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The low-temperature propagator of Mak and Andersen [J. Chem. Phys. 92, 2953 (1990) ]
allows for much more rapid convergence of Feynman path integral computer simulations of
quantum systems. The effectiveness of this propagator is very sensitive to the choice of an
effective frequency and the choice of this made by Mak and Andersen, although good, is not
optimum. In this paper a harmonic reference system is used together with a variation principle
to compute this effective frequency. Simulations show that when this is used in the low
temperature propagator, the results converge much more rapidly than for other choices of the
frequency. Moreover, an energy estimator is derived, which allows this effective potential to be
used for the determination of the energy of the quantum system. In addition, using a cumulant

expansion of the centroid density in the free particle reference system, an effective potential
along with a corresponding energy estimator is derived and compared to the above.

1. INTRODUCTION

Feynman path integral methods provide a powerful tool
for studying the equilibrium thermodynamics of quantum
system.! The Trotter theorem makes it possible to discretize
the path integral®® such that the statistical mechanics of a
quantum particle becomes isomorphic to that of a classical
polymer chain of P beads. This permits one to devise algor-
ithms for the numerical simulation of quantum systems.'
As Pincreases, the thermal properties of the polymer chain
will asymptotically approach that of the quantum particle. If
more accurate propagators are used, the simulation will con-
verge more rapidly to the exact result and smaller P will
suffice. This observation has inspired the quest for more ac-
curate short-time propogators. Examples are the generalized
Trotter formula which is based on a higher order operator
expansion,” the exponential power series expansion which is
a recursion integral relation directly derived from the Bloch
equation,® the variable quadratic propagator which com-
bines the features of the Taylor expansion and the quasihar-
monic approximation,” and finally, the low temperature pro-
pagator designed to generate good accuracy for bound
systems at low temperatures.® All of these improvement sig-
nificantly reduce the required central processing unit (cpu)
time while assuring convergence of simulation.

The original and most commonly used thermal propa-
gator, correct to the first order in 3, follows directly from the
Trotter formula®®
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where the exponential part .S is the dimensionless imaginary
time action which is approximated by

S =5 (x x4 p[LRAFED] (12)

Because this is only accurate at high temperature, we shall
call it the high temperature propagator (HT propagator).

Mak and Andersen® devised a low temperature propa-
gator (LT propagator)

p(xx'p) = exp — S, (1L.1)
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p(xx"B) =

m 172 S l 3
Zﬂﬁzﬂ(sinh(a)) exp—3, (1.9

where

s=_m _a
2#28 sinh(a)

tanh(a/2) [ Vix) + V(x')]
(a/2) 2 ’
a = Bfiw, and where the effective frequency w is determined
either from:
(a) the curvature at the minimum of the potential
me® = V"(x,), (1.5)

or from;
(b) the normalization condition of the effective LHO at
infinitely low temperature, i.e.,

f_: exp( — —2—‘%) dx = ﬂ . (1.6)

mao

(x—x")?

+pB

(1.4)

Equation (1.3) reduces to the HT propagator [Eq.
(1.1)] at high temperature and moreover when it is applied
to the linear harmonic potential ¥(x) = mw?/2, it gives the
exact propagator at all temperatures for @ = w,. Of the two
prescriptions for determining the effective frequency, meth-
od (b) is preferable, especially for the case where the curva-
ture of the potential at its minimum (a) is zero. However,
both (a) and (b) serve merely as convenient ad hoc choices
of the effective frequency. As we shall show, there are better
choices. The low temperature propagator can be generalized
to many-degree-of-freedom systems and to the computation
of thermal time correlation functions.

Feynman? introduced an effective classical potential
which includes quantum corrections and used it to calculate
the quantum statistical properties in the canonical ensemble.
He introduced the centroid density and evaluated it by aver-
aging all isomorphic polymer chains (quantum paths) with
barycenter fixed at a given position. Feynman performs his
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averages using a free particle reference system. Following
Feynman, using cumulant methods, we obtain a general
form for the effective potential which in principle includes
all quantum corrections. Keeping only the first few leading
terms, we are able to generate a very accurate approximation
to the effective potential.

Feynman® has also exploited a local harmonic reference
system to determine the statistical properties of systems with
arbitrary potential functions. He determines the effective
frequency to be used in the reference system by using a vari-
ation principle based on the Gibbs—Bogiliubov inequality
and with this approximates the partition function of a quan-
tum particle. Recently, Voth e al.' used the same basic idea
to study barrier crossing problems. This approach allows us
to derive a simple and explicit equation for the effective fre-
quency to be used in place of methods (a) and (b) in Mak
and Andersen’s LT propagator. This yields a very rapidly
convergent approximation to the low temperature propaga-
tor defined in Eq. (1.3). We introduce a perturbation solu-
tion for the effective frequency which clarifies the relation
between the effective potential based on the free particle ref-
erence systems (discussed in the previous paragraph) and
the effective quadratic potential based on the harmonic ref-
erence system. This also allows us to derive explicit expres-
sions for the energy estimators corresponding in these two
reference systems, and thereby use these approaches in
Monte Carlo simulations to determine the energy. The sec-
ond method is shown to be very accurate when applied to
bound systems in the low temperature limit.

In the low temperature propagator [Eq. (1.3)], the
spread of convergence depends strongly on the effective fre-
quency @. The form of @ determined from the effective qua-
dratic potential approximation is a very attractive choice as
it springs from a physical derivation rather than the imposi-
tion of an arbitrary normalization condition. We present
several numerical simulations to show that this choice of the
frequency is superior to the others in that it leads to much
more rapid convergence than the original choices made by
Mak et al.

Il. THEORY
A. The unnormalized centroid density

The canonical partition function can be expressed as®

Z= jp(xo)dxo,

where p(x,) is the diagonal element of the density matrix

p(xo) = {xolexp( — BH)|x,) (2.2)

and H is the Hamiltonian. The cyclic property of the closed
chain allows the standard unnormalized density p(x,) to be
expressed as

x(1) = x(0) 1
o) = | (Dxw) | dublx(w) — xolexp — S
x(0) 0
(2.3)
in which S is the dimensionless Euclidian action given by

_om (Y(axY !
S_Z—WEJ(; (—(;l-‘—) du +BJ; V[x(u)]du,

@.1)

2.4)

where the discretized form of the measure [ £ x(u) ] is expli-
citly given by
. P p/2 P
PDx(u)] = lim (m_) dx
[FxG]) = lim 2 kl;ll y
for P beads. This differs slightly from the standard form of

the measure which does not have the integral of dx .
The canonical partition function can also be expressed

(2.5)

as

Z= fp"‘(xo)dx0 (2.6)

with p*(x,), the unnormalized centroid density, defined as

x(1) = x(0)
p*(x0) =J [Dx(u)]6(X —x)exp—S, (2.7)

x(0)
where the measure [ £ x(u) ] is also given by Eq. (2.3) and X
is the centroid (or the center-of-mass) of the closed chain

1
§=f x(u)du. (2.8)
0

p in Eq. (2.3) involves a sum over all the paths which pass
through the point x,, while p* in Eq. (2.7) involves the sum
over all paths whose center-of-mass is located at x,. Feyn-
man? used the concept of the centroid density to derive a
quantum correction to the partion function.

In the following, we shall omit the term ‘“‘unnorma-
lized” because both the standard density of Eq. (2.3) and the
centroid density of Eq. (2.7) are normalized by the partition
function Z.

It is often useful to choose an exactly soluable reference
system with potential funtion ¥, and to express the cen-
troid density for the real system in terms of the centroid
density for the reference system pX; (x,). In general,

P* (%0) = pite (%) (exp —Bf (¥ = V)t e,
(2.9)

where (-- ), is the average (or the expectation value) in
the reference system

_ S[Dx(u)18(X — x,)f(x)exp — S,r

= 2.10
e S D x(1)]6(X — x0)€Xp — S, (2-10)

In principle, any reference system can be employed to
evaluate the centroid density corresponding to another po-
tential, but convergence is best for a reference system physi-
cally close to the system of interest. The two reference sys-
tems treated in this paper are the free particle and linear
harmonic oscillator reference systems.

B. The cumulant expansion

In this section, we apply a cumulant expansion to aver-
age over a free particle reference system (¥, = 0) to obtain
an effective potential as a power series expansion in powers
of the inverse temperature.

The path can be expanded in a Fourier series

x(u) =x,+ i [ax cos(2mku) + b, sin(2mku) ]
k=1
(2.11)
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which automatically satisfies the constraint that the centroid
of the path must be located at x,[cf. Eq. (2.8) ] as well as the
requirement that the closed chain be periodic over the inter-
valu = Otowu = 1. Substitution of this Fourier series into Eq.
(2.4) for a free particle gives the action

Su= 5 HLbE

“ 20%

where o, is the thermal wavelength of the k£ th mode

o2 =#WB/2rmk>. (2.13)

The average defined in Eq. (2.10) can be expressed as an
infinite dimensional Gaussian integral

, (2.12)

- — (g} + bi/20%
kadakdb,Je (o b2
(f)refz —

— (2.14)
II 2mo%)
k=1
and o, can also be viewed as the Gaussian width of each
mode.
As is well known, averages of exp |
ten as a cumulant expansion,'!

<exp[ —ﬂJ;l V[x(u)]du])ref =exp[ i (=B)" C,,,]

m=1 m!

— f{x)] can be writ-

=exp[ —BV4], (2.15)
where C,, is mth order cumulant which is related to the
moments

1 m
I, = <[f du V[x(u)]] > (2.16)
0 ref
The first few cumulants are
C, =1, (2.17)
C,=IL—1%, (2.18)
C,=I1,-3I1+2I;. (2.19)

For C,, the multidimensional Gaussian averge over a, and
b, is  easily evaluated by first expressing
Vix(u)] = Vix, + X(u)], where %(u)=x(u) — x, as a
Fourier transform. This reduces to a Gaussian average over
a single variable X:

C, = (f Vix, + i)du)

- +X)exp — [¥/20°] (2.20)
with the Gaussian width
o’ = i 0% [cos?(2mku) + sin®(2mku) ] = _ﬁ_z_/?_,
k=t 12m
(2.21)

where the summation 3°_, (1/k2) = 7/6 was explicitly
used, o can be understood as the thermal wavelength of a
free particle. By Taylor expanding V(x, + X) in Eq. (2.20)
around x,, and by evaluating the Gaussian integrals of ", C,
can be expressed as a power series expansion in 8, (6% ~8),

(2n

— —1) (2n)
C, —2 )] V2 (x5) ()", (2.22)

where ¥V " (x,) = d >"¥(x,)/dx3". There are no such sim-
ple solutions for higher order cumulants. To proceed the
potential is Taylor expanded and the result is integrated
term by term over u before evaluating the average

f V(xo+ X)du = z ﬂ V‘2"’(x0)J du x(u)*.
n=1
(2.23)
The odd terms vanish when integrated over # and the mo-

ment [, in Eq. (2.42) is explicitly given by

12=fdufdu'<V[x(u>1V[x(u')1>,,f.

Substitution of Egs. (2.24) and (2.20) into Eq. (2.19)
yields the lcading term of C, to order 52,

(2) 0 2)72
=5 3 ot +own = vy
K=1 10

(2.24)

—=d*+0(B?),
(2.25)

where the sum 22°_, (1/k*) = 7°/90 has been explicitly
used.

Proceeding in this manner, it is easy to show that the
third order cumulant

Ci=(I,-1})-3IC, (2.26)
is also in order of 82, because (I, —I3)~O0(B>); ie.,
C;~0(BY).

Finally, using the foregoing, it follows that the quantum
corrections to the unnormalized centroid density to the
fourth order of B can be expressed as

P =[5 ,:;23 exp— (BV.g) (2.27)
with effective potential
V(2) V(4) V(6)
V=V o’ 4
n = AR AT
( V( ))2
—B——20 o+ 0(B*). (2.28)

It should be noted that no odd derivatives of the poten-
tial appear in the effective potential. This is different from
the standard density Eq. (2.3) which includes force terms in
the high order expansion, i.e., the well-known Wigner ex-
pansion. '2

Application of the above to the linear harmonic oscilla-
tor (LHO), ¥V = mw?x?/2, gives

2 4

Vg~ zL __Z
B’“ﬁ+24 2880

where a = Bfiw, a result in very good agreement with the
first few terms of the exact result [cf. Eq. (A5)].
From E= — d1In Z /9B, it is easy to determine that

(2.29)

1 < @ kY A y©
E=— V+ Vg2 4
TRl 5t
2)y2
_BL_)_,,4) , (2.30)
5 p*

where (---) indicates the ensemble average of distribution

J. Chem. Phys., Vol. 92, No. 12, 15 June 1990
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



7534 J. Cao and B. J. Berne: Feynman quantum propagator

p*, aresult that defines the energy estimator € as the unaver-
aged quantity

1 3p@ y©
€=—+V+ VP —¢*
28 s 7 T2
2)y2
—ﬁ(VS ) 5, (2.31)

We call this method the effective potential approxima-
tion in the free particle reference system (EPFRS approxi-
mation).

The above results can be generalized to a three-dimen-
sion particle simply by substituting ¥ ?® with 2}_ ,3 *"V
and the constant 1/2f in the energy estimator is replaced by
3/28.

C. The effective frequency from a harmonic reference
system

The low temperature propagator [Eq. (1.3)] intro-
duced by Mak and Andersen requires an explicit effective
frequency. Mak and Andersen give two ad hoc prescriptions
for determining @ [cf. Egs. (1.5) and (1.6) ]. In this section,
we introduce another method for determining @ and in the
next section we show that the short time propagator using
this prescription is superior to that of Mak and Andersen.

Our method is based on the early work of Feynman®
who used the centroid density to determine an effective clas-
sical partition function. Gillan'® derived an expression for
quantum transition state theory by replacing the classical
density p,, at the top of the barrier by the corresponding
centroid density p*(x,). Voth et al.'® developed an approxi-
mation for p* in a metastable system using a variation princi-
ple, determined an effective frequency for the parabolic bar-
rier, and applied the result as an importance sampling
function in real-time barrier crossing dynamics simulations.
Based on the foregoing work, we are able to formulate a
simple expression for the effective frequency to be used in the
low temperature propagator and to calculate the energy of a
quantum system to a very good approximation.

The reference system is chosen to be the linear harmonic
reference system with potential

Vet = V(Xo) + Ima*(%)?, (2.32)

where the unspecified parameter o is the effective frequen-
cy—to be determined.

The well-known inequality (exp( — ) )>exp( — {f))
allows one to derive the inequality

<exp -B J- (V— V,ef)du>

ref

>exp—f (f V— V,ef)du> ,
ref

(2.33)

where (- - )¢ is defined in Eq. (2.10). Thus, substitution of
this into Eq. (2.9) yields

P (x0) > (xo)exp — B < [or- V,eadu)

The effective frequency is found by maximizing the term on

. (2.34)

ref

the right-hand side of Eq. (2.34) at each point x,. This vari-
ation procedure gives (see the Appendix)

me’ = (V" (xo+ %)), (2.35)

where (- --), is the Gaussian average
1
(V" (x +i))a=[ ]fdch"(x + %)
° 2mo? ¢
Xexp[ — x°/20%] (2.36)
and the Gaussian width defined as
2
a=tB | a2 __ ] (2.37)
me? | tanh(a/2)

where a = Sfiw.

In the Appendix it is shown that for a metastable bar-
rier, the corresponding equation for the effective frequency
of the barrier reduces to the results of Voth ez al.'®

It is important to note that both sides of Eq. (2.35)
depend on @ and the resulting transcendental equation must
be solved for w. Expansion about the centroid point x,, yields
another form of Eq. (2.35) which is more practical for solv-
ing for w:

mao?= S &n— DU

n=0 (2” )!
Equation (2.37) can also be expanded to give
1 fa)? 2 (a}*
02=a'2[1 __(_) _(_) ] 2.39
° AV ATV YA (239
where 03 = #£/12m and a = fhw.

Substitution of Eq. (2.39) into Eq. (2.38) leads to a
perturbation series for ? in terms of 3. The first few terms
are

V@nt D (x yg2n, (2.38)

4) (6) (8)
3 V(Z)V(4)
— o oy 4+ 0(8*Y). (2.40)

Note that the second derivative of Eq. (2.28) gives the same
result. This illustrates the relationship between the cumulant
expansion using a free particle reference system and the vari-
ational approach based on the harmonic oscillator reference
system. Thus, these two approximations are equivalent in
the limit of high temperature. In the low temperature limit,
on the one hand, it is possible to include higher order cumu-
lants. On the other hand, the effective frequency approach is
a very accurate approximation if the anharmonicity in the
potential is not too large.

As has already been pointed out, the centroid density
depends only on even derivatives of the potential, whereas
the semiclassical expansion of the diagonal density matrix
depends on even and odd derivatives of the potential. There-
fore, the quadratic reference potential is a good starting
point for calculations involving the centroid density, where-
as for the standard density defined in Eq. (2.3), a forced
harmonic potential must be used in order to include the first
two terms in the expansion.

In general, the effective frequency w given by Eq. (2.35)
is not related to the local curvature, but involves an average
over a Gaussian width o defined by Eq. (2.37), which can be
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interpreted as the thermal wavelength of a particle in the
reference LHO potential. Essentially, o reveals all the quan-
tum effects in the reference potential. In the limit of -0, o
reduces to the free particle thermal wavelength
g5 =#B/12m.

The foregoing suggests that the effective frequency o to
be used in the low temperature propagator [Eq. (1.4)] be
taken as the solution of Eq. (2.35) at the minimum of the
potential. This choice has the advantage that the self-consis-
tent equation for @ contains accurate information about
quantum effects in the ground state. We call this modified
propagator the effective frequency low temperature
(EFLT) propagator.

In multiple well problems the centroid can move from
one well to another. In this case the effective frequency is
variable and corresponds to the minimum of the potential
well in which the centroid is located at each time.

The right-hand side of inequality (2.10) with the opti-
mized choice for the effective frequency gives a useful ap-
proximation to the exact centroid density, which we label

p*s

- _ , m a/2 _ ( v .
p*(xo) 2798 sinh(a/2) exp— B | (V(x,+ X)),

_m_wz)
2 i

(2.41)

where o is a function of position x, defined by Eq. (2.35),
and thus depends on S, %, and mass. This generates an ap-
proximation for the partition function Z ~ fp* (x,)dx,. Sub-
stitution of this into £ = — d1In Z /9df allows us to deter-
mine the average energy as [see Eq. (B10)]

E= (—”43 cth(a/2) + (V(xo + x»a) :
5

where (V(x, + X)), is defined by Egs. (2.36) and (2.37)
and (- ). indicates the average over the classical distribu-
tion function p*. As this method is based on the local effec-
tive quadratic reference potential, we call it the effective qua-
dratic potential (EPQRS) approximation. Equation (2.42)
permits us to define the energy estimator for this approxima-
tion as

(2.42)

e=i:’—cth(a/2) + (V(xo+ X)), (2.43)

This must be averaged over the distribution function p*.

Application of these results to the trivial problem of a
LHO using the harmonic reference system leads to @ = con-
stant and the energy estimator gives the exact results.

E=%cth(a/2). (2.44)

It is a simple matter to construct a Monte Carlo algo-
rithm based on umbrella sampling™'* in which the configu-
ration is sampled according to the true classical distribution
exp( — B¥), where Vis the full potential and any quality to
be averaged is weighed by the difference between the classi-
cal and the approximated centroid density, i.e., 5*/p,.

The above results can be easily generalized to multidi-
mensional systems. If the vector x denotes the set of N co-

ordinates {x,, x,,..., x,, }, there will be a corresponding N X N
matrix of frequencies, »};. With the help of the transform
matrix R, we can diagonize the frequency matrix,

R"0’R = 0™ (2.45)

The Gaussian width o is defined similarly to Eq. (2.37),
where the frequency o will be replaced by the eigenvalues of
the frequency matrix {w{?,...,»;2}. For each eigenfrequency,

we have
., #B { a/2
o’ = —1),
ma'? \tanh(a'/2)
where a] = #ifw]. Obviously, the Gaussian averages are tak-
en with the transformed coordinates x ‘which are related to

X by the rotation matrix X; = R,;X;. The Gaussian average
can then be formulated in terms of x',

(2.46)

(F(xo) + %))y = ﬁ

1 —x;
fdx,f exp >
i=1| \2mo}? 20;

X F(xq + RX'). (2.47)

It is then straightforward to generalize Eq. (2.35), which
now reads

ma)?,j = (aiaj V(xo+ %)) g (2.48)

It should be noted that the transformation of coordi-
nates is local as the rotation matrix depends on the effective
frequency matrix which varies with position. If interactions
between different groups of coordinates are weakly coupled,
x can be divided into several essentially independent subsets
of coordinates and the computation of the N-dimensional
centroid will be significantly simplified.

lll. RESULTS

For simplicity, we assign a number, a symbol, and an
acronym to denote the different approximations introduced
previously:

(1) O (HT propagator ), the standard high temperature
propagator [Eq. (1.1)].

(2) O (LT propagator), the low temperature propaga-
tor [Eqgs. (1.3) and (1.6)].

(3) A (EFLT propagator), the effective frequency low
temperature propagator [Eqgs. (1.3) and (2.35)].

(4) * (EPQRS approximation), the effective potential
approximation using the quadratic reference system [Egs.
(2.35), (2.41), and (2.42)].

(5) ® (EPFRS approximation), the high order effec-
tive potential expansion [Egs. (2.27), (2.28), and (2.30)].

Methods (1)-(3) are employed to calculate the short
time propagator to be used in path integral Monte Carlo
simulations and the virial estimator’? is used to calculate the
average energy. The number of moving beads P used in the
staging algorithm is adjusted to yield an acceptance rate of
approximately 50%. The results are based on MC simula-
tions of 10° passes. The dotted line in the figures are the
converged values as described below. In all cases, m = 1.0
and #i = 1.0. Mak et al. have already shown® that the LT
propagator converges faster than the HT propagator.

Methods (4) and (5) are two approximations to the
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centroid density which can be used to determine the energy
by numerically evaluating the spatial integration in Eq.
(2.30) or Eq. (2.42).

We investigate these five methods using a simple anhar-
monic potential for which the energy eigenvalues can be ana-
lytically evaluated. For a three-dimensional isotropic har-
monic oscillator of frequency ® = 1.0, with the angular
momentum quantum number L = 1, the effective radial po-
tential is

x 1

vV 3 + Z
For this potential, the ground state energy is 3%iw and the
energy levels are E, = (3 + 2n)#iw. The average energy of
this system at temperature 5 is given by

3 2

E 2 + e -1
for units in whichi=1.0and ® = 1.0.

Figure 1 gives the average energy vs 8 using the five
different methods listed above. The dotted line is the exact
energy calculated from Eq. (3.2). The path integral staging
Monte Carlo simulation is performed with three propaga-
tors [ (1), (2), and (3)], respectively, with the same number
of beads at each temperature. The number of beads P varies
from two to five at different 8. The plots clearly show that
the EFLT propagator [method (3)] is superior to the oth-
ers, as we expected.

The EPQRS approximation [method (4)] with the ex-
pansion of {(¥) and (¥ ") carried out to the sixth orderin the
derivatives of the potential ¥®, clearly gives the better agree-
ment with the exact result than does the EPFRS approxima-
tion [method (5)]. It works well even at low temperature,

3.1

(3.2)

3.0

28

26 |

2.0 1 ] !

FIG. 1. A plot of average energy vs 8. The potential is defined by Eq. (3.1)
The dotted line is the exact results obtained from Eq. (3.2). (1) Oindicates
the data for HT propagator; (2) Oindicates the data for LT propagator; (3)
A indicates the data for EFLT propagator. The above three propagators are
employed in staging MC simulation with the same number of beads. (4) *is
the results of EPQRS approximation; and (5) @ is the results of EPFRS
approximation.
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whereas the EPFRS approximation works reasonably well
at high temperature and poorly at low temperatures.

In order to study the convergence with Pand to investi-
gate the behavior as the strength of the anharmonicity var-
ies, it is useful to investigate the quartic potential

2
= "? +Ax4, (3.3)
where A gives the strength of anharmonicity.

Figure 2, a plot of the effective frequency w [cf. Eq.
(2.35)] vs B at the minimum point x = 0, for A = 1, clearly
shows that in the high temperature limit (classical limit) the
effective frequency @ approaches the local curvature at the
potential minimum (with corresponding frequency = 1.0)
calculated from Eq. (1.5). In the low temperature limit
(B— =), the Gaussian width o, defined by Eq. (2.37), be-
comes

#i

2mow

which is independent of B for any @ >0. 0 = J#/2mw is
actually the spatial spread of the ground state of a linear
harmonic oscillator of frequency w. Thus for the quartic po-
tential [Eq. (3.3), it follows from Eq. (2.38) that

me’=1+ 12Ax2 + 124 i,
2me

34)

3.5)

which gives the effective frequency in the S— « limit. Solv-
ing Eq. (3.5) for w, allows us to compute the ground state
energy of the quartic potential by evaluating the ground state
energy of the corresponding effective quadratic potential
#iw/2. For comparison, Eq. (1.6) gives w,,, = 1.53, which
lies between the high and low temperature limits.

In Fig. 3, we plot the effective frequency corresponding
to the quartic potential {Eq. (3.3) ] with A = 1, as a function
of position x, for fixed temperature S = 5.0. Curve (a) gives
the Gaussian width o (< 10) defined by Eq. (2.37). Curve

3.0 T T T 1

25 -

20| =

1.0 1 1 1 A
0 10 20 30 40 50

8

FIG. 2. The effective frequency determined by Eq. (2.35) for a quartic po-
tential {Eq. (3.3)] with A = 1 at x = O s plotted vs .
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a (unit=0.1) 4

FIG. 3. A plot of the effective frequency as a function of position at 8 = 5.
The same potential as in Fig. 2 is used. Curve (a) is the Gaussian width o
defined in Eq. (2.37); curve (b) is the effective frequency; curve (c) is the
local curvature frequency [Eq. (1.5)}.

(b) corresponds to the effective frequency solved from Eq.
(2.35) and curve (c) corresponds the local curvature fre-
quency determined by Eq. (1.5). These curves show that the
quantum effect is largest at x = 0.

Next we study how the energy of the quartic oscillator
[Eq. (3.3) ] converges as a function of the number of beads P
used in the staging Monte Carlo method for the three propa-
gators (1), (2), and (3). In Fig. 4, A =1.0 and £ = 5.0,
whereas in Fig. 5, 4 = 5.0 and 8 = 5.0. These are compared
with the exact energies determined from the paper of Zhang

i0 T L T T I

0.6} .

0.5 1 1 1 ] 1
0 5 10 15 20 25 30

P

FIG. 4. A plot of average energy of the quartic potential (4 = 1) the num-
ber of beads P in the staging MC simulation. B = 5. The results are indicat-
ed by (1) O for the HT propagator, (2) O for the LT propagator, (3) A for
the EFLT propagator. The number of MC passesis 10°. And the acceptance
rate is adjusted to approximate 50%.

1.6

-

14+ -

1.2

1.0 | -

0.6 - .

=
-
=

0.4

FIG. 5. The same plot as Fig. 4 except for a different parameter 4 = 5.

et al.” using the basis set for the LHO. Figures 4 and 5 clearly
show that the EFLT propagator [method (3)] converges
more rapidly than the LT propagator [ method (2)], which
in turn converges more rapidly than the HT propagator
[method (1)]. Because the EFLT [method (2)] and the LT
[method (3)] propagators are based on a quadratic aproxi-
mation, we expect them to be excellent when the anharmoni-
city A is small. Comparison of Figs. 4 (1 =1.0) and 5
(A = 5.0) shows that these two methods [(2) and (3)] for
any given P are closer to the exact result for A = 1.0 than for
A =5.0. The EPQRS approximation [method (4)] is also
applied to both cases and the results are listed in Table I.

Finally, it is of interest to see if our conclusions also
apply to multidimensional potentials. For this purpose we
study the simple two-dimensional potential,

V(xsy) = Vl (x) + Vl(y) + Vz(xJ), (36)

where the ¥,’s are one body potentials and ¥ is the coupling
potential

Vi(x) = 5x* + §x?, 3.7
Vi(y) =5+ b7, (3.8)
Vy(x.p) = xp. 3.9)

For #=35.0, fi= 1.0, and m = 1.0, the frequency ma-

TABLE I. Energy comparison. A is the parameter in the quartic potential
defined by Eq. (3.3). E,,,., is calculated with the help of the basis set of
LHO. E, ; is the result of EPQRS approximation. @, is the solution to
Eq. (2.35) to be used in EFLT propagator. @, is the solution to Eq. (1.6)
to be used in LT propagator.

A E et E, .« Dyerr @nor
1 0.803 0.787 1.88 1.53
5 1.226 1.218 3.08 2.29
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3.0 T T T T
25 | -
P/—./v
E
20 1
15 =
1.0 1 ] - 1
0 10 20 30 40 50
P

FIG. 6. Average energy for a two-dimensional potential defined in Eq.
(3.6) at =15 is plotted vs the number of heads used in the staging algo-
rithm. The results are indicated by (1) O for the HT propagator, (2) O for
the LT propagator, (3) A for the EFLT propagator. The number of MC
passes is 10°. And the acceptance rate is adjusted to approximate 50%.

trix of method (2) isw” = (}3 ;3) and that of method (3) is
o* = (3 55)-

For details concerning the treatment of this multidi-
mensional potential using the low temperature propagator
approximation, we refer the reader to the paper by Mak ez
al® In Fig. 6, we show a plot of the average energy vs the
number of beads P. For this two-dimensional case, we have
not determined the exact energy and, consequently, we do
not include a dotted curve for comparison. Nevertheless, it is
clear from Fig. 6 that our EFLT propagator for this two-
dimensional potential retains its superiority over the other
alternatives.
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APPENDIX A: THE FREE PARTICLE REFERENCE
SYSTEM

The exact form of the centroid density of the LHO po-
tential defined by Eq. (2.32) is now derived. The Fourier
transformation defined by Eq. (2.11) gives the action

= a;+bj

S=V(x) + ) (Al)
? kzl 20%
where o, is given by |
2 = 8 1 (A2)

2m7* k*+ (a/27)?

which reduces to the free particle result as o —0.
Substitution of the identity

ﬁ 1 _ a/2
i 1+ (a727k)?  sinh(a/2)
gives the results

(A3)

m a/l
2m#?B sinh(a/2)
which for small a can be expanded as

exp — BV(x,) (A4)

p*(xo) =

a4

2

m a
exp— (BV + — —
p— BV + 2880

2m#B 24

p*(xo) =
(AS)

APPENDIX B: THE HARMONIC REFERENCE SYSTEM

To apply Eq. (2.34), we require the calculation of
(V(xy + X(u)) s To proceed, we substitute Eq. (2.11) for
X(u) and evaluate Eq. (2.14). It is easy to show that

(Vixg+ x2(u)]) s = (Vx4 X)), (B6)

where (- -}, is defined by Eq. (2.14) and {- - ), is defined
by Eq. (2.20). The Gaussian width ¢ is given by

=3,

where o, has already been defined by Eq. (A2). After sub-
stituting the following identity
i 1
“h ki
into Eq. (B7), we recover Eq. (2.37).

The variation principle applied to the right-hand side of
Eq. (2.34) yields

(B7)

1

l[ﬂ’
=—|—cth (mp) — = (B8)
21y y

=0, (B9)
B da’ g
where the explicit form of p* is given by Eq. (2.41). Equa-
tion (2.35) is the solution of Eq. (B9).
To derive the energy estimator (2.42), we evaluate the
partial derivative of 5* with respect to 5:
a . a . da d .

— =__t —_ A%
B’ .8 |. B wR’

*

a -t 3
s B’

’
a

(B10)

where we drop the term involving the partial derivative with
respect to a because of Eq. (B9). Then, Eq. (2.42) is easily
obtained.

APPENDIX C: THE PARABOLIC REFERENCE SYSTEM
Finally, for a parabolic reference potential
(C11)

we simply redefine the variable v = iw,, @ = ia,. Then Egs.
(2.35) and (2.37) reduce to

Vier = V(xp) — §mar; (x — xp)?,

moy = — (V" (xo+ %)), (C12)
where o is given by
2
=B/ ) (C13)
mai\  tana,/2

There exists an upper bound for the effective barrier frequen-
cy @, <27, because o diverges when a, = 2.

The transcendental equation for @ given by Voth et al.'°
is
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mo?t = w‘;_kkff/(k)exp(ikxo—szqz/z), (C14)

w© T
where Ag? is the mean-square deviation from the centroid

A¢ = f ([x() — %01 e dt.

It is easy to verify that Ag? is exactly the Gaussian width o?
we give in Eq. (C13).
V(k) is the Fourier transformation of the potential ¥:

(C15)

Vik) = fw V(x)exp( — ikx)dx. (C16)

Substitution of Eq. (C16) into Eq. (C14) followed by the
integration over k yields our previous result Eq. (C12).
Therefore, we have verified the equivalency of Egs. (C14)
and (2.35).
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