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Spectral analysis of electron transfer kinetics. II
YounJoon Junga) and Jianshu Caob)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239

~Received 21 September 2001; accepted 14 May 2002!

Electron transfer processes in Debye solvents are studied using a spectral analysis method recently
proposed. Spectral structure of a nonadiabatic two-state diffusion equation is investigated to reveal
various kinetic regimes characterized by a broad range of physical parameters; electronic coupling,
energy bias, reorganization energy, and solvent relaxation rate. Within this unified framework,
several kinetic behaviors of the electron transfer kinetics, including adiabatic Rabi oscillation,
crossover from the nonadiabatic to adiabatic limits, transition from the incoherent to coherent
kinetic limits, and dynamic bath effect, are demonstrated and compared with results from previous
theoretical models. Dynamics of the electron transfer system is also calculated with the spectral
analysis method. It is pointed out that in the large reorganization energy case the nonadiabatic
diffusion equation exhibits a nonphysical behavior, yielding a negative eigenvalue. ©2002
American Institute of Physics.@DOI: 10.1063/1.1491241#
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I. INTRODUCTION

Since the seminal work of Marcus on the nonadiaba
electron transfer reactions,1,2 a great amount of effort ha
been made in the studies of the electron transfer react3

with a variety of tools such as time-resolve
spectroscopies,4–6 computer simulation methods,7–9 and ana-
lytical theories.10–22 It is not surprising that there has bee
great interest in the studies of the electron transfer react
since it is involved in many important chemical and biolog
cal systems~for the most recent reviews, see Ref. 23!. For
example, in the photosynthetic reaction center, elect
transfer process creates the initial charge separation w
will eventually lead to the production of the adenosi
triphosphate.24 Also, recent studies of molecular electroni
depend crucially on the complete understanding and con
of electron transfer in chemical systems.25,26Another kind of
electron transfer reaction that is currently subject to ext
sive studies is proton-coupled electron transfer reactions,
many theoretical27–30and experimental27,31studies have been
performed on this subject.

One of important and ubiquitous aspects of elect
transfer kinetics is the dynamic solvent effect on the elect
transfer rate.32–34As both experimental and theoretical inve
tigations have been carried out on electron transfer react
in solutions, many diverse phenomena including predicti
of the original Marcus theory have been revealed, depend
on physical parameters involved in the electron trans
kinetics.10–19,32–34

The electronic coupling constant,V, given by the inter-
action matrix element between the electron donor and ac
tor wave functions is one of the most important physi
parameters, and depending on its magnitude when comp
with other parameters, various kinetic regimes are exhib
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in the electron transfer process. When the electronic coup
constant is the smallest parameter of the electron tran
process, the electron transfer rate is well described by
turbation theory, which predicts the golden-rule rate,2

k'kGR5
2pV2

\
rc , ~1.1!

whererc is the equilibrium population of the reactant state
the crossing regime, and this is a well known result of t
Marcus electron transfer theory. When the electronic cou
pling constant large enough, the overall reaction proces
not determined by the Marcus rate, Eq.~1.1!, but by the
solvent diffusion rate describing the polarization dynamics
the solvent molecules,10

k'kD'Vlrc , ~1.2!

whereV is the solvent relaxation rate andl is the classical
reorganization energy, and this case is called thesolvent-
controlled limit.35–38

About two decades ago, Zusman10 investigated the
crossover between the Marcus and solvent-controlled
gimes in the studies of the electron transfer reaction in De
solvents. He used a mixed quantum-classical approach w
a thermal operator is introduced to describe bath relaxa
processes occurring on two diabatic surfaces10,11,39 and
treated the electron transfer process as a nonadiabatic tr
tion between them. Zusman solved the nonadiabatic di
sion equation in the weak coupling limit (V!kBT), and ob-
tained the expression for the overall electron transfer rat

k215kGR
211kD

21, ~1.3!

which shows a transition from the Marcus to the solve
controlled limits in the nonadiabatic regime.

As the electronic coupling constant is increased furt
to be comparable to or larger than the thermal energy, i
expected that the electron transfer process involves anadia-
batic barrier crossing. Finally, when the electronic coupling
constant is even larger so that it has the same order of m
nitude as the solvent reorganization energy,l, which is in-

r-
2 © 2002 American Institute of Physics
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deed the case for the mixed valence compounds,40–44 the
electronic states are delocalized on the lower adiabatic
face. Due to the delocalized nature of electronic states
adiabatic picture is more useful than the diabatic one
analyzing the short-time dynamics in strongly coupl
systems.45 In this picture,electronic coherencearises from
Rabi oscillation between two adiabatic surfaces.

Although there have been several studies to bridge
tween the Marcus regime and the solvent-controlled reg
using various approaches,10–19,35–38few have discussed th
diverse kinetic regimes in a unified way, and often differe
approaches are taken in different regimes. It is thus desir
to investigate the effects of solvent dynamics on the elec
transfer process in a unified approach for various param
regimes.

As a general approach to describing condensed ph
dynamics, we recently proposed aspectral analysis
method.22,42 Instead of focusing on dynamical trajectories
the reduced density matrix for dissipative systems, this m
odology investigatesthe spectral structure of the evolutio
operator for dissipative systems, and it has been applied t
the electron transfer process in mixed valence compound
investigate the possibility of electronic coherence in tho
systems.42

In this paper we present a thorough analysis of the e
tron transfer kinetics in Debye solvents based on the spe
analysis method. The electron transfer rate constant extra
from the spectral analysis is compared with other previ
results both in the nonadiabatic and adiabatic regimes,
the transition from the incoherent to coherent regimes
demonstrated by the spectral analysis method. When the
vent relaxation rate is very fast, it is found that the solve
dynamics has a significant effect on the Marcus curve. T
spectral analysis method is also utilized as a density ma
propagation scheme. Preliminary results of the spec
analysis method focusing on symmetric reaction cases h
been reported.22

The rest of the paper is organized as follows: The sp
tral analysis method of the nonadiabatic diffusion equatio
formulated in Sec. II. Two important limiting cases are d
cussed in Sec. III. In Sec. IV comprehensive analysis of
spectral structure of the nonadiabatic diffusion equation
performed for a broad range of parameters, and diverse
netic behaviors in electron transfer reactions are identi
and characterized. We conclude in Sec. V by summariz
results obtained in this work.

II. THEORY

We consider two electronic states,u1& andu2&, which rep-
resent the electron donor and acceptor sites of the elec
transfer system, respectively, and they are coupled to e
other via the electronic coupling matrix element,V. More-
over, each electronic state is coupled to bath degrees of
dom.

There have been extensive studies of the solvent ef
on electron transfer dynamics in literature with vario
approaches.10–19,35–38Considering that electron transfer pr
cesses are usually probed at room temperature in polar
vents, one can treat the bath degrees of freedom classic
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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Zusman and Yakobson-Burshtein10,11 proposed a mixed
quantum-classical evolution equation of the reduced den
matrix, r(E,t), independently, to investigate the solvent e
fect on electron transfer,

]

]t
r~E,t !5Lr~E,t !5~LB1 iV!r~E,t !. ~2.1!

Here,E is the solvent polarization energy which plays a ro
of the reaction coordinate as first noticed by Marcus.1 L and
V represent operators for the solvent relaxation dynamics
for the electronic transition between two states, respectiv
Explicitly, Eq. ~2.1! is written in terms of the density matrix
elements,

ṙ115L11r111 iV~r122r21!, ~2.2!

ṙ225L22r222 iV~r122r21!, ~2.3!

ṙ125L12r122 iv12r121 i
V

\
~r112r22!, ~2.4!

ṙ215L21r211 iv12r212 i
V

\
~r112r22!. ~2.5!

The diagonal and off-diagonal matrix elements of the
duced density matrixr(E,t) represent populations of th
electronic states and coherences between them, respect
and Li j ’s describe the relaxation process of classical b
over the free energy surfaces, withLi i defined on the free
energy surface for thei th electronic state, andL12 and L21

defined on the averaged free energy surface. The functi
form for the free energy surface in the electron transfer s
tem is usually harmonic,7,46

U1~E!5
~E1l!2

4l
, ~2.6!

U2~E!5
~E2l!2

4l
1e, ~2.7!

wherel is the reorganization energy, and we assumee,0
without loss of generality. It is convenient to defineŪ and
\v12 are the average and the difference of the two free
ergy surfaces, respectively,

Ū~E!5
U1~E!1U2~E!

2
5

E21l2

4l
1

e

2
, ~2.8!

\v12~E!5U1~E!2U2~E!5E2e. ~2.9!

We set\51 for simplicity henceforth. This set of a mixe
quantum-classical two-state equation has been previously
rived by several authors13,16,17 starting from the spin-boson
Hamiltonian.47–51

We note that many chemically and biologically impo
tant electron transfer processes take place in an overdam
solvent environment. Then, the bath relaxation operator
Eqs. ~2.2!–~2.5! are modeled by one-dimensional Fokke
Planck operatorsLi j ,

Li i 5DE

]

]E S ]

]E
1b

]Ui~E!

]E D , ~2.10!
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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L125L215
L111L22

2

5DE

]

]E
S ]

]E
1b

]Ū~E!

]E
D , ~2.11!

whereb51/(kBT).
The Fokker–Planck equation models the relaxation p

cess of the density matrix element as a diffusion proces
the energy space and various parameters are identified
ergy diffusion constant,DE5VD2, fluctuation of the solvent
polarization energy,D25^E2&52lkBT, and characteristic
timescale of a Debye solventtD51/V. The correlation func-
tion of the solvent polarization energy is given by a sing
exponential form in a Debye solvent,

C~ t !5^E~ t !E~0!&5D2 exp~2Vt !. ~2.12!

Note that since the nuclear dynamics is modeled by
Fokker–Planck operator, the possibility of the vibrational c
herence is not considered in this model of electron tran
dynamics.

We investigate the spectral structure of the nonadiab
diffusion operator,L, by calculating eigenvalues,$Zn%, and
corresponding right and left eigenfunctions,$ucn

R&% and
$^cn

Lu%,

Lucn
R&52Znucn

R&, ~2.13!

^cn
LuL52Zn^cn

Lu. ~2.14!

Because the nonadiabatic Liouville operator is no
Hermitian, the eigenvalues are generally given by comp
values, and the right and left eigenfunctions correspondin
the same eigenvalue are not simply the Hermitian conjug
to each other.52

The method of eigenfunction solution is well known f
the diffusion process on the harmonic potential energy s
face as discussed in Appendix A.53 Unlike the diffusion prob-
lem on the single potential energy surface, however, th
have been limited studies on the nonadiabatic diffusion pr
lem involving more than a single potential energy surfa
Cukier and co-workers have calculated the electron tran
rate by calculating the lowest eigenvalue of the nonadiab
diffusion equation in the weak-coupling regime.17

In this paper, the eigenfunctions ofL12 are used as ou
basis set to represent the nonadiabatic diffusion equation
principle, one could have chosen the eigenfunctions ofL11 or
L22 as basis functions; however, in that case one has
evaluate appropriate Franck–Condon factors when calcu
ing the coupling matrix elements. The Fokker–Planck ope
tor L12 is defined on the averaged single harmonic poten
centered atE50, and its eigenvalue solutions are obtain
following a similar procedure in Appendix A,

L 12ufn
R&52nVufn

R&, ~2.15!

^fn
LuL1252nV^fn

Lu, ~2.16!

wheren50,1,2,..., and thenth right and left eigenfunctions
for L12 are given by
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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R~E!5

expS 2
E2

2D2D
~2nn! !1/2~2pD2!1/4HnS E

&D
D , ~2.17!

fn
L~E!5

1

~2nn! !1/2~2pD2!1/4HnS E

&D
D , ~2.18!

with Hn being thenth order Hermite polynomial.
We separate real and imaginary parts of the cohere

density matrix, namely,u5Rer12 and v5Im r12, and re-
write Eqs.~2.2!–~2.5! as

ṙ115~L121dL!r1122Vv, ~2.19!

ṙ225~L122dL!r2212Vv, ~2.20!

u̇5L12u1v12v, ~2.21!

v̇5L12v2v12u1V~r112r22!, ~2.22!

wheredL5(L112L22)/2. Then, all the relevant operators
Eqs. ~2.19!–~2.22! can be evaluated in terms of the bas
functions,

^fn
LuL12ufm

R&52nVdnm , ~2.23!

^fn
LudLufm

R&52VA l

2kBT
Am11dn,m11 , ~2.24!

^fn
Luv12ufm

R&5A2lkBT~Amdn,m211Am11dn,m11!

2ednm , ~2.25!

^fn
LuVufm

R&5Vdnm . ~2.26!

With this basis set, we can expand the density matrix e
ments as

r11~E,t !5 (
n50

`

an~ t !fn
R~E!, ~2.27!

r22~E,t !5 (
n50

`

bn~ t !fn
R~E!, ~2.28!

u~E,t !5 (
n50

`

cn~ t !fn
R~E!, ~2.29!

v~E,t !5 (
n50

`

dn~ t !fn
R~E!. ~2.30!

Substituting Eqs.~2.27!–~2.30! into the right eigenvalue
equation, Eq.~2.13!, we have the following coupled eigen
value equations,

2Znan52nVan2VA l

2kBT
Anan2122Vdn , ~2.31!

2Znbn52nVbn1VA l

2kBT
Anbn2112Vdn , ~2.32!

2Zncn52nVcn

1A2lkBT~An11dn111Andn21!2edn ,

~2.33!
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ta

o

ri-

na
n

ig

e
im

a

tri
n

d
in
g
th
ll
a

a-
,

-

tics

ula-

e-
ki-

d by
rnel

nd

ric
he
e

e
es

iffu-

be-
rms

3825J. Chem. Phys., Vol. 117, No. 8, 22 August 2002 Spectral analysis of electron transfer kinetics. II
2Zndn52nVdn

2A2lkBT~An11cn111Ancn21!1ecn

1V~an2bn!, ~2.34!

which is an explicit basis set representation for the two-s
diffusion operator in Eqs.~2.2!–~2.5!. Eigenvalue equations
for the left eigenvector in Eq.~2.14! can be written by mak-
ing the transpose of Eqs.~2.31!–~2.34!. Diagonalizing the
4N34N matrix ~N5number of basis functions! defined in
Eqs. ~2.31!–~2.34!, we obtain the eigenvaluesZn and the
corresponding eigenvectors of the nonadiabatic diffusion
erator,

ucn
R&5 (

n50

`

Rnnufn
R&, ~2.35!

^cn
Lu5 (

n50

`

Lnn^fn
Lu, ~2.36!

whereRnn andLnn are elements of the transformation mat
ces.

In general, due to the non-Hermitian nature of the no
diabatic diffusion operator, the left and right eigenfunctio
do not form an orthogonal set by themselves. However, when
the eigenvalues are all nondegenerate, the left and r
eigenfunctions form an orthogonal and complete set ina
dual Hilbert space.54–56 Explicitly, we have

(
n50

`

LnnRnn85dnn8 , ~2.37!

(
n50

`

RnnLnm5dnm , ~2.38!

for the orthogonality and the completeness relation, resp
tively. Using these properties, we can construct the real t
propagator for the operatorL as

G~ t !5 (
n50

`

ucn
R&^cn

Lue2Znt, ~2.39!

and express the time evolution of the density matrix as
eigenfunction expansion,

ur~ t !&5G~ t !ur~0!&5 (
n50

`

ucn
R&^cn

Lur~0!&e2Znt. ~2.40!

Note that the right and left eigenfunctions play asymme
roles in the construction of the propagator for the no
Hermitian operator.

III. LIMITING CASES

In order to compare the eigenvalue solution develope
this work with previous theoretical predictions available
different kinetic regimes, we briefly discuss two limitin
cases which have been studied extensively in
literature.10–19Instead of giving detailed derivations, we wi
briefly mention the solutions in these limiting cases, releg
ing details to Appendix B.
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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A. Nonadiabatic regime: Weak coupling case

When the electronic coupling matrix elementV is very
small, we can reduce the full nonadiabatic diffusion equ
tion, Eqs.~2.2!–~2.5!, into the population evolution equation
and detailed derivations can be found in Refs. 16 and 17~see
also Appendix B!. Kinetic equations for the population ele
ments ofr can be approximately written as

]r11

]t
5L11r112K~r112r22!, ~3.1!

]r22

]t
5L22r222K~r222r11!, ~3.2!

whereK(E) is the rate kernel given in Eq.~B5!. A dynamical
quantity usually measured in the electron transfer kine
experiment is the total population,Pi(t), in each electronic
state rather than the polarization energy dependent pop
tion, r i i (E,t),

Pi~ t !5E
2`

`

dEr i~E,t !. ~3.3!

Using the projection operator method and making a tim
scale separation approximation, it can be shown that the
netic process between two electronic states is describe
the time-independent rate constant instead of the rate ke
in the weak coupling limit16,17~see also Appendix B!. Then
the kinetic equation forPi is given by16,17

S Ṗ1~ t !

Ṗ2~ t !
D 5S 2k1 k2

k1 2k2D S P1~ t !
P2~ t ! D . ~3.4!

Herek1 andk2 are forward and backward rate constants a
they are related to the nonadiabatic transition rateskNA

i and
solvent diffusion rateskD

i by16,17

ki5
kNA

i

11kNA
1 /kD

1 1kNA
2 /kD

2 , ~3.5!

kNA5kNA
1 1kNA

2 , ~3.6!

kND5k11k25
kNA

11kNA
1 /kD

1 1kNA
2 /kD

2 . ~3.7!

Recently, Eq.~3.7! has also been obtained for the symmet
reaction case in the weak coupling limit by calculating t
first excited eigenvalue explicitly via the Goldston
theorem.22

Equation~3.7! has a form of an overall relaxation rat
for consecutive reactions, and it involves two different typ
of rate processes; nonadiabatic transition and solvent d
sion rate. Nonadiabatic transition rate constantskNA

1 and
kNA2

2 are forward and backward quantum transition rates
tween the two electronic states and are calculated in te
of the coherent Green’s functions,G12(E,tuE0) and
G21(E,tuE0) ~see Refs. 16, 17 and also Appendix B!,

kNA
i 52pV2 ReE

0

`

dtei (e1l)t2g(t), ~3.8!

where the bath correlation functiong(t) is given by
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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g~ t !5F S D

V D 2

i 6 i
l

VG@exp~2Vt !1Vt21#, ~3.9!

with 1(2) sign for i 51(2). When thebath dynamics is
slow such thatV!D, Eq. ~3.8! reduces to the standard Ma
cus result~see Appendix B!,

kNA
i 'kGR

i 52pV2r i
eq~e!, ~3.10!

kNA'kGR
1 1kGR

2 , ~3.11!

where r i
eq(e)5e2(l6e)2/(2D2)/A2pD2 is the equilibrium

population of thei th state at the crossing pointE5e. When
V;D, the nonadiabatic transition rate shows a deviat
from the Marcus rate, which will be discussed later in deta

Solvent diffusion rate constants,kD
1 and kD

2 , describe
solvent relaxation processes that equilibrate the nonequ
rium wavepacket created at the crossing region,Ec5e, dur-
ing the electron transfer process. They can be written
terms of the population Green’s functionsG11(E,tuE0) and
G22(E,tuE0),14,16,17

~kD
i !215

1

r i i
eq~e!

E
0

`

dt@Gii ~e,tue!2Gii ~e,`ue!#. ~3.12!

Noting thatGii (e,`ue)5r i
eq(e) is given by the equilibrium

population distribution of thei th state atE5e, the solvent
diffusion rates are identified as the inverse of the mean
vival time of the relative nonequilibrium population creat
at the crossing point,Ec5e.

The boundary between the Marcus regime and
solvent-controlled regime in the nonadiabatic limit is es
mated when comparing the Marcus rate in Eq.~3.10!, and the
solvent-diffusion rate in Eq.~B13!, which leads to

2pV2;ue6luV. ~3.13!

The nonadiabatic regime is established when the time s
of the off-diagonal density matrix is much faster than that
the diagonal ones, yielding the following condition:10,22

V!DE
1/35~2lkBTV!1/3, ~3.14!

in addition to the weak coupling condition,V!kBT, for the
validity of the nonadiabatic regime.

B. Adiabatic regime: Strong coupling case

When the electronic coupling constant is comparable
or larger than the thermal energybV*1, it is more adequate
to describe electron transfer in an adiabatic representa
Given a specific bath configuration characterized by
value of E, the electronic part of the Hamiltonian in th
diabatic representation is given by

Hd~E!5S U1~E! V

V U2~E!
D . ~3.15!

After the diagonalization ofHd(E) for a given bath configu-
ration E, we can obtain two adiabatic surfaces,

U6~E!5Ū~E!6 1
2 @v12~E!214V2#1/2. ~3.16!

The separation between two adiabatic surfaces is m
larger thankBT, U12U2>V@kBT. When the energy bias
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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e and the electronic couplingV are not so large compare
with the reorganization energy,l, the lower adiabatic sur-
face,U2 , has a well-defined double well structure. In th
case, we can consider the electron transfer process as a
fusional barrier crossing process occurring on the lower a
batic surfaceUAD5U2 described by the following diffusion
equation in the energy space,

]r

]t
5DES ]2

]E2 1b
]

]E
UAD8 D r5LADr. ~3.17!

To calculate the reaction rate for the adiabatic barr
crossing described by Eq.~3.17!, one may take several dif
ferent routes. For example, one can calculate the ba
crossing rate as the first nonzero eigenvalue of the Fokk
Planck operator,LAD , corresponding to the lower adiabat
surface,57

LADc52Zc⇒kAD
ev 5Z1 . ~3.18!

Another popular approach is a population-over-fl
method,57 which obtains the barrier crossing rate by calc
lating the steady-state flux at the crossing region,Ec5e,
divided by equilibrium population in the reactant region,

kAD
fp 5DEF E

2`

Ec
dE1E

2`

E1
dE2eb[U2(E1)2U2(E2)] G21

.

~3.19!

In the symmetric reaction case (e50), the adiabatic rate
given in Eq. ~3.19! can be evaluated approximately in th
strong coupling limit (bV@1) by expanding the integrand a
E50 and performing a Gaussian integration approximat
to yield14,22

kAD
fp '

V

p
A l

2V
e2b(l/4 2V), ~3.20!

which is the Kramer’s adiabatic reaction rate in the stro
damping regime.57

IV. RESULTS OF SPECTRAL ANALYSIS

A. General feature of spectra

Figure 1 shows the eigenvalue spectra in three differ
cases of the energy bias for various electronic couplin
Since the nonadiabatic diffusion operator is not Hermitia
the eigenvalues are complex in general,

Lcn52Zncn52~Zn81 iZn9!cn . ~4.1!

In order for the density matrix relax to the stationary state
long times, the real part of the eigenvalue should satisfyZn8
>0. Eigenvalues of the nonadiabatic diffusion operator
classified into three different cases with their associated
netic behaviors in the density matrix evolution;

~1! Z085Z0950: equilibrium,
~2! Zn8.0, Zn950: exponential decay,
~3! Zn8.0, Zn9Þ0: damped oscillation.

The eigenstate with zero eigenvalue@case~1!# corresponds to
the equilibrium solution of the density matrix while thos
with real @case~2!# and complex eigenvalues@case~3!# cor-
respond to exponential decays and to damped oscillation
the evolution of the density matrix, respectively. When t
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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first nonzero real eigenvalueZ18 is well separated from the
other higher eigenvalues,Z18!Zn>28 , the dynamics of the
density matrix will be described by a single exponential p
cess, and the relaxation rate is well defined ask5Z18 . How-
ever, if this is not the case, the dynamics of the den
matrix will generally involve multiple time scales and cohe
ent oscillations.

We used 800 basis functions to calculate the eigenval
and to remove the finite size basis set effect at higher eig
values, we present only lower 400 eigenvalues in Fig.
Three different cases of the energy bias chosen in Figs. 1~a!–
1~c! correspond to different regimes in nonadiabatic elect
transfer theory, i.e., normal@ueu,l in Fig. 1~a!#, activation-
less @ueu5l in Fig. 1~b!#, and inverted regimes@ueu.l in
Fig. 1~c!#, respectively. As a general feature, all the spec
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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show tree-like structures with three major characterist
branches; one branch for the real eigenvalues in the midd
real axis, and two other branches for the complex conjug
eigenvalues. Therefore, the spectral structure indicates t
multiple exponential decays~real eigenvalues! and damped
oscillations ~complex eigenvalues! are inherent features in
electron transfer processes in the overdamped solvent. In
der to infer the dynamical behavior of the density matrix, w
only need to focus on the lower part of the eigenvalue d
grams in Fig. 1 corresponding to the eigenstates withZ8/V
&1 since those withZ8/V@1 will decay out very quickly.

~i! Symmetric reaction case(e50): In Fig. 1~a!, one can
notice that the real parts of the eigenvalues,Zn8’s, located at
the branching regime in the eigenvalue tree decrease as
coupling constant increases up tobV&1, which means that
if-
FIG. 1. Eigenvalue diagrams are shown for three d
ferent values of the energy bias:~a! bueu50 ~normal
regime!, ~b! bueu510 ~activationless regime!, and ~c!
bueu520 ~inverted regime! as the coupling constant is
increased. Parameters arebl510 andbV51.
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. ~Continued.!
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the oscillatory components will persist during a more e
tended periodt;1/Zn8 as the coupling constant increase
When the coupling constant increases further,bV@1, the
branching point of the complex branches starts to sepa
along the imaginary axis. The separation between the
complex branches along the imaginary axis is given
;2V, and this corresponds to the Rabi oscillation frequen
for the two adiabatic states in the strong coupling regime

~ii ! Asymmetric reaction cases(eÞ0): In Figs. 1~b!
(bueu510) and 1~c! (bueu520), we notice that spectra
structures show more branched behaviors in the asymm
reaction cases than in the symmetric reaction case in
1~a!. When comparing the zero electronic coupling cas
bV50, in Figs. 1~a!, 1~b!, and 1~c!, we notice that in the
asymmetric reaction cases two complex branches sep
out along the imaginary axis by the amount of the ene
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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bias, e unlike in the symmetric reaction case. This corr
sponds to the natural oscillation frequency of the o
diagonal density matrix elements in the asymmetric reac
cases.

In Fig. 2 we have followed the evolution of the lowe
30 eigenvalues in both the real and imaginary axes as a f
tion of the coupling constant for different energy bias cas
In all the cases real parts of the eigenvalues start as pai
doubly degenerate states separated from each other by
solvent relaxation rate,bV51, whenV50. As the coupling
constant increases, the degeneracies of the real eigenv
are first lifted at small coupling constants, and bifurcati
and coalescence of eigenvalues occur at large coupling
stants. The coalescence corresponds to the case where
closely separated real eigenvalues become complex co
gate with the sameZ8, and this indicates the transition from
are
rgy

Fig.
on
t in-
ally
-

FIG. 2. Real and imaginary parts of the eigenvalues
shown for the same three different values of the ene
bias as in Fig. 1:~a! bueu50, ~b! bueu510, and~c!
bueu520. Parameters are the same as those used in
1. The real parts of the eigenvalues show bifurcati
and coalescence behaviors as the coupling constan
creases, and the imaginary parts of them asymptotic
follow the Rabi oscillation frequency in the strong cou
pling limit.
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the incoherent, rate process to coherent oscillatory beha
in the dynamics of the density matrix, which will be furth
discussed in Sec. IV C. In the imaginary part diagram,
find an interesting behavior that imaginary parts of the eig
values asymptotically follow the Rabi oscillation frequenc

Z9'vRabi5A4V21e2, ~4.2!

in the strong coupling limit, and this demonstratesthe signa-
ture of adiabatic Rabi oscillation picture of the electro
transfer in the strong electronic coupling case.

B. Crossover from nonadiabatic to adiabatic regimes

In Fig. 3 we compared the first nonzero eigenvalue
the nonadiabatic diffusion operator with several predictio
from existing theories in order to characterize various kine

FIG. 3. Comparison of the eigenvalue solution~filled circle! with results
from other theoretical results; the nonadiabatic rate@Eq. ~3.6!, solid line#,
the nonadiabatic–diffusion rate@Eq. ~3.7!, long dashed line#, the adiabatic
barrier crossing rates calculated from the adiabatic eigenvalue@Eq. ~3.18!,
dotted–dashed line#, and from the flux-over-population@Eq. ~3.19!, short
dashed line#. Solvent relaxation rates are chosen as~a! bV50.05 ~slow
bath! and ~b! bV51 ~fast bath!, respectively. Other parameters arebl
510 and be50. The nonadiabatic eigenvalue solution agrees with
nonadiabatic-diffusion rate in the weak coupling case, and the agree
with the adiabatic rates at the strong coupling case is qualitative.
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regimes in the nonadiabatic diffusion equation. The fill
circles are calculation results of the first nonzero eigenva
obtained from the spectral analysis method. We compare
eigenvalue solution with previous theoretical results, each
which is applicable for different limits:

~i! Weak coupling limit: The eigenvalue solution is com
pared with the purely nonadiabatic transition rate without
solvent diffusion effects, Eq.~3.6! ~solid line! and with the
nonadiabatic-diffusion rate with the solvent diffusion effec
included, Eq.~3.7! ~long dashed line!. In any case, we com
pare the eigenvalue solution with the sum of the forward a
backward rates since the eigenvalue solution gives the o
all relaxation rate of the density matrix.

~ii ! Strong coupling limit: We compare the eigenvalu
solution with the adiabatic barrier crossing rates as discus
in Sec. III B. We calculated two different adiabatic reacti
rates, the lowest nonzero eigenvalue given in Eq.~3.18!
~dotted–dashed line! and the flux-over-population rate give
in Eq. ~3.19! ~short dashed line!, respectively.

In the slow bath relaxation case (bV50.05) given in
Fig. 3~a!, when the the coupling constant is very sm
(bV&0.1) ~Marcus regime!, the eigenvalue solution agree
well both with the nonadiabatic transition rate and with t
nonadiabatic-diffusion rate. The nonadiabatic transition is
rate limiting step in this case. As the coupling constant
comes large and so does the nonadiabatic transition rate
overall rate is now affected by the solvent relaxation ra
and the eigenvalue solution follows the nonadiaba
diffusion rate, Eq.~3.7!, reaching thesolvent-controlled re-
gime.

As the coupling constant becomes much larger than
thermal energy, the eigenvalue solution shows a satura
behavior atbV;1 first, and starts to increase rapidly as t
electronic coupling becomes stronger. This demonstrates
picture of adiabatic barrier crossing processin the strong
coupling regime. In this case,bV@1, the eigenvalue shows
qualitative agreement with theadiabatic reaction rates, Eq.
~3.18! and Eq.~3.19!.

As we increase the solvent relaxation rate (bV51) in
Fig. 3~b!, the distinction between the nonadiabatic and
adiabatic regime in the eigenvalue solution becomes less
vious than in the slow bath case, Fig. 3~a!. In the fast bath
relaxation case, as the nonadiabatic transition rate beco
large to be in the solvent-controlled regime, the adiaba
barrier crossing is already appreciable, so the transition
tween the solvent-controlled and adiabatic barrier cross
regimes is not so clear. This is related to a dynamical mo
lation of the nonadiabatic transition rate in the fast bath ca
and will be discussed in details in Sec. IV D.

The agreement between the eigenvalue solution and
two adiabatic rate calculations is qualitative in the stro
coupling case. Although it is reasonable to treat the elect
transfer process as an adiabatic barrier crossing reactio
the lower adiabatic surface when the coupling constan
large (bV@1), it should be mentioned that a rigorous mat
ematical proof has not been given to show that the elec
transfer rate from the nonadiabatic diffusion equation rea
corresponds to the adiabatic reaction rate in the strong c
pling limit. Therefore, it may not be surprising that the agre

e
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ment between the eigenvalue solution and the adiabatic
lutions is only qualitative. Related to this problem, it shou
be mentioned that the original nonadiabatic diffusion eq
tion is based on diabatic representations of electronic sta
therefore it may not give quantitatively the same rate c
stant as that from the adiabatic diffusion equation in
strong coupling case.43,44

The transition from the Marcus to solvent-controlled r
gimes has been studied theoretically by using different th
retical methods such as the projection opera
techniques16,17,58and the path-integral methods.59 These the-
oretical approaches do not cover the adiabatic barrier cr
ing regime. The crossover behavior from the nonadiabati
adiabatic regimes has been observed in quantum mecha
approaches to electron transfer theories based on the in
ton solution60–62and the diagrammatic technique20 which do
not take into account the solvent dynamics effects. The
genvalue solution presented here clearly demonstrates
sitions between three different regimes.

C. Transition from incoherent to coherent regimes

For the symmetric electron transfer reaction case(e50)
the lower adiabatic surface,U2 , has a double well structur
if V,l/2. When the electronic coupling constant becom
even larger thanl/2, the lower adiabatic surface becomes
single well without any barrier. We consider this situation
a thermodynamic transition from the localized to delocaliz
electronic states when viewed from a perspective of the
abatic states. Even though the free energy surfaces of
donor and acceptor states support a large energy barrie
tween them in the diabatic picture, a large coupling cons
in the same order of magnitude as the reorganization en
makes the distinction between the donor and acceptor s
inappropriate. Instead, two new single well potential surfa
are obtained, whose eigenfunctions are neither donor no
ceptor wave functions, and rather linear combinations
them. This situation occurs inmixed valence compounds an
other strongly coupled systems where V;l@kBT.40–44 The
critical value of V5Vc at which the double well structur
disappears in the lower adiabatic surface,U2 can be ob-
tained from Eq.~3.16! when the reorganization energy isl
and the energy bias isueu,

~2Vc!
2/31ueu2/35l2/3, ~4.3!

which indicates that the localization–delocalization tran
tion occurs at a smaller value ofVc,l/2 in the asymmetric
reaction case. Recently, Cukier and co-workers, and Ha¨nggi
and co-workers have studied such strong coupling regi
based on semiclassical approaches.63–66

To investigate the feature of the localization
delocalization transition in the spectral structure, we sh
the lowest five eigenvalues as a function of the coupl
constant in the strong coupling regime whene50 in Fig. 4.
When the electronic coupling is about the half of the reor
nization energy as predicted by Eq.~4.3!, bV*5, the first
nonzero eigenvalue~solid line! is no longer well separate
from higher complex eigenvalues, and it is no longer valid
describe the dynamics of the density matrix by an incohe
rate process. Also, there is a rapid drop of the first exc
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eigenvalue aroundbV;6 due to the crossing of the firs
excited state eigenvalue and higher complex eigenva
~note thatbVc55 in this case!. The crossing behavior of the
first and higher excited state eigenvalues is a signature of
transition between the incoherent to coherent regimes
electron transfer processes.

A crossing of the two lowest nonzero eigenvalues can
used as an approximate criterion for the transition from
incoherent to coherent regimes. In Fig. 5, we plotted
value of the electronic coupling constant,Vc , where a cross-
ing of the two lowest nonzero eigenvalues occurs for a giv

FIG. 4. Transition between the incoherent and coherent regimes in the
metric electron transfer case is manifested in the calculation of the low
eigenvalues. When the coupling constant is about half of the reorganiza
energy (bl510), the higher excited states cross with the first excited st
Symbols lying on top of each other represent the same real parts o
complex conjugate eigenvalues. Other parameters arebV51 and bueu
50.

FIG. 5. A phase diagram for the transition between the incoherent
coherent regimes in the asymmetric reaction case. Values ofVc where two
lowest nonzero eigenvalues cross~dotted–dashed line! are compared with
an analytical estimate in Eq.~4.3! ~dashed line!. Parameters are chosen a
bV50.01 andbl510.
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energy bias,ueu, and the prediction of Eq.~4.3! for the case
bV50.01 andbl510. They show the same trend that t
coherent regime appears earlier in the asymmetric reac
case than in the symmetric reaction case.

D. Dynamic bath effect

In addition to the fact that the overall electron trans
rate appears a combined result of the nonadiabatic trans
and solvent diffusion processes in Eq.~3.7!, the nonadiabatic
transition rate itself, Eq.~3.8!, is modulated by the dynami
nature of the solvent relaxation process that is character
by the bath correlation function in Eq.~3.9!. We will call this
a dynamic bath effect. This will be evident if the bath relax
ation rate is comparable to the amount of the polarizat
energy fluctuation,

V;D5A2lkBT. ~4.4!

To investigate the dynamic bath effect, we compare
eigenvalue solution and two different reaction rates, Mar
rate in Eq. ~3.11! ~static bath limit! and the nonadiabatic
transition rate, Eq.~3.6! ~dynamic bath effect included! in the
weak coupling limit as we vary the energy bias in Fig. 6. A
the calculation results show a characteristic behavior of
Marcus curve; they show a maximum value whenueu;l. In
the slow bath case, Fig. 6~a!, all the three curves agree wit
each other since the dynamic bath effect is negligible in
case. In the fast bath case, Fig. 6~b!, we notice that the ei-
genvalue and the nonadiabatic transition rate agree with e
other, and show a deviation from the Marcus rate. In parti
lar, in the fast bath case,the maximum position of the eigen
value as well as that of the nonadiabatic transition rate sh
toward a smaller value of the energy bias compared with
Marcus rate.

In the static bath limit, the nonadiabatic transition rate
reduced to the Marcus rate, exhibiting the maximum posit
at the activationless case,ueu5l. When the bath relaxation i

FIG. 6. Eigenvalue solution~filled circle! as well as the Marcus rate, Eq
~3.11!, and the nonadiabatic transition rate, Eq.~3.8!, weak coupling regime
are plotted as a function of the energy bias in the slow bath@~a!, bV50.1#
and the fast bath@~b!, bV51# cases. Other parameters arebV50.01. The
dynamical bath effect is evident in the fast bath case in~b!.
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fast, the solvent reorganization energy is effectively reduc
and the maximum electron transfer rate appears at a sm
value of the bare solvent reorganization energy, exhibit
the peak position in the normal regime,ueu,l, and this re-
sults in a significant deviation of the nonadiabatic transit
rate from the Marcus rate. The amount of the peak shift a
function of the solvent relaxation rate can also be estima
from Eq. ~3.8!, and it is shown in Fig. 7 that the peak sh
increases linearly withV.

The peak shift observed in the eigenvalue solution ha
close analogy to the Stokes shift observed in the conden
phase spectroscopy.67 It is worthwhile mentioning thatg(t)
obtained in Eq.~3.9! has exactly the same form as the lin
broadening function obtained in the high temperature limit
the overdamped Brownian oscillator model in the conden
phase spectroscopy,67,68 and the nonadiabatic transition rate
given in Eq.~3.8! have the same functional forms as the li
shapes of the chromophore interacting with the Debye
vent. As discussed in Appendix B, the Stokes shift betwe
the absorption and the emission profiles disappears in the
bath case and it has the same origin as the peak shift
served here.

Implication of the dynamic bath effect on the experime
tal observables may be significant. The reorganization ene

FIG. 7. Dynamical bath effect is estimated by the amount of the peak s
in the forward nonadiabatic transition rate vs the energy bias curve from
value in the static bath case (V50) for various values of solvent relaxatio
rates.~a! When the bath is static, the nonadiabatic transition rate show
maximum atueu5l. As the bath relaxation increases, the maximum posit
of the nonadiabatic transition rate shifts into a smaller value of the ene
bias.~b! The peak shift is plotted as a function of the solvent relaxation ra
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of the solvent can be estimated from the maximum of
electron transfer rates based on a series of the measurem
of electron transfer rates for different systems of which
energy bias and the electronic coupling constants are kno
However, the dynamic bath effect can make the value of
reorganization energy measured in the experiment sm
than its true value. Therefore, care should be taken to di
tangle the dynamical bath effect from the measured valu
the solvent reorganization energy.

E. Density matrix propagation

The spectral method can be used as a propaga
method of the density matrix as shown in Eq.~2.40!. We
demonstrate the time evolution of the donor and acce
populations,P1(t) and P2(t) based on the spectral metho
Parameters are chosen asbl510, bV51, andbe50. The
electronic coupling constant will be varied. The initial co
dition is chosen such that att50 only the donor state is
populated with the equilibrium distribution in the diabat
state,

r11~E,0!5r11
eq~E!, ~4.5!

r22~E,0!5r12~E,0!5r21~E,0!50. ~4.6!

This initial condition corresponds to that of the phot
induced back electron transfer reaction.41,42,44,69

In Fig. 8 we show the time evolution of the donor~solid
line! and the acceptor~dashed line! state populations with
various electronic coupling constants. At the smallest c
pling constant,bV50.5, the donor and the acceptor popu
tions relax exponentially to the equilibrium at long time
The electronic coupling constant is small such that the t
evolution is governed by the lowest nonzero eigenvalue
the nonadiabatic diffusion equation. As the electronic c

FIG. 8. Time evolution of populations in the donor and acceptor states
shown for several values of the coupling constant. The initial wave pack
chosen as the equilibrium distribution in the donor state. In weak coup
cases,~a! and ~b!, the population relaxes to the equilibrium exponential
while in strong coupling cases,~c! and~d!, the electronic coherence betwee
the donor and the acceptor states is observed.
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pling constant is increased, the temporal behavior of the d
sity matrix undergoes the incoherent–coherent transition
discussed based on the spectral analysis in Sec. IV D. W
the coherent oscillation is observed in the temporal evolut
of the density matrix~bV52 and bV54!, the oscillation
frequency matches the Rabi oscillation frequency given
Eq. ~4.2!. The time-dependent study of the nonadiabatic d
fusion equation based on the spectral method was also
formed for back electron transfer dynamics occurring in
mixed-valence system.42

F. Nonphysical behavior in nonadiabatic diffusion
equation

We found that the nonadiabatic diffusion equation c
yield nonphysical behavior in some parameter regimes.
checked the case of large reorganization energy,bl@1, and
found that in this case the smallest eigenvalue can be n
tive instead of zero, which yields an exponential growth
the density matrix in the long time limit. Figure 9 demo
strates how the two lowest real eigenvalues change as
reorganization energy is varied in the weak coupling ca
When bl*12, the lowest nonzero eigenvalue becom
negative instead of positive, thus violating the positive de
niteness of the density matrix in the nonadiabatic diffus
equation.

There are several possible reasons for this problem
behavior. One of them is an intrinsic limitation in consiste
treatments of the electronic and nuclear degrees of free
in the mixed quantum-classical approach. A similar probl
in the mixed quantum-classical approach have been poi
out in other contexts.70,71 The other possible reason for th
positivity violation may be the Markovian approximatio
used in the calculation of the frictional kernel in the ove

re
is
g
FIG. 9. Breakdown of the positivity in the nonadiabatic diffusion equati
in the case of a large reorganization energy (bl@1). A nonzero, real ei-
genvalue becomes negative in the case of a large reorganization e
(bl>12). Other parameters arebV50.1 andbV51.
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damped regime forthe nonadiabatic dynamics. Although the
Markovian approximation for the friction kernel has be
successfully applied to theadiabatic reaction rate theory
where the single potential energy surface is involved,57 there
have been limited studies on the validity of this approxim
tion in the nonadiabatic reaction cases.18,19 Along this line,
similar nonphysical behaviors in the nonadiabatic diffus
equation yielding negative electron transfer rates have b
found recently.72–74The precise origin of this artifact is stil
not clear, and more studies need to be done to clarify
issue in a decisive way.

V. CONCLUSION

In this paper we studied the electron transfer react
kinetics in Debye solvents described by the two-state no
diabatic diffusion equation. By applying the spectral analy
method developed recently, we investigated various kin
regimes of the electron transfer in Debye solvents in a u
fied way. The results obtained in this work are summariz

~i! The general spectral structure of the nonadiabatic
fusion equation has been revealed. It exhibits a tree-
structure with three major branches; a single branch of
eigenvalues corresponding to multiexponential decays
two symmetric branches of complex conjugate eigenval
corresponding to damped oscillations.

~ii ! Several kinetic regimes in the electron transfer re
tions in solutions have been identified. The first nonzero
genvalue solution bridges between the Marcus, the solv
controlled, and the adiabatic crossing regime in
incoherent kinetics regime. It agrees well with nonadiaba
reaction rates obtained from previous theories in the w
coupling regime. In the adiabatic crossing regime the eig
value solution agrees with adiabatic reaction rates qua
tively.

~iii ! When the electronic coupling constant is about h
the reorganization energy in the symmetric reaction c
~less than half in the asymmetric reaction case!, the eigen-
value diagram shows coalescence/bifurcation behav
where the two lowest nonzero eigenvalues cross each o
and become complex conjugate. This indicates the dam
oscillation behavior in the overdamped solvent, and co
lates with the localization–delocalization transition in t
lower adiabatic surface.

~iv! Due to the finite time scale of the solvation, th
eigenvalue solution is modulated in the weak coupling
gime such that the maximum position of the electron trans
rate appears at a smaller value of the bare solvent reorg
zation energy in the Marcus curve, which shows a substan
deviation from the standard Marcus theory. The conseque
of the dynamic bath effect may be significant in the expe
mental determination of the solvent reorganization energ

~v! The spectral analysis method was used as a prop
tion scheme to study the time-dependent behavior of the d
sity matrix, and it has confirmed previous predictions ma
based on the investigation of the spectral structure.

~vi! Nonphysical behavior of the nonadiabatic diffusio
equation, violating the positivity, has been identified in t
large reorganization energy case by the spectral ana
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method, and the precise origin of this problem should
serve further investigations.

In the isolated quantum system the eigenvalue solu
method offers a powerful way to analyze the dynamics.
comparison, the spectral structure of the dissipative quan
dynamics has not been fully explored yet, and most stud
on the quantum dissipative system employ trajectory me
ods. In this regard, our studies on the spectral structure of
electron transfer kinetics can be a good motivation to al
native studies of various dissipative systems. The nona
batic diffusion equation studied in this work is based on
mixed quantum-classical approach. However, the spec
analysis method itself can be applied to other quantum
sipative dynamical equations in general such as the Red
equation,75,76 quantum Fokker–Planck equation,77,78 and
quantum master equation,79 and the studies based upon th
spectral analysis will bring more direct insights on the dis
pative dynamics.
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APPENDIX A: SPECTRAL ANALYSIS FOR THE
FOKKER–PLANCK OPERATOR ON A SINGLE
HARMONIC POTENTIAL

For a single harmonic potential,U(x)5 1
2mv2x2, the

Fokker–Planck operator is given by

LFP5DS ]2

]x2 1b
]

]x
U8D , ~A1!

and it is possible to transfromLFP into a quantum mechani
cal Hamiltonian corresponding to a fictitious harmonic osc
lator in imaginary time,

H52ebU(x)/2LFPe
2bU(x)/252

1

2m

]2

]x2 1V~x!, ~A2!

where m5(2D)21 and the potential for the fictitious har
monic oscillator is given by

V~x!5D@ 1
4 ~bU8~x!!22 1

2 bU9~x!#

5 1
2 mg2x22

g

2
, ~A3!

with g5Dmv2/kBT. Since the transformed potential in E
~A3! is in the same form as that of a harmonic oscilla
model with an offset of the zero point energy, eigenvalu
and eigenfunctions for the original Fokker–Planck opera
can be obtained immediately from the eigenvalue soluti
of the harmonic oscillator Hamiltonian,53

LFPucn
R&52ngucn

R&, ~A4!

^cn
LuLFP52ng^cn

Lu, ~A5!
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where cn
L(x)5Hn(x/&x0)/((2p)1/22nn!x0)1/2 and cn

R(x)

5e2x2/2x0
2
cn

L(x) with x05AkBT/mv2 andHn being thenth
order Hermite polynomial.

APPENDIX B: RATE EQUATIONS IN THE
NONADIABATIC REGIME

We briefly review the rate expressions in the nonad
batic limit (bV!1).16,17 First, we obtain a formal solution
for r12(E,t) in the time domain from Eq.~2.4!,

r12~E,t !5 iVE
0

t

dtE
2`

`

dE0G12~E,tuE0!@r11~E0 ,t2t!

2r22~E0 ,t2t!#, ~B1!

whereG12(E,tuE0) is the Green’s function for the operato
L122 iv12,

G12~E,tuE0!5^Eue(L122 iv12)tuE0&. ~B2!

Substitutingr12 and r215r12* from Eq. ~B1! into the equa-
tions forr11 andr22 in Eqs.~2.2! and~2.3!, we can obtain a
closed set of integro-differential equations forr11 andr22,

]

]t
r i i ~E,t !5Li i r i i ~E,t !22V2

3ReE
2`

`

dE0E
0

t

dtG12~E,tuE0!

3@r i i ~E0 ,t2t!2r j j ~E0 ,t2t!#. ~B3!

In the weak coupling regime,bV!1, the electron trans
fer process is characterized as nonadiabatic, and the tr
tion between two electronic states takes place only when
bath polarization energy is close to the free energy gap,
r11 andr22 vary slowly compared withr12 andr21. We can
assume that the coherent Green’s functionG12 varies much
faster than the population differencer112r22 in this case and
that dominant contribution to the integral in Eq.~B3! comes
from the short time region. Using these arguments we
approximately deconvolute the integrals and extend the
per limit of the integral to the infinity,

2V2 ReE
2`

`

dE0E
0

t

dtG12~E,tuE0!

3@r11~E0 ,t2t!2r22~E0 ,t2t!#

'K~E!@r11~E,t !2r22~E,t !#, ~B4!

whereK(E) is the rate kernel and is given in terms of th
coherent Green functionG(E,tuE0) defined in Eq.~B2!,16,17

K~E!52V2 ReE
0

`

dtE
2`

`

dE0G12~E,tuE0!. ~B5!

The approximations made here are well established in
normal regime of the electron transfer, but they are quest
able in the inverted or activationless regime, and impro
ments on these regimes have been made.80

The nonadiabatic rates are given in terms of the cohe
Green’s function,16,17
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kNA
i 52V2 ReE

0

`

dtE
2`

`

dE

3E
2`

`

dE0Gi j ~E,tuE0!r i i
eq~E0!. ~B6!

The coherent Green’s function,G12(E,tuE0), can be evalu-
ated first by transforming the Fokker–Planck operator i
the harmonic oscillator Hamiltonian as done in Eq.~A2!,

H12~E!52ebŪ(E)/2~L12~E!2 iv12~E!!e2bŪ(E)/2

52
1

2m

]2

]Ẽ2
1

1

2
mV2Ẽ22 i ẽ, ~B7!

wherem51/(2DE)51/(2VD2). Two complex energy vari-
ables are defined by Ẽ5E1 i (2D2/V) and ẽ5e
1 i ((D2/V) 2 (V/2)). SinceH12 is a simple harmonic os
cillator Hamiltonian with respect to the complex energy va
able Ẽ, we can calculate its propagator,^Ẽue2H12tuẼ0&.

81

Then, we can expressG12(E,tuE0) in Eq. ~B2! explicitly,

G12~E,tuE0!5
1

A4pD2 sinh~Vt !
expF2 S 11coth~Vt !

4D2 D E2

1
EE0

2D2 sinh~Vt !
2S 12coth~Vt !

4D2 DE0
22

i

V

3tanhS Vt

2 D (E1E0)1
2D2

V2 tanhS Vt

2 D1 i ēt G .
~B8!

Straightforward Gaussian integrations over the space coo
nates in Eq.~B6! result in Eq.~3.8!.

Depending on the time scale of the bath,V, and the
amount of the polarization energy fluctuation,D5A2lkBT,
the nonadiabatic reaction rates in Eq.~3.8! have two different
limits.67 In the static bath limit (V!D), we take the short

time limit Vt!1 of g(t) in Eq. ~3.9!, g(t)' 1
2 D2t2, then the

nonadiabatic transition rate yields the Marcus rate given
Eq. ~3.10! after a Gaussian integration. The maxima ofkNA

1

andkNA
2 are separated by 2l in this case and this is analogou

to the Stokes shift observed in condensed ph
spectroscopy.67,68 When the dynamics of bath degrees
freedom is very fast (V@D), we can take the long time limi
Vt@1 of g(t), g(t)'(D2/V2 il)t, which leads to,

kNA
1 'kNA

2 '
2V2g

e21g2 , ~B9!

whereg5D2/V. The Stokes shift betweenkNA
1 andkNA

2 has
now disappeared as a result of fast fluctuation of the solv
polarization energy.

The solvent diffusion rate is given in terms of the pop
lation Green’s functionGii (E,tuE0) at the crossing pointE
5E05e in Eq. ~3.12!. SinceLi i is given by the Fokker–
Planck operator with a displaced harmonic potential for e
electronic state, the population Green’s functionsGii are eas-
ily obtained53,81
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Gii ~E,tuE0!5
1

A2pD2~12e22Vt!

3 expF2
~E6l2~E06l!e2Vt!2

2D2~12e22Vt! G , ~B10!
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with 1(2) sign for i 51(2), and thesolvent diffusion rates
can be calculated.

In the cases of high and low barrier limits, the solve
diffusion rate given in an integral form in Eq.~3.12! can be
approximately evaluated,
kD
i '5

V

ln 2 F12S 2

ln 2DbEb
i 1S S 2

ln 2D 2

2
2

3 ln 2D ~bEb
i !21¯G bEb

i !1

VAbEb
i

p
exp~2bEb

i ! bEb
i @1,

~B11!
re

J.

H.

W.

99.
whereEb
i is the forward (i 51) or backward (i 52) reduced

barrier height,Eb
i 5(e6l)2/(4l).

The Zusman’s solution given in Ref. 10 amounts to tw
approximations made in the nonadiabatic solution. First,
assumed that electron transfer occurs only when the so
tion polarization energyE matches with the energy biase,
which yields,

K~E!'2pV2d~E2e!. ~B12!

In this case, Eq.~3.2! is further reduced to the localize
transition model, and the nonadiabatic transition rateskNA

i

reduces to the original Marcus expressions given in
~3.10!. The second approximation made by Zusman is t
the solvent diffusion rates are approximated by their hi
barrier limits given in Eq.~B11! for bEb

i @1, which can be
written as

kD
i 'Vul6eur i i

eq~e!. ~B13!
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