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Spectral analysis of electron transfer kinetics. Il
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Electron transfer processes in Debye solvents are studied using a spectral analysis method recently
proposed. Spectral structure of a nonadiabatic two-state diffusion equation is investigated to reveal
various kinetic regimes characterized by a broad range of physical parameters; electronic coupling,
energy bias, reorganization energy, and solvent relaxation rate. Within this unified framework,
several kinetic behaviors of the electron transfer kinetics, including adiabatic Rabi oscillation,
crossover from the nonadiabatic to adiabatic limits, transition from the incoherent to coherent
kinetic limits, and dynamic bath effect, are demonstrated and compared with results from previous
theoretical models. Dynamics of the electron transfer system is also calculated with the spectral
analysis method. It is pointed out that in the large reorganization energy case the nonadiabatic
diffusion equation exhibits a nonphysical behavior, yielding a negative eigenvaluz00@
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I. INTRODUCTION in the electron transfer process. When the electronic coupling
constant is the smallest parameter of the electron transfer

Since the seminal work of Marcus on the nonadiabatiqorocess, the electron transfer rate is well described by per-

electron transfer reactiods, a great amount of effort has turbation theory, which predicts the golden-rule fate,

been made in the studies of the electron transfer re&ction 2.7\/2

with a variety of tools such as time-resolved k~Kgr=——pc, (1.7

spectroscopie$,® computer simulation methods? and ana- h

lytical theoriest®=22It is not surprising that there has been Wherep, is the equilibrium population of the reactant state in

great interest in the studies of the electron transfer reactiorihe crossing regime, and this is a well known result of the

since it is involved in many important chemical and biologi- Marcus electron transfer theoryWhen the electronic cou-

cal systemgfor the most recent reviews, see Ref).2Bor  pling constant large enough, the overall reaction process is

example, in the photosynthetic reaction center, electrofot determined by the Marcus rate, Ed.1), but by the

transfer process creates the initial charge separation whicgplvent diffusion rate describing the polarization dynamics of

will eventually lead to the production of the adenosinethe solvent molecule¥,

triphosphaté? Also, recent studies of molecular electronics k~kp~QM\p,, 1.2

depend crucially on the complete underestandlng and controfhere () is the solvent relaxation rate andis the classical

of electron transfer in (‘fhem|cal .syste?ﬁﬁ Anothgr kind of reorganization energy, and this case is called ghivent-

electron transfer reaction that is currently subject to extenz o niolled limit35-38

sive studies is prc_)taoon-coupled_electron3 1transfer reactions, and About two decades ago, Zusnninvestigated the

many theoreticd/~*and experimentf *'studies have been . oscover between the Marcus and solvent-controlled re-

performed on this subject. gimes in the studies of the electron transfer reaction in Debye
One of important and ubiquitous aspects of electrorqyyents. He used a mixed quantum-classical approach where
transfer kinetics is the dynamic solvent effect on the electror}Jl thermal operator is introduced to describe bath relaxation
transfer raté?~>*As both experimental and theoretical inves- processes occurring on two diabatic surfa®8s®® and
tigations have been carried out on electron transfer reactionggated the electron transfer process as a nonadiabatic transi-
in solutions, many diverse phenomena including predictiongion petween them. Zusman solved the nonadiabatic diffu-
of the orl-gmal Marcus theqry have peen revealed, dependingjy, equation in the weak coupling limiV&kgT), and ob-
on physical parameters involved in the electron transfefyineq the expression for the overall electron transfer rate,

10-19,32-34
k™ t=kga+kpt (1.3

kinetics.
The electronic coupling constant, given by the inter-
action matrix element between the electron donor and accepvhich shows a transition from the Marcus to the solvent-
tor wave functions is one of the most important physicalcontrolled limits in the nonadiabatic regime.
parameters, and depending on its magnitude when compared As the electronic coupling constant is increased further
with other parameters, various kinetic regimes are exhibitetio be comparable to or larger than the thermal energy, it is
expected that the electron transfer process involveadiar
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deed the case for the mixed valence compodfid®,the  Zusman and Yakobson-Bursht&ld! proposed a mixed
electronic states are delocalized on the lower adiabatic suguantum-classical evolution equation of the reduced density
face. Due to the delocalized nature of electronic states, amatrix, p(E,t), independently, to investigate the solvent ef-
adiabatic picture is more useful than the diabatic one fofect on electron transfer,

analyzing the short-time dynamics in strongly coupled

syst'emé‘f In this picture,electronic coherencerises from ip(E't):L:p(E,t):(LB+iv)p(E’t)_ (2.1
Rabi oscillation between two adiabatic surfaces. ot

Although there haYe been several studies to bridge _beHere,E is the solvent polarization energy which plays a role
tween the Marcus regime and the solvent-controlled regime¢ e reaction coordinate as first noticed by Martusand

H H ~19,35-38 H
using various approaches, few have discussed the ) onresent operators for the solvent relaxation dynamics and

diverse kinetic regimes in a unified way, andl often d'ﬁe,rentfor the electronic transition between two states, respectively.
approaches are taken in different regimes. It is thus desirab xplicitly, Eq. (2.1) is written in terms of the density matrix
to investigate the effects of solvent dynamics on the eIeCtro'%lements

transfer process in a unified approach for various parameter

regimes. p11= L11p11+ 1V (p12— p21), (2.2
As a general approach to describing condensed phase i

dynamics, we recently proposed apectral analysis p22=Lazp22= 1V (P12~ P20), 2.3

methocP?#? Instead of focusing on dynamical trajectories of v

the reduced density matrix for dissipative systems, this meth-  p;,=Lp1o— i wqp 1o+ %(pu— P22), (2.9

odology investigateshe spectral structure of the evolution
operator for dissipative systemand it has been applied to

\Y
the electron transfer process in mixed valence compounds to  py1=L1p21+ i w1opo1— 1 %(pn— P22). (2.5
investigate the possibility of electronic coherence in those
systemg'? The diagonal and off-diagonal matrix elements of the re-

In this paper we present a thorough analysis of the elecduced density matrixp(E,t) represent populations of the
tron transfer kinetics in Debye solvents based on the spectralectronic states and coherences between them, respectively,
analysis method. The electron transfer rate constant extracteghd £;;’s describe the relaxation process of classical bath
from the spectral analysis is compared with other previousver the free energy surfaces, with; defined on the free
results both in the nonadiabatic and adiabatic regimes, anehergy surface for thith electronic state, and,, and £,;
the transition from the incoherent to coherent regimes islefined on the averaged free energy surface. The functional
demonstrated by the spectral analysis method. When the sdbrm for the free energy surface in the electron transfer sys-
vent relaxation rate is very fast, it is found that the solventtem is usually harmoni€#
dynamics has a significant effect on the Marcus curve. The

spectral analysis method is also utilized as a density matrix Uy (E)= (EH‘)Z, (2.6)

propagation scheme. Preliminary results of the spectral 4\

analysis method focusing on symmetric reaction cases have 9

been reported” U,(E)= (B=M7 Ye 2.7
The rest of the paper is organized as follows: The spec- 4n

tral analysis method of the nonadiabatic diffusion equation i"?/vhere)\ is the reorganization energy, and we assumed

formulated in Sec. Il. Two important limiting cases are dis- . . . . e
. : . without loss of generality. It is convenient to defideand
cussed in Sec. lll. In Sec. IV comprehensive analysis of th

spectral structure of the nonadiabatic diffusion equation is wi, are the average gnd the difference of the two free en-
. ergy surfaces, respectively,
performed for a broad range of parameters, and diverse ki-

netic behaviors in electron transfer reactions are identified __ U(E)+U,(E) E?+)\%2 ¢
— — + —

and characterized. We conclude in Sec. V by summarizing U(E)= > TRL (2.8
results obtained in this work.

hwi(E)=U(E)—U,(E)=E—e. (2.9
Il. THEORY . - . .
We setfi=1 for simplicity henceforth. This set of a mixed

We consider two electronic states) and|2), which rep-  guantum-classical two-state equation has been previously de-

resent the electron donor and acceptor sites of the electrafyed by several authot$'®'7 starting from the spin-boson
transfer system, respectively, and they are coupled to eagamiltonian?’—5*

other via the electrpnic cogpling matrix eleme¥t, More- We note that many chemically and biologically impor-
over, each electronic state is coupled to bath degrees of fregant electron transfer processes take place in an overdamped
dom. solvent environment. Then, the bath relaxation operators in

There have been extensive studies of the solvent effegtgs. (2.2—(2.5 are modeled by one-dimensional Fokker—
on electron transfer dynamics in literature with variousplanck operator£

approache$’~1°35-38considering that electron transfer pro-
cesses are usually probed at room temperature in polar sol- . Jd i+’B&Ui(E)
vents, one can treat the bath degrees of freedom classically. JE JE ]’

ijo

i=De-p (2.10
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L1+ Ly ;{ EZ)
Lip=La=—7%— exp —
12— ~21 2 d)R(E): 2A7 Y E 217
P P aU(E) n (znn! )1/2(27TA2)1/4 n \/QA ’ .
ozl a5 ) ewe 1 ( ; )
E)= H : 2.1
where 8= 1/(kgT). ¢n(E) 222zl o (2.18

The Fokker—Planck equation models the relaxation Proith H,, being thenth order Hermite polynomial.

cess of the density matrix element as a diffusion process in We separate real and imaginary parts of the coherence

the energy space and various parameters are identified; eaénsity matrix, namelyu=Rep;, and v=Im p,, and re-
ergy diffusion constanfg=QA?, fluctuation of the solvent write Egs. (2 2)'_(2 5 as 12 12

polarization energyA?=(E?)=2\kgT, and characteristic .
timescale of a Debye solveng=1/Q). The correlation func- p11= (L12+ 6L)p11— 2V, (2.19
tion of the solvent polarization energy is given by a single

exponential form in a Debye solvent, p22=(L12= 0L) p2zt2Vu, (2.20
U=Lpu+ , 2.2

C(t)=(E(H)E(0))=AZ exp(— Q). (2.12 125 0120 (2.29

v=L120 — 01U+ V(p11— p22), (2.22

Note that since the nuclear dynamics is modeled by the )
Fokker—Planck operator, the possibility of the vibrational co-WhereSL=(Ly,— L57)/2. Then, all the relevant operators in
herence is not considered in this model of electron transfefFds: (2.19—(2.22 can be evaluated in terms of the basis

. We investigate the spectral _struc_ture of the nonadiabatic <¢h|£12| qﬁﬁ): —nQ8,m, (2.23
diffusion operator,C, by calculating eigenvalue$Z,}, and

corresponding right and left eigenfunction«ﬁ,ﬁ)} and N

(A, ($rloLldn)=—Q\ 5 Vm+1omes, (224
LIy ==Z,1¢5), (2.13 (B 01 B = V2NKgT(VM8y -1+ M+ L3 1)
(Wl L==Z.(u]. (2.14 —€dnm, (229

Because the nonadiabatic Liouville operator is non-  (®@nlVIém=Vdum. (2.26

Hermitian, the eigenvalues are generally given by compleXyith this basis set, we can expand the density matrix ele-
values, and the right and left eigenfunctions corresponding tg,ants as

the same eigenvalue are not simply the Hermitian conjugate

to each othet? 5
The method of eigenfunction solution is well known for Pll(E’t):nZO an(t) ¢n(E), (2.27

the diffusion process on the harmonic potential energy sur-

face as discussed in Appendix’AUnlike the diffusion prob- - .

lem on the single potential energy surface, however, there P22(E’t):nzo bn(t) & (E), (2.28

have been limited studies on the nonadiabatic diffusion prob-

[}

lem involving more than a single potential energy surface. -
Cukier and co-workers have calculated the electron transfer U(E.t)= ZO Ca(t) r(E), (2.29
rate by calculating the lowest eigenvalue of the nonadiabatic "
diffusion equation in the weak-coupling regirtfe. *
In this paper, the eigenfunctions @f, are used as our v(E,t)ZnEO dn(t) SR(E). (2.30

basis set to represent the nonadiabatic diffusion equation. In
principle, one could have chosen the eigenfunction8,@or  Substituting Eqgs.(2.27—(2.30 into the right eigenvalue
L,, as basis functions; however, in that case one has tequation, Eq(2.13, we have the following coupled eigen-
evaluate appropriate Franck—Condon factors when calculatralue equations,

ing the coupling matrix elements. The Fokker—Planck opera-

tor L4, is defined on the ayeraged single harmonic potgntial ~Z,a,=—nQa,—Q L \/ﬁanfl_ZVdna (2.3))
centered aE=0, and its eigenvalue solutions are obtained 2kgT

following a similar procedure in Appendix A,

A
7 p=_ n N .
L1 ¢%=—nQ|¢R), 2.15 Z,by=—nQby+ O\ 5 Jnb, 1+2Vd,, (2.32
(brl L12= —nQ( 1], (2.16 ~Z,¢,=—nQc,
wheren=0,1,2,.., and thenth right and left eigenfunctions +2NkgT(Vn+1dp s 1+ Vndy 1) —edy,
for L, are given by (2.33
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—-Z,d,=—nQd, A. Nonadiabatic regime: Weak coupling case
When the electronic coupling matrix elemewtis very
—V2\kgT(yn+1c, 1 +NC, 1)+ eC . o
sT( ns1tNGyy) + ecy small, we can reduce the full nonadiabatic diffusion equa-
+V(a,—b,), (2.39 tion, Egs.(2.2—(2.5), into the population evolution equation,

which is an explicit basis set representation for the two—statéInd detailed _derlvat_|0n§ can be_ found in Refs. 16 a.”(*“’é
diffusion operator in Eqs2.2~(2.5). Eigenvalue equations also Appendix B. Kinetic _equatlons _for the population ele-
for the left eigenvector in Eq2.14) can be written by mak- ments ofp can be approximately written as

ing the transpose of Eq$2.31)—(2.34). Diagonalizing the p1y

4N X 4N matrix (N=number of basis functionslefined in ot~ Fupu—K(pu—p2), (3.0
Egs. (2.3)—(2.34, we obtain the eigenvalueg, and the

corresponding eigenvectors of the nonadiabatic diffusion op-  dp,,

erator, e Loop 20— K(p2o—p11)s (3.2
Ry - R whereK (E) is the rate kernel given in E¢B5). A dynamical
|l//V>_nZo Ruul n). (239 quantity usually measured in the electron transfer kinetics

experiment is the total populatioR;(t), in each electronic

- state rather than the polarization energy dependent popula-
(Wil= 2 Lun(eil, (236 ion. p (E.1).

\év::reRn,, andL ,,, are elements of the transformation matri Pi(t):J ) dEp:(E.). 3.3

In general, due to the non-Hermitian nature of the nona-
diabatic diffusion operator, the left and right eigenfunctionsUsing the projection operator method and making a time-
do not form an orthogonal set by themselugswever, when scale separation approximation, it can be shown that the ki-
the eigenvalues are all nondegenerate, the left and rightetic process between two electronic states is described by
eigenfunctions form an orthogonal and complete setin the time-independent rate constant instead of the rate kernel

dual Hilbert spacé*-56 Explicitly, we have in the weak coupling limi®*{(see also Appendix B Then
. the kinetic equation foP; is given by®’
nzo L,nRny =68, (2.37) Pl(t) ) k2 Pl(t)) os
B P,(t) k! —k2J\Pa(t))" '
E Rl om= Snm> (2.38 Herek! andk? are forward and backward rate constants and
v=0

they are related to the nonadiabatic transition radgsand
for the orthogonality and the completeness relation, respesolvent diffusion rategp, by*®*’
tively. Using these properties, we can construct the real time

ki
propagator for the operata as K = NA 3.5
. 1+ kpya/kp+ kia/K5
_ Ry/, /Ll a—Z,t
GH= ;o [(wile™ (2.39 Kna=Kna T KRas (3.6
and express the time evolution of the density matrix as an Kna
i ' i knp=K"+ k= T T 2 k2" 3.7
eigenfunction expansion, 1+ KL kS + K2 AMKE

Recently, Eq(3.7) has also been obtained for the symmetric
reaction case in the weak coupling limit by calculating the

. . . _first excited eigenvalue explicitly via the Goldstone
Note that the right and left eigenfunctions play asymmetrigy o o2 g Pty

roles in the construction of the propagator for the non-
Hermitian operator.

|p<t>>=G<t>|p<0>>=;0|¢f5><wt|p<0>>e*2vt. (2.40

Equation(3.7) has a form of an overall relaxation rate
for consecutive reactions, and it involves two different types
of rate processes; nonadiabatic transition and solvent diffu-
sion rate. Nonadiabatic transition rate constakts and
1. LIMITING CASES k2, are forward and backward quantum transition rates be-
I%Ween the two electronic states and are calculated in terms
of the coherent Green's functionsG,(E,t|Ey) and
G,1(E,t|Ep) (see Refs. 16, 17 and also Appendix B

In order to compare the eigenvalue solution developed i
this work with previous theoretical predictions available in
different kinetic regimes, we briefly discuss two limiting

cases which have been studied extensively in the , w

literature'®~*°Instead of giving detailed derivations, we will Na=27V? Refo dte'(<* M=o, (3.8
briefly mention the solutions in these limiting cases, relegat-

ing details to Appendix B. where the bath correlation functi@(t) is given by
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A\Z O\ e and the electronic coupling are not so large compared
5) =i |[exp(—Qy+aQt—1], (3.9  with the reorganization energy, the lower adiabatic sur-
face,U_, has a well-defined double well structure. In this
with +(—) sign fori=1(2). When thebath dynamics is case, we can consider the electron transfer process as a dif-
slow such thaf) <A, Eq.(3.8) reduces to the standard Mar- fysjonal barrier crossing process occurring on the lower adia-

g(t)=[

cus result(see Appendix B batic surfaceJ ,p="U _ described by the following diffusion
Kia~Ksr=27V2p e), (3.10 equation in the energy space,
11 2 ap 32 J
Kna~Kert Kar (3.1D i DE(@ +B(9—EUAD) p=Lpp- (3.17

e )= o~ (A= (287 [5AZ ilibri
where p7{(e) =e /y2mA” is the equilibrium To calculate the reaction rate for the adiabatic barrier

population of thath state at the crossing poikt=e. When crossing described by Eq3.17), one may take several dif-

O ~A, the nonadiabatic transition rate shows a deviatior* .
. . . . ._ferent routes. For example, one can calculate the barrier
from the Marcus rate, which will be discussed later in details.

e . rossing rat the first nonzero eigenval f the Fokker—
Solvent diffusion rate constantk}3 and k3, describe crossing rate as the first nonzero eigenvaiue of Ine FoKke
. . .. Planck operatorL,p, corresponding to the lower adiabatic
solvent relaxation processes that equilibrate the nonequili

- 7
rium wavepacket created at the crossing regys e, dur- surface;
ing the electron transfer process. They can be written in  Lapi=—Zy=Kap=2;. (3.18
terms of the population Green’s functiof@s,(E,t|Ey) and

Another popular approach is a population-over-flux
G22(E,t|E0),14'16'17 pop pp pop

method®” which obtains the barrier crossing rate by calcu-
i1 1 o lating the steady-state flux at the crossing regiBps= e,
(ko) :Pﬁu(f) fo [ Gii(etle) = Gii(e,<[e)]. (312 divided by equilibrium population in the reactant region,

Noting thatG;;(e,|€) = pY€) is given by the equilibrium KP =D JEC dE fEldE eBIU_(ED)-U_(Ep)] '

population distribution of theth state atE=¢, the solvent AD B ) 2 '

diffusion rates are identified as the inverse of the mean sur- (3.19

vival time of the relative nonequilibrium population created |, ihe symmetric reaction case£0), the adiabatic rate

at the crossing poin€ = e. _ given in Eq.(3.19 can be evaluated approximately in the
The boundary between the Marcus regime and th&trong coupling limit V> 1) by expanding the integrand at

solvent-controlled regime in the nonadiabatic limit is esti-g—g gng performing a Gaussian integration approximately
mated when comparing the Marcus rate in 8310, and the {4 yield22

solvent-diffusion rate in EqB13), which leads to

Q [\
27V2~|e+\|Q. (3.13 kaPD~; Ne—ﬁW“—W, (3.20

The nonadiabatic regime is established when the time scaleh. his the K s adiabati i te in the st
of the off-diagonal density matrix is much faster than that of\év Ich 1S the réa7mers adiabatic reaction rate n the strong
the diagonal ones, yielding the following conditith? amping regime.

V<Dg3=(20kgTQ) 3, (3.149  |v. RESULTS OF SPECTRAL ANALYSIS

in addition to the weak coupling conditioN,<kgT, for the  A. General feature of spectra

validity of the nonadiabatic regime. Figure 1 shows the eigenvalue spectra in three different

cases of the energy bias for various electronic couplings.
B. Adiabatic regime: Strong coupling case Since the nonadiabatic diffusion operator is not Hermitian,

) . ) the eigenvalues are complex in general,
When the electronic coupling constant is comparable to

or larger than the thermal energyv/=1, it is more adequate Lip,=—Z,¢p,=—(Z,+iZ),. 4.9

to describe electron transfer in an adiabatic representation, orger for the density matrix relax to the stationary state at
Given a specific bath 9onf|gurat|on chara.cten.zed.by th%ng times, the real part of the eigenvalue should safy

value of E, the electronic part of the Hamiltonian in the ~ o Ejgenvalues of the nonadiabatic diffusion operator are
diabatic representation is given by classified into three different cases with their associated ki-

U (E) vV netic behaviors in the density matrix evolution;
Hd(E):( Vv U (E))' (3.19 (1) Z{=2§=0: equilibrium,
2 (2) 2,>0, Z!=0: exponential decay,
After the diagonalization ofl 4(E) for a given bath configu- (3) Z,>0, Z#0: damped oscillation.
ration E, we can obtain two adiabatic surfaces, The eigenstate with zero eigenvaloase(1)] corresponds to
U.(E)=U(E)* L[ wy(E) 2+ 4V2]12 (3.16 the equilibrium solution of the density matrix while those

with real[case(2)] and complex eigenvalugsase(3)] cor-
The separation between two adiabatic surfaces is muctespond to exponential decays and to damped oscillations in
larger thankgT, U, —U_=V>kgT. When the energy bias the evolution of the density matrix, respectively. When the
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first nonzero real eigenvalug; is well separated from the show tree-like structures with three major characteristic
other higher eigenvalue€;<Z_,, the dynamics of the branches; one branch for the real eigenvalues in the middle,
density matrix will be described by a single exponential pro-real axis, and two other branches for the complex conjugate
cess, and the relaxation rate is well definekasZ; . How-  eigenvaluesTherefore, the spectral structure indicates that
ever, if this is not the case, the dynamics of the densitymultiple exponential decay@eal eigenvaluesand damped
matrix will generally involve multiple time scales and coher- oscillations (complex eigenvalugsare inherent features in
ent oscillations. electron transfer processes in the overdamped solvent. In or-
We used 800 basis functions to calculate the eigenvaluesler to infer the dynamical behavior of the density matrix, we
and to remove the finite size basis set effect at higher eigerenly need to focus on the lower part of the eigenvalue dia-
values, we present only lower 400 eigenvalues in Fig. 1grams in Fig. 1 corresponding to the eigenstates &itl()
Three different cases of the energy bias chosen in Figs=1 =<1 since those wittz’/Q>1 will decay out very quickly.
1(c) correspond to different regimes in nonadiabatic electron (i) Symmetric reaction caée=0): In Fig. 1(@), one can
transfer theory, i.e., norm@le| <\ in Fig. 1(a)], activation-  notice that the real parts of the eigenvalu&Ss, located at
less[|e|=\ in Fig. 1(b)], and inverted regimefe/>\ in  the branching regime in the eigenvalue tree decrease as the
Fig. 1(c)], respectively. As a general feature, all the spectraoupling constant increases up & <1, which means that

BV= BV=0.1 BV=0.5
TR T 1 i
A i 2 K4 k1
. = .
[ Ve ]
1. H
N I Y Y A I |
O B
0
-80 0 80 -80 0 80 -80 0 80
Bv=1 BV=s pv=10
100
E 50 | 1 - 1 F 1
0 A7
-80 0 80 -80 0 80 -80 0 80 FIG. 1. Eigenvalue diagrams are shown for three dif-
(a) ImZ ImZ ImZ ferent values of the energy bia&) 8|e|=0 (normal
regime, (b) B|e|=10 (activationless regime and (c)
BvV=0 pv=0.1 BV=0.5 Ble|=20 (inverted regimg as the coupling constant is
100 : : \ / R T ‘s [ : increased. Parameters g8& =10 andBQ=1.
B H | H
N sl I 013 Eo
z % i i i 3
0
-80 0 80 -80 0 80 -80 0 80
Bv=1 BV=s Bv=10
100 T
4 S
.-.'li !? Ii_-'
| | I
1| F
& sl Y ool L N |
& ;
0 !
-80 0 80 -80 0 80 -80 0 80
(b) ImZ ImZ ImZ
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BV=0 BV=0.1 BV=0.5
ORI T 1 3 R !
O S R i. H i
[ R : i -
A P { i i §
... q," !.. g >
".. . , ..-_- .3 §
0
-80 0 80 -80 0 80 -80 0 80
V=1 V=10 FIG. 1. (Continued).
100 T i I i i
i | R [
A 1 [ H
E | i i : i H :
L P i i ;!
N v § 1 F ! i
0 B0OF % E F H HERE ot s 4
a i HH B |
i i1 i
0
~80 0 80 -80 0 80 —80 0 80
(c) ImZ ImZ ImZ

the oscillatory components will persist during a more ex-bias, € unlike in the symmetric reaction case. This corre-
tended periodt~1/Z; as the coupling constant increases.sponds to the natural oscillation frequency of the off-
When the coupling constant increases furth@y,>1, the diagonal density matrix elements in the asymmetric reaction
branching point of the complex branches starts to separateases.
along the imaginary axis. The separation between the two In Fig. 2 we have followed the evolution of the lowest
complex branches along the imaginary axis is given by30 eigenvalues in both the real and imaginary axes as a func-
~2V, and this corresponds to the Rabi oscillation frequencytion of the coupling constant for different energy bias cases.
for the two adiabatic states in the strong coupling regime. In all the cases real parts of the eigenvalues start as pairs of
(i) Asymmetric reaction cas@s#0): In Figs. 1b) doubly degenerate states separated from each other by the
(Ble|=10) and 1c) (B|e|=20), we notice that spectral solvent relaxation rate3Q)=1, whenV=0. As the coupling
structures show more branched behaviors in the asymmetrgpnstant increases, the degeneracies of the real eigenvalues
reaction cases than in the symmetric reaction case in Figre first lifted at small coupling constants, and bifurcation
1(a). When comparing the zero electronic coupling casesand coalescence of eigenvalues occur at large coupling con-
BV=0, in Figs. 1a), 1(b), and Xc), we notice that in the stants. The coalescence corresponds to the case where two
asymmetric reaction cases two complex branches separattosely separated real eigenvalues become complex conju-
out along the imaginary axis by the amount of the energygate with the sam&’, and this indicates the transition from

ReZ

FIG. 2. Real and imaginary parts of the eigenvalues are
shown for the same three different values of the energy
bias as in Fig. 1(a) Ble|=0, (b) Ble|=10, and(c)
Ble|=20. Parameters are the same as those used in Fig.
1. The real parts of the eigenvalues show bifurcation
and coalescence behaviors as the coupling constant in-
creases, and the imaginary parts of them asymptotically
follow the Rabi oscillation frequency in the strong cou-
pling limit.

0 10 20

gv BV BV
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0.008 ' . . regimes in the nonadiabatic diffusion equation. The filled
_$cisemate soluon circles are calculation results of the first nonzero eigenvalue
T ot diion o obtained from the spectral analysis method. We compare our
0.006 - ===~ adiabatic(flux/population) e eigenvalue solution with previous theoretical results, each of
‘,——"'.,:" which is applicable for different limits:
'_,."' .,}" (i) Weak coupling limitThe eigenvalue solution is com-
e ..o,f/ pared with the purely nonadiabatic transition rate without the
= oty .t‘.'.‘.'.o“','/' solvent diffusion effects, Eq.3.6) (solid line) and with the
’:::,.‘.‘.'. /,I' - nonadiabatic-diffusion rate with the solvent diffusion effects
L -;’ P included, Eq(3.7) (long dashed ling In any case, we com-
0002 |/ =" . pare the eigenvalue solution with the sum of the forward and
- backward rates since the eigenvalue solution gives the over-
all relaxation rate of the density matrix.
0.000 , , , (ii) Strong coupling limit We compare the eigenvalue
0.0 1.0 2.0 3.0 4.0 solution with the adiabatic barrier crossing rates as discussed
@ pv in Sec. IlIB. We calculated two different adiabatic reaction
016 . . rates, the Iowest_ nonzero eigenvalue giver_l in Eq1€_3)
’ @ cigenvalue souton (dotted—dashed lineand the flux-over-population rate given
——— nonadiabatic in Eq. (3.19 (short dashed line respectively.
= ==« nonadiabatic+diffusion . . .
=== adiabatic{eigenvalue) o In the slow bath relaxation casgg()=0.05) given in
0.12 - “"i"’"‘“ﬂ“"’”"‘“““°"i_,——"‘/'— Fig. 3@, when the the coupling constant is very small
/_,—‘ < (BV=0.1) (Marcus regimg the eigenvalue solution agrees
/,/' /..{‘ well both with the nonadiabatic transition rate and with the
Pl P nonadiabatic-diffusion rate. The nonadiabatic transition is the
~ 008 - ’,-’;o'. rate limiting step in this case. As the coupling constant be-
//’.o" JEP—— comes large and so does the nonadiabatic transition rate, the
o overall rate is now affected by the solvent relaxation rate,
0.04 i and the eigenvalue solution follows the nonadiabatic-
diffusion rate, Eq.3.7), reaching thesolvent-controlled re-
gime
As the coupling constant becomes much larger than the
0.00 % . 20 30 40 thermal energy, the eigenvalue solution shows a saturation
(b) BV behavior atBV~1 first, and starts to increase rapidly as the

) ) " ) ) electronic coupling becomes stronger. This demonstrates the
FIG. 3. Comparison of the eigenvalue solutitfilled circle) with results ict f adiabatic barri . & th t
from other theoretical results; the nonadiabatic f&g. (3.6), solid line], pic urg ofa .'a alic '.amer crossing pro_cesm € strong
the nonadiabatic—diffusion raf&q. (3.7), long dashed ling the adiabatic ~ coupling regime. In this cas@V>1, the eigenvalue shows a

barrier crossing rates calculated from the adiabatic eigen&lge(3.18, qualitative agreement with thadiabatic reaction rateskq.
dotted—dashed lifeand from the flux-over-populatiofEqg. (3.19, short (3.19 and Eq (3.19
dashed ling Solvent relaxation rates are chosen(as 80 =0.05 (slow ’ DN

bath and (b) Q=1 (fast bath, respectively. Other parameters gBa . As we mcrga;e t_he solvent relaxation ram: 1) in

=10 and Be=0. The nonadiabatic eigenvalue solution agrees with theFig. 3(b), the distinction between the nonadiabatic and the
nonadiabatic-diffusion rate in the weak coupling case, and the agreememgdiabatic regime in the eigenvalue solution becomes less ob-
with the adiabatic rates at the strong coupling case is qualitative. vious than in the slow bath case, FigaB In the fast bath

relaxation case, as the nonadiabatic transition rate becomes

the incoherent, rate process to coherent oscillatory behavi({?rg(.e to be n the solvent—control!ed regime, the a(':h'abatlc
in the dynamics of the density matrix, which will be further arrier crossing is already appreciable, so the transition be-

discussed in Sec. IV C. In the imaginary part diagram, wdween the solvent-controlled and adiabatic barrier crossing

find an interesting behavior that imaginary parts of the eigen/€9/Mes IS not so clear. This is related to a dynamical modu-

values asymptotically follow the Rabi oscillation frequency, lation Qf the qonadlabqtlc tran'sm'on rate in the fast bath case,
and will be discussed in details in Sec. IV D.

2"~ wpapi= VAVZ+ €, (4.2) The agreement between the eigenvalue solution and the
two adiabatic rate calculations is qualitative in the strong
coupling case. Although it is reasonable to treat the electron
transfer process as an adiabatic barrier crossing reaction on
the lower adiabatic surface when the coupling constant is
large (BV>1), it should be mentioned that a rigorous math-
ematical proof has not been given to show that the electron
In Fig. 3 we compared the first nonzero eigenvalue oftransfer rate from the nonadiabatic diffusion equation really
the nonadiabatic diffusion operator with several predictionsorresponds to the adiabatic reaction rate in the strong cou-
from existing theories in order to characterize various kinetigpling limit. Therefore, it may not be surprising that the agree-

in the strong coupling limit, and this demonstraties signa-
ture of adiabatic Rabi oscillation picture of the electron
transfer in the strong electronic coupling case

B. Crossover from nonadiabatic to adiabatic regimes
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ment between the eigenvalue solution and the adiabatic sc
lutions is only qualitative. Related to this problem, it should
be mentioned that the original nonadiabatic diffusion equa-
tion is based on diabatic representations of electronic states
therefore it may not give quantitatively the same rate con-
stant as that from the adiabatic diffusion equation in the
strong coupling cas&**

The transition from the Marcus to solvent-controlled re- ty
gimes has been studied theoretically by using different theo™
retical methods such as the projection operator
technique¥®"*8and the path-integral methotfThese the-
oretical approaches do not cover the adiabatic barrier cross
ing regime. The crossover behavior from the nonadiabatic tc
adiabatic regimes has been observed in quantum mechanic
approaches to electron transfer theories based on the instal
ton solutiort®~%2and the diagrammatic technicevhich do
not take into account the solvent dynamics effects. The ei-

Y. Jung and J. Cao
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0.0
0.0
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6.0 8.0

4.0
BvY

genvalue solution presented here clearly demonstrates traEI-G. 4. Transition between the incoherent and coherent regimes in the sym-

sitions between three different regimes.

C. Transition from incoherent to coherent regimes

metric electron transfer case is manifested in the calculation of the lowest
eigenvalues. When the coupling constant is about half of the reorganization
energy B\ =10), the higher excited states cross with the first excited state.

Symbols lying on top of each other represent the same real parts of the

For the symmetric electron transfer reaction case)
the lower adiabatic surface)_, has a double well structure
if V<\/2. When the electronic coupling constant becomes
even larger tham/2, the lower adiabatic surface becomes a

complex conjugate eigenvalues. Other parametersBfle=1 and S| ¢]

single well without any barrier. We consider this situation as€igenvalue aroun@@V~6 due to the crossing of the first

a thermodynamic transition from the localized to delocalizeceXcited state eigenvalue and higher complex eigenvalues
electronic states when viewed from a perspective of the dithote that3V =5 in this casg The crossing behavior of the

abatic states. Even though the free energy surfaces of tHst and higher excited state eigenvalues is a signature of the
donor and acceptor states support a large energy barrier pansition between the incoherent to coherent regimes in
tween them in the diabatic picture, a large coupling constar/ectron transfer processes
in the same order of magnitude as the reorganization energy A €rossing of the two lowest nonzero eigenvalues can be
makes the distinction between the donor and acceptor staté§ed as an approximate criterion for the transition from the
inappropriate. Instead, two new single well potential surfacedcoherent to coherent regimes. In Fig. 5, we plotted the
are obtained, whose eigenfunctions are neither donor nor a¥alue of the electronic coupling constawt,, where a cross-

ceptor wave functions, and rather linear combinations of"d of the two lowest nonzero eigenvalues occurs for a given

them. This situation occurs imixed valence compounds and
other strongly coupled systems where-¥>kgT.*~*4The
critical value of V=V, at which the double well structure
disappears in the lower adiabatic surfatk, can be ob-
tained from Eq.(3.16) when the reorganization energy Xs
and the energy bias jgl,

(2V,) %3+ | 28=72", 4.3

which indicates that the localization—delocalization transi-
>

tion occurs at a smaller value ®.<\/2 in the asymmetric
reaction case. Recently, Cukier and co-workers, anadggia
and co-workers have studied such strong coupling regime:
based on semiclassical approacfie$®

To investigate the feature of the localization—
delocalization transition in the spectral structure, we show
the lowest five eigenvalues as a function of the coupling

0.60

0.40 -

020 r

—==gigenvalue crossing
====_analytical estimate

coherent oscillation regime

incoherent kinetics regime

0.00

T
-
-
-
-~
-
-~

constant in the strong coupling regime when 0 in Fig. 4.
When the electronic coupling is about the half of the reorga-
nization energy as predicted by E@.3), V=5, the first

0.0

0.2

04

0.6
lel/A

0.8

1.0

nonzero e|genva|u60|ld ||ne) |S no |onger We” Separated FIG. 5. A phase diagram for the transition between the incoherent and

from higher complex eigenvalues, and it is no longer valid to

coherent regimes in the asymmetric reaction case. Valudg ofhere two
lowest nonzero eigenvalues crosotted—dashed lineare compared with

describe the dynamics of the density matrix by an incohereniy analytical estimate in E@4.3) (dashed ling Parameters are chosen as
rate process. Also, there is a rapid drop of the first excitegg=0.01 andg\ =10.
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FIG. 6. Eigenvalue solutio«filled circle) as well as the Marcus rate, Eq. '-,'
(3.17), and the nonadiabatic transition rate, E8}8), weak coupling regime -10 - ‘e, 1
are plotted as a function of the energy bias in the slow b@h 8Q=0.1] Ce, R
and the fast bath(b), Q) =1] cases. Other parameters @§¥=0.01. The ®e, .
dynamical bath effect is evident in the fast bath caséjn i 2.0 | S, . E
L] . N R .
L4
* . . .
energy bias|e|, and the prediction of Eq4.3) for the case 301 *ee]
BQ=0.01 andBr=10. They show the same trend that the
coherent regime appears earlier in the asymmetric reactiol o . . .
case than in the symmetric reaction case. ~00 05 10 15 2.0
pQ

FIG. 7. Dynamical bath effect is estimated by the amount of the peak shift
. in the forward nonadiabatic transition rate vs the energy bias curve from its
In addition to the fact that the overall electron transfervalue in the static bath cas€ & 0) for various values of solvent relaxation

rate appears a combined result of the nonadiabatic transitioates.(@ When the bath is static, the nonadiabatic transition rate shows a
and solvent diffusion processes in E8.7), the nonadiabatic maximum aﬂ_e\=)\_. As the_ t_Jath relaxa_tion_increases, the maximum position
L . . . of the nonadiabatic transition rate shifts into a smaller value of the energy
transition rate itself, Eq(3.8), is modulated by the dynamic bias.(b) The peak shift is plotted as a function of the solvent relaxation rate.
nature of the solvent relaxation process that is characterized
by the bath correlation function in E.9). We will call this
adynamic bath effecfThis will be evident if the bath relax- fast, the solvent reorganization energy is effectively reduced,
ation rate is comparable to the amount of the polarizatiorand the maximum electron transfer rate appears at a smaller
energy fluctuation, value of the bare solvent reorganization energy, exhibiting
— the peak position in the normal regime] <<\, and this re-
Q~A=V2NkgT. (4.4 sultsl,ain azignificant deviation of tf?en:m]nadiabatic transition
To investigate the dynamic bath effect, we compare theate from the Marcus rate. The amount of the peak shift as a
eigenvalue solution and two different reaction rates, Marcugunction of the solvent relaxation rate can also be estimated
rate in Eq.(3.11) (static bath limif and the nonadiabatic from Eq.(3.8), and it is shown in Fig. 7 that the peak shift
transition rate, E¢(3.6) (dynamic bath effect includedn the  increases linearly witlf).
weak coupling limit as we vary the energy bias in Fig. 6. All The peak shift observed in the eigenvalue solution has a
the calculation results show a characteristic behavior of thelose analogy to the Stokes shift observed in the condensed
Marcus curve; they show a maximum value whep-\. In phase spectroscop¥.lt is worthwhile mentioning thag(t)
the slow bath case, Fig(®, all the three curves agree with obtained in Eq(3.9) has exactly the same form as the line
each other since the dynamic bath effect is negligible in thi9oroadening function obtained in the high temperature limit of
case. In the fast bath case, Figh we notice that the ei- the overdamped Brownian oscillator model in the condensed
genvalue and the nonadiabatic transition rate agree with eagihase spectroscofy®®and the nonadiabatic transition rates
other, and show a deviation from the Marcus rate. In particugiven in Eq.(3.8) have the same functional forms as the line
lar, in the fast bath caséhe maximum position of the eigen- shapes of the chromophore interacting with the Debye sol-
value as well as that of the nonadiabatic transition rate shiftvent. As discussed in Appendix B, the Stokes shift between
toward a smaller value of the energy bias compared with thehe absorption and the emission profiles disappears in the fast
Marcus rate bath case and it has the same origin as the peak shift ob-
In the static bath limit, the nonadiabatic transition rate isserved here.
reduced to the Marcus rate, exhibiting the maximum position  Implication of the dynamic bath effect on the experimen-
at the activationless cage]=\. When the bath relaxation is tal observables may be significant. The reorganization energy

D. Dynamic bath effect
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FIG. 8. Time evolution of populations in the donor and acceptor states are 5.0 15.0 250 35.0
shown for several values of the coupling constant. The initial wave packet is BA

chosen as the equilibrium distribution in the donor state. In weak coupling

cases(a) and (b), the population relaxes to the equilibrium exponentially, FIG. 9. Breakdown of the positivity in the nonadiabatic diffusion equation

while in strong coupling casef) and(d), the electronic coherence between in the case of a large reorganization energih1). A nonzero, real ei-

the donor and the acceptor states is observed. genvalue becomes negative in the case of a large reorganization energy
(BA=12). Other parameters ag/=0.1 andBQ=1.

of the solvent can be estimated from the maximum of the

electron transfer rates based on a series of the measuremeRt#g constant is increased, the temporal behavior of the den-
of electron transfer rates for different systems of which thesity matrix undergoes the incoherent—coherent transition as
energy bias and the electronic coupling constants are knowsliscussed based on the spectral analysis in Sec. IVD. When
However, the dynamic bath effect can make the value of théhe coherent oscillation is observed in the temporal evolution
reorganization energy measured in the experiment small&f the density matrix(8V=2 and gV=4), the oscillation
than its true value. Therefore, care should be taken to diseritequency matches the Rabi oscillation frequency given in

tangle the dynamical bath effect from the measured value dd. (4.2). The time-dependent study of the nonadiabatic dif-
the solvent reorganization energy. fusion equation based on the spectral method was also per-

formed for back electron transfer dynamics occurring in the

. . _ mixed-valence systeff.
E. Density matrix propagation

The spectral method can be used as a propagatiof Nonphysical behavior in nonadiabatic diffusion
method of the density matrix as shown in EQ.40. We  equation
demonstrate the time evolution of the donor and acceptor
populations,P,(t) and P,(t) based on the spectral method.
Parameters are chosengs=10, 8Q)=1, andBe=0. The
electronic coupling constant will be varied. The initial con-
dition is chosen such that a&=0 only the donor state is
populated with the equilibrium distribution in the diabatic

We found that the nonadiabatic diffusion equation can
yield nonphysical behavior in some parameter regimes. We
checked the case of large reorganization enggyy>1, and
found that in this case the smallest eigenvalue can be nega-
tive instead of zero, which yields an exponential growth of
the density matrix in the long time limit. Figure 9 demon-

state, .
strates how the two lowest real eigenvalues change as the
p11(E,00=pINE), (4.5  reorganization energy is varied in the weak coupling case.
_ _ - When BA=12, the lowest nonzero eigenvalue becomes
p2AE,0)=p12(E,0)=p2,(E,0=0. (4.6 negative instead of positive, thus violating the positive defi-

This initial condition corresponds to that of the photo- niteness of the density matrix in the nonadiabatic diffusion
induced back electron transfer reactfgr?44%° equation.

In Fig. 8 we show the time evolution of the donolid There are several possible reasons for this problematic
line) and the acceptofdashed ling state populations with behavior. One of them is an intrinsic limitation in consistent
various electronic coupling constants. At the smallest coutreatments of the electronic and nuclear degrees of freedom
pling constantBV=0.5, the donor and the acceptor popula-in the mixed quantum-classical approach. A similar problem
tions relax exponentially to the equilibrium at long times. in the mixed quantum-classical approach have been pointed
The electronic coupling constant is small such that the timeut in other context&®’ The other possible reason for the
evolution is governed by the lowest nonzero eigenvalue opositivity violation may be the Markovian approximation
the nonadiabatic diffusion equation. As the electronic couused in the calculation of the frictional kernel in the over-
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damped regime fothe nonadiabatic dynamicélthough the  method, and the precise origin of this problem should de-
Markovian approximation for the friction kernel has beenserve further investigations.
successfully applied to thadiabatic reaction rate theory In the isolated quantum system the eigenvalue solution
where the single potential energy surface is involvethere  method offers a powerful way to analyze the dynamics. In
have been limited studies on the validity of this approxima-comparison, the spectral structure of the dissipative quantum
tion in the nonadiabatic reaction cas&s® Along this line,  dynamics has not been fully explored yet, and most studies
similar nonphysical behaviors in the nonadiabatic diffusionon the quantum dissipative system employ trajectory meth-
equation yielding negative electron transfer rates have beewds. In this regard, our studies on the spectral structure of the
found recently>~"#The precise origin of this artifact is still electron transfer kinetics can be a good motivation to alter-
not clear, and more studies need to be done to clarify thisative studies of various dissipative systems. The nonadia-
issue in a decisive way. batic diffusion equation studied in this work is based on the
mixed quantum-classical approach. However, the spectral
analysis method itself can be applied to other quantum dis-
V. CONCLUSION sipative dynamical equations in general such as the Redfield
r{equation7,5'76 quantum Fokker—Planck equati6h’® and

In this paper we studied the electron transfer reactio ; ; tid% and the studies based th
kinetics in Debye solvents described by the two-state nonaduantum master-equationan € studies based upon he
pectral analysis will bring more direct insights on the dissi-

diabatic diffusion equation. By applying the spectral analysisS . :
method developed recently, we investigated various kineti@2tve dynamics.
regimes of the electron transfer in Debye solvents in a uni-

fied way. The results obtained in this work are summarized.

(i) The general spectral structure of the nonadiabatic dif ACKNOWLEDGMENTS
fusion equation has been revealed. It exhibits a tree-like
structure with three major branches; a single branch of re
eigenvalues corresponding to multiexponential decays an
two symmetric branches of complex conjugate eigenvalue
corresponding to damped oscillations.

(ii) Several kinetic regimes in the electron transfer reac-
tions in solutions have been identified. The first nonzero ei-
genvalue solution bridges between the Marcus, the solvenfPPENDIX A: SPECTRAL ANALYSIS FOR THE
controlled, and the adiabatic crossing regime in the”OKKER-PLANCK OPERATOR ON A SINGLE
incoherent kinetics regime. It agrees well with nonadiabatid ARMONIC POTENTIAL
reacti_on rate_s obtained frc_)m p_revious _theorie_s in the \_/veak For a single harmonic potential) (x) =
coupling regime. In the a@abayc crossing regime the eigentoyer—Planck operator is given by
value solution agrees with adiabatic reaction rates qualita-
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Imw?x?, the

tively. Lep=D ” +ﬂiu’ (A1)
(i ) When the electronic coupling constant is about half FElox " Pox - |

the reorganization energy in the symmetric reaction cas
(less tha.n half in the asymmetric react|9n Oaﬂ?be €198N" " cal Hamiltonian corresponding to a fictitious harmonic oscil-
value diagram shows coalescence/bifurcation behavmﬁator in imaginary time

where the two lowest nonzero eigenvalues cross each other '
and become complex conjugate. This indicates the damped
oscillation behavior in the overdamped solvent, and corre-
lates with the localization—delocalization transition in the
lower adiabatic surface.

(iv) Due to the finite time scale of the solvation, the
eigenvalue solution is modulated in the weak coupling re- V(X)=D[1(BU’(x))2— 1 8U"(x)]
gime such that the maximum position of the electron transfer
rate appears at a smaller value of the bare solvent reorgani- 1 oo
zation energy in the Marcus curve, which shows a substantial TRy X TS,

deviation from the standard Marcus theory. The consequence, - 2K . h ‘ q ol
of the dynamic bath effect may be significant in the experi-V/th ¥=Dmw?/kgT. Since the transformed potential in Eqg.
(A3) is in the same form as that of a harmonic oscillator

mental determination of the solvent reorganization energy. ) . .
(v) The spectral analysis method was used as a propangOdel with an offset of the zero point energy, eigenvalues

tion scheme to study the time-dependent behavior of the del‘ﬁnd eigenfunctions for the original Fokker—Planck operator

sity matrix, and it has confirmed previous predictions made*2" be obtained immediately from the eigenvalue solutions

based on the investigation of the spectral structure. of the harmonic oscillator Hamiltonia,

&nd it is possible to transfromigp into a quantum mechani-

2

1 9
— _ @BUX)/2 -puUX2— _
H e Lepe 2 a—Xz+V(x), (A2)

where u=(2D) ! and the potential for the fictitious har-
monic oscillator is given by

(A3)

(vi) Nonphysical behavior of the nonadiabatic diffusion Ll ,/,fj>: —ny| '/fﬁ% (A4)
equation, violating the positivity, has been identified in the . .
large reorganization energy case by the spectral analysis (| Lep= =Nyl (A5)
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where y5(x) =H(x/vV2Xo)/((27)Y22"n1 xo) Y2 and ¢R(x)

=e‘x2/2xgwh(x) with xo= VkgT/mw? andH, being thenth na=2V Refo dt f_wdE
order Hermite polynomial.

« | deq (B pEED). (B6)

APPENDIX B: RATE EQUATIONS IN THE

NONADIABATIC REGIME The coherent Green’s functiofg,,(E,t|Ey), can be evalu-

ated first by transforming the Fokker—Planck operator into
We briefly review the rate expressions in the nonadiathe harmonic oscillator Hamiltonian as done in £42),
batic limit (8V<1).1%1" First, we obtain a formal solution

for p1(E,t) in the time domain from Eq2.4), Hiy(E)=—efVE2(L(E)—iw(E))e PUE?2
Plz(EJ):|VjodTledEoGu(E,7'|Eo)[P11(Eo,t—T) Z—EEJFETNQ E“—Ti%, (B7)
—p2AEo,t=7)], (B wherem= 1/(2Dg) = 1/(2Q0A?). Two complex energy vari-
whereG,(E,t|Ep) is the Green’s function for the operator, ables are defined byE=E+i(2A%/Q) and E=e¢
Liy—iwyo, +i((A%/Q) — (Q/2)). SinceH,, is a simple harmonic o0s-
G E t|Eg) =(E|eF127 101! E). (B2) cillator Hamiltonian with respect to the complex energy vari-

able E, we can calculate its propagatdiE|eH12|E,).5
Substitutingp;, and p,,=p7, from Eq. (B1) into the equa-  Then, we can expresd;,(E,t|Ey) in Eq. (B2) explicitly,
tions forp;; andp,, in EQs.(2.2) and(2.3), we can obtain a
closed set of integro-differential equations for;, and p,,,

1+ cotr(Qt)) -

G E t|Eg) = AA2

J
Epii(E,t)zﬁiipii(E,t)—ZVZ

1
JamAZSin Q) exg[ -
i

EE, (1—cotr(Qt)) s 0

T 2AZsinhQ) | 4AZ )

I_(Qt) 2A? "(Qt
X[pii(Eot= )= pyj(Eo.t=7].  (BY) xtanf| 5| (E+ B+ gz tanf| 7

In the weak coupling regimggV<1, the electron trans- (B8)
fer process is characterized as nonadiabatic, and the transi- | . . .
tion between two electronic states takes place only when thgiraightforward Gaussian integrations over the space coordi-
bath polarization energy is close to the free energy gap, andates in EA(B6) resultin Eq.(3.8).

p11andp,, vary slowly compared with 1, andp,;. We can Depending on t'he .tlme scale of the 'bam, and the
assume that the coherent Green's funci@p varies much ~amount of the polarization energy fluctuatiah= y2AkgT,

faster than the population differenpg,— po» in this case and t_he_ n06r71ad|abat|c re_actlon rz_;tte_s in E8.8) have two different
that dominant contribution to the integral in E®3) comes limits.>" In the static bath limit @ <A), we take the short
from the short time region. Using these arguments we cafime limit Qt<1 of g(t) in Eq. (3.9, g(t)~ 3A%t?, then the
approximately deconvolute the integrals and extend the uplonadiabatic transition rate yields the Marcus rate given in

% t
XRef dEOJ dTGlz(E,TlEo)
—x 0

+iet

per limit of the integral to the infinity, Eqg. (3.10 after a Gaussian integration. The maximakhf\
. . andkﬁA are separated bya2n this case and this is analogous
2\/2 Rej dEoJ' drGyAE, 7|Ep) to the Stokes shift observed in condensed phase
- 0 spectroscop§’®® When the dynamics of bath degrees of
o B freedom is very fast(}>A), we can take the long time limit
X[p12(Bo,t=7) = p2a Bo,t=7)] Qt>1 of g(t), g(t)~(AZQ—iN)t, which leads to,
~K(E E,t)— Et)], B4
(BE)p11(E,t) = p2r E,1)] (B4) 2V2y

whereK(E) is the rate kernel and is given in terms of the kﬁ,ﬁ kﬁ,,ﬁ (B9)

Pyl

coherent Green functioB(E,t|E,) defined in Eq(B2),16’ Y
o e wherey=A?/Q. The Stokes shift betweét,, andk?, has

K(E)=2V? Ref de dEoG1AE, 7|Ep). (B5  now disappeared as a result of fast fluctuation of the solvent

o Jo= polarization energy.

The approximations made here are well established in the The solvent diffusion rate is given in terms of the popu-

normal regime of the electron transfer, but they are questionlation Green’s functiorG;;(E,t|E,) at the crossing poinE

able in the inverted or activationless regime, and improve=Egj=¢€ in Eq. (3.12. Since £;; is given by the Fokker—

ments on these regimes have been nfide. Planck operator with a displaced harmonic potential for each
The nonadiabatic rates are given in terms of the cohererglectronic state, the population Green’s functi@sare eas-
Green’s functiort®’ ily obtained®8!
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1 with +(—) sign fori=1(2), and thesolvent diffusion rates
Gii(E,t|Eo) = —— can be calculated.
V2mA¥(1-e ) In the cases of high and low barrier limits, the solvent

(ExN—(EgtN)e )2 diffusion rate given in an integral form in E¢3.12 can be
X exp — 2A%(1—e 2% ., (B10) approximately evaluated,
|
0 2 i 2\ 2 i\2 i
2|t lin2/PE " [ \inz) ~3mg/FET ] ARl
kp~ (B11)
’ BE, N

whereE}O is the forward {=1) or backward (=2) reduced ecules edited by J. Jortner and M. Bixaiwiley, New York, 1999, Vol.
barrier heightEL=(e*+X\)?%/(4\). Lo Paisland2. _
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