the minimum con- 
figurations of the N=7 cluster corresponding to the L-J 
potential. The correction coefficient F calculated from Eq. 
(3.3) is 1.05 for a=O.O6 and 1.1 for a=O.l. This increased 
interaction results from the fact that the polarizability of 
each cluster is larger because of internal dipole-dipole in- 
teractions and because the clusters perturb the dipole dis- 
tributions of each other. 

Equation (2.22) can not be used to calculate the long- 
range interaction between two clusters because this energy 
is very small compared to the intercluster polarization en- 
ergy, thus leading to problems with numerical precision. 
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(6) Many-body polarization gives rise to a measurable 
increase in the long-range interaction between van der 
Waals clusters. For Xe, clusters the long-range interaction 
is increased by 5% over the site-site L-J interaction. 
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FIG. 5. The pair correlation functions (the upper panel) and the absorp- 
tion spectra (the lower panel) for the polarizable liquid Xe described in 
the text. The solid curve is for the L-J potential; and the bold curve is for 
the full potential including the many-body polarization,correction. 

Because of this, the perturbation expansion Eq. (2.21) 
turns out to be the only alternative. 

V. SUMMARY 

In this paper computer simulations on polarizable clus- 
ters and homogeneous fluids composed of harmonious at- 
oms interacting through dipoltiipole forces have shown 
that 

ry(n) =p c t&ip =an c w;‘>$Y (AZ) 
i&I . 

where a,, and z?‘, are defined b; Eqs. (2.10) and (2.11) 
and I= 1, 2 is an index specifying the cluster. When fltiw is 
large, the convergence of Eq. (Al) with the number of 
normal modes is very slow. Fortunately, we can complete 
the summation of the normal modes analytically. 

Since it is possible to determine the eigenvalues A of 7 
for each cluster, we recast F(n) as 

( 1) The minimum energy structures of such small 
clusters have essentially the same geometries as the Hoare 
and Pal structures of two-body L-J clusters. Small distor- 
tions from the Hoare and Pal structures are observed. A 
more detailed conformation search will be required to con- 
firm this invariance of the geometries but this will be done 
in conjunction with our soon to be reported work on the 
full Coulomb interaction between the dispersion oscilla- 
tors. 

r(n)= D-i&9 A 
where F~=Z,S~Zfl’ and where S is the transformation 
matrix that diagonalizes 7 and {&} is the set of eigenval- 
ues of this matrix. Hence, the ground state energy shift 
becomes 

(2) The clusters expand by ~3% compared to the 
Hoare and Pal clusters for the polarizability typical of Xe. 

(3) The vibrational frequencies of the clusters are 
smaller than for the Hoare and Pal clusters. We deter- 
mined that for Xe clusters the breathing-mode frequency is 
reduced by z 10% 

(4) Many-body forces have a small effect on the struc- 
ture of liquids; nevertheless, they give a measurable reduc- 
tion in the first peak of the radial distribution function of 
liquid Xe. 

We shall perform the summation of normal modes 
first. In the large b limit the summation reduces to 

lim i 
ffn an b 

~ -=s a’f+i, , 
b-m n=--m l--crA l-a&2 

(AS) 

where the function fAlL2 is given by 

2 
f&= 

(rl1+77zh1712 
(A61 

in which vi is related to the eigenvalue A by ni 
= Jc&. 

(5) The many-body polarization interaction increases Substitution of Eqs. (A4)-(A6) into Eq. (Al) gives 
the polarizability of clusters and liquids. the interaction energy at low temperature between clusters, 
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APPENDIX: A LONG RANGE CLUSTER-CLUSTER 
INTERACTION ENERGY 

Writing the potential in Eq. (3.2) in terms of normal 
modes and taking a cummulant expansion to second order 
gives 

-#IhE=; -$ Tr[Tl(n)m2(n>T] 
n- m 

(AlI 

in which F1(n) is defined as 
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AE= -F a2 c Tr(r,lTP,2T>fn,~. 
412 

L47) 

For the sake of convenience, we locate one cluster at 
the origin and the other at R= (R,O,O) so that the dipolar 
propagator is 

(A81 

The asymptotic potential Eq. (A7) now takes the form of 
Eq. (3.1) with 

+ cr~~r~~+r~~r~~+r~~r~~) ifAlA . (~49) 

It can be easily verified that Eq. (A9) yields F= 1 when 
many-body polarization is ignored. This is accomplished 
by setting the matrix S equal to the unit matrix and by 
letting ,I1 and i12 go to zero. 
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