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Calculations of nonlinear spectra of liquid Xe.
II. Fifth-order Raman response

Jianshu Cao,a) Shilong Yang, and Jianlan Wu
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 11 July 2001; accepted 30 November 2001!

The polarization dependence and temporal profile of the fifth-order Raman response function and
corresponding correlation function in liquid Xe are studied both analytically and numerically. Based
on the symmetry of an isotropic sample, the fifth-order Raman response function has twelve distinct
tensor elements, ten of which are independent, and the corresponding correlation function has
twelve distinct tensor elements, seven of which are independent. The coefficients for decomposition
into independent components are calculated explicitly based on the tensor property of an isotropic
sample and are used to identify different coupling mechanisms in liquid Xe. The two-dimensional
profile of the fifth-order Raman response function is evaluated by a simple hydrodynamic
expression derived using the Gaussian factorization scheme. An alternative approach reduces the
fifth-order Raman response function to time correlation functions that are easy to compute.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1445746#
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I. INTRODUCTION

Ultrafast optical techniques open new possibilities
probing liquid dynamics.1–7 One-dimensional time-domai
experiments measure liquid motions in real time using te
niques such as stimulated Raman scattering but have
shown to be equivalent to frequency domain linear abso
tion experiments.8 In order to resolve the multiple time
scales in liquids, Tanimura and Mukamel suggested fi
order time-domain Raman spectroscopy, where liquid m
tions are perturbed by two pairs of Raman pulses separ
by periodt1 of free induction and then probed after anoth
periodt2 .9 The fifth-order off-resonant Raman measurem
is an important example of two-dimensional optical spectr
copy, which is the analog of two-dimensional magnetic re
nance. Two-dimensional spectroscopy holds the promis
monitoring the structural dynamics in liquids and thus
solving the mechanisms of line broadening observed in o
dimensional spectra.10–19

The relevant microscopic information for the fifth-ord
Raman experiment is described by the response func
with two time variablest1 and t2 ,

R~ t2 ,t1!5^$$P~ t21t1!,P~ t1!%,P~0!%&

52b^$P~ t21t1!,P~ t1!%Ṗ~0!&, ~1.1!

where b is the inverse temperature and$ % is the Poisson
bracket. The total Raman polarizabilityP is a second-rank
tensor in three-dimensional Cartesian space, and the
sponse function and the correlation function are sixth-ra
tensors in three-dimensional Cartesian space. Unlike the
ear response function discussed in the preceding pap20

~hereafter referred to as Paper I! the response function canno
be expressed in terms of simple correlation functions. A
pendix A includes three possible formulas for the fifth-ord

a!Electronic mail: jianshu@mit.edu
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Raman response function by explicitly evaluating the Po
son bracket. These formulas involve the stability matr
which may lead to divergence at sufficiently long times. Th
argument does not result in practical difficulties because
Boltzmann average cancels the classical divergence. Fur
more, the stability matrix in the nonlinear response funct
is associated with the interference effect among a pair
closely lying trajectories. Based on this observation, Mu
mel pointed out that the nonlinear response can be a sens
probe for classical chaos because sequences of multiple
tosecond pulses can be designed to directly probe the st
ity matrix.21–23

As a specific example to demonstrate some of these
dictions, we recently explicitly calculated the linear and no
linear response functions of a Morse oscillator based on
classical phase-space representation of the annihilation
creation operators.24 Indeed, the classical response functi
for the Morse oscillator diverges linearly with time, where
the quantum response function for a given eigen-energ
well defined for an eigenstate system. This classical div
gence can be removed by phase-space averaging aroun
quantum eigen-energy surface and, interestingly, quant
tion of the phase space volume leads to the exact agree
between the averaged classical response function and
quantum response function. This analysis, along with ear
work,25,26 confirms that thermal averaging removes the p
sible divergence caused by the stability matrix22 and, to some
degree, justifies the classical calculation of the nonlinear
sponse of liquid Xe in this paper.

Third-order Raman spectroscopy in liquid Xe has be
studied extensively in Paper I within the Drude oscillat
model.20 The Drude oscillator model consists of oscillatin
dipoles interacting through the second-order dipole tensoT,
which induces many-body polarization in liquids.27–32 A
brief description of the Drude oscillator model is presen
in Appendix B for completeness, and the results from Pa
0 © 2002 American Institute of Physics
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I are summarized in the following. The Raman signal in ra
gases arises from dipole–induced-dipole~DID! interactions.
The leading contribution to the anisotropic component of
Raman spectrum is the two-body DID interaction, where
the leading contribution to the isotropic component of t
Raman spectrum is the three-body DID interaction. Hig
order many-body polarization terms are incorporated thro
a renormalization procedure. In comparison with the ani
tropic part, we find that the isotropic part of the effecti
dipole–dipole tensor has a short interaction range, resul
in a fast initial decay in the isotropic Raman response
atomic liquids. Polarization selectivity of third-order Ram
spectroscopy is then studied within the Drude oscilla
model. The third-order Raman response can be decomp
into an isotropic component and an anisotropic compon
with the coefficients determined uniquely by the tensor pr
erties of the total polarizability. An interesting outcome
Paper I is the introduction of a simple mode coupling pro
dure: the Gaussian factorization scheme, which approxim
liquid densities as Gaussian variables and maintains the e
librium distribution by imposing pair correlation function
In combination with the mean spherical approximation
the direct correlation function, we are able to recover
mode-coupling equation for the intermediate scattering fu
tion and the simple hydrodynamic expression for the thi
order Raman correlation function. In comparison with t
standard mode-coupling formalism, the Gaussian factor
tion scheme is direct and intuitive, and may help reveal
derlying assumptions of mode-coupling theory. The sche
is used to evaluate the third-order Raman response in Pa
and the fifth-order Raman response in Sec. III of this pa

A central issue of two-dimensional spectroscopy is
polarization dependence, which in principle allows us to
lectively measure different types of interactions. The infl
ence of the rotational Brownian motion on the fifth-ord
polarization was first examined by Tokmakoff with the im
plicit assumption of the equivalence between the polariza
dependence of the response function and that of the cor
tion function.33,34 The relative intensities at different geom
etries have also been estimated via the instantaneous no
mode ~INM ! method.35–40 Kaufman, Blank, and Fleming19

examined polarization selectivity in the fifth-order Ram
signal of liquid CS2 and found reasonable agreement w
the INM predictions by Murry, Fourkas, and Keyes.38–40 In
Sec. II, the symmetry and polarization selectivity of the fift
order Raman correlation function and response function
established without specific reference to the rotatio
Brownian model or the type of liquids. Within the renorma
ized Drude oscillator model, the twelve distinct tensor co
ponents are decomposed into independent components
correspond to different types of DID interactions and co
plings in liquid Xe.

Multidimensional optical spectra have been successf
calculated using multilevel quantum dissipative systems
Brownian oscillator models. Mukamel’s group used an os
lator picture to predict multidimensional spectroscopies
electronic and vibrational excitations.41 Okumura and Tan-
imura developed a systematic expansion of the nonlinea
sponse function of the dissipative anharmonic system.42,43
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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Cho and co-workers derived expressions for various non
ear Raman and infrared signals based on the system-
Hamiltonian.44,45 Since most liquids are classical at roo
temperature, we will calculate the fifth-order Raman
sponse function in liquid Xe within classical mechanics. A
though numerous theories and simulation methods have b
developed for linear response processes,46–52 relatively few
attempts are made on the nonlinear response function.
lecular dynamics~MD! calculations of the third-order an
fifth-order response functions have been carried out by
and Stratt on liquid Xe53 and by Jansen, Snijders, and Du
pen on CS2.54 These molecular dynamics simulations i
volve the propagation of the stability matrix or the actu
simulation of the perturbed system on a time grid and a
therefore, computationally demanding. To avoid this dif
culty, Mukamel, Piryatinski, and Chernyak explored sem
classical approximations for calculating multidimension
spectra in liquids.55 Recently, Williams and Loring compute
the classical mechanical vibrational echo by means of
fluctuating frequency approximation, which solves a driv
dissipative anharmonic oscillator as a harmonic oscilla
with a fluctuating frequency.56,57 Denny and Reichman de
rived a mode-coupling expression for the fifth-order Ram
signal in liquid Xe using a version of the quantum projecti
operator method and related the nonlinear response func
to density fluctuations.58 In Sec. III, we obtain a similar ex-
pression directly from classical mechanics without refere
to quantum projection operators. Our approach is based
the Gaussian factorization scheme, which is shown in Pa
I to recover the mode-coupling equation for the intermedi
scattering function. The resulting expression for the fif
order Raman response function compares well with num
cal results and approximately reproduces the polariza
dependence.

The difficulties in computing the fifth-order respons
function motivate us to seek a complementary approach.
stead of a direct calculation, the fifth-order response funct
is transformed in Sec. IV into the two-time correlation fun
tion or one-time correlation function. These correlation fun
tions are easily examined for their time dependence and
larization dependence. As shown in Appendix A, the fift
order Raman response function cannot be written a
correlation function without involving the stability matrix
thus certain information content in the response function
lost upon transformation. Nevertheless, these correla
functions can be calculated and analyzed accurately,
providing a different perspective of two-dimensional Ram
spectroscopy.

II. POLARIZATION SELECTIVITY

A. Symmetry and independent components

To explore the symmetry of the fifth-order Raman r
sponse function, we first study the two-time correlation fun
tion for the total polarizability, defined as

C~ t2 ,t1!5^P~ t21t1!P~ t1!P~0!& ~2.1!

whose relationship to the fifth-order Raman response fu
tion is explained in Appendix A. The two-time correlatio
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Decomposition of the twelve distinct tensor elements of the fifth-order Raman correlation fun
into five independent components, as defined via the reduced probability distribution function in Sec. II

C(t2 ,t1) ^DDD& ^IDD & ^DID & ^DDI & ^III &

C1 ZZZZZZ 16/35 4/5 4/5 4/5 1
C2 YYZZZZ 28/35 4/5 22/5 22/5 1
C3 ZZYYZZ 28/35 22/5 4/5 22/5 1
C4 ZZZZYY 28/35 22/5 22/5 4/5 1
C5 ZZYYXX 16/35 22/5 22/5 22/5 1
C6 ZZZYZY 6/35 1/5 0 0 0
C7 ZYZZZY 6/35 0 1/5 0 0
C8 ZYZYZZ 6/35 0 0 1/5 0
C9 ZZXYXY 212/35 1/5 0 0 0
C10 XYZZXY 212/35 0 1/5 0 0
C11 XYXYZZ 212/35 0 0 1/5 0
C12 ZYYXXZ 9/35 0 0 0 0
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function is a six-rank tensor with 365726 tensor elements
In an isotropic sample, the symmetry of reflection in a
plane removes all elements with an odd number of any C
tesian index and leaves 183 tensor elements.59 Further, the
correlation function is invariant to the permutation of t
Cartesian coordinate and the interchange of indices of a
man pulse pair. Thus, the two-time correlation function te
sor for the total polarizability consists of twelve distinct e
ements, which will be calculated explicitly in this section.

To proceed, we construct three combinations of corre
tion functions from the tensor elements:

Zm5Cmmmmmm ~2.2!

with one distinct Cartesian index,

Zmn5Cnnmmmm1Cmmnnmm1Cmmmmnn

14~Cmmmnmn1Cmnmmmn1Cmnmnmm! ~2.3!

with two distinct Cartesian indices, and

Zmng5Cmmnngg12~Cggmnmn1Cmnggmn1Cmnmngg!

18Cmnnggm ~2.4!

with three distinct Cartesian indices. The coefficients in
above-presented equations arise from the accounting du
the interchange of the indices in each pairs of Raman pul
The permutation of the Cartesian coordinate makes all m
bers in each set equivalent. For an isotropic sample, rota
along any axis will not change the value of the matrix e
ment. As derived in Appendix C, the rotational symme
introduces rigorous ratios among the three sets:

Zm :Zmn :Zmng51:3:1 ~2.5!

leaving ten independent components for the two-time co
lation function.

Finally, the time reversal symmetry of the equilibriu
liquid allows us to write

Cm2n2m1n1m0n0
~ t2 ,t1!5Cm0n0m1n1m2n2

~ t1 ,t2!, ~2.6!

where both the two time variables and the two corresp
ding pairs of electric field polarizations are interchang
Explicitly, from the twelve tensor elements in Table I, w
have Cyyzzzz(t2 ,t1)5Czzzzyy(t1 ,t2), Czzzyzy(t2 ,t1)5Czyzyzz

3(t1 ,t2), andCzzxyxy(t2 ,t1)5Cxyxyzz(t1 ,t2), thus removing
un 2004 to 18.21.0.92. Redistribution subject to AIP l
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three independent components. In conclusion, with all
symmetry considerations, the number of independent po
ization components for the two-time correlation function
seven.

The tensor symmetry in the two-time correlation fun
tion gives more polarization selectivity than that in th
single-time correlation function and can be used to extr
more information about internuclear interactions in liquid
As shown in Paper I, the correlation function in the thir
order Raman experiment is a fourth-rank tensor and
two independent components. Interestingly, the normali
dipole–dipole interaction model has an isotropic compon
and an anisotropic component, which can be separated in
third-order experiment. But, additional components, such
the contribution of the nonresonant scattering and the de
tion from the DID interaction, cannot be isolated in the thir
order measurement. The seven independent componen
the two-time correlation function provide the potential to is
late more independent contributions to the Raman signa

B. Reduced probability distribution

Within the renormalized DID approximation, the two
time correlation function can be written in a general form

C~ t2 ,t1!5^P~ t21t1!P~ t1!P~0!&

5ā6E dr0 dr1 dr2 T̄~r2!T̄~r1!T̄~r0!

3P~r0,0;r1 ,t1 ;r2 ,t11t2!, ~2.7!

whereP(r0,0;r1 ,t1 ;r2 ,t11t2) is the reduced joint probabil
ity distribution function~PDF! for finding one pair of liquid
particles with relative coordinater0 at zero time, one pair of
liquid particles with relative coordinater1 at time t1 , and
one pair of liquid particles with relative coordinater2 at time
t2 . The reduced probability is obtained after integrating
other degrees of freedom except forr0 , r1 , andr2 .

For an isotropic liquid, the joint probability distribution
function is a function of the relative positions and the re
tive angles

P~r0,0;r1 ,t1 ;r2 ,t11t2!

5P~r 0 ,r 1 ,r 2 , r̂01, r̂12, r̂20,0,t1 ,t11t2!, ~2.8!
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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wherer̂01 is the angle formed by unit vectorsr̂ 1 and r̂ 1 , r̂12

and r̂20 are defined in a similar fashion. With a relative
large temporal separation of (t22t1), the angular correlation
between the first pair and the last pair is weak so that

P~r0,0;r1 ,t1 ;r2 ,t11t2!'P~r 0 ,r 1 ,r 2 , r̂01, r̂12,0,t1 ,t11t2!,
~2.9!

where the functional dependence onr̂02 is ignored. Then, the
approximate PDF can be expanded as a function of the a
betweenr2 and r1 and the angle betweenr1 and r0 , giving

P~r0,0;r1 ,t1 ;r2 ,t11t2!

'
1

4p (
lm

Ylm~ r̂0!Ylm* ~ r̂1!
1

4p (
l 8m8

Yl 8m8~ r̂1!Yl 8m8
* ~ r̂2!

3Pll 8~r 0,0;r 1 ,t1 ;r 2 ,t11t2!, ~2.10!

where Ylm is the spherical harmonic function. Substitutin
Eq. ~2.10! into Eq. ~2.7! and separating the angular and r
dial parts of the spatial integration, we have

C~ t2 ,t1!'^Dm2n2
Dm1n1

Dm0n0
&CDDD~ t2 ,t1!

1^Dm2n2
Dm1n1

Im0n0
&CDDI~ t2 ,t1!

1^Dm2n2
Im1n1

Dm0n0
&CDID~ t2 ,t1!

1^Im2n2
Dm1n1

Dm0n0
&CIDD~ t2 ,t1!

1^Im2n2
Im1n1

Im0n0
&CIII ~ t2 ,t1!, ~2.11!

where the orientational average is taken with respect to
angles between unit vectors. The first term is the contribu
from the anisotropic polarizability, the last term from th
isotropic polarizability, and the three other terms are
mixed contributions. The radial parts are time dependent
are given explicitly as

CDDD~ t2 ,t1!5ā6E dr0 dr1 dr2 P22~r 0,0;r 1 ,t1 ;r 2 ,t1

1t2!hD~r 0!hD~r 1!hD~r 2!,

CIDD~ t2 ,t1!5ā6E dr0 dr1 dr2 P02~r 0,0;r 1 ,t1 ;r 2 ,t1

1t2!hI~r 0!hD~r 1!hD~r 2!,

CDID~ t2 ,t1!5ā6E dr0 dr1 dr2 P22~r 0,0;r 1 ,t1 ;r 2 ,t1

1t2!hD~r 0!hI~r 1!hD~r 2!, ~2.12!

CDDI~ t2 ,t1!5ā6E dr0 dr1 dr2 P20~r 0,0;r 1 ,t1 ;r 2 ,t1

1t2!hD~r 0!hD~r 1!hI~r 2!,

CIII ~ t2 ,t1!5ā6E dr0 dr1 dr2 P00~r 0,0;r 1 ,t1 ;r 2 ,t1

1t2!hI~r 0!hI~r 1!hI~r 2!,

which can also be expressed in terms of the Legendre p
nomial as a function of the time-dependent angles. Clea
the relationshipCIDD(t2 ,t1)5CDDI(t1 ,t2) vindicates the
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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time reversal symmetry and leaves effectively four indep
dent radial functions. The angular average, which defines
coefficients in the decomposition, is expressed explicitly

^DzzDzzDzz&

5
1

4p E dr̂2 dr̂1 dr̂0 Dzz~ r̂2!Dzz~ r̂1!Dzz~ r̂0!

3(
m

Y2m~ r̂0!Y2m* ~ r̂1!(
m8

Y2m8~ r̂1!Y2m8
* ~ r̂2!

5
1

4p E dr̂ Dzz~ r̂ !Dzz~ r̂ !Dzz~ r̂ !

5
16

35
~2.13!

and similarly for other angular averages. In Table I, the
coefficients are explicitly evaluated for all twelve tensor
ements and can be verified for their rotational symmetry a
time reversal symmetry. The ratios listed in Table I are sim
lar to those derived from the rotational diffusion model of t
dipolar fluid34 or those evaluated through the normal mo
analysis.40 The derivation and the symmetry analysis he
and hereafter are more general and rigorous.

A key consideration is that for atomic fluids the dipole
formed transiently by at least two atoms. To leading ord
two atoms form a transient molecule bond through
dipole–induced-dipole interaction and give rise to the ani
tropic polarizability, whereas the three-body polarization
fect leads to the isotropic polarizability and additional atom
polarizability. Therefore, to leading order, the transient ani
tropic polarizability is independent of the liquid densit
whereas the isotropic polarizability is proportional to the li
uid density. As a result, the anisotropic part of the polari
tion tensor is larger than the isotropic part, and we estim
the relative intensity for the radial function asCDDD

.CIDD , CDID , CDDI.CIII . In a dilute sample, we have
only the depolarization polarizability with the resulting tim
dependence given byCDDD(t2 ,t1), so that the intensity of
the tensor element follows the ratios indicated by the fi
column in Table I. As the liquid density increases, these
tios will be contaminated by the contribution from the is
tropic part of the DID polarizability and will be modified
according to Eq.~2.11!.

The diffusion model is used in Paper I for the third-ord
Raman correlation function to demonstrate a slow free
duction decay for the isotropic component and a fast f
induction decay for the depolarized component. T
asymptotic behavior of each independent component in
~2.11! approaches exponential decay with a decay constanl.
This argument predictslDDD , lDID.lDDI , l IDD.l III ,
where the subscripts denote the five components. Tho
obtained for the two-time correlation function, these pred
tions also apply to the fifth-order Raman response function
the long-time limit.
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Decomposition of the fifth-order Raman response function and correlation function into five i
pendent components based on symmetry considerations. The coefficients are normalized by theZZZZZZ
component, with two undetermined difference coefficientsdc6Þdc8 for the response function, and with on
undetermined difference coefficientdc5dc65dc8 for the correlation function.

C(t1 ,t2) cDDD cIDD cDID cDDI cIII

C1 ZZZZZZ 1 1 1 1 1
C2 YYZZZZ 21/2 1 21/2 21/2 1
C3 ZZYYZZ 21/2 21/2 1 21/2 1
C4 ZZZZYY 21/2 21/2 21/2 1 1
C5 ZZYYXX 1 21/2 21/2 21/2 1
C6 ZZZYZY 3/82dc6 1/4 0 0 0
C7 ZYZZZY 3/81dc61dc8 0 1/4 0 0
C8 ZYZYZZ 3/82dc8 0 0 1/4 0
C9 ZZXYXY 23/422dc6 1/4 0 0 0
C10 XYZZXY 23/412dc612dc8 0 1/4 0 0
C11 XYXYZZ 23/422dc8 0 0 1/4 0
C12 ZYYXXZ 9/16 0 0 0 0
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C. General polarization selectivity of the correlation
function

The ratios in Table I are valid both in the initial tim
regime and in the long-time regime. It is reasonable to spe
late that these ratios are more general than demonstr
through the approximate RDF in Sec. II C. Indeed, a se
ratios similar to Table I can be established more gener
based on the tensor property of the total polarizability a
the symmetry of an isotropic sample.

Within the Drude oscillator model, the total polarizab
ity for an isotropic sample is written asP5PI1PD , where
Tr PD50 is the anisotropic part andPI}I is the isotropic
part. Then, the two-time correlation function can be deco
posed as

C~ t2 ,t1!5cDDDCDDD~ t2 ,t1!1cIDDCIDD~ t2 ,t1!

1cDIDCDID~ t2 ,t1!1cDDICDDI~ t2 ,t1!

1cIII CIII ~ t2 ,t1!, ~2.14!

where components such asCDII , CIDI , and CIID vanish
because of the symmetry of theD tensor. The time-reversa
symmetry requiresCIDD(t2 ,t1)5CDDI(t1 ,t2), effectively
reducing the number of independent components to f
Here, CDDD(t2 ,t1) is the component associated wi
^PD(t21t1)PD(t1)PD(0)& with the corresponding coeffi
cient given bycDDD , and similar definitions hold for the
other terms.

The coefficient depends on the polarization geometry.
an example, we evaluatecDDD explicitly. From the zero-
trace definition of thePD tensor, we have

Czzzzzz1Cyyzzzzz1Cxxzzzz50 ~2.15!

so thatc1522c25j1 with j1 the value ofc1 . Here, the
index of the coefficient follows the definition in Table
Similarly, we havec35c452(1/2)j1 andc55j1 , and thus
obtain the rigorous ratios for the group of the first five co
ficients. The second group consists of the coefficients fr
c6 to c11. The zero-trace identity leads to

Czzzyzy1Cyyzyzy1Cxxzyzy50, ~2.16!
un 2004 to 18.21.0.92. Redistribution subject to AIP l
u-
ted
f

ly
d

-

r.

s

-
m

yielding c9522c6 , and similarly we havec10522c7 and
c11522c8 . In addition, the time-reversal symmetry give
c65c8 and c95c11. For simplicity, we define an averag
coefficient as j25(2c61c7)/3 to represent the secon
group. Together, the twelve distinct tensor elements are
duced to the three independent coefficients associated
the three groups:j1 , j2 , and j3 , where j35c12. These
coefficients are related to each other through the two co
tions in Eq.~2.5! imposed by rotational symmetry. The firs
conditionZmn53Zm becomes

3c15c21c31c414~c61c71c8!, ~2.17!

which predictsj1 :j258:3, and the second conditionZmng

5Zm becomes

c15c512~c91c101c11!18c12, ~2.18!

which predictsj1 :j3516:9. Hence, the ratios for the twelv
coefficients associated with theCDDD(t2 ,t1) component can
be rigorously obtained from the symmetry arguments. Si
larly, the ratios for other components can be obtained and
listed in Table II. These ratios are the same as those der
from the angular average in Table I of Sec. II B, except
the undetermined difference coefficientdc betweenc6 and
c8 . Therefore, the symmetry relations alone determine
decomposition into various components and the rela
ratios.

In general, the fifth-order Raman response function d
not follow the polarization dependence derived here for
two-time correlation function. However, if the rotational m
tion is much slower than the vibrational motion, the Poiss
bracket applies to the vibrational degrees of freedom but
to the rotational degrees of freedom, so that the fifth-or
Raman response function follows the same polarization
lectivity as described here for the two-time correlation fun
tion. This argument may be useful for establishing the po
ization selectivity of multipulse infrared spectroscopy.
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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D. General polarization selectivity of the response
function

In Secs. II A–II C, we discussed the polarization depe
dence of the two-time correlation function associated w
the fifth-order response function. As will be seen in the f
lowing, the polarization dependence of the fifth-order
sponse function is similar but with some additional subt
ties. Following the arguments in Sec. II A, the fifth-ord
Raman response function is a six-rank tensor, with 726
ments. In an isotropic sample, the permutation of the Ca
sian axis and the interchange of the indices for a pair
Raman pulses leave twelve distinct tensor elements, as l
in Table I. For the response function,R(t2 ,t1)52b^$P(t2

1t1),P(t1)%Ṗ(0)&, the time-derivativeṖ obeys the same
rotational transformation as the total polarizability tens
and the Poisson bracket,$P(t21t1),P(t1)%, as a whole also
preserves the same rotational symmetry as the pro
P(t21t1)P(t1). The rotational symmetry of the isotropi
sample imposes the same ratios among the three com
tions of the response function as Eq.~2.5!. However, unlike
the correlation function in Sec. II A, the response functi
does not follow the time-reversal symmetry, as the two ti
variablest1 andt2 are not equivalent in Eq.~1.1!. Therefore,
the twelve distinct tensor elements have ten independ
components for the fifth-order Raman response function
contrast to seven independent components for the fifth-o
Raman correlation function.

Since the explicit expressions for the fifth-order Ram
response function involve the momentum and the stab
matrix, we cannot adopt the polarization analysis based
the reduced probability distribution in Sec. II B. Fortunate
the more general analysis in Sec. II C still holds for the
sponse function. Within the Drude oscillator model, we d
compose the response function as

R~ t2 ,t1!5cDDDRDDD~ t2 ,t1!1cIDDRIDD~ t2 ,t1!

1cDIDRDID~ t2 ,t1!1cDDIRDDI~ t2 ,t1!

1cIII RIII ~ t2 ,t1!, ~2.19!

where components such asRDII , RIDI , andRIID vanish be-
cause of the symmetry of theD tensor. In Eq. ~2.19!,
RDDD(t2 ,t1) is the component associated with^$$PD(t2

1t1),PD(t1)%,PD(0)%& with the corresponding coefficien
given by CDDD(t2 ,t1), and similar definitions hold for the
other terms. To determine these coefficients, we use the s
symmetry arguments as in Sec. II C and find the same ra
as in Table I except forcDDD . The lack of the time reversa
symmetry for the response function removes the equality
tweenc6,DDD andc8,DDD and betweenc9,DDD andc11,DDD .
Nevertheless, we can still define the average coefficient
the second group asj5(c61c71c8)/3, which is determined
through the rotational symmetry relations. These coefficie
for the response function, listed in Table II, differ from tho
for the correlation function in thatdc6Þdc8 .

The five independent components in Eq.~2.19! measure
microscopic couplings in liquids and their time evolutio
For example,RDDD(t2 ,t1) describes the depolarized Ram
signal as a consequence of the vibration motions induced
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two depolarized Raman interactions at zero time and at t
t1 , respectively.RIDD describes the isotropic Raman sign
as a consequence of the vibration motions induced by
depolarized Raman interactions at zero time and at timet1 ,
respectively.RDID describes the depolarized Raman signal
a consequence of the vibration motions induced by one
polarized Raman interaction at zero time and another iso
pic Raman interaction at timet1 . The two other component
RDDI andRIII can be understood in a similar way.

Since the third-order polarization has two independ
components, the third-order experiment cannot be use
isolate the contribution of the nonresonant scattering or
deviation from the DID interaction. Within the renormalize
Drude oscillator model, the fifth-order Raman spectrum c
sists of five independent components though ten compon
are allowed by the symmetry considerations. Thus, the a
tional components can be used to identify other contributi
which cannot be isolated in the third-order Raman exp
ment.

E. A numerical example

We calculated the fifth-order Raman correlation functi
using molecular dynamics simulation of a box of 108 X
atoms at reduced temperatureT* 50.76 and reduced densit
r*50.85. The simulation details, the Lennard-Jones para
eters for liquid Xe, and other relevant parameters can
found in Paper I. Since the contribution from the isotrop
polarizability is relatively weak for liquid Xe~about 10% for
the thermodynamic state!, we adopted the first-order pair
interaction approximation of the polarization tenso
P5(aTa, to study the anisotropic contribution. The sphe
cal cutoff at half the box size was used to facilitate the sim
lation so that long MD trajectories can be obtained with re
sonable amount of CPU time. As shown in Sec. II A, t
two-time correlation function has twelve distinct tensor e
ments due to the reflection symmetry and Kleinmann sy
metry. These tensor elements follow the ratios given in
first column of Table I, or the first column of Table II. Th
latter ratios are determined by the rotational isotropic con
tion and the traceless property of the total polarizability te
sor and are thus more rigorous. In our calculation, the re
ence frame is randomly rotated to enforce the isotro
condition and minimize the orientational preference.

As shown in Fig. 1, the twelve tensor elements ofC(0,t)
follow the ratios given in Table I of Sec. II B consistent
over the entire time scale. On careful examination, we no
the slight difference betweenC65C8 andC7 as well as be-
tweenC95C11 andC10. This observation is consistent wit
the general polarization dependence derived in Sec. II C
listed in Table II, where the difference coefficientdc5dc6

5dc8 is responsible for the observed difference. In Fig.
the twelve tensor elements, normalized by the ratios in
first column of Table I, all fall onto the same curve with
numerical error. This master curve is the anisotropic par
the correlation functionCDDD(t2 ,t1). The diagonal cross
sections of the twelve tensor elements,C(t,t), are plotted in
Fig. 3, and are found to obey the same ratios as listed
Table II. The two-dimensional contourCzzzzzz(t1 ,t2) in Fig.
4 demonstrates the basic features of the two-time correla
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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function. The sparse contour lines att<0.05 andt>0.25
indicate slow variations in both in the short-time regime a
in the long time regime, while the dense contour lines in
cate the fast decay in the intermediate time regime. Th
features are consistent with our observations in Figs. 1 an

FIG. 1. Twelve components of the fifth-order Raman correlation funct
along the time axisC(t,0). The molecular dynamics simulation was carri
out for a simulation box of 108 Xe atoms at reduced temperatureT*
50.76 and reduced densityr*50.85.

FIG. 2. Twelve components of the correlation functionC(0,t) in Fig. 1
normalized by the coefficients in the first column of Table I.
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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III. HYDRODYNAMIC EVALUATION: GAUSSIAN
FACTORIZATION

In the long time-scale and length-scale limit, dens
fluctuations in simple liquids are usually described as a s
chastic Gaussian process so that multiple time and mult
point correlation function can be decomposed to correlat
functions of linear hydrodynamic modes. Specifically, t

nFIG. 3. Twelve components of the diagonal element of the fifth-order
man correlation functionC(t,t), obtained from the same simulation as
Fig. 1.

FIG. 4. A two-dimensional contour plot ofCzzzzzz(t2 ,t1), obtained from the
same simulation as in Fig. 1.
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Gaussian factorization scheme combined with the m
spherical approximation for the direct pair correlation fun
tion allows us to obtain the standard mode coupling equa
for the intermediate scattering function.20 Here, we explicitly
include the Poisson brackets in the Gaussian factorizatio
the fifth-order response function.

It is a standard procedure to express the polarizab
tensor in Fourier space as

P5(
iÞ j

āT̄ i j ā5
ā2

V (
k

T̄~k!(
i j

eik~r i2r j !

5
ā2

V (
k

T̄~k!r~k!r* ~k!, ~3.1!

wherer(k)5( i exp(2ikr i) is the number density, and th
term with i 5 j is excluded by setting the dipole interaction
zero whenever the internuclear distance vanishes. We ex
the response function in Fourier space,

R~ t2 ,t1!52b
]

]t1
^$P~ t21t1!,P~ t1!%P~0!&

5S ā2

V D 3

b
]

]t1
(
k2

(
k1

(
k

T̄~k2!T̄~k1!T̄~k!

3^$r2r2* ,r1r1* %r0r0* &, ~3.2!

where r25r(k2 ,t2), r15r(k1 ,t1), and r05r(k,t0), and
r* is the complex conjugate of the density operator. T
Poisson bracket of the bilinear density terms in the pola
ability tensor is expanded as

$r2r2* ,r1r1* %5r2$r2* ,r1%r1* 1r2$r2* ,r1* %r1

1r2* $r2 ,r1%r1* 1r2* $r2 ,r1* %r1 . ~3.3!

Applying the Gaussian factorization scheme to the first te
in Eq. ~3.3! gives

T̄~k2!T̄~k1!T̄~k!^r2$r2* ,r1%r1* r0r0* &

'dk1 ,kdk2 ,kT̄g~k!T̄g~k!T̄g~k!^$r2* ,r1%&^r2r0* &^r1* r0&

5N3dk1 ,kdk2 ,kT̄g~k!T̄g~k!T̄g~k!bḞ~k,t2!

3F~k,t21t1!F~k,t1!, ~3.4!

where the dipole propagatorT̄ is changed into the dresse
dipole propagatorT̄g(r )5T̄(r )g(r ) upon decomposition
Other ways of factorizing density operators lead to a sin
left or right Poisson bracket in the ensemble average
thus do not contribute to the response function. It can
confirmed that the other three terms in Eq.~3.3! give the
same result as Eq.~3.4!. Combining Eq.~3.2! with Eq. ~3.3!,
we arrive at

R~ t2 ,t1!'4Nr2b2ā6
1

~2p!3

3E dk T̄g~k!T̄g~k!T̄g~k!
]

]t2
F~k,t2!

]

]t1

3@F~k,t21t1!F~k,t1!#, ~3.5!
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where T̄g should be understood as the tensor element w
the indices specified by the response function. The sim
Gaussian factorization scheme decomposes the fifth-o
Raman response function into product of correlation fu
tions, thus relating the fifth-order Raman signal to dens
fluctuations in atomic liquids. This relation was first demo
strated by Denny and Reichman, and we refer to their lett58

for further discussions on its physical implications.
As mentioned in Sec. I, our Gaussian factorization e

pression in Eq.~3.5! is similar to the original mode coupling
expression derived by Denny and Reichman from a vers
of the quantum projection operator method.58 In fact, the
time-dependent parts in the Fourier integrand are the sa
whereas the static parts are different because the Gau
factorization scheme does not directly involve the project
onto bilinear modes. Since the Poisson bracket is the cla
cal limit of the quantum commutator, the classical respo
function is well defined and can be evaluated directly
classical mode coupling theory without taking the classi
limit of quantum mode coupling theory. To demonstrate t
point, we rederive Eq.~3.5! in Appendix D by applying the
Gaussian factorization scheme to quantum operators
then taking the classical limit.

The simple correlation function form in Eq.~3.5! makes
it possible to analyze polarization selectivity in a simil
fashion as the two-time correlation function in Sec. II B. F
isotropic liquids, the renormalized DID model reduces t
twelve tensor elements for the response function in Eq.~3.5!
into four independent components. In Eq.~3.5!, the fifth-
order Raman response function is factorized into the ang
part and the radial part, so that the decomposition coe
cients can be computed from the angular integration and
given by the first column of Table I. However, as analyzed
Sec. II C, this simple decomposition procedure does not h
rigorously for the the fifth-order response function, becau
the decomposition coefficients are modified bydc8 anddc6 .
Though the simple Gaussian factorization approach give
reasonable temporal profile in the intermediate time regim
its prediction of polarization selectivity is not rigorous an
its prediction of short-time behaviors is not reliable. The
difficulties are not surprising because the Gaussian factor
tion scheme is not valid at short times and does not take
account the possibility of multiparticle couplings.

We conclude this section with hydrodynamic evaluatio
of the fifth-order signal. The density correlation functio
F(k,t) can be evaluated via numerical simulations or w
viscoelastic models.60–63 The detailed description of the
evaluation ofF(k,t) is introduced in Appendix E. Then, with
T̄g(k)5Tg(k)D andTg(k)52* d3 rg(r ) j 2(kr)/r 3 given in
Ref. 20, we are able to evaluate Eq.~3.5! numerically. Fig-
ures 5 and 6 are the fifth-order response plotted along
diagonal cross section and the second time axis. In comp
son with the fifth-order response function simulated by M
and Stratt in Ref. 53, our prediction has roughly the sa
profile, but the peak position moves inward. Figure 7 is
two-dimensional contour of the predicted fifth-order sign
and exhibits similar features as the numerical result. The
fore, the simple Gaussian factorization scheme provide
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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reliable way to predict the fifth-order Raman response
atomic liquids.

IV. TRANSFORMATION OF THE FIFTH-ORDER
RESPONSE FUNCTION

A. Integrated intensity

As pointed out in Sec. I, we can reduce the tw
dimensional response function to one-dimension correla
functions, which are easily examined for their angular a
temporal dependencies. Integrating Eq.~1.1! along the first
time variable, we obtain

E
0

`

R~ t2 ,t1!dt152b^$P~ t2!,P~0!%P~0!&

5b2^P~ t2!Ṗ~0!P~0!&, ~4.1!

where the Poisson bracket$P,P% evaluated at the same tim
vanishes. However, the two pairs of polarization indices
time zero in the last expression of Eq.~4.1! are generally not

FIG. 5. Fifth-order response functionsR(t,t) from the hydrodynamic ex-
pression in Eq.~3.5! and from the MD simulation.

FIG. 6. Fifth-order response functionsR(t,0) from the hydrodynamic ex-
pression in Eq.~3.5! and from the MD simulation.
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the same, so the time derivative at time zero is not comp
and the integrated response function cannot be directly tr
formed into a time-correlation function. To this end, we sy
metrize these two pairs of polarization indices in Eq.~4.1!,

R~ t2 ,t1!s,m2n2m1n1m0n0
5 1

2@R~ t2 ,t1!m2n2m1n1m0n0

1R~ t2 ,t1!m2n2m0n0m1n1
# ~4.2!

and obtain the desired relation

Ss~ t2!5E
0

`

Rs~ t2 ,t1!dt1

52b2^Ṗ~ t2!P~0!P~0!&s

52b2
]

]t2
Cs~ t2!, ~4.3!

where the symmetric correlation functionCs(t)
5^P(t)P(0)P(0)&s is defined similarly as in Eq.~4.2! and
is the quantity for further calculations.

Within the renormalized DID approximation, the tot
polarizability tensor is written as the sum of the traceless p
PD and the isotropic partPI , i.e., P5PD1PI . Then, the
symmetric correlation functionCs(t) becomes

Cs~ t !5ā6^P~ t !P~0!P~0!&s

5cs,DDDCDDD~ t !1cs,IDDCIDD~ t !1cs,DIDCDID~ t !

1cs,DDICDDI~ t !1cs,III CIII ~ t !, ~4.4!

where the time-dependent parts depend on the details o
teractions and the state of liquid. The coefficients depend
the polarization geometry and are symmetric with respec
the exchange of the second and last pairs of indices. Bec
of this symmetry, we have cs,DDI5cs,DID5(cDDI

FIG. 7. Contour plot of the fifth-order response functionR(t2 ,t1) predicted
by the molecular hydrodynamic expression Eq.~3.5!.
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp



he
le

ze
in-
le
or

e
a
-

e
ti

ive

de

w
ti
E

e

ep.

ese

e

ial
. II
ider-

nge
ric
in

in
e

e-
-

3769J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Nonlinear spectra of liquid Xe. II
1cDID)/2. Table III lists these coefficients normalized by t
Rzzzzzztensor component. Thus, the nine distinct tensor e
ments of the integrated intensity along thet2 axis can be
decomposed into four components within the renormali
Drude oscillator model. With a single time variable, the
tegrated response function provides more polarization se
tivity than the third-order response function and thus is m
useful for resolving microscopic interactions.

The integrated intensity for the fifth-order Raman r
sponse and the third-order Raman correlation function
both single time correlation functions but with different num
bers~or weights! of total polarizability tensors. However, th
two types of correlation functions share similar asympto
behaviors, which are dictated by the interparticle diffus
motion. For example, as a rough estimation, we have

CDID~ t !:CIII ~ t !}Canoiso~ t !:Ciso~ t !, ~4.5!

which relates the fifth-order measurement to the third-or
measurement.

B. Cumulative response function

As an alternative to the integrated response function,
now reduce the fifth-order Raman response to the cumula
response function. To do this, we integrate both sides of
~1.1! along thet1 axis and obtain

S~ t2 ,t1!5E
t1

`

R~ t2 ,t!dt52bB~ t1 ,t2!,

~4.6!

S8~ t2 ,t1!5E
0

t1
R~ t2 ,t!dt5b@B~ t2 ,t1!2B~ t2,0!#,

where the two-dimensional functionS(t2 ,t1) and S8(t2 ,t1)
are the cumulative response function integrated along tht1

axis. The functionB(t2 ,t1) is expressed as

TABLE III. Decomposition of the symmetric correlation functionCs(t).
The coefficients are normalized by theZZZZZZcomponent. The overlines
stand for interchange of pairs of Raman indices.
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B~ t2 ,t1!5^$P2~ t21t1!,P1~ t1!%P0~0!&

52b^P2~ t21t1!Ṗ1~ t1!P0~0!&1^P2~ t21t1!

3$P1~ t1!P0~0!%&. ~4.7!

The last term in Eq.~4.7! can be rearranged as

^P2~ t21t1!$P1~ t1!P0~0!%&

52^$P0~0!,P1~ t1!%P2~ t21t1!&

5^$P0~ t21t1!,P1~ t2!%P2~0!&, ~4.8!

where the time-reversal symmetry is invoked in the last st
However, the two tensor elementsP0 and P2 in Eq. ~4.8!
expression are generally not the same. To symmetrize th
two tensor elements, we define

R~ t2 ,t1!s,m2n2m1n1m0n0
5 1

2@R~ t2 ,t1!m2n2m1n1m0n0

1R~ t2 ,t1!m0n0m1n1m2n2
# ~4.9!

and similarly forFs and Cs , so that Eq.~4.7! leads to the
desired relation

Fs~ t2 ,t1!2Fs~ t1 ,t2!52bĊs~ t2 ,t1!, ~4.10!

where Ċs(t2 ,t1)5^P2Ṗ1P0&5(]12]2)Cs(t2 ,t1). Substi-
tuting the above relation in Eq.~4.10! for Fs back into Eq.
~4.7!, we have

Ss~ t2 ,t1!2Ss~ t1 ,t2!5b2Ċs~ t2 ,t1!,
~4.11!

Ss8~ t2 ,t1!2Ss8~ t1 ,t2!5b2Ċs~ t2 ,t1!1b2Ċs~ t2,0!

2b2Ċs~0,t1!,

which relate the cumulative response function to two-tim
correlation functions.

The two-time symmetric correlation function is a spec
case of the two-time correlation function discussed in Sec
and can be decomposed using the same symmetry cons
ations as in Sec. II C, giving

Cs~ t2 ,t1!5cs,DDDCDDD~ t2 ,t1!1cs,IDDCIDD~ t2 ,t1!

1cs,DIDCDID~ t2 ,t1!1cs,DDICDDI~ t2 ,t1!

1cs,III CIII ~ t2 ,t1!, ~4.12!

where the time-dependent parts are the same as in Eq.~2.19!.
The coefficients are symmetric with respect to the excha
of the first and last pairs of indices. Out of the five symmet
coefficients, three are identical to the original definition
Eq. ~2.19!, i.e., cs,DDD5cDDD , cs,DID5cDID , and cs,III

5cIII , whereas the other two are equal, i.e.,cs,DDI5cs,IDD

5(cDDI1cIDD)/2. These symmetric coefficients are listed
Table IV with the normalization condition defined by th
Rzzzzzztensor element.

C. Symmetric correlation function

As shown in Sec. IV B, the symmetric cumulative r
sponse functionSs(t2 ,t1) is related to the symmetric two
time correlation function by

Ss~ t2 ,t1!2Ss~ t1 ,t2!5b2Ċs~ t2 ,t1!, ~4.13!
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp



tri

q.

m
io

se
-
m

-
ion
-
or-
on,

g
an-
and
lf-

om-

of
o-
ults
ro-

-
e

is
and

tion

s

3770 J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Cao, Yang, and Wu
where Ċs(t2 ,t1)5(]12]2)Cs(t2 ,t1). Here, the correlation
function and related quantities are completely symme
with respect to the exchange of pairs of the indices,

Cs,m2n2m1n1m0n0
5 1

6@Cm2n2m1n1m0n0
1Cm2n2m0n0m1n1

1Cm1n1m2n2m0n0
1Cm1n1m0n0m2n2

1Cm0n0m1n1m2n2
1Cm0n0m2n2m1n1

#. ~4.14!

The two time variablest1 and t2 are transformed into a new
set of variablest15(t11t2)/2 andt25(t22t1)/2 so that Eq.
~4.14! in the new coordinates becomes

Ss~t11t2 ,t12t2!2Ss~t12t2 ,t11t2!

52b2
]

]t2
Cs~t11t2 ,t12t2!. ~4.15!

Explicit integration of Eq.~4.15! over t2 from (t22t1)/2 to
(t21t1)/2 along the coordinate axist15(t21t1)/2 gives

b2@Cs~ t2 ,t1!2Cs~ t21t1,0!#

5E
~ t22t1!/2

~ t21t1!/2
@Ss~t11t2 ,t12t2!

2Ss~t12t2 ,t11t2!#dt2 . ~4.16!

SinceCs(t21t1,0) is symmetric under the exchange ofm1n1

and m0n0 , Cs(t21t1,0) can be obtained by integrating E
~4.3! along thet2 axis, giving

b2Cs~ t21t1,0!5E
t21t1

`

Ss~t,0!dt. ~4.17!

Thus, the overall relation between the symmetric two-ti
correlation function and the cumulative response funct
Ss(t2 ,t1) becomes

TABLE IV. Decomposition of the symmetric correlation functionCs(t2 ,t1).
The coefficients are normalized by theZZZZZZcomponent. The overbar
stand for the interchange of pairs of Raman indices.
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b2Cs~ t2 ,t1!5E
t11t2

`

Ss~t,0!dt

1E
~ t22t1!/2

~ t21t1!/2FSsS t21t1

2
1t2 ,

t21t1

2
2t2D

2SsS t21t1

2
2t2 ,

t21t1

2
1t2D Gdt2 . ~4.18!

In principle, given the complete information of the respon
function R(t2 ,t1) on the (t2 ,t1) plane, the completely sym
metric two-time correlation function can be obtained fro
Eq. ~4.8!.

As shown in Appendix A, the fifth-order Raman re
sponse function cannot be directly written as a correlat
function without involving the stability matrix, which con
tains information about the coherence of motion. This inf
mation is lost as the fifth-order Raman response functi
Rs(t2 ,t1), which is not symmetric with respect tot1 and t2

variables, is transformed intoCs(t2 ,t1), which is symmetric
with respect tot1 and t2 variables. However, the resultin
correlation function from the transformation has the adv
tage of the reliable predictions for their time dependence
polarization dependence, thus providing both a se
consistent check of numerical simulations and an easy c
parison with experimental measurements.

D. Numerical results

As a numerical example, we compare the three kinds
time-correlation functions obtained directly from our m
lecular dynamics simulations with the corresponding res
generated from the fifth-order Raman response function p
vided by Ma and Stratt.53 To be consistent with their pub
lished result, our simulation was carried out with 108 X
atoms at reduced density and reduced temperatureT*

FIG. 8. A plot of the integrated intensitySzzzzzz(t2) of liquid Xe. The dashed
line is directly obtained from our MD simulation, and the dotted line
generated from the fifth-order response function data calculated by Ma
Stratt. The molecular dynamics simulation was carried out for a simula
box of 108 Xe atoms at reduced temperatureT* 51.0 and reduced density
r*50.80.
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp



th
la

a
t

h
th
us

n
-

urs

es.
e

is

ns

3771J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Nonlinear spectra of liquid Xe. II
51.00 andr*50.8, and all the results are presented for
zzzzzzpolarization component. Details of numerical simu
tions can be found in Paper I.

Figure 8 plots the integrated intensitySs(t2) in Sec. IV A
from our direct numerical simulation and from the integr
tion of the two-dimensional spectrum by Ma and Stratt. Bo
curves have a broad peak centered at aroundt* 50.1. The
peak position corresponds to thet2 projection of the elon-
gated maximal of two-dimensional response function. T
integrated intensity has a slightly different shape from
third-order correlation function calculated in Paper I, beca
of the weights of the total polarizability are different.

FIG. 9. A comparison of the cumulative response functionsSs(t1 ,t2)
2Ss(t2 ,t1) ~a! generated from the fifth-order response function data and~b!
obtained directly from the MD simulation.
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Figure 9~a! is the cumulative response functio
Ss(t1 ,t2)2Ss(t2 ,t1) generated from the data of the fifth
order Raman response function. For comparison, Fig. 9~b! is
the function2b2Ċs(t2 ,t1) obtained directly from our nu-
merical simulation, as discussed in Sec. IV B. Both conto
show a clear maximum aroundt2* 50.1 alongt2 axis and a
corresponding minimum alongt1 due to the fact that
Ss(t1 ,t2)2Ss(t2 ,t1) is an antisymmetric function. The
shapes of the contours in Figs. 9~a! and 9~b! are similar
though the details differ because of the different approach

As described in Sec. IV C, the symmetrized two-tim
correlation functionCs(t2 ,t1) can be integrated from the
fifth-order response function. The result thus obtained

FIG. 10. A comparison of the symmetrized two-time correlation functio
Cs(t2 ,t1) ~a! generated from the fifth-order response function data and~b!
obtained directly from the MD simulation.
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plotted in Fig. 10~a! along with the MD simulation result in
Fig. 10~b!. Evidently, the two contours share similar stru
tures, and the difference at large times is mainly due to
truncation in the time integration of the response function

V. CONCLUSIONS

In summary, the symmetry of the polarizability tensorP
completely characterizes the decomposition into indepen
polarization components, and is independent of the type
liquids, the form of interaction potentials, or the descripti
of particle motions. For an isotropic medium, the fifth-ord
Raman correlation function and response function h
twelve distinct tensor elements. These elements are su
to the constraints imposed by the rotational symmetry
time reversal symmetry, and hence can be decomposed
seven independent components for the correlation func
and ten independent components for the response func
The decomposition coefficients are calculated and tabul
explicitly and can be used to describe interactions and c
plings in atomic liquids~Table V!.

The temporal profile of the fifth-order signal in atom
liquids is calculated using the Gaussian factorization sche
The derivation is simple and the result is useful as it rela
the fifth-order response function to density fluctuations.
an alternative, the fifth-order response function can be
duced to two-time and single-time correlation function
which are relatively simple to compute and analyze. Parti
larly, the integrated intensity in Sec. IV A is a single-tim
correlation function and can be related to the third-order
man response.

We have investigated the angular dependence and
poral profile of the fifth-order Raman signal in liquid Xe.
basic assumption of the study is the use of the renormal
Drude oscillator model, which takes into account the ma
body polarization effects and particularly its contribution
the isotropic polarization component. Future studies will
directed toward modeling nonlinear spectra in molecular
uids.
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Cs(t2 ,t1) cs,DDD cs,IDD \cs,DDI \cs,DID cs,III

C1 ZZZZZZ 16/35 4/5 1

C2\C3\C4 YYZZZZ 28/35 0 1

C5 ZZYYXX 16/35 22/5 1

C6\C7\C8 ZZZYZY 6/35 1/15 0

C9\C10\C11 ZZXYXY 212/35 1/15 0

C12 ZYYXXZ 9/35 0 0
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APPENDIX A: THREE EXPLICIT EXPRESSIONS OF
THE FIFTH-ORDER RAMAN RESPONSE
FUNCTION

The fifth-order Raman response function is defined
terms of the Poisson bracket in Eq.~1.1!. Explicit evaluation
of the Poisson brackets leads to several equivalent exp
sions, which can be useful for different purposes. For s
plicity, the total polarizability operator is taken as a functio
of the coordinate only and is independent of the momentu

As the simplest expression, we have

R~ t2 ,t1!52b^$P2 ,P1%Ṗ0&5b K ]P2

]r 2i

]r 2i

]p1 j

]P1

]r 1 j
Ṗ0L ,

~A1!

where the subscripts 1 and 2 refer to timet11t2 and t1 ,
respectively, the subscriptsi andj refer to the atomic degree
of freedom, repeated indices are summed over explicitly,
]r 2i /]p1 j5Mi j (t1 ,t2) is the stability matrix element.

The second expression follows Mukamel’s derivation

R~ t2 ,t1!52b^$P2 ,P1%Ṗ0&

5b2^P2Ṗ1Ṗ0&2b^P2$P1 ,Ṗ0%&

5b2^P2Ṗ1Ṗ0&

2bK P2

]P1

]r 1 j
S ]r 1 j

]r 0i

]Ṗ0

]p0i
2

]r 1 j

]p0i

]Ṗ0

]r 0i
D L , ~A2!

where the first term has the form of the correlation functi
but the second term involves the stability matrix.

To obtain the third expression, we start from the inn
Poisson bracket and explicitly expand the outer Pois
bracket

R~ t2 ,t1!52 K H ]P2

]r 2 j

]r 2 j

]p1i

]P1

]r 1i
,P0J L

5 K ]

]p0k
F]P2

]r 2 j

]r 2 j

]p1i

]P1

]r 1i
G ]P0

]r 0k
L

5 K F ]2P2

]r 2 j]r 2l

]P1

]r 1i

]r 2l

]p0k

]r 2 j

]p1i

1
]P2

]r 2 j

]2P1

]r 1i]r 1l

]r 1l

]p0k

]r 2 j

]p1i

1
]P2

]r 2 j

]P1

]r 1i

]2r 2 j

]p1i]p0k
G ]P0

]r 0k
L . ~A3!

As an approximation, we omit the last term, treat the deri
tives of the polarizability as a static weight,r(v)5^d(v
2v(r ))]2P/]r2(]P/]r )2&, and assume that the dynamic
is governed by harmonic oscillator motions with frequen
v. Consequently,
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th
n-

eo

i-
-

s

n
e

s
n

rr
io
in

iz
s

m
ID
th
a

o

nts
cu-
ts of

ce.
e-
bout

le,

b-
or

ty-
an-
nse

il-

m-
the

3773J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Nonlinear spectra of liquid Xe. II
R~ t2 ,t1!5E dv r~v!
1

~mv!2 sin~vt2!

3@sin~vt11vt2!1sin~v~ t1!#, ~A4!

which is the instantaneous normal mode expression for
fifth-order Raman response function. It is not difficult to i
troduce two different frequenciesv1 andv2 for the two time
intervals. The recent simulation by Ma and Stratt53 indicates
that the joint distribution of the two frequencies,r(v1 ,v2),
is dominated by the diagonal cross-sectionv15v2 . So it is
reasonable to use a single frequency in the instantan
normal mode analysis.

APPENDIX B: DRUDE OSCILLATOR MODEL

The Drude oscillator model consists of oscillating d
poles with polarizabilitya interacting through the second
order dipole tensorT. The total polarizability tensor of a
fluid composed ofN identical spherical Drude oscillators i

P~ t !5(
iÞ j

N

a@ I2aT~ t !# i j
21, ~B1!

where the summation is carried over all pair of particles, a
P is a function of evolving liquid configuration through th
time dependence inT i j (t)5T@r i j (t)#. The dipole–dipole in-
teraction tensor is defined asTmn(r )5Dmn( r̂ )/r 3, wherem
andn denote the three Cartesian coordinates,r is the vector
connecting a pair of liquid particles,r̂5r /r is the corre-
sponding unit vector, andD is the traceless dimensionles
tensorD~r̂ !53r̂ r̂2I . The many-body polarization effect i
Eq. ~B1! leads to an infinite expression in terms ofT, which
to the leading other truncation ofP results in the pair inter-
action approximation

P'(
i

a1(
iÞ j

aT i j a, ~B2!

where the first term is a constant and the second term co
sponds to the first-order dipole–induced-dipole interact
~DID!. BecauseT is a traceless tensor, the pair interaction
Eq. ~B2! represents the anisotropic part of the DID polar
ability. To account for the isotropic DID polarizability, it i
necessary to include the next term,a3T ikTk j , in the expan-
sion of Eq.~B2!. We explicitly evaluated the three-body ter
in Paper I and found that the anisotropic part of the D
interaction is long-ranged whereas the isotropic part of
DID interaction is short-ranged. The approximate resumm
tion of the infinite terms in the expansion leads to a ren
malized DID form for the total polarizability,

P'(
i

ā1(
iÞ j

āT̄ i j ā5(
i

ā1(
iÞ j

ā~hI I1hDD!ā,

~B3!

wherehD is the traceless anisotropic part andhI is the diag-
onal isotropic part. The renormalized quantitiesā and T̄ are
solved self-consistently in Paper I.
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APPENDIX C: ROTATIONAL SYMMETRY OF THE
TWO-TIME CORRELATION FUNCTION

As shown in Sec. II, a large number of tensor eleme
are identical so that only twelve distinct elements are cal
lated. These twelve elements are used to define three se
totally symmetric correlation functions in Eqs.~2.2!–~2.4!
which are related to each other through rotation invarian
Explicitly, rotational symmetry of an isotropic sample pr
serves the value of a tensor element under the rotation a
any angle,

Cm2n2m1n1m0n0

5Rm2m
28
Rn2n

28
Rm1m

18
Rn1n

18
Rm0m

08
Rn0n

08
Cm

28n
28m

18n
18m

08n
08

~C1!

whereR is the rotational transformation matrix. For examp
we consider the rotation around theX axis through an angle
in the ZY plane. The application of Eq.~C1! to the Czzzzzz

gives

Zz5cos6~u!Zz1cos4~u!sin2~u!Zzy1cos2~u!sin4~u!Zyz

1sin6~u!Zy , ~C2!

which simplifies to 3Zm5Zmn . For Zmn components, we
have

Zzx5cos4~u!Zzx1sin4~u!Zyx16 sin2~u!cos2~u!Zzyx,
~C3!

which results in 3Zmng5Zmn . These relations have been o
tained by Tokmakoff and are included here f
completeness.34

APPENDIX D: DERIVATION OF THE HYDRODYNAMIC
EXPRESSION USING QUANTUM OPERATORS

We now repeat the hydrodynamic evaluation of the fif
order Raman response by taking the classical limit of qu
tum operators after the Gaussian factorization. The respo
function in Eq.~1.1! is defined quantum mechanically as

R~ t2 ,t1!52
1

\2 ^@P̂~ t21t1!,P̂~ t1!#,P̂~0!#&

52
1

\2 ^P̂2P̂1P̂02P̂1P̂2P̂02P̂0P2P̂1

1P̂0P̂1P̂2&, ~D1!

whereP is the Heisenberg operator for the total polarizab
ity. With the Fourier expression ofP given in Eq.~4.1!, the
first term in Eq.~D1! can be evaluated explicitly, giving

^P̂~ t21t1!P̂~ t1!P̂~0!&

5S ā2

V D 3

( T̄~k2!T̄~k1!T̄~k!^r̂2r̂2
1r̂1r̂1

1r̂0r̂0
1&

'4S Nā2

V D 3

( T̄~k!T̄~k!T̄~k!F̂~ t11t2 ,k!

3F̂~ t2 ,2k!F̂~ t1 ,2k!, ~D2!

where the density operators at different times do not co
mute. The approximation arises from the application of
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Gaussian factorization scheme, and the factor of 4 ar
from the different ways of decomposition. Combining t
four terms in Eq.~D1!, we obtain

F̂~ t11t2 ,k!F̂~ t2 ,2k!F̂~ t1 ,2k!2F̂~ t11t2 ,2k!

3F̂~2t2 ,2k!F̂~ t1 ,k!2F̂~2t12t2 ,2k!

3F̂~ t2 ,2k!F̂~2t1 ,2k!1F̂~2t12t2 ,k!

3F̂~2t2 ,2k!F̂~2t1 ,2k!5@ F̂~ t2 ,2k!2F̂~2t2 ,k!#

3@ F̂~ t11t2 ,k!F̂~ t1 ,2k!2F̂~2t12t2 ,2k!F̂~2t1 ,k!

5~ ib\!2]2F~ t2 ,k!]1@F~ t11t2 ,k!F~ t2 ,k!#, ~D3!

where we have rearranged the second and fourth terms in
~D3! via k→2k and used the quantum-classical corresp
dence:F̂(t,k)2F̂(2t,k)5 i\bḞ(t). Taking the continuous
limit of k and replacing the potential with the dressed pot
tial, we arrive at the final expression

R~ t2 ,t1!5Nr2~b\!2ā6
4

~2p!3

3E dk T̄g~k!T̄g~k!T̄g~k!]2F~ t2 ,k!]1

3@F~ t11t2 ,k!F~ t2 ,k!#, ~D4!

which is the same as Eq.~3.5! derived with the classica
Poisson bracket and similar to the MCT result published
Denny and Reichman.58

APPENDIX E: HYDRODYNAMIC EVALUATION OF THE
INTERMEDIATE SCATTERING FUNCTION

Here we summarize the molecular hydrodynamic
pressions we used to evaluate the fifth-order signal, all
derivations can be found in Ref. 60. From the full hydrod
namic description, we obtain a set of coupled equations
take into account of the effects of temperature fluctuation

]

]t
j k
l ~ t !5 ikcT

2nk~ t !2n lk
2 j k

l ~ t !1 iknacT
2Tk~ t !,

nCv

]

]t
Tk~ t !5

Cv

a
~g21!

]

]t
nk~ t !2

kk2

M
Tk~ t !, ~E1!

]

]t
nk~ t !5 ik j k

l ~ t !,

where j k
l (t) is the longitudinal current,nk(t) is the local

number density,Tk(t) is the local temperature,a is the ther-
mal expansion coefficient,g5Cp /Cv is the specific heat ra
tio, Cp andCv are the specific heat at constant pressure
at constant volume, respectively,n l is the kinematic longitu-
dinal viscosity coefficient,cT is the isothermal sound veloc
ity, andk is the thermal conductivity coefficient. The gene
alized Langevin equation for the longitudinal curre
correlation function is

]

]t
Jl~k,t !52E

0

t

dt8 Kl~k,t2t8!Jl~k,t8!, ~E2!

whereKl(k,t) is the memory function forJl(k,t), given by
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Kl~k,t !5
~kv0!2

S~k!
1k2F l~k,t !1

~kv0!2

S~k!
~g21!e2DTk2t,

~E3!

where DT5k/(nMCv), S(k) is the static structure factor
and F l(k,t) is the longitudinal viscosity function. When
F l(k,t)52n ld(t), Kl(k,t) reduces to the linearized hydro
dynamic approximation for the memory function obtain
from Eq. ~E1!. The viscoelastic approximation leads to
generalized longitudinal viscosity functionF l(k,t) without
modifying the thermal conductivity contribution

F l~k,t !5F l~k,0!exp@2t/t l~k!#,
~E4!

F l~k,0!5
v l

2~k!

~kv0!22g
v0

2

S~k!
.

The second frequency momentv l
2(k) can be calculated from

the pair distribution functiong(r ) and the pair potentialu(r )
as follows:

v l
2~k!53k2v0

41
nv0

2

M E d3 rg~r !
]2u

]z2 ~12coskz!. ~E5!

An empirical prescription for the relaxation timet l(k) is
given by Akcasu and Daniels as64

1

t l
2~k!

5
8

3
@c`

2 ~k!2c0
2~k!2v0

2#k21S 11
k2

kl
2D 21

3H 1

t l
2~0!

2
8

3
@c`

2 ~0!2c0
2~0!2v0

2#k2J , ~E6!

where kl51.5 Å, c`(k) and c0(k) are the high-frequency
and the low-frequency sound velocities, respectively,

c0~k!5v0A g

S~k!
,

c`~k!5H 1

nM F4

3
G`~k!1K`~k!G J 1/2

, ~E7!

1

t l~0!
5

c`
2 ~0!2c0

2~0!

4
3 h1hB

.

This empirical form oft l(k) combines the elastic solid be
havior at high frequency and the liquid behavior at low fr
quency, while still retaining the property oft l(0) as a Max-
well relaxation time. Substituting this form ofKl(k,t) into
the GLE for the longitudinal current correlation functio
Jl(k,t), we obtain
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Jl~k,v!5v0
2 v2k2D8~k,v!

@v22~kv0!2/S~k!1vk2D9~k,v!#21@vk2D8~k,v!#2 , ~E8!
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where

D8~k,v!5
~g21!v0

2

S~k!

DTk2

v21~DTk2!2

1c l~k,0!
t l~k!

11v2t l
2~k!

,

~E9!

D9~k,v!52
~g21!v0

2

S~k!

v

v21~DTk2!2

2c l~k,0!
vt l

2~k!

11v2t l
2~k!

.

To proceed with the numerical calculation, we need to kn
the details of the wave-number-dependent shear mod
G`(k) and the wave-number-dependent bulk modu
K`(k), which are related to the correlation functions of t
stress tensor elements by

G`~k!5b^s2k
xy sk

xy&,
~E10!

K`~k!5
b

3
@^s2k

zz sk
zz&1^s2k

xx sk
zz&#.

The above-mentioned correlation functions are expresse
terms of the pair distribution functiong(r ) and the pair po-
tential u(r ) as

^s2k
zz sk

zz&5
n

b F 3

b
1nE d3 rg~r !

]2u

]z2 S 12coskz

k2 D G ,
^s2k

xx sk
zz&5

n

b F 1

b
1nE d3 rg~r !S x

z

]2u

]x]z
2

x

z2

]u

]xD
3

12coskz

k2 G , ~E11!

^s2k
xy sk

xy&5
n

b F 1

b
1nE d3 rg~r !

]2u

]x2 S 12coskz

k2 D G ,
where the pair distribution functiong(r ) can be obtained
using the Weeks–Chandler–Anderson method. Then g
the Lennard-Jones potential

u~r !54eS 1

~r /s!122
1

~r /s!6D , ~E12!

we are able to calculate all the necessary parameters
Jl(k,v). The density correlation functionF(k,t) can be ob-
tained with the following relations:

F~k,t !5
1

2p E
2`

`

dv eivtS~k,v!, ~E13!

S~k,v!5
k2

v2 Jl~k,v!. ~E14!
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The Lennard-Jones system of Xe liquid is equilibrat
under reduced temperatureT* 50.76 and reduced densit
r*50.85 with parameterse5236.6kB ands53.88 Å. Under
these parameters, the time unit for liquid Xe issAm/e
52.7 ps. The specific heat ratio is 1.87, the shear visco
and bulk viscosity in reduced units areh*524.0 andhB*
57.3, respectively, which are taken from simulations und
similar conditions in Ref. 65. To simplify the calculation
DT'0 is assumed, i.e., the thermal diffusivity is neglected
an approximation. To proceed, the second frequency mom
v l

2(k), the wave-number-dependent shear modulusG`(k),
and the bulk modulusK`(k) are calculated with Eqs.~E5!
and~E10!; the wave-number-dependent relaxation timet l(k)
is computed with Eq.~E6!; the longitudinal current correla
tion functionJl(k,v) in Eq. ~E8! is calculated with the pa-
rameters obtained in the previous steps. Then, the den
correlation functionS(k,v) can be calculated in the Fourie
space, and its inverse Fourier transform of Eq.~E14! gives
the intermediate scattering functionF(k,t).
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