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The microscopic interactions and dynamics probed by third-order Raman spectroscopy in an atomic
liquid (Xe) are explored within the Drude oscillator model, both numerically and analytically.
Many-body polarization effects reduce the coefficient of the effective dipole—induced-dipole tensor.
The isotropic part of the effective dipole—induced-dipole tensor arises primarily from the three-body
interaction and is short-ranged. With an isotropic sample, the Raman response in any polarization
geometry can be rigorously decomposed into an isotropic component and an anisotropic component,
which primarily measure the strength and evolution of the two-body and three-body interactions,
respectively. An interesting result from our analysis is the derivation of the standard mode-coupling
equation for the intermediate scattering function and the mode-coupling equation for the bilinear
density mode using Gaussian factorization of the memory kernel and the mean spherical
approximation of the direct correlation function. The initial moment expansion along with the
Gaussian factorization scheme allows us to predict the temporal profile of the Raman response
function with reasonable accuracy. Furthermore, the Kirkwood superposition scheme approximates
the Raman correlation function with pair distribution functions and time correlation functions and
allows us to predict the ratio of the pair, three-particle, and four-particle contributions. These results,
though obtained for Xe, are generally helpful in interpreting third-order spectroscopies of other
liquids. © 2002 American Institute of Physics. [DOI: 10.1063/1.1445745

I. INTRODUCTION a clean system where the dynamic response is due to the
Advance in multiple-pulse Raman and infrared tech-interparticle motion and is not contaminated by the reorien-

niques has provided new tools for exploring molecule inter-tatior_]al motion of individual particles. Ip addition, our cal-
actions in chemical and biological systems. The theory ofulations of the Raman response function of Xe reveal gen-
frequency-domain Raman experiments has a long traditiorfr@  features shared by molecular liquids. These
and its applications to condensed phase systems are deensiderations motivate our detailed analysis of third-order
scribed by Berne and Pecordnterest in liquids and mix- Raman spectroscopy of Xe in this paper and fifth-order Ra-
tures has recently been revived by time-resolved fifth-ordefMan spectroscopy of Xe in the companion paper. Some back-
Raman and vibrational spectroscopies, which hold the pronground and related work are summarized as follows.

ise of discriminating the inhomogeneous distribution of co- (1) Many-body polarization. Since the polarizability of
herent motions against the homogeneous dynamics resultingolated atoms is isotropic, the scattering is of purely Ray-
from mode—mode couplings’ In a third-order Raman ex- leigh intensity and is not depolarized. In 1968, McTaugue
periment, a pair of ultrafast light pulses excite a vibrationaland Birnbaum observed so-called collision-induced light
mode at time zero, and the Raman scattering is detected s¢attering in dense rare gases Kr and®Early experimen-
time t. The third-order nonlinear spectrum is equivalent total and theoretical studies of depolarized light scattering sig-
the Fourier transform of the linear absorption spectfuma  nal from spherical molecules were summarized by Gefart.
fifth-order Raman experiment, a pair of ultrafast light pulsesin the presence of binary collisions, two atoms form a tran-
excite a vibrational mode at time zero, another pair of ul-sient diatomic molecule bond, which results in a vibrational
trafast light pulses perturb the motion at time thus ampli-  mode with an induced diatomic polarizabil#yThe Raman
fying the in-phase motion and suppressing the out-of-phassignal in rare gases arises from many-body induced polariza-
motion, and the Raman scattering is detected at time tion effects. The effects of dipole—induced-dipole interac-
+t,. Mukamel, Loring, Tanimura, and Cho were the firsttions on dielectric response and orientational relaxation of
theorists to explore the use of nonlinear Raman spectroscolar fluids were studied by Deutch, Wertheim, and Wolynes,
for the study of the coherence and coupling in condensegmong other theoristS=3? Similar many-body polarization
phase systenfs:** Though first fifth-order Raman experi- effects in light scattering of molecular liquids were also ex-
ments have been successfully demonstrated in molecular |i(b-|0red by Ladanyi and Keyes, Madden, Tildesley, Steele,
uids and mixtures{~** nonlinear Raman experiments can g4c33-36|n Sec. I, we model many-body polarization effects
also be performed in atomic liquids. Atomic liquids provide ith the Drude oscillator model, which consists of oscilla-
tory dipoles interacting with the dipole—induced-dipole
aElectronic mail: jianshu@mit.edu (DID) tensor’~#° The many-body effect on individual
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Drude oscillators leads to an enhanced value for the atomitotal polarizability in liquids. Early theoretical studies of the
polarizability, i.e., the renormalized polarizability. This en- depolarized light scattering spectrum were carried out by
hanced polarizability has been derived within the mearMadden and Ladd, Litovitz, and Montro$e® and were
spherical approximation by Pratt and, independently, bysummarized in Ref. 54. The instantaneous normal mode
Hoye and Stelf>*?In order to calculate the effects of many- (INM) method provides a new approach to analyzing liquid
body polarization on Raman spectra, we use a simple reand solvation dynamic®~%° In particular, Fourkas, Keyes,
summation scheme in Appendix B to derive the renormalizedind their co-workers have employed the INM method to ana-
atomic polarizability and, more importantly, the renormal- lyze the third-order and fifth-order liquid specta®?Direct
ized DID interaction tensor. Hence, we are able to reduce theumerical calculations of the temporal profile of third-order
many-body polarization to the effective one-body polariz-and fifth-order response functions were carried out by Ma
ability and two-body dipole—dipole tensor in E@.11). and Stratt on liquid X& and by Jansen, Snijders, and Dup-
(2) Polarization selectivity. Multiple pulse photoexcita- pen on C$.%* Various theoretical treatments were introduced
tion experiments are often carried out with different se-to calculate spectral line-broadenings and solvation
quences of light polarization so that scattering intensities adynamics>"?Motivated by these works, in Sec. IV, we ap-
different polarization geometries can be used to probe orierly dynamic decomposition to the evaluation of the correla-
tational dynamics. A well-known example is the third-ordertion function of the total polarizability. The initial behavior
off-resonant Raman experiment, where the anisotropic con®f the response function is fit to a Gaussian function with the
ponent of the total polarizability, measured with the depolarfirst few moments, and is extended to longer times by Gauss-
ization geometry, can be well-separated from the isotropidan factorization of the four-point correlation function into a
component of the total polarizability, observed along theproduct of linear hydrodynamic mod&in Sec. V, the cor-
magic anglé:**** Polarization selectivity is usually exam- relation function for the total polarizability tensor is sepa-
ined within the orientational diffusion model, which is ad- rated into the two-particle, three-particle, and four-particle
equate for molecular ||qu|ds with |arge rotational friction. contributions. These contributions are evaluated with the
Similar results can be obtained with other approaches includ?elp of Kirkwood superposition and are approximated in
ing the instantaneous normal mode method. However, foterms of two-body equilibrium averages and two-body time-
atomic liquids, orientational relaxation is associated with thecorrelation functions. We analyze the relative contributions
transient interparticle bond but not with single-particle reori-from these terms and confirm the predicted ratio of the three
entational motions, rendering the diffusion model inappli-contributions in the long-time limt’
cable. Thus, in Sec. Ill, we formulate a general treatment of ~ The paper is organized according to the above-posed is-
polarization selectivity using the isotropic symmetry of the SU€s, with supporting derivations presented in the appendi-
sample and the tensor property of the dipole—dipole interacces. Our analysis is verified by numerical simulations, with
tion. the details described in Appendix C, and the numerical re-
(3) Gaussian factorization and mode coupling equa- sults are presented in relevant sections.
tions. Dynamic decomposition schemes have been widely
used in the theoretical studies of solvation dynamics, energl}- PRUDE OSCILLATOR MODEL AND ITS
relaxation and dephasing, charge transfer*&tt One such ENORMALIZATION
scheme invokes the Gaussian factorization of density fluc-  The relevant microscopic information in the third-order
tuations at different times. The equilibrium distribution bro- Raman experiment is described by the linear response func-
ken by the factorization approximation is partly recon-tjon
structed by incorporating the liquid distribution function. In .
the spirit of the mean spherical approximation, the direct pair R(t)=—({I(t),11(0)}) = — BC(V), 21
correlation function is approximated by the product of thewhere B is the inverse temperaturd,} is the Poisson
pair correlation function and the interaction potential. Thepracket, andC(t) =(II(t)II(0)) is the time correlation func-
Gaussian factorization scheme is shown in Sec. IV C to retion. The total Raman polarizability of the samdk is a
cover the standard mode coupling the@CT) equation for  second-rank tensor in three-dimensional Cartesian space, and
the intermediate scattering function derived by tf80 the response function and the correlation function are fourth-
et al.**=>! Further, in Sec. IVD, we derive mode-coupling rank tensors in three-dimensional Cartesian space. The tensor
equations for four-point time correlation functions in a simi- elements describe Raman intensity profiles in various polar-
lar way and demonstrate that the resulting mode couplingzation geometries.
equation is consistent with the hydrodynamic limit of the  To calculate the total polarizability of liquid Xe, we in-
four-point correlation function. This justifies the simple troduce the Drude oscillator model, which consists of oscil-
Gaussian evaluation of the third-order Raman correlatiotating dipoles interacting through the second-order dipole
function in the long-time limit. tensorT. The mean square fluctuation of an isolated Drude
(4) Temporal profile of the response function. In general,  dipole isa/B with « the atomic polarizability. In this model,
linear absorption spectra in liquids consist of a featurelesshe total polarizability tensor of a fluid composedMiden-
peak broadened by various liquid modes. The third-order Ratical spherical Drude oscillators is
man spectrum is no exception in that its response function N
e_xh|b|ts a simple pegk glong the time axis. This _seemmgly H(t)zz a[l—aT(t)]fjl, 2.2
simple temporal profile is the result of the evolution of the 7]
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Three-body interaction T(r)
Aa=a®), TijTJ—kaspJ dr g(r)Tr——dr
i

(r)
0 =2a3pf gr6 dr, (2.6
.’ which is an average over the pair distribution functgqm).
7 \ Wheni # j, this term contributes to the off-diagonal element
,." '\‘ and adds to the dipole—dipole interaction
- \

AT= apf drgg(ry,ra,r3)/g(rid T(rinT(rsp)

@ T+ AT ~ATp(rp)D(F1) +AT(rpol, (2.7)
where the anisotropic componetiT, and the isotropic

FIG. 1. Schematic of the three-body polarization effect. The solid line rep- tAT d licitly in A dix A
resents the dipole—dipole interaction between particles 1 and 2 with a fixeGOMPONEN | aré expressed explicitly in Appendix A.

separation, the dashed lines represent intermediate interactions being inteombining Egs(2.6) and (2.7), we arrive at a new form of
grated. the total Raman polarizability,

=2 (a+Aa)l+ Y, a(T;j+AT)a, (2.9

where the summation is carried over all pairs of particles, I .
and II is a function of the evolving liquid configuration which incorporates the three-body dipole—dipole interaction.
through the coordinate dependencdip(t)=T[r;;(t)]. The To leading order, two atoms form a transient molecular bond
dipole—dipole interaction tensor is defined as through the dipole—induced-dipole interaction and give rise

to the anisotropic DID polarizability, whereas the three-body
3r,r,— 5,wf2 B A polarization effect leads to the isotropic DID polarizability

r5 - r_3DW(r)’ (23 and additional atomic polarizability.

In Appendix A, we explicitly evaluatd Ty and AT, in
where u and v denote the three Cartesian coordinatets  Eq. (2.9) for a dilute hard-sphere system, where the pairwise
the vector connecting a pair of liquid particles; r/r is the  correlation function is a step functiag(r)=0 for r<a and
corresponding unit vector, arid is the traceless dimension- g(r)=1 for r=a, with a the hard-sphere diameter. After a
less tensoD(r) =3t —I. lengthy calculation in Appendix A, we obtain

A key issue in studying the polarizability spectrum of
liquids is the induced many-body polarization. The many-

Tu(r)=

0, r=2a
2

body induced polarizability in atomic liquids is expanded as  AT,(r)=4 apw|r r , (2.9
an infinite expansion in terms df, Bad 5—2 54‘4 , r<2a

where the interaction vanishesrat2a. Thus, the effective
isotropic DID interaction is a short-range interaction, and the
corresponding correlation function decays relatively fast ini-
where the repeated indices are summed implicitly. The firstially. Similarly, we have from Appendix A

term in Eq.(2.4) is a constant for atomic liquids and hence

HZE al5ij+afTija+aTikaTkja+---, (24)
1]

will be ignored in dynamic calculations. The leading order — AL?’, r=2a
truncation ofII results in the pair interaction approximation _ 3r
ATp(r)= , (2.10
D 2 3
Tap [ 6aTr—r “2a
=]
0~ a+2 aTja, 2.5 26| &

I . which is also a stepwise function. The long-range effect of
where the first term is a constant and the second term corrdhis term is to reduce the effective dipole—dipole interaction
sponds to the first-order dipole—induced-dipole interactiorstrength by —4map/3, which is independent of the hard-
(DID). BecauseT is a traceless tensor, the pair interaction insphere radius. These results will change as the liquid density
Eg. (2.5 is the anisotropic part of the DID polarizability increases but remain a good guide for understanding three-
with a time-dependent magnitude. The lack of the isotropidody polarization effects.
polarizability component in the pair interaction fails to ex- Following the same spirit, the higher-order many-body
plain the Raman intensity observed at the magic angle.  polarization terms in Eq(2.4) can modify the atomic polar-

To account for the isotropic DID polarizability, it is nec- izability and pair interaction. In Appendix B, the expansion
essary to include the next term in the expansion of (Ed), is explicitly re-summed to obtain a set of self-consistent
a3Tika]-, as shown in Fig. 1. Whei=j, this term contrib- equations for the renormalized polarizability and dipole
utes to the diagonal element and adds to the atomic polarizensor T. The renormalized dipole propagator has both a
ability traceless anisotropic part and a diagonal isotropic part
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FIG. 3. A comparison of the exact pair correlation from the simulation and

FIG. 2. A plot of the renormalization anisotropic and isotropic radial func- 5 . . . - .
P P P the WCA approximation used in the renormalization equation for Fig. 2.

tions hp(r) and h(r) calculated from the renormalization equation de-
scribed in Appendix C and from the three-body terms with a step function

for the pair correlation function. The Xe liquid is at reduced temperature. . . . .
T*=0.75 and reduced densip —0.85. identical in range of concern. Thus, the effective pair DID

tensor can be accurately obtained by solving the renormal-
ization equation with the WCA pair correlation function as
the input.
=h,1+hpD where the explicit expressions fbg and forh, To examine temperature and density effects, we calcu-
are derived in Appendix B. The introduction of the renormal-late the two effective DID tensor componertig(r) and
ized quantities reduces the total polarizability tensor to h,(r) for several densities in Fig. 4 and for several tempera-
tures in Fig. 5. The solution follows the same procedure as

N~ o+, aTja, (2.1)  described for Fig. 2. The contributions of the many-body
: 17 effect in Figs. 4 and 5 increase with the liquid density and
which now serves as the basis for further calculations. ~ decrease with the liquid temperature. The many-body effects

Since the measured quantities are the correlation funccan be observed from the positions and amplitudes of the
tion and the response function, taking the thermal average o@scillations ofAhp(r) andh(r). Evidently, the density de-
the level of the polarizability tensor ignores the dynamicpendence of the effective DID tensor is strong, whereas the
effect of the integrated atoms in the expansion. In derivingemperature dependence is relatively weak. Since the in-
Egs.(2.8) and(2.11), the average of the dynamic trajectories crease in thermal velocity with temperature will be a domi-
of the integrated atoms in the expansion reduces the possibiant effect on liquid dynamics, the temperature dependence
error, and we believe that the three-body averaging an@f the effective DID tensor does not necessarily correspond
renormalization procedure are reliable in this study. to the temperature dependence of the Raman correlation

An example. As the first example, we explicitly calculate function.
the effective pair Raman polarizability for liquid Xe, both
from the analytical solutions in Appendix B and from the !l POLARIZATION SELECTIVITY

three-body term in Appendix A. The pair potential for Xe  The response functioR(t) is known as the third-order
atoms is the Lennard-Jones potential with parameters givepolarization, whose symmetry properties are well-studied. In
in Appendix C, and thermal state of the Xe liquid is taken asan isotropic sample, twenty-one tensor elements are nonzero
temperatureT*=0.75 and densityp*=0.85, in reduced and only three elements are distinct for the third-order Ra-
units. The three-body corrections—Ed2.9) and (2.10—  man experimentR,,,; , Ryzyy» @andRyyz=Ryyy,). The rota-

are evaluated for a step function with an optimal radius takefiional symmetryR,,,,= Ryzyy T Rayzy+ Ry, l€aves two in-
from the WCA procedure. The resultitig(r) andhp(r) are  dependent elements, which will be calculated in this paper.

plotted in Fig. 2 and are shown to predict the approximate  Within the renormalized DID approximation, the corre-
magnitudes of the many-body effects but fail to reproduceation function is expressed as

the structures seen in renormalized results. This difference is

mainly dlue to the short—rangg order in the I|qg|d Xe struc- C(t)=<<2 ETij(t)E)(E ETKI(O)E)>

ture, which is not captured in the step function. We next ij ki

apply the WCA correlation function and evaluate the self- o o

consistent equation derived in Appendix B. The effecfive :Z“j drj dr’ T(r)P(r,r" ,t)T(r"), (3.1
thus obtained is plotted in Fig. 2 and is compared with the

three-body results. In Fig. 3, the WCA pair correlation func-whereP(r,r’,t) is the reduced joint probability distribution
tion is compared with the result from molecular dynamicsfunction (PDF) for finding a pair of liquid particles with
(MD) simulation, and the two curves are found to be nearlyrelative displacement at time zero and a pair of liquid par-
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FIG. 4. Aplot of the renormalized anisotropic and isotropic radial functions
(& Ahp(r) and(b) h,(r), for a set of densities at a fixed temperature.

ticles with relative displacement at timet. For an isotropic
homogeneous liquid, the joint probability distribution func-
tion is expanded as

> YD) P (L, OYFE ()

Imm’

P(r,r' t)= !
(rr={z-
1 - ! * (ot
== % Yim(F)P(r,r YR, (3.2
whereY),, is the spherical harmonic function. The symmetry
of isotropic liquids removes therdependence in the radial

part, i.e.,Pypm =P8 m . Thus, substituting Eq(3.2) into
Eqg. (3.1), we have

1)\_ “ A
(E a“%: “ Y2m(r)D(r)dr}

f ;m(F’)D(F’)dF’}

C(t)

X

X

fdrfdr’rZhD(r)Pz(r,r’,t)(f')th(r’)}

1\
=
™

J’__
4

fvoo(m(f)df}
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FIG. 5. A plot of the renormalized anisotropic and isotropic radial functions
(& Ahp(r) and(b) h,(r), for a set of temperatures at a fixed density.

xf YOO(F’)I(F’)dF’}

X

fdrf dr’ r2h,(r)Po(r,r',t)(r")2h,(r") |,
(3.3

where the first term is the contribution from the isotropic
DID polarizability, the second term is the contribution from
the anisotropic DID polarizability, and the cross term van-
ishes due to the tensor symmetry. Both terms can be factor-
ized as an angular part, which depends on the polarization
geometry, and a time-dependent radial part, which depends
on the dipole—dipole interaction potential. From E8g.3),
three independent components of the third-order polarization
tensor can be evaluated, giving

szzz(t) = éCanisc(t) + Ciso(t)n

- %Canisc(t) + Ciso(t)a

Coayy(D) (3.9

Czyzy(t) = %Canis&t) )
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FIG. 6. A plot of the three elements of the third-order Raman correlation - .
function obtained from numerical simulations of liquid Xe. The total polar- FIG. 7. A plot of _the three tensor elements in Fig. 6 scaled according to the
izability tensorll is calculated with the pair interaction approximation in a0 4:—2:3 as discussed in Sec. lll. The scaled curves all fall on the same
Eq. (2.5. The simulation box consists of 108 Xe particles interacting with master curve.
the Lennard-Jones potential at the reduced temperaturé 0.75 and the
reduced density of* =0.85.

orous for any traceless tensor, because the first ratio is im-
) _ posed by the zero-trace identi®,,,+ C,,y,+ C,«=0 and
where the symmetry relatioB;;,,= Cyyzy+ Coyyz+ Cazyy IS the second ratio is imposed by the rotational symmetry. As
rigorously satisfied. Here, the anisotropic component obyne |iquid density increases, these ratios are contaminated by
tained in the depolarized Raman intensity is given by the contribution from the isotropic part of the DID polariz-
Canisdt) ability and are no longer constant. The intensity at the magic
angle is due to the isotropic part and has a different time-
_— dependence from the anisotropic part.
e <% hD[r”(O)]PZ[r”(O)rk'(t)]% hD[rk'(t)]>’ The above-given analysis is independent of the type of
liquids, the form of interaction potentials, or the description
(3.5 of ! . .
particle motions. In general, the symmetry of the polariz
whereas the isotropic component obtained from the Ramagbility tensorII completely characterizes the decomposition
intensity at the magic angle is given by of the Raman spectrum into independent polarization com-
ponents. Since the third-order polarization has two indepen-
Ciso(t)=54< E h|[rij(0)]2 h,[rk|(t)]>, (3.6 dent components, we truncate or renormalize the many-body
' . polarization to the pair interaction form with a second-rank
whereP, is thelth order Legendre polynomial. The polariza- tensor. To isolate more independent tensor components, we
tion dependence in the above-given expressions is similar tbave to resort to two-dimensional experiments, which can be
those derived for the rotational diffusion model or obtainedperformed with more polarization geometries and thus have
from the INM analysis. The essential difference is that for anhigher selectivity(see Paper )
atomic fluid the transient dipole is formed by at least two ~ As a numerical example, we calculated the third-order
atoms. Hence, the anisotropic polarizability is independent oRaman correlation functio@(t) for liquid Xe. The simula-
the liquid density to leading order, and the isotropic polariz-tion details and the molecular model are described in Appen-
able is proportional to the liquid density. dix C. First, we employed the pair interaction approximation
In a dilute sample, the dipole interaction in £§.4) has  of the total polarizability tensoll=>aT «, which yields the
only the anisotropic component, so that the second termanisotropic component of the Raman intensity. Figures 6 and
Ciso(t) can be ignored. As a result, the intensity ratios of the7 show that the three components of the correlation function,
three independent polarization components remain constan€..z;(t), C, (1), and C,y,(t), follow the ratio 4:3:-2
) ) . within computational errors. There, the three tensor elements
Cazz1): Cazyy(1): Cayay () =4: = 233, 37 of liquid Xe were calculated with the full expression for the
which is the same relation obtained for isolated molecules ototal polarizability tensoill in Eq. (2.2), including both the
diffusing molecules. In fact, this relation is general and rig-isotropic and anisotropic DID polarizabilities. As shown in
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Ciso= %[szzz(t) + 2szyy(t)]v
3.8
Caniso: %[szzz(t) - szyy(t) + 2Czyzy(t)]- ( )

As expected, the isotropic component is smaller than the
anisotropic component, with the ratio @is,(0)/Cnisd0)
around 0.1. SINCEs,(0)/Canisd 0)~h?/h3, this ratio is con-
sistent with the estimation of the ratio of the two components
of the effective DID tensoth; /hy, in Sec. Il. In fact, direct
numerical integration of Eqg16) and (17) shows that the
anisotropic respons€iso IS one magnitude larger than the
isotropic respons€s(t), which agrees very well with our
direct simulation of the full dipole—dipole interaction tensor.

IV. MOLECULAR HYDRODYNAMICS CALCULATIONS
A. Initial behavior: Gaussian fitting

The goal of molecular hydrodynamics calculations is to
predict Raman response from equilibrium properties and
other experimental measurements. Given the zero value of
the response function at the initial time and the exponential
decay at long times, the response has a maximal in between.

FIG. 8. A plot of the three elements of the third-order Raman correlation] N€ maximal in the response function is mainly due to the

function for simulated liquid Xe, wherH is the full polarizability tensor in

Eqg. (2.2. The thermodynamic conditions and simulation details are th
same as in Fig. 6.

Fig. 8, C,;,(t) and C,,,(t) are modified by an isotropic
component, and the absolute intensity@jf,,, increases as

we include all the higher order DID interactions. In Fig. 9,

the anisotropic componefit,,is{t) and the isotropic compo-
nent Cis(t) are decomposed frort,,,,(t), C,y,(t), and
Chy(l) as

initial behavior and thereby can be predicted based on mo-
®ment expansion. The Taylor expansion of the time correla-
tion functionC(t)==,(—1)"c,,t2"/(2n)! is defined by the
even moment,,=(II™MII™M). We assume a Gaussian func-
tional form for the response function

t2
- ?’E> : 4.7)
where the two coefficients can be fitted to the second and
fourth moments=c, and y=c,/(3c,). Hence, the maxi-
mal of the response function occurstat= 1/y/\.

For simplicity, we evaluate the two moments for the

x(t)=—ct exp{

0.0040 simple case of the two-body interaction with the bare
——C_© dipole—dipole interactionﬂzainjTij. With only the an-
——- C.(D) isotropic contribution, the different polarizations maintain a
\ fixed ratio, so that we need only the,,,, component. The
0.0030 [\ first moment is given by
\
\ g(r)
\ czzé) (9,T2,0,T,)ve=1208 f —5dr (4.2)
\
00020 | A .
5 \ and the fourth moment is given by
)
£ \
£ \
2 \ c4=% ([0,9,Tv,,+d,TF,/m]?)
< o000} O\
\
\\\ =32 V¥3,0,T9,9,T)+v5(,0,0F), (4.3
\\\\\ mv
0.0000 bttt WhereQiZj =¢g;9;U/mis the curvature andéz kgT/m. These
moments are evaluated explicitly in Appendix D, and the
predicted temporal profile is compared favorably with nu-
merical simulations in Fig. 10.
~0.0010 We notice that the integrated Raman intensity is given by
0.0 Ot;S Lo the initial value of the correlation function, i.e.,

FIG. 9. Aplot of the anisotropic and the isotropic contributions decomposed
from C,.,,(t), Copyy(t), andC,y, (t) in Fig. 8.

f:R(t)dt=

—BC(0),

(4.9
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0.020 T T Gaussian factorization scheme
20 — R0 r ro 2 t 3
AN —— ng;ssian fit : t : 2 t 3
A\ —_—
0.015 | / ANy —-— Gaussian memory fit \ :> g\ t /g + g\><'/g
[/ i\ - 5
\ r Iy 1 4 1 t 4
= FIG. 11. Schematic of the Gaussian factorization of the four-point density
Ty 000 f correlation function. The evolution of joint liquid densitiesratandr, is
~ factorized into the product of the propagation of single particle density. The
equilibrium condition of the liquid densities & andr, at time zero is
imposed by the pair correlation function, and the same equilibrium condition
0.005 is imposed for the two liquid densities at tinie
0.000 i equilibrium by incorporating equilibrium distribution func-
0,00 0.10 020 030 0.40 050 tions for the initial and final configurations. Formally, our
L (reduced unit) Gaussian scheme can be expressed as
FIG. 10. A comparison of the anisotropic componény,,(t) from mol- lim Tt T’ o))=a(T I')HII G(r.r'.t
ecule dynamics simulation, from the Gaussian approximation of the re- Hm(P( Dp(I,0) =9 )My e ep G ),
sponse function, and from the Gaussian fitting of the memory function. (4.9

wherel” andI" represent the initial and final configurations,
respectively, and andr’ are coordinates in the initial and
final configurations. The Gaussian factorization scheme can
e justified based on the central limit theorem and is appli-
cable to long-time large-displacement motions in the hydro-
dynamic limit. This simple scheme has appeared in literature
in various forms and contexts. For example, in Appendix E,

. t the force correlation function is decomposed into density
C)=- fOM(T)C(t_T)dT’ (45 correlation functions, and the resulting expression has been

used by Banchi, Cherayil, Fayer, and their co-workers for
whereM(t) is the memory kernel. The response function cancaiculating vibrational relaxation rafé*®

whereC(0)=(IIII) can be easily evaluated. Thus, the inte-
grated intensity imposes an additional constraint on the fu
tional fitting of the response function.

Another fitting is to start with the generalized Langevin
equation(GLE) for the total polarizability tensor

be solved in Laplace space, giving We now apply the Gaussian factorization scheme to cal-
R M (s) culate the third-order Raman response function. To begin, the
Xx(s)=—pB[sC(s)—C(0)]=BC(0) Tl\/m (4.6 polarizability tensor is written in Fourier space as
S S
—

_—_ — .
which, via numerical inversion of Laplace transform, gives H=Z aTjja= VE 2 T(k)e'k('i‘rﬂ
the time dependence of the response functigmh). The 17 k17
memory kernel can be fitted to a Gaussian function a2 s —
=—2, T(k)p(k)p*(k), 4.1

M(t):CM exq_’}/Mtz), (47) vV . ( )p( )P ( ) ( @
where the coefficients are related to the initial moments ofvhere p(k) ==; exp(—ikr;) is the number density. In Eq.
the correlation function ascy=c,/cy and yy=(c,4 (4.10, the term withi=j is excluded by setting the dipole
—c§/c0). The Laplace transform of the Gaussian memoryinteraction to zero whenever the internuclear distance van-
kernel is ishes, T;_;=0. Substituting this expression into the correla-

2 tion function of the total polarizability, we have
(s)= Mo \/Eex s s
2 a da 2Ja

, (4.8 1 _ _

C<t>=¢a4<§ T(k)p(k,t)p* (k,t)
which is used in Eq(4.6) to yield the response function. As
seen from Fig. 10, both Gaussian fitting procedures predict
the peak in the response function with reasonable accuracy, X
but fail to reproduce the long-time slow decay. Thus, we
conclude the peak response of the Raman signal is due to the 1 -
inertial motion in liquids. ’~V2Npa4WJ dkT4(k) T4(k)F?(k,1), (4.1

B. Direct Gaussian factorization

—1+erf

; ?(k')p(k',O)p*(k',O)>

whereF(k,t) is the intermediate scattering function. In Eq.

In the hydrodynamic limit, correlation functions can be (4.11), T,(r)=T(r)g(r) is the dipole interaction operator
expressed in terms of collective hydrodynamic modes in lig-dressed by the pairwise distribution function. The essential
uids. A simple way to establish this relationship is the Gaussstep in the derivation of Eq4.11) is the Gaussian factoriza-
ian factorization scheme, which treats liquid densities at diftion of the density fluctuation, illustrated in Fig. 11 and ex-
ferent times as Gaussian variables and maintains thermalicitly expressed as
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(p(r1,0)p(ry,1)|p(r3,0)p(rs,0))~g(ri—r,)g(rs—rq) whereQ=1—P is the orthogonal projection operata_t,_is
the Liouville operator, and the denominator ipp)
X[G(r1=r3,1)G(ra—ry,t) =Nuv3k?. The double time-derivative of the density operator
+G(r,—r3,0)G(r— 4,01, (4.12 is defined as the Fourier transform

where the equilibrium term does not contribute at long times. p(K)=
Evaluation of the Gaussian factorization expression requires
numerical simulations or viscoelastic approximations for K
F(k,t).”*" > Balucani and Zoppi have discussed F4.11) = i [~ V(rij)e
extensively and have found reasonable agreement with the iz m
experimental depolarized data. 1 kq

Since the Fourier transformation preserves the order of => = —¢(K)[p(q)p(k—q)—NI, (4.16
the tensor, the intensity ratio of different polarizability geom- g vV.m

etries from the anisotropic contribution remains constantyhere (k) is the Fourier transform of the interaction poten-
and the intensity ratio of different polarizability configura- i3] and the higher ordek? term is ignored. The application

tions from the isotropic contribution remains constant. Thusyf the Gaussian factorization scheme to the relevant part of
the polarization dependence predicted by the hydrodynamig, memory kernel leads to

models is consistent with the previous analysis of polariza-

tion selectivity in Sec. Il Ot 1 , ,
The initial behavior is not included in E¢4.11) because (ple'?p)= VZm2 zq: E (ka)(ka") (@) ¢(q’)

the Gaussian factorization is not applicable in the short time 4 ,

regime. The structure of the Raman response function is X(p(q)p(k—a)[e'*|p(q")p(k—q"))

dominated by the features at relatively short time, so the

initial value corrections to the direct Gaussian factorization ~

can improve the accuracy of the scheme. To do this, we first

Y kR
> lkvie"‘ri) ~EI |F'e"<rI

N ? 2 2
W) 2 [(ka)*¢g(a)

derive the GLE, which incorporates the initial behavior XF(q,t)F(k—q,t)+ (kq) (k2= kq)
through the frequency term, and apply Gaussian factorization ' '
to the memory function instead of the correlation function. X p(Q)gpg(k—aq)F(q,t)

Interestingly, this scheme is shown in the following to give B
the mode-coupling equation for the intermediate scattering xF(k=aq.u], .19
function and the bilinear density fluctuation. Then, thewhere¢q(r)=¢(r)g(r) is the dressed interaction potential.

simple Gaussian factorization in EG+.11) is shown to be Linearizing the Percus—Yevick closure leads to the following
the hydrodynamic limit of the mode-coupling equation for approximation:

p(k)p(—k).
c(r)=(1—e**")g(r)~—B(r)g(r), (4.18
wherec(r) is the direct solute—solvent correlation function.
C. Mode coupling equation for the intermediate Replacing—B¢(r)g(r) with the direct correlation function
scattering function c(r) follows the same spirit as the mean spherical approxi-

mation. Further, we take the continuous limitligfand sym-
thetrize the integrand. The resulting expression for the
memory kernel is written as

We now demonstrate that the standard mode couplin
equation for the intermediate scattering functibifk,t)
=(p(k,t)|p(k,0)) can be easily derived with the Gaussian
factorization scheme in combination with the mean spherical pkeT
approximation. The starting point is the generalized Lange- M(K.)=5—> 23 dgF(q,t)F(k—q,t)
vin equation(GLE) with two variableso(k) andp(k), which
leads to a reduced GLE for the density fluctuation X[(ka)e(a)+(k*=ka)c(k—q)]%,  (4.19

. t which is exactly the same expression derived with more
F(k,t)+w2F(k,t)+f M(k,t—7)F(k,7)d7=0. (4.13  complicated mode coupling proceduf&s "6
0 Combined with the mean spherical approximation for

Here, the effective frequency is defined as the direct correlation function, the Gaussian factorization ap-
proach provides a simple and intuitive alternative to the for-

) (p?) k%2 malism of mode coupling theory and helps one understand

® :m: S(k) (414 the underlying assumptions involved in the mode coupling

approximation. Equation4.12) applies to the long-time
with S(k) the structure factor and?=kgT/m the thermal large-displacement motion, but does not recover the equilib-

velocity, and the memory kernel is defined as rium distribution. For low-temperature glasses, where the
. 2 | miQL 5 system is not completely ergodic, Fhe dynamic decomposi-
M (K,t)= (p+wple _ lp+ »°p) 4.15 tion sch(_ar_ne has to be modified to incorporate dynamic het-

' (p?) ' ' erogeneities observed on the experimental time scale.
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Our derivation of the mode-coupling equation for theization to the memory kernel in GLE leads to a simple way
intermediate scattering function is simple but approximateto obtain the mode-coupling equation. Here, we derive the
About the same time as our derivation, a more rigorous treatnode-coupling equation for the bilinear mo@g(k,t) and
ment was obtained by Zaccaredt al.”’ They related the justify the direct Gaussian factorization as its long-time so-
Newtonian equation for the liquid density to the generalizedution.

Langevin equation foF (k,t) as in Eq.(4.13, and then ex- To begin, a three-element basis §gtis defined axQ,
ploited the fluctuation-dissipation theorem to obtain an ex—=p(k)p(—k), Q,=p(K)P(—Kk)+p(—k)P(k), and Qg
plicit expression for the memory kernel instead of the Mori—=P(k)P(—k), whereP (k) is the momentum density func-
Zwanzig form for the memory kernel. Both the randomtion (i.e., the longitudinal curreit P(k)=ZX;P;. exp(kr;),
phase approximation for the direct correlation function andp;, = Pi|2, andk is the unit vector in thé direction. Here, a
the Gaussian factorization for multipoint time correlation simplified hydrodynamic approach is used in constructing
functions were used to arrive at the mode-coupling equatiothe basis set, in which the temperature fluctuation is
for F(k,t). Their derivation justifies the approximation for ignored®2’ Within this basis set, we can write the GLE
the direct correlation function from a dynamic perspectiveusing the Mori projection operator defined &s=(---Q™)
and reveals the self-consistent mean-field nature of the(QQ*) 'Q. A complete mode-coupling description in-
mode-coupling equation foF (k,t). We will explore both  cludes the projection onto differektwave vectors. Follow-
Gaussian factorization and the more rigorous derivation in ang the argument of Keyes and Oppenhéfhthe most im-

future paper. portant contribution arises from the diagonal parts. To
_ _ - _ simplify the calculation, we consider only the diagonal con-

D. Mode-coupling equation for the bilinear density tributions in the derivation of GLE, giving

fluctuation

The Gaussian fitting of the third-order Raman response
function is accurate for relatively short times but decays to

' 0o Q 0
vanishingly small value. Direct Gaussian factorization of the Ql(t) _ 12 Qa(1)
third-order response is valid only in the hydrodynamic re- Qz(t) =i| Q22 0 Q3| Q1)
gime. Now we explore a possible way to combine these two Qs(t) 0 Qg O Qs(t)
limits and obtain the mode-coupling equation of the Raman
igﬁcégznv.riésnsggwn earlier, the Raman correlation function Ky Kio Ky a, F1()
—| Koz Koo Kog|*| Q|+ fa(t) |,
1 — - K31 k32 K33 Q3 f3(t)
C(t)=yza <; T(k)p(k.)p* (k1)
(4.22
x| > T_(k’)p(k’,O)p*(k’,o) where the asteriskr) stands for the time convolution, i.e.,
k' A*B= [} A(t—7)B(7)dr. Using the N-ordering metho&

5 and the Gaussian factorization approximation, these frequen-
~ 22 TIOT(RN(QukDQ1(k0), (420 ~ Clesaregvenas
k

where Q(k,t)=p(k,t)p(—k,t) is the bilinear density Kk 2k 2k Kk

mode, and the correlation between different wave vectors is  Q1,=—, Qu=—=7v, Qoz=—, Qgp=—c77,
' m k m S(k

ignored”® Unlike the linear density mode, there is no hydro- ASk) B(i_z);j)

dynamic equation to describe the bilinear mode. Direct
Gaussian decomposition reduces the four-point correlatiowheres(k) is the static structure factor. In E€R.1), vector

function to f(t) represents the fluctuation force defined &)
oe2 =e(1-PLY(1—-P)Q, matrix K(t) represents the memory
(Qu(k,)Qa(k,0)~NTF=(k,1), (421 kernel, given byK (t) ={(f(t)f*)-(QQ™) . Using the same

which recovers the hydrodynamic expression, @gll. As  approximation for expressing(k), the initial value of the
shown in the early derivation, applying the Gaussian factorfluctuation forcef(0) becomes

0
B0 [ S keagd(@)p(k—a)p(@p(—K)+p(q—K)p(—a)p(K)]/(MV) — 202Q,
f(0) |=—] @ , (4.24)
f5(0)

; k-ae2(a)[p(k—a)p(a)P(—K)+p(q—k) p(— ) P(K) 1/ (MV) — 0EQ,
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where only the linear term & is kept. Following a conven- equations for-(t) and ®(t) are used. In other words, the
tional approach, we replace the operagdt~ "t with the  direct Gaussian factorization of the four-point density corre-
full time propogatore'“t, and then use the fluctuation— lation function is consistent with the long-time solution to
dissipation relation to derive the expression for the memorythe mode-coupling equation in E@.26), thus justifying the
kernel K(t). We apply two approximations in our calcula- hydrodynamic limit of the third-order Raman response func-
tion: the Gaussian factorization, which is assumed to be validion.

for the long-time memory kernel, and the mean spherical

approximation(MSA),”” c(k)~ — B¢4(k), used in the deri- V. PAIR, TRIPLET, AND QUADRUPLET

vation of the mode coupling equation fp(k,t). Thus, the CONTRIBUTIONS

three nonzero elements are given by An alternative to Gaussian factorization is the dynamic

p 1 Kirkwood superposition approximation, which decomposes
Kzz(t)”—‘m(zT)af dqC(k,q)F(k many-body time correlation functions into pair quantities.
The Gaussian factorization scheme is based on liquid densi-
—q,t)F(q,t)F(k,t), ties in space, whereas the dynamic Kirkwood decomposition
is based on particles with specified identities. For example,
Kay(t)= 2p — 1 5 f dq Skinner and co-workers have used the approximation to de-
3S(k)k“B* (2m) velop a %r;%ecular theory for condensed phase
_ spectroscopy*® (see Appendix [ Here, we use a similar
*ClkaFk=a.bF(@n ek, (4.29 approach to evaluate the contributions from two particles
4p 1 (pain), three particlestriplet), and four particlesquadruplex
KadD= 323 (27 ) 9 to third-order Raman correlation function.
X C(k,q)®(k—q,H)D(q,t) D (K,t), A. Two-particle contribution

With the renormalized DID interaction in ER.11), the
time-dependent part of the correlation function can be de-
composed asC(t)=(TI(t)I1(0))=C,(t)+Cs(t) +Cu(t),
where C,,(t) is the n-particle contribution. These terms are

whereC(k,q)=c(q)*(k-a)*+c(q)c(k—q)[k-(k—q)], Fis
the density correlation functior(intermediate scattering
function), F(k,t)={pk(t)p_«(0))/N, and® is the moment
correlation function (logitudinal current correlation func- . ’
tion), ®(k,t)=B(P,(t)P_(0))/Nm. Madden derived a explicitly given as
similar result, but he did not incorporate the dynamics of

_ o AN T (1\T.

mode-coupling effect¥ Equations(4.22 and (4.25 relate Ca(t)=2a ;] Tii(OTi;(0)
the four-point correlation functions to the linear density fluc- _
tuation. Some of the approximations used are not necessary, =2N(N—1)aX(T14(t)T12), (5.9
and a more rigorous derivation of the mode-coupling equa-
tion is presented in a future paper by Wu and Cao. Ca()=4a* D T,(1)T(0)

. . . 3 | L ij jk

In principle, if the frequencies and memory kernels are i#j#k

known, the correlation functions can be solved for a given
set of initial conditions from Eq(4.25. Here, instead of

numerical calculations, we use the mode-coupling equation _
to justify the direct Gaussian factorization expression of the ~ Ca(t)= > | a*Ti;(H)T(0)

=4AN(N=1)(N=2)aX(T1()T,40)), (5.2

four-point density correlation function. We begin by writing 7k
Eq. (4.22 explicitly as =N(N=1)(N=2)(N=3)aX(T1s(t) T240)),
] Tk (5.3
Q1(1)=i—Qx(1), . . .
m where the total number of interaction pairs adds up to
_ 2KB oK N2(N—1)2.
Q,(t) =i le(tH—i EQ3(t)_ Ko Qo+ fo(1), For simplicity, we first calculate the two-particle contri-
(4.26 bution to the time-correlation function of the total polariz-
' ability
- . 2kB _
Qa(t) =i sz(t)—K31*Q1—K33*Q3(t)+f3(t)- Cz(t)IZE“f dflf dfzf drif dr) T(rop)
which vyields the first-, second-, and third-order differential b T
¢ X Po(r1.12,14.15 DT (), (5.4

equations for{Q4(t)Q4(0)). Direct Gaussian factorization
of the three basis-set elements vyieldQ,(0)Q,(t))  wherePy is the joint PDF for finding two particles a and
~N?F2(t), (Q,(0)Q,(t))~2N2F(t)®(t), (Q3(0)Qs(t))  r, initially and then the same particlesrdtandr; at a later
~N2d(t)d(t), and cross terms. These approximate relatimet. The two sets of coordinates are transformed into rela-
tions can be shown to satisfy the first-order and second-orddive coordinates =r,—r, andr’=r;—r, and the center of
time differential equations exactly, and the third-order timemass coordinates, = (r,+r,)/2 andr_=(r;+r5;)/2, so that
differential equation approximately, when the mode-couplingPy= P (r¢,r¢,t)Pre(r,r’,t). It is implied here that the
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center-of-mass motion is decoupled from the relative motion Three-particle contribution

so that the joint PDF is a function of relative coordinates
only. ConsequentlyC,(t) becomes

cz(t)=234NJ er dr’ T(r)P,o(r,r' ,OT(r")

=2§4pr drf dr’T_(r)g(r)G(r,r’,t)?(r’),

(5.9

which is identical to Eq(5.4) with Py(t) =2NP(t). In Eq. ) o - I
5.5), the joint probability of the relative coordinate is writ- FIG. 12. Schematic of the dynamic Kirkwood superposition approximation
(5.9, J , p Yy , . ] for the three-body contribution to the polarizability tensor correlation func-
ten asPg(r,r',t)=pg(r)G(r,r’,t), whereg(r) is the equi- tion. The three-body propagation is approximated by the pair motion of
librium pair distribution function ands(t) is the Green’s particles, and the three-body equilibrium is maintained initially through the
function. The initial value of the Green’s function is a delta Kirkwood superposition.

function G(r,r",0)=g(r)8(r—r') so that the two expres-

sions in Eqs(5.1) a_md (5.5 are equwalen';. . we decompose the three-body distribution function as
As an alternative, the exact expression in Ef5 can

: 9(r1.r2,r3)=9(r12)9(r299(rzy), and the three-body
be rewritien as Green’s function into the product of the two-body Green’s

3/

- ) 1 . functions, G(r 12,23, 12,7 53,t) = G(r 12,7 15,t) G(r 23,1 33,1).
Cz(t)=2Na4f dr fdff dfo[—(zw)sfdk expg ro)} Consequently, the three-body contribution is factored
p—y ! j—y I — 1
X g(ro) T(re)G(r,r,HT(r"), (5.6 C3(t)~4Na4WJ' dk

where the Fourier transform of the delta functiér —r) is
inserted. Then, with the equilibrium averagéA(r))
=p[drA(r)g(r) and the time-correlation function

ikr(0) Z ) ikr ' )
IggduceTI[E:‘.]((t%.]g) tgf A/ drigmeTerrioT(ry,  we X g(ri12)9(r23)9(ray

XT(r12)G(r12,r12,)G(r 23,1 53, 1) T(r29)

xf dr1,droadr g, dr),drjge(2trastray

C2<t>~zv54(2717)3 f dk(e T (n))(e " OT[r(1)]),
(5.7) =4Va*

1 f dk(e*\ (el kT
(2,”.)3 <e ><e (r)>
whereV=N/p is the volume and the approximation is due to ikr(0)
the over-accounting of the pair distribution functigfr). It (e ITLr(1)]), (5.9
turns out that this approximate form @f,(t) is consistent \yhere the two-body functions are defined as in 7). The
with the approximate expressions f@r(t) and C4(t) de-  approximations involved can be viewed as an extension of
rived in the following. the Kirkwood superposition to the dynamic regime.

Next, the four-particle contribution is rewritten as

B. Dynamic Kirkwood superposition C4(t)=NE4f 1,0 p3dF 34 dr pdr g dr e
To proceed, we evaluate the three-particle contribution

Xg(rlar21r3vr4)ﬁr12)

cs(t)=434fdrldrzdrsdridrgdrgﬂrlz) S =
XG(r12,123,034:112,023:134,1) T(r34),  (5.10

X Po(I1,r2,F3.05,15.15,0T(rh) whereg is the four-body distribution function an@ is the
four-body Green’s function. Evidently, the integration over
:4N;4f drpdrosdri,drisg(ry,ra,ra) the coordinates other than, andrg, leads to the reduced
probability distribution functiorP in Eq. (3.1) for the four-
XT(r12)G(F 12,723, FiosT b3 DT (1), (5.9 body contribution. As illustrated in Fig. 13, we repeat the

same procedure as in the derivation of E§9), and factor-

Whereg is the three-body distribution function aiélis the ize C,(t) into the product of two-body averages and two-
three-body Green’s function with the initial conditi@0) body correlation functions as

= 8(r1,—r1,) 8(ro3—r43). Evidently, the integration over the )
cop.rdlnates' other. than, andr,; leads to the reduced prob- Cu(H)~Va? . f dk(e'* )2k T (1))
ability function P in Eq. (3.1) for the three-body contribu- (27)
tion. To evaluate Eq(5.8), the delta functiond(ri,+ro3 ikr ()7
+rgy) is inserted to constrain the initial triangular geometry (e Tr(®D, (5'1D
with the additional coordinatey;. As illustrated in Fig. 12, which differs from Eq.(5.9 only with a static factofe'¥").
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Four-particle contribution

_ 2 L=
=va4WJ dk S(k)%(e'"T(r))

2 g . ¥ iKkr(0)7r
........... 3 Yyoomimem X(eOTr(1)]), (5.16
: t ; . I
T, 8 — T where the ratios of the three contributions are related to the
N - structure factor. For relatively large wave numbgfk) be-
177 ¢ 4 DO & comes very small, so that the contributions follow the ratio:

' o N - Cy:C3:Cy~1:—2:1. This ratio has been observed in nu-
FIG. 13. Schematic of_the_dynamlc Klrkwgod _s_uperposmon appr_oxmatlonmerical simulations and has been analyzed by Lalckﬂi.sa
for the four-body contribution to the polarizability tensor correlation func-

tion. The four-body propagation is approximated by the pair motion of par—Their analysis applies a similar dynamic decomposition but

ticles, and the four-body equilibrium is maintained initially through an ex- invokes free-particle diffusion instead of more general dy-

tension of the Kirkwood superposition. namic propagatiorG, and Gy, thus ignoring the different
time dependencies between the depolarized component and
the isotropic component.

- - - In deriving Eq.(5.12, we have made several assump-
Finally, combining Eqgs(5.7), (5.9), and(5.10 yields , N
y g Eas(5.7, (5.9 510y tions: (1) The center-of-mass motion is decoupled from the

., 1 o - relative motion.(2) The geometric constraint on the many-
C(t)=Va (ZT)S’I dk(2+4(e™) +2(e"")?) body configuration is imposed only at the initial tim@)
o o The many-body distribution function and the many-body
X (X T(r)) e OT[r(1)]), (5.12  Green’s function are decomposed in a similar way as the

Kirkwood superposition approximation. These assumptions
where the relative weight of three contributions is approxi-emphasize the central role of pairwise relative motions and
mately proportional tqe'*(”)). Evidently, the two-particle, |ocal structures at short time scales but ignore possible col-
three-particle, and four-particle contri_butions have the SaM@yctive motions. Nevertheless, the resulting expressions
angular dependence, and the same time dependence in F{seq on these assumptions allow us to understand and cal-

rier space but with different equilibrium weights. Using the ¢ ate many-particle contributions in terms of two-body
spherical harmonics expansion, we explicitly calculate theproperties.

two independent radial functions in E¢3.5 and in Eq.

(3.6), giving
Cored D) 1 V_4f dk(2-+4(] o(kr)) C. Diffusion model
isdt)= —5—3Va jo(kr
ane (2m)° ° In general, the Green’s functioB,(t) decays faster as
+2(jo(kr))y2)(hp(r)jo(kr)) the angular momentum numbbmcre_ases. We_conflrm this
statement with the help of the diffusion equation
X{Jo(kr)Gy(r,r", t)hp(r’) (5.13
{2 2 o(r')) G 1 ,a I(1+1) 7Y
and ot o g 2 ar|or ')

(5.17

1 _
Ciso(t)=WVa4J dk(2+4<j0(kr)>+2<jo(kr)>2) where D is the diffusion constant for the relative motion
between two Xe atoms. The potential of mean force is deter-
X{hy(r)ja(kr))(jo(kr)Go(r,r',t)h(r")), mined fromU(r)=—KgT In[g(r)]. Skinner and co-worker

(5.14) also used a generalized time variable to incorporate the ini-

tial behavior on the coarse-grained level. Equat®i?) can
where all the quantities are two-body equilibrium averagese transformed into a Hermitian form and its time-dependent

and time-correlation functions. solution can be formally expanded a&(r,r',t)

The inherent structure in liquids leads to prominent=3_ ¢, /(r) ., (r')exp(Ayt), where ¢, (r) is the eigen-
peaks in the two-body distribution function and time- function and\,, is the corresponding eigenvalue. The long-
correlation function in Eqs(5.13 and (5.14) such that the time exponential decay is dominated by the first nonzero
integral in Fourier space is dominated by these peaks. It thegigenvalue\ ;, . Given the eigensolution fdr=0, the eigen-
follows from Egs.(5.13 and (5.14 that the contributions value for nonzerd can be evaluated via perturbation theory
from the two-particle, three-particle, and four-particle terms 5
share similar temporal profiles with the relative ratios deter- $no(r) d
mined by the static structure. In fact, by virtue @8'%") r?
=S(k) —1, we can rewrite Eq(5.12 as

A|nwx0n+Dl(l+1)f r, (5.18
which increases as a function Il +1). Therefore, the in-
_ 2 tensity along the magic angle, associated V@g{t), decays
C(t):Va‘l(z—W)gf dk{1+2[S(k)—1]+[S(k)—1]%} slower than the intensity from th@,,,, component, associ-
_ _ ated withG,(t). Though based on the diffusion model, we
X(eMT(N)e " OT[r(1)]) (5.15  believe that this conclusion holds in general.
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by the two-body dipole—dipole tensor, whereas the leading
term of the isotropic part of the Raman response is deter-

mined by the three-body dipole interaction. Higher OrderAPPENDIX A THREE-BODY DIPOLE—_DIPOLE

many-body polarization terms can be incorporated through & TERACTION IN THE DILUTE HARD-SPHERE MODEL
renormalization procedure. In comparison with the aniso-

tropic part, the isotropic part of the effective dipole tensor ~ The many-body polarizability is expanded in terms of
has a short interaction range, thus resulting in a fast initiathe dipole tensof in Eq. (2.4), where the first term is the
decay in the isotropic response of atomic liquids. polarizability of individual atoms and the second term leads
(2) The three distinct tensor elements in the third-ordert® the anisotropic part of the dipole—induced-dipdD)
Raman response are decomposed into an isotropic Comptp_teracnon. To account for the isotropic DID polarizability,

- 3 .
nent and an anisotropic component with the coefficients deV® Now evaluate the third term”T; (T, ;. The diagonal

termined by the tensor properties of the dipole interaction?!ement of this termi =] add_s to the atomic polar|gab|l|ty
The decomposition does not only apply to integrated scatte@'Ve" by Eq.(2.6). The off-_dlagqnal eIe_ment of this term
ing intensity or the peak intensity but is also valid for all the contributes to the dipole—dipole interaction

time. Moreover, the polarization dependence obtained in this

fashion is general in that it does not rely on the particular ATip= apj drsg(rs,r2,rs)/g(r2) T(rig T(rs)

model of liquid dynamics or the type of liquids.

(3) The Gaussian factorization scheme treats liquid den- %apf dr3g(ri99(ra)T(rimT(rs), (A1)
sities at different times as Gaussian variables and maintains
the equilibrium distribution by imposing equilibrium distri- where the Kirkwood superposition  approximation
bution functions. This procedure combined with the mear@(r1,r2,r3)~9(r12)9(r23)9g(rs) is adopted. The radial
spherical approximation for the direct correlation functionfunction associated with the anisotropic polarizability is
allows us to recover the mode-coupling equations for the ap
intermediate scattering function and the bilinear density cor- ATp(r)=— (ZT)sf dk[gp(k)]1%jo(kr), (A2)
relation function. Another approach based on the dynamic
Kirkwood superposition scheme decomposes the many-boo@“d the radial function associated with the isotropic polariz-
time correlation function into pair quantities. Although both ability is
schemes can be understood as two possible realizations of 2ap _
dynamic decomposition of high-order time correlation func- ~ ATi(r)= Wf dk[qa(k)1%jo(kr), (A3)
tions, Gaussian factorization applies to density fluctuations o ) .
in space, whereas dynamic Kirkwood superposition applie¥/n€re ji is the Ith orcier spherical Bessel function and
to particles in liquid. Aa(K) = —J jo(kr)g(r)/r=dr.

(4) The two dynamic decomposition schemes are ap- 'In this appendleT,?(r) andAT,(r) are cailcglated for'
plied to the calculation of the third-order Raman response it dilute hard-sphere fluid. At the low-density limit, the pair-
Xe with several observationgi) The two-particle, three- Wlse_correlatlon functiorg(r) takes the form of the step

. . o function,
particle, and four-particle contributions to the Raman polar-
ization have similar temporal profiles in Fourier space but 0, r=a
with different amplitudes determined by the static structure. 9 r):[l, r~a’
(ii) In dense liquids, the long-time decay of the isotropic i ) o ,
component is slower than that of the anisotropic componemy.vherea Is the diameter of _the .I'qu.'d molecule. The Fourier
(i) The Gaussian fitting according to initial moments givestr"’meOrm of the step function is given by
a relatively good prediction of the response pe@k) The
Gaussian factorization scheme leads to a simple hydrody- Gao(k) =47
namic expression, which relates the Raman response to den-

sity fluctuations and predicts the dynamic response with rea(\l_'\/;ge)r?nigeEan?:éa)tr \?vaerthlsv?alven lytensor. Substituting Eq.
sonable accuracy. q. ;

(A4)

coska sinka

(ka)?~ (ka)® -

: ; o i 2
Thesg anal_ytlc results are compareq favorably with nu- AT ()= 2ap3f (42 coskzzsl_ smka;l io(kr)dk

merical simulations and can be generalized to more compli- (2m)° Jo (ka)* (ka)

cated liquids. Future research will be devoted to the calcula- ) . 5

tion of fifth-order spectra(see Paper )l as well as the _ 16ap f“ sinx(xy cosxy —sinxy) dx, (A6)

modeling of nonlinear spectra of molecular liquids. a’y® Jo x> '
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wherex=kr andy=a/r. Because the integrand is an even X (Xy cosxy —sinxy)?
function ofx, the lower limit of the integral can be expanded
to —oo, and the integral is expanded from real space to com- __ 8Bap VT A1
plex space. Then, EGA6) becomes = _a3y3( 171~ 13), (A12)
38 % (XY COSXV—Sinxy)2 wherel;=1,+1,+15 is the integral evaluated fakT,(r).
AT(r)= a;;gi f by X}{ye ) e*dx Using the residue theorerh;, and|; are calculated as
- 3 (= [2(x%y?+1) .
2ap s 2X2y2+2 . |i=a X ( 17 )e|x
= a3y f x5y e dx -
x2y2+2ixy—1
o w2y2 . _ i(1+2y)x
+f XYTH2XY L o gy * X7 €
- xy? 2,2 5
= x2y2—2ixy—1 xy el _Z;Xy_lei(lZV)x}
+f XY YT a2y gy X
_eo X2y
_(YLY YLy L)W
o
== ypi [+ 1,415, (A7) 127 10 24 64 1920
6 5 3 2 1
where the three integrals are evaluated using the residue +sign(1-2y) AN AN AN . T,
o - 9 9 12 10 24 64 1920
theorem, giving
(A13)
1-12y?) @i 2(6y*—1)i 4
|1:( 2y) + ( y ) Eil—|——€73, (A8) and
2 3 3
Y 3f°° 2(x%y?+1) ”
== —5—€
| (12X 4y-Dmi (1-6y*—4y%)i | 28] . x°
a 24 : 3 ) 2y24+2ixy—1
2 + Xy IXy ei(1-¢—2y)x
. - 0=
i
—36‘3, (A9)
.\ x2y2— 2ixy—1 ei(l—zy%
S A
. (1-2y)%(1+4y)mi X
l;=sign2y—1)
3 2 (L2 L,
(1-6y>+4ySi 20 10 8 16 320
€ 15?3 (A10)
3 € 3€ ' 2)(y5 y3 y2 1) A4
—sign(1—2y)| 32— =+ =— = | , Al4
with e an infinitesimal positive variable. Though each inte- 10 8 16 320

gral diverges at the smad limit, the combination of three |\ here both integrals converge. Substitutiig 15, and 1}
integrals cancels out all the divergent terms, and the congy, Eq.(A12), we arrive at
verged sum in Eq(A7) givesAT,(r) as

daap )
0, r=2a T fred
AT = , Al15
AT (r)=1 apm|[r 2y , (A11) o(") wap [6a%r—r3 (A15)
W 5—2 5"-4 , r<2a —m T , r<2a

. .ps 3 . -
which is a step function ate which modifies 17° interaction.

The same approach is applied to the calculation of
ATp(r). First, ATp(r) is rewritten as
APPENDIX B: RENORMALIZATION OF THE DRUDE

ap coska sinka! 12 OSCILLATOR MODEL

ATo(r)= (277)3fdk[477 k’a? ka3 To facilitate the analysis of Raman spectroscopy, we

present here a simplified derivation of the renormalized po-

% i_ E)sinx— icosx larizability and dipole—induced-dipol@®ID) propagator. We
3 2 .
x> X X follow the same notations used by Cao and Béfhe.
) ) In an isotropic fluid all particles are identical so that the
__8ap f“ Xi(?’ Sinx 3 COSX S'”X) thermal average of the diagonal elements of the polarizabil-
a’y® x* X X ity tensor defines the renormalized polarizability
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Renormalization of the polarizability Renormalization of the dipole propagator
o= o + - + 8 + a E T= v~ = + —& t+ —eo—o—
+ ..
_ o
1- az(a) = T —— @

FIG. 14. The many-body expansion and re-summation of the renormalize&G. 16. The Dyson expansion of the renormalized dipole—induced-dipole

polarizability. The circle represents the tagged particle and the shaded aréateraction. Each closed circle represents a dummy particle being integrated

represents the self-energy teixn with a renormalized polarizability, and each line represents dipole—induced-
dipole interaction.

o0

am o (THD=(1l)yy= S, an(T7 ! B1
A = g - ®Y 2 ()=(TyaTi)+(TyaTaT)

where the bracket designates the thermal average over disor-
dered liquid configurations. The expansion can be repre-

sented by diagrams with open circles as the tagged particles

closed circles as the integrated particles, and lines as the DIHhere the renormalized propagatdr will be explained

; -_In the following. Here, the self-energy tertn is evaluated
propagator. Wherever circles connect two or more otherwise .

separated subdiagrams, the many-body distribution functio\"\w\/llltsrxhelht(.a Ip ?fT 'QStgad |Of tfr|19 dPadepproxmatlon or the
is factorized accordingly so that the configurational average soiution or the iporar fiuid. i
: . . Following the definition for @, we define the off-
associated with subdiagrams can be decoupled from the Corc}iagonal element of the polarizability tensor as
figurational average of the other parts of the diagram. With
this approximation, all the decorations at closed cir¢ies, aT —
all the subdiagrams singly connected to the backbone of the IT3= <m> =aT(rypa, (B4)
diagram can be removed by replacingwith the renormal- 12
ized quantitya. As demonstrated in Fig. 14, the many-body where the configurational average excludes indices 1 and 2.
integration of the decorations at the open circle can be reFirst, all the decorations on the backbone can be removed by
summed as replacing the polarizability by the renormalized polarizabil-
ity a— a. Second, we keep only diagrams with linear chain
o - structures similar to the Dyson expansion and average over
a~at 01< > TliaTi1> o the intermediate particles between indi¢emdj. Third, the
' equilibrium average over the-body distribution is approxi-
mately decomposed along the linear chain as

=p§f drT(r)?(r)g(r)dr, (B3)

+a<2 TlIETIl> 0[<E T]_IZT]]_>0[+
: ! g(rq,ro,rg,... rp)=~g(ri—ry)g(r,—rs)
_ @ Xg(rz—rg)-g(rp_1—rn)
ST as(a) (B2)
Ll Xg(ra=ry), (®5)

whereX is the infinite sum of the simple connected diagramswhich extends the Kirkwood approximation beyond the

(i.e., decorations As shown in Fig. 15, the ring diagrams in three-body distribution function. With these approximations,

the ¥ expansion can be re-summed to yield we re-sum the expansion of the dipole interaction in Fig. 16
and obtain

T(K)~T+apT T+ (apTy) 2Tyt

-
=T-Tyg+ ———, (B6)
1-apTy

Y- iy = » + + + where the dipole tensor(r) dressed by the pairwise distri-
bution functiong(r) is denoted asT 4(r)=g(r)T(r). The
= Cade

Self-energy term

Fourier transform of the traceless tensor iB(k)
=—[jo(kr)/r3dr D=T(k)D, wherej,(kr) is the second-

FIG. 15. The ring-diagram expansion of the self-enelyyEach closed grder sp_herlcal 3 Bes_sel function. Slm”arly’Tg(k)
circle represents a dummy particle being integrated with a renormalized™ -J g(r)lz_(kr)/r dr D—Tg(_k)_D- Thus, the renormalized
polarizability, and each line represents dipole—induced-dipole interaction. propagator in Eq(B6) is explicitly evaluated as

Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Nonlinear spectra of liquid Xe. | 3755

- D+20(K)l TABLE |. The absolute intensity and ratio of the three tensor elements of
T%T_Tg_{_Tg > . (B7) the third-order Raman correlation function in the pair interaction approxi-
1-oa(k)—204(k) mation. The ratios in both the Ewald summation method and the spherical

. . j— cutoff method are nearly the same.
The transformation back to coordinate space leadd to Y

=hpD+h,l, where the anisotropic part is C,122(0) Coyz(0) Coayy(0)
1 . Ewald summation 0.003 05 0.002 34 —0.001 52
ho(r)=— 23 dk jo(kr) Ratio 4.00 3.07 ~2.00
7T Spherical cutoff 0.002 51 0.001 93 —0.001 26

Tg(k) Ratio 4.00 3.07 —-2.00

1= o(k)— 20(k)2} B8)

X|T(k)=Tg(k)+

and the isotropic part is - . . . .
Perram, and Smith in their calculation of dielectric constants

hi(r)= 1 fdk' (k)| To(k) 20(Kk) of polar fluids®® In the Ewald summation, the dipole—dipole
: (2m)3 Jo 91— g(k)—20(k)?|’ interaction tensor is modified by the replica of the simulation

(89)  box and the continuum medium, giving

with o(k)zZpTg(k). We solve Eq.(B7) self-consistently 1 A
with Eq. (B2) to yield the fully renormalizeda and T. Tii=3VVeenlRij/L) — 5—7 331
Hence, instead of the Pad@proximation or the MSA solu- s
tion for a dipolar fluid, we explicitly re-sum the diagrams WhereL is the size of the cubic system studied, is the
using a decomposition similar to the Kirkwood approxima-dielectric constant of surrounding medium, apd,, is the

(C2

tion. Ewald summation,

1 2. erfo(c|r+n’])
APPENDIX C: MOLECULAR DYNAMICS SIMULATIONS den(r)= 2 —ze_(wnlc) +'2””'r+2 el
OF LIQUID Xe 770 TN v ren’| s

d(r)=4e (Cy

Molecular dy”‘f"m'cs simulations were carried out USINGith ¢ an arbitrary constant and erfc the complementary error
a (?ub|c box contalnlln.g 108 xe gt.oms u_nder the usual.pe”function. The constart in our simulation is taken to be 5.0,
odic t.’oundafy condition and minimum image convennons.which is sufficiently large that the only contribution in the
The interaction between Xe atoms was modeled by Asal space part is’ =0 in the second term ofbg,. The
Lennard-Jones potential number of reciprocal vectons used in the first term o,
o\? [o\® is 63. In the second method, a simple spherical cutoff in the
(?) - (?) dipole—dipole interaction at half the box length is employed
, to recover the rotational symmetry of the cubic simulation
with par7a3meter56=236.6<5 and o=3.8%A from the ,, Ag shown in Table I, though the two methods predict
literature’® The Lennard-Jones system was equilibrated Ung;igrarent values, they both give the same intensity ratio
der reducedgtemperatuTré =kgT/e=0.75 and reduced den- C222:Cayzy :Crnyy=4:3:— 2, indicating the correct isotropic
sity p* =po°=0.85. The atomic polarizability Ofsx_e Varies condition. The Ewald summation has a more reliable theo-
slightly in literature, anc; It Is tal§9egoaa=4._160A INOUr - retical basis; however, due to the constraint on CPU time, we
simulation, i.e..«* =a/0°=0.071:"""Equations of motion  gmpioy the simple spherical cutoff method in the simula-
were integrated using the leap-frog algorithm. The reduceg o
time unit isoy/m/e, which is 2.7 ps for liquid Xe. All quan-
tities in our simulations are reported in reduced units unless
specified otherwise. The time step for MD isx30 2 re- APPENDIX D: INITIAL MOMENTS OF THE THIRD-
duced time unit. In accord with the spherical cutoff conven-ORDER RAMAN CORRELATION FUNCTION
tion, all distance-dependent quantities were calculated within - gacause of the many-body polarization in atomic lig-
a sphere of a radius of half the box length. The time Correyigs, the renormalized dipole—induced-dip@D) interac-
lation functions were accumulated with a resolution of 5 timey; | tensor T = ho(r)D+h,(r)I, has both a traceless aniso-
steps. The molecular dynamics simulations were carried oyq e hart and a diagonal isotropic part. In this appendix, we
to 1" time steps from equilibrium configurations of the lig- yerive the initial moments of the correlation functions within
uid. Equilibrium properties, such as the static structure factO{he renormalized Drude oscillator model. Componentd of
and the velocity—velocity correlation function, were Calcu'along the arbitrary directions and » (representing y, and
lated and found within good agreement in previously pub-z) are given as
lished resultg38182
As a numerical test, we use the the pair interaction ap-  T,,=hp(r)(3n,n,—4,,)+h(r)é,,
proximation of the total polarizability tensdi=ZaT« in
Eq. (2.5, which leads to the rati€,,,,:C,y,, :C,,yy=4:3: =3ho (NN, +(h(r)=ho(r) sy, ., (D1)
— 2 for an isotropic system. In order to generate an isotropisvheren,, is the uth component of the unit vector ang,,
liquid sample, we compared two numerical methods. Theepresents the delta function. First the leading order moment
first method is the Ewald summation technique of deLeeuwpf the correlation function is
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_ (9h3(N), Finally, we derive the fourth-order moment of the corre-
Co=(T,Ty)= —(5 2Ot 8uyOnt 8,06,,) lation functions. To begin, we write the second-order time
derivative of the polarizability tensor as
+{2(hp(r)[hy(r)—hp(r)])

. d — F
+([hy(1) = hp(N)]?) 18,8, . (D2) Tor= gt (Tt ) = (AT ) 40w T, (D12)

where <f(f)>r represents the radial averagef(r)).  where 92 =d;d;, F; represents théth component of the
= [ 1(r)g(r)r?dr. The three distinct components of the cor- force, which is related to the potentidl(r) by F;
relation function are =—4g,U(r). From Eq.(D12), the fourth-order moment be-

(ToT )= (hP(0)+ En3 (1), (D3 ~ comes

<TzzTyy>:<h|2(r)_§h%(r)>rv (D4) <T,uva)\> <‘9|J ;Lv(?leyx><UinUkU|>

_ Fo —

<szsz>:<%h%(r)>ra (D5) <aIJT,uV akTy)\><Uin>

which satisfy the polarization decomposition derived in Sec. E
— F —
. . . +<&§|T7)\_&iTM,,><UkU|>
Next we derive the second moment of the correlation m
function. To begin, the first-order time derivative of the

1 — —
renormalized DID tensor is + W<Fi(9iT,quk0')kTy)\>
T,,=lainin,n,+ax(n,dé,;+n,d,;)+asn; ,
nv [ ittty 2( wCvi v MI) 3 MV]UI (D6) :A1+A2+A3+A4, (D13)
where which is separated into four parts. These four parts in Eq.
oh 3h (D13) are explicitly evaluated as
a,=3hp— —, a=—>, ag=h/—h}, (D7)

r r

( ) <5|J Mvaley)\>P(55)ijkl
where the prime represents the spatial derivative with respect

to the radial coordinate hj=éd,hp, v; denotes théth com- = o —

ponent of the velocity, and the repeated indices are summed (<‘? Tudi T >+2<‘7IJ wy uT«/A>)v (D14)
over implicitly. Then, we use EqD7) to derive the second-
order moment,

keT o~ —
.. — — A2:F<Fkai T,U.VU-'kT'y)\>
C2:<T,LLVT7)\>:<‘9iT,uV(9iT7)\>

1 2
1 <a§+4ala2 2a3 =—(m—ﬁ) (20T 0, T o)+ (2T 42T 0)),

15 + 3> (55);“/3/)\

:m—B
, (D15)
1 2(2a,azt+ajaz—a
—I——<a§+ ( 23313 2)>6 5 12 I
mg A==\ g (T 20 T 0+ (2T, 07T 00),
1 <3h,52 18h2> P(5) 1 N (D16)
= — =+ —_—_—
mpg\ 5 5r2 mg " and
12 12 6h% = k
+\hZ=hg? = =) 8., (D8) Ag=— 2<<9(r9T,wF,aTyr)>
r

where operatoP represents the permutation of the indices
andP(86) ,uy\= 6,0\ F 6,00+ 5, 6,,. The three ten-
sor components are

kj—[(azT FaT >+<§T Li( Fa,T )

+<<9iT Fidi Ty)\>]

. 4 2D
<Tzszz> = < = + 6 + h|,2> ) (D9) 1 -

5 r = _ﬂ<&|TMVa]TY)\Q|2]
.o h

| _5n2,.p D 12 1\2 -
(TzzTyy) < 5| o +67z)h > (b1 + m—ﬁ) (O (AT 1T o). (D17)
P 3 th Here,Q;; is the curvature,
(TyTz)=\5|ho +6 , (D11) !
r

1
which also satisfy the polarization decomposition relation. Qij_mo7”U(r) c(r)&ij+d(rmn (D18
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with c(r)=4,U(r)/(mr) and d(r)=4d2U(r)/m—a,U(r)/

(mr). Substituting the above-given four terms into Eq.

(D13), the fourth-order moment is the sum of two terms
P 1 e B
C4:<TMVT‘)/)\>: _<&iT,u,VajTy)\Qij

+3 (D19

1
- ) (97T, 07T ).
The first term is further simplified to

<(7iT ﬂT,/)\Q,]> (c( r)5,]aT aT
+d(r)ninjaiTW¢9jT7)\>
=(c(r)[1s(a3 +4asa,

+10a3)P(89) .+ (85+ (22523

+a,a3—a3)) 8,8, 1), +(d(r)

X[ f5(ay +2a,)?P(89) 4, + (83

+4(aag+ 2a,a3)) 6,0, ])r -
(D20)

For the second part, we first evaluaﬁﬁ@Tw,

3T =2aainjn,n,+ax(n,é,,+n,é6,;)+asn;d,,]

ijluv
. 3ag

a —_——
Ty

nn+

as
_T5/“, ninj

ai
8yt~ (8,

ij i

1 as
Tn“n”+ ra Ouv

+5V,nﬂ)nj+

&
aZ_T (SNt S,n,)N;

az
+ (8, 8,7+ 8, 8,). (D21)
so that
<(9|JT,U,V(9 T’)’)\>
3/ h3 hphy h{?
=—<12 %—6—2+h;§2>
r r ;
hg _hphp h .
XP(5)MV’)’)\+ —24r—4+12r—3 h

4r_3

h/2
+r'—2+hj’2> .,
r

X(6,y0n 1+ 0,0 0,y).

h2 hpht h'2
+6<3 f bo —D>
)

(D22)

Substituting Eqs(D20) and (D22) into Eqg. (D19), we have
the explicit expression of the fourth-moment of the correla-
tion function. As an example, we give tlt&,,,, component

as
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< -I_—ZZ-I_—ZZ>

1
-t ] 5

4
+<d(r)(§h§+h,’2

12 4
mB

hrZ
+ h;’2+2r'—2

2
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hD
+ 6

2>r
)

h/Z h h" hZ)

+h/

X3 h"2+ 14—7 36—r +42

> . (D23)

We can show that all the fourth-order moments also satisfy
the polarization decomposition relation.

APPENDIX E: ENERGY GAP CORRELATION
FUNCTION

A key quantity in solvation dynamics is the energy gap
correlation function
C(tH=

Z PLri()—ro(t)] ; Blr;(0)—ro(0)]

(ED)

where ¢ is the interaction potential or the force between the
solvent and solutet; is the coordinate of théth solvent
particle, and g is the coordinate of the solute particle. Many
experimental measurements can be related to the energy gap
correlation function, which in proper forms describes energy
relaxation and dephasin@lectronic or nucleay solvation
dynamics, and charge transfer. The energy gap correlation
function has been evaluated within hydrodynamic theory by
Skinner, Fayer, Banchi, and their co-workers. Here we com-
pare their expressions from the unified perspective of dy-
namic decomposition.

1. Gaussian factorization

We begin by writing the correlation function as
C(t)=J drdr’ drodrgP(rg,r,rg,r',t)

X (r—=ro)(r'=rg), (E2

where P is the joint density distribution function defined
earlier. The simple Gaussian factorization scheme results
in P(rg.,r,ro.r',t)=~pGgy(ro,rg,t)G(r,r’,t)g(r—ro)g(r’
—rg), whereGsg is the self-correlation function for the solute
andG is the van Hove function for the solvent. Substituting
this expression into the correlation function, we obtain

C(t)= f drdr’ drodrgGg(rg,rg,t)

XG(r,r',t)dg(r—ro)dg(r’ —rg)

N (22)3Jd" Ba(KIF(K,DF (K1), (E3)

where F(k,t) is the intermediate scattering function of the
solvent and~4(k,t) the self-intermediate scattering function
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of the solute. The dressed interaction potential is defined as
by(r)=¢(r)g(r) with g the solvent—solute pair correlation Ca(t)=2, (lri()—ro(1)][rj(0)—ro(0)])

function. Equation(E3) has been obtained by Hills using 7]

various superposition approximations. ¢f is the potential o, L
responsible for the solute—solvent structure, we then apply =p°| drydradrydryg(ry,ra,rio)
the mean spherical approximation and replac@o(r)g(r) o ,
with the direct correlation function(r). With this approxi- Xp(ra)G(ro,rp,r1,r3,1)é(ry), (E?)
mation, Eq.(E3) becomes wherer' is the solvent—solute separation at titmandr is
) the solvent—solute separation at the initial time. The three-
C(t)= P(kBTg f dk c2(K)F(k,t) Fy(K.t), (E4) body Green’'s function is factorized intq the two-body
(2m) solvent—solute Green’s function, and the Kirkwood superpo-

sition approximation is used to evaluate the three-body dis-
which has been used by Banchi, Cherayil, Fayer, and theiibution function. Then, we have

co-workers for calculating vibrational relaxatiéh?®
_ The Gaussian factorization sch_e_me_ star';s tp fa_ll at short C3(t)%p2f drydrydr} (r)g(r1)g(r2)g(ry)
times and does not recover the equilibrium distribution at the
!nmgl time. To improve the accuracy of the Gaussian fact.or- XG(ry,r] ) b(r]), (E9)
ization, one has to correct the initial value of the correlation _ _ o
function while maintaining the structure of the dynamic de-which can be understood as a different dynamic factorization
composition. One possible way to include the initial-valuescheme. As shown by the Skinner group, the above-given
correction is to rewrite EQE3) as expression forC,(t), in combination withC,(t), predicts

the energy gap correlation function with remarkable accu-

, , racy. The prediction of vibrational relaxation rate using this
C()=p [ drdr’ G(r,r’,y) approach is reliable and leads to simple physical
) interpretatiorf!>46-84
, p r,r ,ro . . . .
X (r—ro)b(r’ —ro) o (E5) B(_)th .dynam|c Klrkwood superposition gnd Gaussu’;.m
p(r,r’) factorization are designed to decompose multiple correlation

functions to linear correlation functions. The simple Gauss-
H H H ’ H . . . .
where the solute motion is not included. Hepgr.r',ro) is  jan factorization scheme takes into account the solvent—
the density—density correlation function in the presence o§plvent density fluctuation but ignores the solute—solvent dy-
! H H H H . . . .
the solute, andp(r,r’) is the density—density correlation namic effect, whereas the dynamic Kirkwood superposition
function without the presence of the solute. The denominatofakes into account the solute—solvent dynamics at low to
p(r,r’) cancels the van Hove function in the numerator at thentermediate densities but ignores the solvent—solvent dy-
initial time, thus recovering the exact initial value. With the namics at high densitié.Therefore, the first scheme works
Kirkwood decomposition approximation @f(r,r’,ro), Eq.  better for weak solvent—solute interactions and the second

(E5) recovers the simple Gaussian factorization expression igcheme works better for strong solvent—solute interactions.
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