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Calculations of nonlinear spectra of liquid Xe.
II. Fifth-order Raman response
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The polarization dependence and temporal profile of the fifth-order Raman response function and
corresponding correlation function in liquid Xe are studied both analytically and numerically. Based
on the symmetry of an isotropic sample, the fifth-order Raman response function has twelve distinct
tensor elements, ten of which are independent, and the corresponding correlation function has
twelve distinct tensor elements, seven of which are independent. The coefficients for decomposition
into independent components are calculated explicitly based on the tensor property of an isotropic
sample and are used to identify different coupling mechanisms in liquid Xe. The two-dimensional
profile of the fifth-order Raman response function is evaluated by a simple hydrodynamic
expression derived using the Gaussian factorization scheme. An alternative approach reduces the
fifth-order Raman response function to time correlation functions that are easy to compute.
© 2002 American Institute of Physic§DOI: 10.1063/1.1445746

I. INTRODUCTION Raman response function by explicitly evaluating the Pois-
ltraf ical hni ibilities f son bracket. These formulas involve the stability matrix,
Ultrafast optical techniques open new possibilities foryni-n may lead to divergence at sufficiently long times. This

probing liquid dynamics.” One-dimensional time-domain argument does not result in practical difficulties because the

experiments measure liquid motions in real time using teChBoltzmann average cancels the classical divergence. Further-

niques such as ;tlmulated Raman scatterlng .bUt have be?ﬁ‘ore, the stability matrix in the nonlinear response function
shown to be equivalent to frequency domain linear absorpi-s associated with the interference effect among a pair of
tion experimentS. In order to resolve the multiple time

S : ... closely lying trajectories. Based on this observation, Muka-
scales in liquids, Tanimura and Mukamel suggested flﬁh'mel ointed out that the nonlinear response can be a sensitive
order time-domain Raman spectroscopy, where liquid mo- P . b .

obe for classical chaos because sequences of multiple fem-

tions are perturbed by two pairs of Raman pulses separatt d oul be desianed to directl be the stabil
by periodt, of free induction and then probed after another osecon 2plL_1253es can be designed to directly probe the stabil-

periodt,.® The fifth-order off-resonant Raman measuremen{ty Matrix. i | fth
is an important example of two-dimensional optical spectros- /S @ Specific example to demonstrate some of these pre-

copy, which is the analog of two-dimensional magnetic resodictions, we recently explicitly calculated the linear and non-

nance. Two-dimensional spectroscopy holds the promise df"€ar response functions of a Morse oscillator based on the
monitoring the structural dynamics in liquids and thus re-Classical phase-space representation of the annihilation and

solving the mechanisms of line broadening observed in onekreation operator€! Indeed, the classical response function

dimensional spectr®:*° for the Morse oscillator diverges linearly with time, whereas
The relevant microscopic information for the fifth-order the quantum response function for a given eigen-energy is

Raman experiment is described by the response functiowell defined for an eigenstate system. This classical diver-

with two time variableg; andt,, gence can be removed by phase-space averaging around the
quantum eigen-energy surface and, interestingly, quantiza-

R(tz,ty) =({{Tl(t+ 1), 1I(ty) },I(O)}) tion of the phase space volume leads to the exact agreement
=—B({H(t2+t1),l'[(tg}l"[(O)), (1.1) between the averaged classical response function and the

_ _ _ _ quantum response function. This analysis, along with earlier
where g is the inverse temperature and} is the Poisson  work,2>?® confirms that thermal averaging removes the pos-
bracket. The total Raman polarizabilify is a second-rank  sible divergence caused by the stability m&frand, to some
tensor in three-dimensional Cartesian space, and the reregree, justifies the classical calculation of the nonlinear re-
sponse function and the correlation function are sixth-rankponse of liquid Xe in this paper.
tensors in three-dimensional Cartesian space. Unlike the lin-  Third-order Raman spectroscopy in liquid Xe has been
ear response function discussed in the preceding Paperstudied extensively in Paper | within the Drude oscillator
(hereafter referred to as Papethe response function cannot j4el|?° The Drude oscillator model consists of oscillating
be expressed in terms of simple correlation functions. Apyipoles interacting through the second-order dipole tefisor
pendix A includes three possible formulas for the fifth-orderyhich induces many-body polarization in liquiths32 A
brief description of the Drude oscillator model is presented
dElectronic mail: jianshu@mit.edu in Appendix B for completeness, and the results from Paper
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| are summarized in the following. The Raman signal in rareCho and co-workers derived expressions for various nonlin-
gases arises from dipole—induced-dip@¥D) interactions. ear Raman and infrared signals based on the system-bath
The leading contribution to the anisotropic component of theHamiltonian?**° Since most liquids are classical at room
Raman spectrum is the two-body DID interaction, whereagemperature, we will calculate the fifth-order Raman re-
the leading contribution to the isotropic component of thesponse function in liquid Xe within classical mechanics. Al-
Raman spectrum is the three-body DID interaction. Highethough numerous theories and simulation methods have been
order many-body polarization terms are incorporated througlleveloped for linear response proces8e’ relatively few
a renormalization procedure. In comparison with the anisoattempts are made on the nonlinear response function. Mo-
tropic part, we find that the isotropic part of the effective lecular dynamicsSMD) calculations of the third-order and
dipole—dipole tensor has a short interaction range, resultinfjfth-order response functions have been carried out by Ma
in a fast initial decay in the isotropic Raman response ofind Stratt on liquid X& and by Jansen, Snijders, and Dup-
atomic liquids. Polarization selectivity of third-order Raman pen on C$.>* These molecular dynamics simulations in-
spectroscopy is then studied within the Drude oscillatorvolve the propagation of the stability matrix or the actual
model. The third-order Raman response can be decomposéimulation of the perturbed system on a time grid and are,
into an isotropic component and an anisotropic componeriherefore, computationally demanding. To avoid this diffi-
with the coefficients determined uniquely by the tensor prop<ulty, Mukamel, Piryatinski, and Chernyak explored semi-
erties of the total polarizability. An interesting outcome of classical approximations for calculating multidimensional
Paper | is the introduction of a simple mode coupling proce-Spectra in liquids® Recently, Williams and Loring computed
dure: the Gaussian factorization scheme, which approximatdbe classical mechanical vibrational echo by means of the
liquid densities as Gaussian variables and maintains the equiuctuating frequency approximation, which solves a driven
librium distribution by imposing pair correlation functions. dissipative anharmonic oscillator as a harmonic oscillator
In combination with the mean spherical approximation forwith a fluctuating frequency:®” Denny and Reichman de-
the direct correlation function, we are able to recover theived a mode-coupling expression for the fifth-order Raman
mode-coupling equation for the intermediate scattering funcsignal in liquid Xe using a version of the quantum projection
tion and the simple hydrodynamic expression for the third-OPerator method and related the nonlinear response function
order Raman correlation function. In comparison with theto density fluctuation8” In Sec. Ill, we obtain a similar ex-
standard mode-coupling formalism, the Gaussian factorizaPression directly from classical mechanics without reference
tion scheme is direct and intuitive, and may help reveal uni0 quantum projection operators. Our approach is based on
derlying assumptions of mode-coupling theory. The schemée Gaussian factorization scheme, which is shown in Paper
is used to evaluate the third-order Raman response in Papel {0 recover the mode-coupling equation for the intermediate
and the fifth-order Raman response in Sec. Il of this pape,{scattering function. The resulting expression for the fifth-
A central issue of two-dimensional spectroscopy is thedrder Raman response function compares well with numeri-
polarization dependence, which in principle allows us to se€@l results and approximately reproduces the polarization
lectively measure different types of interactions. The influ-dépendence. _ _
ence of the rotational Brownian motion on the fifth-order ~ The difficulties in computing the fifth-order response
polarization was first examined by Tokmakoff with the im- function motivate us to seek a complementary approach. In-
plicit assumption of the equivalence between the polarizatioﬁtead of a dlrec_t calculatlo_n, the f|fth—or_der response function
dependence of the response function and that of the correl ransformed in Sec. IV into the two-time correlation func-
tion function3®3 The relative intensities at different geom- tion or one-time corre!atlon functlgn._ These correlation func-
etries have also been estimated via the instantaneous nornjiins are easily examined for their time dependence and po-
mode (INM) method®*° Kaufman, Blank, and Flemirg larization dependence. As shoyvn in Appendix A,'the fifth-
examined polarization selectivity in the fifth-order Raman©rder Raman response function cannot be written as a
signal of liquid CS and found reasonable agreement Withcorrelatlon_ fgnctlon v_wthout mvolymg the stability mat_rlx; _
the INM predictions by Murry, Fourkas, and Key8s°In thus certain |nformat|0r_1 content in the response functlon_ls
Sec. II, the symmetry and polarization selectivity of the fifth- lost upon transformation. Nevertheless, these correlation

order Raman correlation function and response function arf#nctions can be calculated and analyzed accurately, thus
established without specific reference to the rotationaP0Viding a different perspective of two-dimensional Raman

Brownian model or the type of liquids. Within the renormal- spectroscopy.
ized Drude oscillator model, the twelve distinct tensor com-
ponents are decomposed into independent components thatpol ARIZATION SELECTIVITY
correspond to different types of DID interactions and cou- )
plings in liquid Xe. A. Symmetry and independent components

Multidimensional optical spectra have been successfully ~ To explore the symmetry of the fifth-order Raman re-
calculated using multilevel quantum dissipative systems ogponse function, we first study the two-time correlation func-
Brownian oscillator models. Mukamel’s group used an oscil-tion for the total polarizability, defined as
lator picture to predict multidimensional spectroscopies of
electronic and vibrational excitatio$.Okumura and Tan- Cltz,ty) = (H(tz+ ty) (1) T1(0)) 2.9
imura developed a systematic expansion of the nonlinear revhose relationship to the fifth-order Raman response func-
sponse function of the dissipative anharmonic systefd. tion is explained in Appendix A. The two-time correlation
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TABLE I. Decomposition of the twelve distinct tensor elements of the fifth-order Raman correlation function
into five independent components, as defined via the reduced probability distribution function in Sec. Il B.

C(ty.ty) (DDD) (IDD) (DID) (DDI) ()
C, 277777 16/35 4/5 4/5 4/5 1
C, YYZZ227Z —8/35 4/5 —2/5 —2/5 1
Cs 77YYZ22 ~8/35 ~2/5 4/5 ~2/5 1
C, ZZ7ZYY —8/35 —2/5 —2/5 a/5 1
Cs ZZYYXX 16/35 ~2/5 ~2/5 —2/5 1
Ce 277YZY 6/35 1/5 0 0 0
c, ZYZ7ZY 6/35 0 1/5 0 0
Cs ZYzYZ22 6/35 0 0 1/5 0
Co ZZXYXY ~12/35 1/5 0 0 0
Cio XYZZXY ~12/35 0 1/5 0 0
Cn XYXYZZ ~12/35 0 0 1/5 0
Cup ZYYXXZ 9/35 0 0 0 0

function is a six-rank tensor with®3=726 tensor elements. three independent components. In conclusion, with all the
In an isotropic sample, the symmetry of reflection in anysymmetry considerations, the number of independent polar-
plane removes all elements with an odd number of any Carization components for the two-time correlation function is
tesian index and leaves 183 tensor elem&hfurther, the seven.
correlation function is invariant to the permutation of the  The tensor symmetry in the two-time correlation func-
Cartesian coordinate and the interchange of indices of a Rdion gives more polarization selectivity than that in the
man pulse pair. Thus, the two-time correlation function ten-ssingle-time correlation function and can be used to extract
sor for the total polarizability consists of twelve distinct el- more information about internuclear interactions in liquids.
ements, which will be calculated explicitly in this section. As shown in Paper I, the correlation function in the third-
To proceed, we construct three combinations of correlaorder Raman experiment is a fourth-rank tensor and has
tion functions from the tensor elements: two independent components. Interestingly, the normalized
7 —¢C dipole—dipole interaction model has an isotropic component
= (2.2

Il alaal and an anisotropic component, which can be separated in the
with one distinct Cartesian index, third-order experiment. But, additional components, such as
7 —C e e the contribution of the nonresonant scattering and the devia-
S tion from the DID interaction, cannot be isolated in the third-
+4(C it Crvpppnt Crvpvpn) (2.3 order measurement. The seven independent components in
with two distinct Cartesian indices, and the two—nme correlation funct_lon_prowde the potentlal_to iso-
late more independent contributions to the Raman signal.
Z,um/: CMP«VV77+ 2( CVYMVMV+ C,um/wv+ wa,uvw)
+8CLuuyyu (2.4) B. Reduced probability distribution

with three distinct Cartesian indices. The coefficients in the ~ Within the renormalized DID approximation, the two-
above-presented equations arise from the accounting due e correlation function can be written in a general form as
the interchange of the indices 'in each pgirs of Raman pulses. C(ty,ty) = (T(t,+t,)TI(t;)TI(0))

The permutation of the Cartesian coordinate makes all mem-
bers in each set equivalent. For an isotropic sample, rotation
along any axis will not change the value of the matrix ele-
ment. As derived in Appendix C, the rotational symmetry

introduces rigorous ratios among the three sets:
7 .7 7 —1:31 2.5 yvhe.reP'(ro,'O;rl,tl;r'z,t1+t2) is th'e rgduced joir)t pro'bal.)il—
prTRY TRy ity distribution function(PDF for finding one pair of liquid
leaving ten independent components for the two-time correparticles with relative coordinatey at zero time, one pair of
lation function. liquid particles with relative coordinate, at timet,, and

Finally, the time reversal symmetry of the equilibrium one pair of liquid particles with relative coordinatgat time
liquid allows us to write t,. The reduced probability is obtained after integrating all
other degrees of freedom except f@r, r,, andr,.

For an isotropic liquid, the joint probability distribution
where both the two time variables and the two corresponfunction is a function of the relative positions and the rela-
ding pairs of electric field polarizations are interchangedtive angles
Explicitly, from the twelve tensor elements in Table I, we . :
have nyzzz£t2 itl) = szzzy§t1 .tz), szzyz§t2 itl) = C:zyzyzz P(royO,rl il ,tlj— tz,)\ R
X (t1,t2), andC, yxfta,t1) = Cyyxy24t1,t2), thus removing =P(rg,r1,r2,fo1,12,720,0%1,t1 +15), (2.9

:Eef drodry er?(rZ)?(rl)?(rO)

XP(rg,0;r,ty;rp,t+15), 2.7

Cl’vz”zﬂl”ll‘o”o(tz )= Cl‘o”ol‘l”ll‘z”z(tl t2), (2.6
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wherer o, is the angle formed by unit vectors andr,, r,,  time reversal symmetry and leaves effectively four indepen-
andr, are defined in a similar fashion. With a relatively dent radial functions. The angular average, which defines the
large temporal separation of,(-t4), the angular correlation coefficients in the decomposition, is expressed explicitly as
between the first pair and the last pair is weak so that

P(ro,0ir1,ty5rp,t+to)~P(ro,r1,r2,fo1,F 12,0181, t1+15),
(29) <DZZDZZDZZ>
where the functional dependenceggis ignored. Then, the

1 " a s . . .
approximate PDF can be expanded as a function of the angle = 4—f drodrydrgD,Ar,)D,Ar1)D,rg)
betweerr, andr, and the angle between andrg, giving 7

P(ro.0ry,tiira it ty) XE YZm(FO)ng(Fl)E Y2m’(Fl)Y;mr(F2)
m mr
1 . .1 . .
~am o Yo Yin(D) g 2 Vi (F) Yo (F2)

1 . R R .
= EJ dr D,Ar)D,Ar)D,AT)
XPyi(ro,0irq,tyro,ty+1,), (2.10
16
where Y, is the spherical harmonic function. Substituting =35 (2.13

Eqg. (2.10 into Eq. (2.7) and separating the angular and ra-
dial parts of the spatial integration, we have

C(t2,11)~(Byup0,Duy,Digre) Copo(ta 1) and similarly for other angular averages. In Table I, these

+(D,, D, 1, YCopi(tsty) coefficients are explicitly evaluated for all twelve tensor el-
Harz a1 Foro ements and can be verified for their rotational symmetry and
(Dl sy, Dusgr? Coin(ta ) time reversal symmetry. The ratiqs Iisteq in Table | are simi-
lar to those derived from the rotational diffusion model of the
(1 p,Ppuy v, D) Cion (t2, 1) dipolar fluid® or those evaluated through the normal mode
analysis’® The derivation and the symmetry analysis here
+<'#sz'#1V1'MoVo>C'”(tZ’tl)' (2.19 and hereafter are more general and rigorous.

where the orientational average is taken with respect to the A key consideration is that for atomic fluids the dipole is

angles between unit vectors. The first term is the contributioformed transiently by at least two atoms. To leading order,
from the anisotropic polarizability, the last term from the tWo atoms form a transient molecule bond through the
isotropic polarizability, and the three other terms are thedipole—induced-dipole interaction and give rise to the aniso-
mixed contributions. The radial parts are time dependent anopic polarizability, whereas the three-body polarization ef-

are given explicitly as fect leads to the isotropic polarizability and additional atomic
polarizability. Therefore, to leading order, the transient aniso-
CDDD(t21tl):Eﬁj drodry dry Pox(fo,0iry by iF oty tropic poIariz_abiIity_is inde_pen_d_en_t of the _quuid densi';y,
whereas the isotropic polarizability is proportional to the lig-
+t)hp(ro)hp(r)hp(F ), uid density. As a result, the anisotropic part of the polariza-

tion tensor is larger than the isotropic part, and we estimate
the relative intensity for the radial function aSppp
>Cipp, Coips Cppi>Cyy - In a dilute sample, we have
only the depolarization polarizability with the resulting time

CIDD(tZitl):EBJ drodrydry Poy(ro,05rq,t15rp,t,

+a)hi(ro)hp(ryhp(ra), dependence given b&ppp(ts,t;), SO that the intensity of
the tensor element follows the ratios indicated by the first
CDID(tZatl):EBJ drodrydry Pox(ro,0irg,t15rp,ty column in Table I. As the liquid density increases, these ra-
tios will be contaminated by the contribution from the iso-
+t,)hp(rg)h(ry)hp(ry), (2.12  tropic part of the DID polarizability and will be modified
according to Eq(2.17).
Coou(tz,t1)=36j drodrydry, Poy(ro,0irq,tyr,,t The diffusion model is used in Paper | for the third-order
Raman correlation function to demonstrate a slow free in-
+t,)hp(ro)hp(r)hy(ry), duction decay for the isotropic component and a fast free

induction decay for the depolarized component. The
asymptotic behavior of each independent component in Eq.
(2.11) approaches exponential decay with a decay conatant
This argument predict ppp, Apip>MApbpi» MNipp> M

F)h(rohi(r)hi(ra), where the subscripts denote the five components. Though
which can also be expressed in terms of the Legendre polysbtained for the two-time correlation function, these predic-
nomial as a function of the time-dependent angles. Clearlytions also apply to the fifth-order Raman response function in
the relationshipC,pp(t,,t1)=Cpp(t1,t,) vindicates the the long-time limit.

Chi (tz,tl):EBf drodrydry Poo(ro,0irg,ty5ro,ty
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TABLE II. Decomposition of the fifth-order Raman response function and correlation function into five inde-
pendent components based on symmetry considerations. The coefficients are normalizedZ By #ieZ
component, with two undetermined difference coefficiefitg# dcg for the response function, and with one
undetermined difference coefficiefit= dcg= dcg for the correlation function.

C(ty,ty) Coop Ciop Coip Copi Ci
C, 77272777 1 1 1 1 1
C, YYZ222 -1/2 1 -1/2 -1/2 1
Cs Z7vYYzz -1/2 -1/2 1 -1/2 1
C, 22727ZYY -1/2 -1/2 -1/2 1 1
Cs ZZYY XX 1 -1/2 -1/2 -1/2 1
Ce z72zYZzY 3/8— dcg 1/4 0 0 0
c, zyzzzy 3/8+ Scg+ 5Cq 0 1/4 0 0
Cq ZYzvyzz 3/8— dcg 0 0 1/4 0
Co ZZXYXY —3/4—25c 1/4 0 0 0
Cuo XYZZXY —3/4+28cq+25¢q 0 1/4 0 0
Cy XYXYZZ —3/4—25c 0 0 1/4 0
Ci ZYYXXZ 9/16 0 0 0 0
C. General polarization selectivity of the correlation yielding cg= —2cg, and similarly we have,,=—2c; and
function C11= —2Cg. In addition, the time-reversal symmetry gives

The ratios in Table | are valid both in the initial time C6=Cs and co=cy;. For simplicity, we define an average
regime and in the long-time regime. It is reasonable to spec fO€fficient as &;=(2cq+¢7)/3 to represent the second
late that these ratios are more general than demonstrat&ioUP- Together, the twelve distinct tensor elements are re-
through the approximate RDF in Sec. Il C. Indeed, a set ofluced to the three independent coefficients associated with
ratios similar to Table | can be established more generallfn€ three groupsg,, &, and &, where £3=c;,. These
based on the tensor property of the total polarizability andFO€fficients are related to each other through the two condi-
the symmetry of an isotropic sample. tions in Eq.(2.5 imposed by rotational symmetry. The first

Within the Drude oscillator model, the total polarizabil- €onditionZ,,, =32, becomes
ity for an isotropic sample is written d¥=1I,+ Il , where

TrIIp=0 is the anis'otropic part.anﬂﬁxl _is the isotropic 30, =Cp+ Cy+ Cy+ 4(Cg+ Cr+ Cg), 2.17
part. Then, the two-time correlation function can be decom-
posed as
which predicts¢; :£,=8:3, and the second conditiad,, .,
C(t2,t1)=CpppCppp(t2:t1) +CippCipp(t2,ta) =2, becomes
+CpipCopin(ta,t1) +CppiCppi(taity)
+¢,Cpyi (t2,19), (2.149 C1=C5+2(Cg+Cypt C1y) +8Cyp, (2.18

where components such &, , C;p, and C;p vanish
because of the symmetry of tii® tensor. The time-reversal Wwhich predictsg; :£;3=16:9. Hence, the ratios for the twelve
symmetry requiresC,pp(ts,t1)=Cpp(t1,t,), effectively  coefficients associated with th&,pp(t,,t;) component can
reducing the number of independent components to foule rigorously obtained from the symmetry arguments. Simi-
Here, Cppp(ts,t;) is the component associated with larly, the ratios for other components can be obtained and are
(p(t,+t)Mp(t,) M (0)) with the corresponding coeffi- listed in Table Il. These ratios are the same as those derived
cient given bycppp, and similar definitions hold for the from the angular average in Table | of Sec. II B, except for
other terms. the undetermined difference coefficiefit betweencg and

The coefficient depends on the polarization geometry. A€g. Therefore, the symmetry relations alone determine the
an example, we evaluate,pp explicitly. From the zero- decomposition into various components and the relative

trace definition of thdly tensor, we have ratios.
In general, the fifth-order Raman response function does
Crz22¢# Cyyzzz2# Coxazaz 0 (2.19 not follow the polarization dependence derived here for the

two-time correlation function. However, if the rotational mo-

tion is much slower than the vibrational motion, the Poisson
Similarly, we havecs=c,= — (1/2)¢, andcg=¢£;, and thus bracket applies to the vibrational degrees of freedom but not
obtain the rigorous ratios for the group of the first five coef-t0 the rotational degrees of freedom, so that the fifth-order

ficients. The second group consists of the coefficients fronfk@man response function follows the same polarization se-
Ce t0 C14. The zero-trace identity leads to lectivity as described here for the two-time correlation func-

tion. This argument may be useful for establishing the polar-
Czzzyzyt Cyyzyzyt Cxxzyzy= 0, (2.16 ization selectivity of multipulse infrared spectroscopy.

so thatc,=—2c,=¢; with &; the value ofc,. Here, the
index of the coefficient follows the definition in Table I.
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D. General polarization selectivity of the response two depolarized Raman interactions at zero time and at time
function t,, respectivelyR,pp describes the isotropic Raman signal
In Secs. Il A—1I C, we discussed the polarization depen-2S & consequence of the vibration motions induced by two
dence of the two-time correlation function associated Withdep‘Jlar,'Zed Raman mtgractlons at Z€r0 time and at ,t'lme
the fifth-order response function. As will be seen in the fol-"eSPectivelyRpp describes the depolarized Raman signal as
lowing, the polarization dependence of the fifth-order re-2 consequence of the vibration motions induced by one de-
sponse function is similar but with some additional subtle-Polarizeéd Raman interaction at zero time and another isotro-
ties. Following the arguments in Sec. Il A, the fifth-order PIC Raman interaction at timg . The two other components
Raman response function is a six-rank tensor, with 726 eléRoo1 @ndRy; can be understood in a similar way.
ments. In an isotropic sample, the permutation of the Carte- SiNce the third-order polarization has two independent
sian axis and the interchange of the indices for a pair of°MPONeNts, the third-order experiment cannot be used to
Raman pulses leave twelve distinct tensor elements, as listégP!ate the contribution of the nonresonant scattering or the
in Table |. For the response functioR(t,,t;) = — B({II(t, deviation from the DID interaction. Within the renormalized
1 ty), TI(t )}f[(O)) the time-derivativell obeys the same Drude oscillator model, the fifth-order Raman spectrum con-
1/ 1 ’ - . . .
rotational transformation as the total polarizability tensor,SIStS of five independent componepts thgugh ten componen.ts
and the Poisson brackefI(t,+1;),TI(t,)}, as a whole also are allowed by the symmetry considerations. Thus, the addi-

preserves the same rotational symmetry as the produJ:itor_mI components_ can be l_Jsed o io!entify other contribution_s
TI(t,+1,)TI(t;). The rotational symmetry of the isotropic which cannot be isolated in the third-order Raman experi-
sample imposes the same ratios among the three combinglent'
tions of the response function as Eg8.5. However, unlike
the correlation function in Sec. Il A, the response function
does not follow the time-reversal symmetry, as the two time  We calculated the fifth-order Raman correlation function
variablest; andt, are not equivalent in Eq1.1). Therefore, using molecular dynamics simulation of a box of 108 Xe
the twelve distinct tensor elements have ten independergtoms at reduced temperatiré=0.76 and reduced density
components for the fifth-order Raman response function, ip*=0.85. The simulation details, the Lennard-Jones param-
contrast to seven independent components for the fifth-ordesters for liquid Xe, and other relevant parameters can be
Raman correlation function. found in Paper I. Since the contribution from the isotropic
Since the explicit expressions for the fifth-order Ramanpolarizability is relatively weak for liquid Xéabout 10% for
response function involve the momentum and the stabilitthe thermodynamic statewe adopted the first-order pair-
matrix, we cannot adopt the polarization analysis based omteraction approximation of the polarization tensor,
the reduced probability distribution in Sec. II B. Fortunately, [I=2aT «, to study the anisotropic contribution. The spheri-
the more general analysis in Sec. II C still holds for the re-cal cutoff at half the box size was used to facilitate the simu-
sponse function. Within the Drude oscillator model, we de-lation so that long MD trajectories can be obtained with rea-

E. A numerical example

compose the response function as sonable amount of CPU time. As shown in Sec. Il A, the
two-time correlation function has twelve distinct tensor ele-
R(t2,t1) =CpppRooo(t2,t1) +CippRipp(ta,ts) ments due to the reflection symmetry and Kleinmann sym-

metry. These tensor elements follow the ratios given in the
CoinRoin(t2, 1)+ CopiRopi (T2, 1) first column of Table I, or the first column of Table Il. The
+c Ry (ta,ty), (2.19 latter ratios are determined by the rotational isotropic condi-
tion and the traceless property of the total polarizability ten-
where components such Bg,, , Rjp;, andR,,p vanish be-  sor and are thus more rigorous. In our calculation, the refer-
cause of the symmetry of th® tensor. In Eq.(2.19, ence frame is randomly rotated to enforce the isotropic
Rppp(ts,ty) is the component associated with{II5(t,  condition and minimize the orientational preference.
+t4),Hp(ty)},15(0)}) with the corresponding coefficient As shown in Fig. 1, the twelve tensor element<gD t)
given by Cppp(ts,t1), and similar definitions hold for the follow the ratios given in Table | of Sec. Il B consistently
other terms. To determine these coefficients, we use the sanoger the entire time scale. On careful examination, we notice
symmetry arguments as in Sec. Il C and find the same ratiathe slight difference betweeGiz=Cg andC, as well as be-
as in Table | except focppp . The lack of the time reversal tweenCgq=C;; andC,y. This observation is consistent with
symmetry for the response function removes the equality bethe general polarization dependence derived in Sec. 11 C and
tweencgppp andcgppp and betweerty ppp andcyppp - listed in Table II, where the difference coefficiedit = dcg
Nevertheless, we can still define the average coefficient for 6cg is responsible for the observed difference. In Fig. 2,
the second group &5=(cg+ Cc;+Cg)/3, which is determined the twelve tensor elements, normalized by the ratios in the
through the rotational symmetry relations. These coefficientéirst column of Table I, all fall onto the same curve within
for the response function, listed in Table II, differ from those numerical error. This master curve is the anisotropic part of
for the correlation function in thadcg# ocg. the correlation functionCppp(t,,t;). The diagonal cross
The five independent components in E2.19 measure sections of the twelve tensor elemer@gt,t), are plotted in
microscopic couplings in liquids and their time evolution. Fig. 3, and are found to obey the same ratios as listed in
For exampleRppp(t,,t;) describes the depolarized Raman Table 1. The two-dimensional conto@;,,,,t1,t5) in Fig.
signal as a consequence of the vibration motions induced b§ demonstrates the basic features of the two-time correlation
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FIG. 1. Twelve components of the fifth-order Raman correlation functionF|G. 3. Twelve components of the diagonal element of the fifth-order Ra-
along the time axi€(t,0). The molecular dynamics simulation was carried man correlation functiorC(t,t), obtained from the same simulation as in

out for a simulation box of 108 Xe atoms at reduced temperaitre

=0.76 and reduced densipf =0.85.

function. The sparse contour lines &£0.05 andt=0.25

Fig. 1.

IlI. HYDRODYNAMIC EVALUATION: GAUSSIAN

FACTORIZATION

indicate slow variations in both in the short-time regime and

in the long time regime, while the dense contour lines indi-

In the long time-scale and length-scale limit, density

cate the fast decay in the intermediate time regime. Thesuctuations in simple liquids are usually described as a sto-
features are consistent with our observations in Figs. 1 and 3hastic Gaussian process so that multiple time and multiple
point correlation function can be decomposed to correlation
functions of linear hydrodynamic modes. Specifically, the

.000014 |

.000012 |

.000010

.000008

.000006 |

.000004

.000002

from C,
from C,, C,, C,
from C;
from C, C,, C,

=== from C,;, C;;, C,
= fromC,;

.000000
0.

00 0.10 0.20

FIG. 2. Twelve components of the correlation functi@fOt) in Fig. 1

0.30 0.40

normalized by the coefficients in the first column of Table I.

0.50

0.3

Cs(tz’tl)

0.25

I
o
k

(reduced unit)
=
&

t1
o

0.05

0 0.05

0.1 0.15 02
t, (reduced unit)

W, N W, W T

025 03

FIG. 4. Atwo-dimensional contour plot &,,,,,¢t,,t;), obtained from the
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Gaussian factorization scheme combined with the meawhereT, should be understood as the tensor element with
spherical approximation for the direct pair correlation func-the indices specified by the response function. The simple
tion allows us to obtain the standard mode coupling equatioGaussian factorization scheme decomposes the fifth-order
for the intermediate scattering functiGhHere, we explicity ~ Raman response function into product of correlation func-
include the Poisson brackets in the Gaussian factorization afons, thus relating the fifth-order Raman signal to density

the fifth-order response function. fluctuations in atomic liquids. This relation was first demon-
It is a standard procedure to express the polarizabilitystrated by Denny and Reichman, and we refer to their Rtter
tensor in Fourier space as for further discussions on its physical implications.
R _ As mentioned in Sec. |, our Gaussian factorization ex-
H=Z,_ aTjja= Vzk: T(k)Y, ekri=ri) pression in Eq(3.5) is similar to the original mode coupling
7] ]

expression derived by Denny and Reichman from a version
_ of the quantum projection operator mettSdn fact, the
= V; T(k)p(k)p* (k), (3.)  time-dependent parts in the Fourier integrand are the same,
whereas the static parts are different because the Gaussian
where p(k) =Z; exp(—ikr;) is the number density, and the factorization scheme does not directly involve the projection

&y

term withi =j is excluded by setting the dipole interaction to onto bilinear modes. Since the Poisson bracket is the classi-
zero whenever the internuclear distance vanishes. We expaal limit of the quantum commutator, the classical response
the response function in Fourier space, function is well defined and can be evaluated directly via
J classical mode coupling theory without taking the classical
R(ty,t1)=— B —— ({TI(t,+t,),TI(t,)}TI(0)) limit of quantum mode coupling theory. To demonstrate this
Ity point, we rederive Eq(3.5 in Appendix D by applying the
22\% g - Gaussian factorization scheme to quantum operators and
= V) ﬁEkE kE ; T(k2) T(ky)T(k) then taking the classical limit.
2 1 The simple correlation function form in E¢3.5 makes
X{{p2p3 ,p1P} }P0PG ) (3.2 it possible to analyze polarization selectivity in a similar

fashion as the two-time correlation function in Sec. Il B. For
V‘ih‘?re p2=p(Kz,t2), p1=p(ky,ty), and po=p(k,to), and isutropic liquids, the renormalized DID model reduces the
p” is the complex conjugate of the density operator. Th&, e|ye tensor elements for the response function in(Bd)
PO'ISSOH bracl_<et of the bilinear density terms in the polanz-mto four independent components. In E@.5), the fifth-
ability tensor is expanded as order Raman response function is factorized into the angular
{203 p1pY=podps pitpt + polps 0¥ o1 part and the radial part, so that the decomposition coeffi-
cients can be computed from the angular integration and are
+p3{p2,p1}pT +p3{p2,p1}P1- (33  given by the first column of Table I. However, as analyzed in
Applying the Gaussian factorization scheme to the first terms_ec' I1C, this simple dgcomposmon procedure QOes not hold
in Eq. (3.3 gives rigorously for Fhe the f|f§h_-order response function, because
T the decomposition coefficients are modifieddng and 5cg.
T(ko)T(k)T(K){p2{p3 ,p1}PT PoPG) Though the simple Gaussian factorization approach gives a
- reasonable temporal profile in the intermediate time regime,
~ Ok, kOk, kT g(K) Tg(K)Tg(K){{p3 .p1})(P2p5){(PTP0)  its prediction of polarization selectivity is not rigorous and
its prediction of short-time behaviors is not reliable. These
difficulties are not surprising because the Gaussian factoriza-
X E(K,tyt t)F(K ty), 3.4 tion scheme is no_t \_/glid at shqrt tirr_1es and d_oes not take into
- account the possibility of multiparticle couplings.
where the dipole propagatdr is changed into the dressed We conclude this section with hydrodynamic evaluations
dipole propagatorT,(r)=T(r)g(r) upon decomposition. of the fifth-order signal. The density correlation function
Other ways of factorizing density operators lead to a singld=(k,t) can be evaluated via numerical simulations or with
left or right Poisson bracket in the ensemble average anuiscoelastic model®~%® The detailed description of the
thus do not contribute to the response function. It can bevaluation ofF (k,t) is introduced in Appendix E. Then, with
confirmed that the other three terms in E§.3 give the T (k)=Ty(k)D andT4(k)=—/ d3rg(r)jo(kr)/r given in
same result as E¢3.4). Combining Eq(3.2) with Eq.(3.3),  Ref. 20, we are able to evaluate E§.5) numerically. Fig-
we arrive at ures 5 and 6 are the fifth-order response plotted along the
diagonal cross section and the second time axis. In compari-
son with the fifth-order response function simulated by Ma

= N33, ki, kTo(K) To(K) To(K)BF (K1)

R(ty,t;)~4Np®B%a®

(2m)° and Stratt in Ref. 53, our prediction has roughly the same

- 9 9 profile, but the peak position moves inward. Figure 7 is a

Xf dk (k) Tg(K) Tg(k) ——F(kitz) == two-dimensional contour of the predicted fifth-order signal
2 ! and exhibits similar features as the numerical result. There-
X[F(k,t,+t)F(k,ty)], (3.5 fore, the simple Gaussian factorization scheme provides a
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FIG. 5. Fifth-order response functioft,t) from the hydrodynamic ex- 0.1
pression in Eq(3.5) and from the MD simulation.
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reliable way to predict the fifth-order Raman response in
atomic liquids.
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FIG. 7. Contour plot of the fifth-order response functR(t,,t;) predicted
by the molecular hydrodynamic expression E3}5).

IV. TRANSFORMATION OF THE FIFTH-ORDER

RESPONSE FUNCTION

A. Integrated intensity

the same, so the time derivative at time zero is not complete
As pointed out in Sec. |, we can reduce the two-and the integrated response function cannot be directly trans-

dimensional response function to one-dimension correlatioformed into a time-correlation function. To this end, we sym-
functions, which are easily examined for their angular andmetrize these two pairs of polarization indices in E41),

temporal dependencies. Integrating Et;.1) along the first

1
R(t2 vtl)s,,uzvz/.lel,uovo_ 5[ R(tZ 1tl),u.21/2,u.11/1,u.0v0

time variable, we obtain
* + R(tZ!tl) v v, v ] (42)
| Rt tdt = - s o)) e
0 and obtain the desired relation
_ p2 - %
~ ~AHITHOMIO), - st [ Rtz tay
where the Poisson brackdi,II} evaluated at the same time 0
vanishes. However, the two pairs of polarization indices at 27
time zero in the last expression of Hg.1) are generally not AHI(t)TI(0)TI(0))s
Jd
= - B —Cq(ta), 4.3
18 ___ at,
/ \\\ — R(0) (MCT) where the symmetric correlation functionCg(t)
/ \ ——— R(t0) (MD) =(TI(t)II(0)II(0))s is defined similarly as in Eq4.2) and
08 ,’ is the quantity for further calculations.
g ! Within the renormalized DID approximation, the total
; 0 /I polarizability tensor is written as the sum of the traceless part
£ / II; and the isotropic padl,, i.e., II=1I,+1II,. Then, the
g / symmetric correlation functio€(t) becomes
] ]
o ! Co(t)=a(TI(1)TI(0)TI(0))s
-7 /
02 // =C5,000Cppp(t) +Cs100Cipp (1) +CspipCpin (1)
’ /
/ +C5,001Cppi(t) +Cs 111 Cpyy (1), (4.9
/
=1 ‘ where the time-dependent parts depend on the details of in-
0.0
02 04 0.6 . Lo teractions and the state of liquid. The coefficients depend on

t (reduced unit)

FIG. 6. Fifth-order response functiof¥t,0) from the hydrodynamic ex-

pression in Eq(3.5 and from the MD simulation.

the polarization geometry and are symmetric with respect to
the exchange of the second and last pairs of indices. Because

of this symmetry, we have Cqpp =Cspip=(Cppy
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TABLE Ill. Decomposition of the symmetric correlation functid®y(t). B(ts.t1) =TI (to+t1) IL (t: ) TI.(O
The coefficients are normalized by tB& ZZZZcomponent. The overlines (t2,ty) <{ 2tz 1), Iy 1)} 0( )>
stand for interchange of pairs of Raman indices. - _ ﬂ(ﬂz(t2+tl)ﬂl(t1)ﬂo(0)> + <H2(t2+t1)
X{II,(t))IIp(0)}). 4,
Cy(t2,11) Cs.DDD Cs.ipD\Cs,DDI Cs,DID Cs 111 { 1( 1) 0( )}> ( 7)
The last term in Eq(4.7) can be rearranged as
C 777777 1 1 1 1
! PR (It +ty){IL;(ty) Ho(0)})
C\Ca  Yyzzzz  CI2 8 Sz = — ({TTp(0), Ty (ty) Mt + 1))
Cs Z2YYZ2Z -1z -1z 1 1 = ({Ip(ta+1t), My(t2) HI5(0)), (4.9
Cs ZIVYXX 1 “1p “1p 1 where the time-reversal symmetry is invoked in the last step.
— However, the two tensor elementk, andIl; in Eq. (4.9
Co\Cs  ZZZYZY 3/8+dc 1/8 0 0 expression are generally not the same. To symmetrize these
two tensor elements, we define
C, ZYZZZY 3/8—26c 0 1/4 0
R(tZth) :l[R(tZ)tl) v v
C\Cy  ZZXYXY  —3/4-28c 18 0 0 SiHaVakVikoYy 2 MaVaMiV1 MoV
+R(t,,t (4.9
Co XYZZXY — —3/4+46c 0 1/4 0 (828 wgrgrey e
and similarly forFs and Cg, so that Eq.4.7) leads to the
Crz ZYYXXZ 96 0 0 0 desired relation

Fo(ta,ty) —F(ty,tp) = — BC(ty,ty), (4.10

+cpp)/2. Table 11l lists these coefficients normalized by the where Cs(tz,tl)=<H2fI1HO>=(al—az)Cs(tz,tl). Substi-
R,,,,2t€nsor component. Thus, the nine distinct tensor eletuting the above relation in Eq4.10 for F¢ back into Eq.
ments of the integrated intensity along theaxis can be (4.7), we have
decomposed into four components within the renormalized _ 526
Drude oscillator model. With a single time variable, the in- S(tz,t1) = Sty 1) = B7C4(t2,1y), @19
t_egrated response function provides more polarlzatlo'n selec- SL(ty,t1) = SL(ty,tp) = B2Cy(ty 1) + B2CH(12,0)
tivity than the third-order response function and thus is more )
useful for resolving microscopic interactions. - B%C4(0ty),
The integrated intensity for the fifth-order Raman re-_ . . . .
. : . which relate the cumulative response function to two-time
sponse and the third-order Raman correlation function are : .
. . ; : o correlation functions.
both single time correlation functions but with different num- . . . Lo .
. o The two-time symmetric correlation function is a special
bers(or weights of total polarizability tensors. However, the : . . : )
. . - ._case of the two-time correlation function discussed in Sec. Il
two types of correlation functions share similar asymptotic : ;
; . . . . .. . —and can be decomposed using the same symmetry consider-
behaviors, which are dictated by the interparticle diffusive_.. : L
) S ations as in Sec. Il C, giving
motion. For example, as a rough estimation, we have

Cs(tz,t1)=Cs pppCoppo(t2,t1) +Cs 100 Cipp(t2,t1)

Coip(1):Cyj (1) = Cianoisd 1) : Ciso( 1), (4.5
which relates the fifth-order measurement to the third-order *Cs,pipCoip(tz:t1) +CsppiCopi(tz,ty)
measurement. +Cs111 Ciii (t2,t), (4.12

where the time-dependent parts are the same as i(RE®).

The coefficients are symmetric with respect to the exchange
B. Cumulative response function of the first and last pairs of indices. Out of the five symmetric

oefficients, three are identical to the original definition in

%‘31- (2.19, i.e., Csppp=Cppp: Cspip=Cpip, and Cqyy
=cy; , whereas the other two are equal, i®,pp;=Cs pp
=(Cpp|+Cipp)/2. These symmetric coefficients are listed in
Table IV with the normalization condition defined by the
R,,,zzA€nsor element.

As an alternative to the integrated response function, w
now reduce the fifth-order Raman response to the cumulativ
response function. To do this, we integrate both sides of E
(1.1 along thet; axis and obtain

S(tZ ltl) = J;wR(tZ ’ T)dT: _BB(tl 1t2)1

1

(4.6

ty C. Symmetric correlation function
S (to.t)= | Rty 77— BBt 1) - B, 0)),

As shown in Sec. IV B, the symmetric cumulative re-
sponse functior(t,,t;) is related to the symmetric two-

where the two-dimensional functioi(t,,t;) and S'(t,,t4) time correlation function by

are the cumulative response function integrated alond;the )
axis. The functiorB(t,,t;) is expressed as Se(ty,t1) — Sy(ty,tp) = B2Cq(ty,ty), (4.13
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TABLE IV. Decomposition of the symmetric correlation functiey(t,,t;). o
The coefficients are normalized by td& ZZZZ component. The overbars BZCS(tZ ,tl) = J SS( 7,0)d7
stand for the interchange of pairs of Raman indices. ty+to

Ci(n) CppD Cipp CpIp \Cppr Cr J‘(t2+t1)/2 t,+1, o+t )
To, - T
(ty—ty)/2 2 22 2
c, ZZZ77Z7 1 1 1 1
o+t o+t
C, YYZZZZ —1/2 1 -1/2 1 —-S 5 T2 5 +75]|dTs. (4.18
o
C\Ca ZZYY ZZ -1z -1z 1/4 1 In principle, given the complete information of the response
c, JIYYXX ) " _1p ) funct_lon R(tz_,tl) on the _([z,tl) pla_ne, the complett_aly sym-
metric two-time correlation function can be obtained from
Cs ZZZYZY 3/8— ¢ 1/4 0 0 Eq. (4.9.
—— As shown in Appendix A, the fifth-order Raman re-
CN\Cs  zyzzzy  3B+5c 0 18 0 sponse function cannot be directly written as a correlation
function without involving the stability matrix, which con-
C, ZZXYXY —3/4—265¢ 1/4 0 0 o . k .
tains information about the coherence of motion. This infor-
C\Cy,  XYZZXY — —3/A+éc 0 18 0 mation is lost as the fifth-order Raman response function,
Rq(t5,t1), which is not symmetric with respect tg andt,
Ciy ZYYXXZ 9/16 0 0 0 variables, is transformed inG4(t,,t;), which is symmetric

with respect tot; andt, variables. However, the resulting
correlation function from the transformation has the advan-
tage of the reliable predictions for their time dependence and
Lpolarization dependence, thus providing both a self-
consistent check of numerical simulations and an easy com-
parison with experimental measurements.

where Cs(tz,tl)z(&l—az)cs(tz,tl). Here, the correlation
function and related quantities are completely symmetri
with respect to the exchange of pairs of the indices,

—1
CS"“'ZVZI"‘lVl:”'OVO_ G[Cﬂzl’z#l”ll’-o"o—‘r C#z”z#o"o#l”l .
D. Numerical results
+C v sovopore T Crvr povopow . .
1¥1k2V2H0%0 1¥1#0%0k2"2 As a numerical example, we compare the three kinds of
time-correlation functions obtained directly from our mo-
+ CH0V0M1V1MZV2+ CMO”O“Z”Z”‘l”l]' (4'14) y

lecular dynamics simulations with the corresponding results

The two time variables, andt, are transformed into a new 9€nerated from the fifth-order Raman response function pro-

set of variables; = (t;+t,)/2 and7,= (t,—t;)/2 so that Eqg. \_/lded by Ma and S_traﬁ".‘ '!'o be consistent with t_he|r pub-

(4.14) in the new coordinates becomes lished result, our simulation was carried out with 108 Xe
atoms at reduced density and reduced temperailie

Si(T1+ 72, 71— T2) = Sy(T1— T2, T+ T2)

J
2 0.40
=—pB— + — 7). .
B a1, Co(rit 7,711 172) (4.19 ——- from Cy(t, t,)
—-— from R(t,, t.)
Explicit integration of Eq(4.15 over 7, from (t,—t;)/2 to i
(t,+1t4)/2 along the coordinate axis = (t,+1;)/2 gives % 030 /'\\\;\
5 ‘; \
\
BCs(tz,t1) ~ Cy(ty+13,0)] Z / LAY
2020} £ NN
(to+t1)/2 s Y # \\ \
:f [Ss(7y+ 70, 71— T2) 3 r N
(to—t)/2 ~ /’I \\ \\
= I
Q I N
—S(m— 7y, T+ 1) ]d7s. (4.16 - 0.10 | II'I \\l\\
! N>
. . ) I ===
SinceCq(t,+14,0) is symmetric under the exchangewofr, //,/
and povg, Ce(to+1t4,0) can be obtained by integrating Eq. ’//
(4.3 along thet, axis, giving %00 0.10 0.20 0.30 0.40
. t, (reduced unit)
2 —
+ = . 4.1
BCutz1,,0) tzHlsS( 0dr (4.17 FIG. 8. Aplot of the integrated intensi8y,,,,(t,) of liquid Xe. The dashed

line is directly obtained from our MD simulation, and the dotted line is

Thus. the overall relation between the svmmetric tWO_timegenerated from the fifth-order response function data calculated by Ma and
! Yy Stratt. The molecular dynamics simulation was carried out for a simulation

correlation function and the cumulative response function,oy of 108 Xe atoms at reduced temperatlite= 1.0 and reduced density
Sq(t,,t1) becomes p*=0.80.
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FIG. 10. A comparison of the symmetrized two-time correlation functions
Cs(t,,t1) (a) generated from the fifth-order response function data(and

FIG. 9. A comparison of the cumulative response functi®ét,,t,) obtained directly from the MD simulation

—S4(t,,t1) (a) generated from the fifth-order response function data(ehd
obtained directly from the MD simulation.

Figure 9a) is the cumulative response function
=1.00 andp*=0.8, and all the results are presented for theSs(t1,t2) —Ss(t2,t;) generated from the data of the fifth-
zzzzzpolarization component. Details of numerical simula-order Raman response function. For comparison, K. i8
tions can be found in Paper I. the function — 82C4(t,,t;) obtained directly from our nu-

Figure 8 plots the integrated intensBy(t,) in Sec. IVA  merical simulation, as discussed in Sec. IV B. Both contours
from our direct numerical simulation and from the integra-show a clear maximum arourtd =0.1 alongt, axis and a
tion of the two-dimensional spectrum by Ma and Stratt. Bothcorresponding minimum alond, due to the fact that
curves have a broad peak centered at arainel0.1. The  Sy(t1,t) —Si(tp,t;) is an antisymmetric function. The
peak position corresponds to the projection of the elon- shapes of the contours in Figs(a@ and 9b) are similar
gated maximal of two-dimensional response function. Thehough the details differ because of the different approaches.
integrated intensity has a slightly different shape from the As described in Sec. IVC, the symmetrized two-time
third-order correlation function calculated in Paper I, becauseorrelation functionCq(t,,t;) can be integrated from the
of the weights of the total polarizability are different. fifth-order response function. The result thus obtained is
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TABLE V. Decomposition of the completely symmetric correlation function Tokmakoff for discussions and comments. We thank Ma and

C4(t,,t1). The coefficients are normalized by tAi& ZZZZcomponent. The Stratt for providing their simulation data & Lof quuid
overbars stand for the interchange of pairs of Raman indices. zzzzz

Xe.

Cy(ty,ty) Cs,pDD Cs,i0D\Cs,0D1\Cs,DID Csin
Cy 22727727 16/35 4/5 1
Co\C3\Cy YYZZZZ —8/35 0 1 APPENDIX A: THREE EXPLICIT EXPRESSIONS OF
Cs ZZYY XX 16/35 —2/5 1 THE FIFTH-ORDER RAMAN RESPONSE
Ce\C/\Cg ZZZYZY  6/35 1/15 0 FUNCTION
Co\CidCu ZZXYXY  —12/35 115 0 The fifth-order Raman response function is defined in
Ciz ZYYXXZ 9/35 0 0

terms of the Poisson bracket in Ed.1). Explicit evaluation

of the Poisson brackets leads to several equivalent expres-
sions, which can be useful for different purposes. For sim-
plotted in Fig. 10a) along with the MD simulation result in plicity, the tqtal polarizability Qperator is taken as a function
Fig. 10b). Evidently, the two contours share similar struc- of the coordl_nate only and IS independent of the momentum.
tures, and the difference at large times is mainly due to the S the simplest expression, we have

truncation in the time integration of the response function.

. I, ary Tl -
R(tz,ta) = = STz, Iy Ho) = BY 7= 25~ 2o )
i ] ]

V. CONCLUSIONS (A1)

In summary, the symmetry of the polarizability tendbr  where the subscripts 1 and 2 refer to time-t, andty,
completely characterizes the decomposition into independengspectively, the subscriptgndj refer to the atomic degrees
polarization components, and is independent of the type off freedom, repeated indices are summed over explicitly, and
liquids, the form of interaction potentials, or the descriptionr,, 19p1;=Mjj(ty,t,) is the stability matrix element.
of particle motions. For an isotropic medium, the fifth-order The second expression follows Mukamel’s derivation,
Raman correlation function and response function have .
twelve distinct tensor elements. These elements are subjeR{(t,,t;) = — B{{Il,,II;}I1y)
to the constraints imposed by the rotational symmetry and 5 - .
time reversal symmetry, and hence can be decomposed into = BXILIL o) — B(H{I1;, ILo})
seven independent components for the correlation function — BUII LI )
and ten independent components for the response function. 2710
The decomposition coefficients are calculated and tabulated MLy [ ar 4 ,9110 ary; af[O
explicitly and can be used to describe interactions and cou- - 2o, ar_o- r?po_ Po ol (A2)
plings in atomic liquidgTable \). ! P Lo

The temporal profile of the fifth-order signal in atomic where the first term has the form of the correlation function
liquids is calculated using the Gaussian factorization schemeut the second term involves the stability matrix.

The derivation is simple and the result is useful as it relates  To obtain the third expression, we start from the inner
the fifth-order response function to density fluctuations. AsPoisson bracket and explicitly expand the outer Poisson
an alternative, the fifth-order response function can be rebracket

duced to two-time and single-time correlation functions,

which are relatively simple to compute and analyze. Particu- R(t, t)= &_l'[z % 3_1_[1

larly, the integrated intensity in Sec. IVA is a single-time 21 oy dpgi Iy’ 0

correlation function and can be related to the third-order Ra-

man response. < J V_HZ I i 07_1_11} &H0>

We have investigated the angular dependence and tem- JPok | I 2§ IP1i Irai| Il ok
poral profile of the fifth-order Raman signal in liquid Xe. A <[

i . ; : I, oIy dry ary;
basic assumption of the study is the use of the renormalized 2 77172 72
Drude oscillator model, which takes into account the many- 2921 I IPok IP1i
body polarization effects and particularly its contribution to M, @Iy dry dry
the isotropic polarization component. Future studies will be
directed toward modeling nonlinear spectra in molecular lig-
uids. ) 1 P | PRE Y } ar[0>

+ .
draj dr1i dP1idPok] I ok

J’_
dr 3 drqidry JdPok IP1;

(A3)
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1 APPENDIX C: ROTATIONAL SYMMETRY OF THE
R(tz,t1)=f dw p(w) Wsir\(wtz) TWO-TIME CORRELATION FUNCTION

TSN ot + wts) + Si ¢ Ad As shown in Sec. Il, a large number of tensor elements
[sinf(wt; + otz) +sin(w(ty) ], (A4) are identical so that only twelve distinct elements are calcu-

which is the instantaneous normal mode expression for thidt€d. These twelve elements are used to define three sets of
fifth-order Raman response function. It is not difficult to in- ©tally symmetric correlation functions in Eq&2.2)—(2.4)

troduce two different frequencies, andw, for the two time which are related to each other through rotation invariance.

intervals. The recent simulation by Ma and Stfitindicates ~ EXPlicitly, rotational symmetry of an isotropic sample pre-
that the joint distribution of the two frequencigs(w; , ) serves the value of a tensor element under the rotation about

is dominated by the diagonal cross-sectiof= w,. So it is any angle,
reasonable to use a single frequency in the instantaneows

. HaVak1ViHoVo
normal mode analysis.

=Ry Ry R Ro v Rt Rugue C st vty (C1)

whereRis the rotational transformation matrix. For example,
APPENDIX B: DRUDE OSCILLATOR MODEL we consider the rotation around theaxis through an angle

in the ZY plane. The application of E4C1) to the C,,,,,,

The Drude oscillator model consists of oscillating di- gives

poles with polarizabilitye interacting through the second-
order dipole tensofl. The total polarizability tensor of a Z,=c0S(0)Z,+ cos(9)sir(0)Z,y+cos(0)sin'(0)Z,,
fluid composed oN identical spherical Drude oscillators is

+sinf(6)Z,, (C2
N . . L
_ which simplifies to Z ,=2Z,,. For Z,, components, we
H(t)=§j afl—aT()]; %, B have peoTR .
o . . . = +sirf* +6 si
where the summation is carried over all pair of particles, and Zyx=CO(0)Z; c+ SIr(6)Zy+ 6 SirF(6)cos( G)ZZV(XC’S)

IT is a function of evolving liquid configuration through the
time dependence if;;(t) =T[r;;(t)]. The dipole-dipole in- which resultsinZ,,,=Z,,,. These relations have been ob-
teraction tensor is defined as,,(r) = DW(F)/r3, wherex  tained by Tokmakoff and are included here for
and v denote the three Cartesian coordinatess, the vector completenes¥t

connecting a pair of liquid particles,=r/r is the corre-

sponding unit vector, an® is the traceless dimensionless APPENDIX D: DERIVATION OF THE HYDRODYNAMIC
tensorD(r)=3rr —I. The many-body polarization effect in EXPRESSION USING QUANTUM OPERATORS

Eqg. (B1) leads to an infinite expression in termsTafwhich
to the leading other truncation &I results in the pair inter-
action approximation

We now repeat the hydrodynamic evaluation of the fifty-
order Raman response by taking the classical limit of quan-
tum operators after the Gaussian factorization. The response

function in Eq.(1.1) is defined quantum mechanically as
=2 a+2, aTja, (B2) L
i 7] A - A
R(ty,t)=— ﬁ<[H(t2+t1),ﬂ(t1)],r[(0)]>
where the first term is a constant and the second term corre-

sponds to the first-order dipole—induced-dipole interaction 1 A ~ n A n A s ~

(DID). BecausdT is a traceless tensor, the pair interaction in - ﬁ<H2H1H0_H1H2H0_H0H2H1

Eq. (B2) represents the anisotropic part of the DID polariz- o

ability. To account for the isotropic DID polarizability, it is + I IT,), (D1)

necessary to include the next teram Ty Tyj, in the expan- | perelT is the Heisenberg operator for the total polarizabil-
sion of Eq.(B2). We explicitly evaluated the three-body term ity. With the Fourier expression dil given in Eq.(4.1), the

in Paper | and found that the anisotropic part of the DIDfjrot term in Eq.(D1) can be evaluated explicitly, giving
interaction is long-ranged whereas the isotropic part of the _

DID interaction is short-ranged. The approximate resumma(H(t2+tl)ﬁ(tl)ﬁ(o))
tion of the infinite terms in the expansion leads to a renor-

—2\3
malized DID form for the total polarizability, :(“V) > ?(kz)?(kl)?(k)@zﬁ;ﬁlﬁfﬁo%}
~S e+ aT. a=> a+ > o @ Ne?\3, — — — .
=2 at 2y aTja=2 o+ 2 alhil+hoDia, ~4 T“) S TUOTIOTOF(t+ t5.k)
(B3)
XF(tz,_k)F(tl,_k), (D2)

wherehp, is the traceless anisotropic part amdis the_diag-
onal isotropic part. The renormalized quantiteendT are  where the density operators at different times do not com-
solved self-consistently in Paper I. mute. The approximation arises from the application of the
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Gaussian factorization scheme, and the factor of 4 arises (kvg)? ) (kvg)? o
from the different ways of decomposition. Combining the  Ki(k,t)= =03 +ke®(k,t) + 5K (y—1)e BTk,
four terms in Eq(D1), we obtain (E3)

F(ty+to, k)R (t, —K)F(ty, —k) = F(ty 5, —K)
where D1=«/(nMC,), S(K) is the static structure factor,

XF(=tz, —KF(ty, k) —F(—t1 =13, = k) and ®,(k,t) is the longitudinal viscosity function. When

><IA:(tz,—k)lA:(—tl,—k)+|5(—t1—t2,k) <I>,(k,t)_=2v|5(t)3 K|(_k,t) reduces to the Iinear.ized hydro—
A R R R dynamic approximation for the memory function obtained
XF(—ty,—K)F(—=ty,—K)=[F(t,,—k)—F(—t,,k)] from Eg. (E1). The viscoelastic approximation leads to a

generalized longitudinal viscosity functioh,(k,t) without

X[F(ty+tp, k)F(ty, k) = F(—ty—ty, = K)F(—1t1,k) modifying the thermal conductivity contribution

= (i Bh)?9,F (t2,K) a1 [ F(ty+15, K)F(t5, k)], (D3)
where we have rearranged the second and fourth terms in Eq. Py (k,t) =@ (k0 exd —t/7(k)],
(D3) via k——k and used the quantum-classical correspon- (E4
dence: F(t k) — F( t k)—lh,BF(t) Taking the continuous w|2(k) U(z)
limit of k and replacing the potential with the dressed poten- ~ ®,(k,0)= ——=—y .
tial, we arrive at the final expression (kvo) S(k)

R(t,,t)=Np?(Bh)?a®—— The second frequency momenf (k) can be calculated from
the pair distribution functiog(r) and the pair potential(r)

as follows:

4
(2m)?

xf dk T o(K) To(K) To(K) d5F (t5,K) 0,

2 2
X[F(ti+t, KF(t2, k)], (D4) wi(k)=3k%vg+ % d3rg(r)(;—l'2](1—coskz). (E5
which is the same as Eq3.5 derived with the classical z
Poisson bracket and similar to the MCT result published by
Denny and Reichmarf. An empirical prescription for the relaxation timg(k) is

given by Akcasu and Daniels %s

APPENDIX E: HYDRODYNAMIC EVALUATION OF THE
INTERMEDIATE SCATTERING FUNCTION K2
1+ — 2

-1

2
Here we summarize the molecular hydrodynamic ex- |(k) 3[C (k) —cg(k) —vglk?+
pressions we used to evaluate the fifth-order signal, all the
derivations can be found in Ref. 60. From the full hydrody- T P P Hap
namic description, we obtain a set of coupled equations that X{ le(o) 3 [c%(0) = co(0) —volk™, (E6)
take into account of the effects of temperature fluctuations,

J . . . . wherek;=1.5A, c..(k) and co(k) are the high-frequency
. | — 2 _ 2:1 2 | — o0 0
atjk(t) ke (1) = vk (1) FiknaciT(1), and the low-frequency sound velocities, respectively,

2

K
c, Tkm——w 1) nkm— ST, (ED
& cO<k):vo\/%k),

J .
Enk(t)_”qk(t),

1/2
wherejL(t) is the longitudinal currentn,(t) is the local C..(k)= ( T\/I[4G (k) + K., (k)” , (E7)
number densityT(t) is the local temperaturey is the ther-

mal expansion coefficienty=C,/C, is the specific heat ra-

tio, C, andC, are the specific heat at constant pressure and 1 c2(0)—c2(0)

at constant volume, respectively, is the kinematic longitu- ©) =
dinal viscosity coefficientet is the isothermal sound veloc- Tl
ity, and « is the thermal conductivity coefficient. The gener-

alized Langevin equation for the longitudinal currentThis empirical form ofr(k) combines the elastic solid be-
correlation function is havior at high frequency and the liquid behavior at low fre-
t guency, while still retaining the property ef(0) as a Max-
Sk =— Jodt' Ki(kt=t")J(kt"), (E2  well relaxation time. Substituting this form @€, (k,t) into
the GLE for the longitudinal current correlation function
whereK,(k,t) is the memory function fod,(k,t), given by  J,(k,t), we obtain

s+ g
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I (Koa) = p2 w’k’D’ (K, w) E8
k) o 2 (ko) 7TS(K) + wk?D" (K, @) ]2+ [ wk?D (K@) 2" €9
|
where The Lennard-Jones system of Xe liquid is equilibrated
5 ) under reduced temperatufié* =0.76 and reduced density
D' (k,w)= (y~Dvp  Dqk p*=0.85 with parameters=236.6g andoc=3.88 A. Under
’ S(k)  w®+(D1k?)? these parameters, the time unit for liquid Xe ds/m/e
(k) =2.7ps. The specific heat ratio is 1.87, the shear viscosity
+ (k0 g and bulk viscosity in reduced units arg'=24.0 and %
1+ w7(k) =17.3, respectively, which are taken from simulations under
(y—1)02 (E9 similar conditions in Ref. 65. To simplify the calculation,
D"(K,w)=— Y)Y 5 @ s D1~0 is assumed, i.e., the thermal diffusivity is neglected as
S(k) @+ (D1k?) an approximation. To proceed, the second frequency moment
lez(k) w,z(k), the wave-number-dependent shear mod@ugk),
— (K0 ————. and the bulk moduluX..(k) are calculated with EQSED5)

and(E10); the wave-number-dependent relaxation tif(g)

To proceed with the numerical calculation, we need to knowS computed with Eq(EE); the longitudinal current correla-
the details of the wave-number-dependent shear moduldion functionJ(k, ) in Eq. (E8) is calculated with the pa-

G.(k) and the wave-number-dependent bulk modulug@meters obtained in the previous steps. Then, the density
K..(K), which are related to the correlation functions of the correlation functiorS(k,w) can be calculated in the Fourier

stress tensor elements by
G..(k)=pB(a% ),
8 (E10
KoK= 3 [(oTai) + (o 0P].

space, and its inverse Fourier transform of HEgl4) gives
the intermediate scattering functiéi(k,t).
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