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The microscopic interactions and dynamics probed by third-order Raman spectroscopy in an atomic
liquid ~Xe! are explored within the Drude oscillator model, both numerically and analytically.
Many-body polarization effects reduce the coefficient of the effective dipole–induced-dipole tensor.
The isotropic part of the effective dipole–induced-dipole tensor arises primarily from the three-body
interaction and is short-ranged. With an isotropic sample, the Raman response in any polarization
geometry can be rigorously decomposed into an isotropic component and an anisotropic component,
which primarily measure the strength and evolution of the two-body and three-body interactions,
respectively. An interesting result from our analysis is the derivation of the standard mode-coupling
equation for the intermediate scattering function and the mode-coupling equation for the bilinear
density mode using Gaussian factorization of the memory kernel and the mean spherical
approximation of the direct correlation function. The initial moment expansion along with the
Gaussian factorization scheme allows us to predict the temporal profile of the Raman response
function with reasonable accuracy. Furthermore, the Kirkwood superposition scheme approximates
the Raman correlation function with pair distribution functions and time correlation functions and
allows us to predict the ratio of the pair, three-particle, and four-particle contributions. These results,
though obtained for Xe, are generally helpful in interpreting third-order spectroscopies of other
liquids. © 2002 American Institute of Physics. @DOI: 10.1063/1.1445745#

I. INTRODUCTION

Advance in multiple-pulse Raman and infrared tech-
niques has provided new tools for exploring molecule inter-
actions in chemical and biological systems. The theory of
frequency-domain Raman experiments has a long tradition,
and its applications to condensed phase systems are de-
scribed by Berne and Pecora.1 Interest in liquids and mix-
tures has recently been revived by time-resolved fifth-order
Raman and vibrational spectroscopies, which hold the prom-
ise of discriminating the inhomogeneous distribution of co-
herent motions against the homogeneous dynamics resulting
from mode–mode couplings.2–7 In a third-order Raman ex-
periment, a pair of ultrafast light pulses excite a vibrational
mode at time zero, and the Raman scattering is detected at
time t. The third-order nonlinear spectrum is equivalent to
the Fourier transform of the linear absorption spectrum.8 In a
fifth-order Raman experiment, a pair of ultrafast light pulses
excite a vibrational mode at time zero, another pair of ul-
trafast light pulses perturb the motion at timet1 , thus ampli-
fying the in-phase motion and suppressing the out-of-phase
motion, and the Raman scattering is detected at timet1

1t2 . Mukamel, Loring, Tanimura, and Cho were the first
theorists to explore the use of nonlinear Raman spectroscopy
for the study of the coherence and coupling in condensed
phase systems.8–13 Though first fifth-order Raman experi-
ments have been successfully demonstrated in molecular liq-
uids and mixtures,14–23 nonlinear Raman experiments can
also be performed in atomic liquids. Atomic liquids provide

a clean system where the dynamic response is due to the
interparticle motion and is not contaminated by the reorien-
tational motion of individual particles. In addition, our cal-
culations of the Raman response function of Xe reveal gen-
eral features shared by molecular liquids. These
considerations motivate our detailed analysis of third-order
Raman spectroscopy of Xe in this paper and fifth-order Ra-
man spectroscopy of Xe in the companion paper. Some back-
ground and related work are summarized as follows.

~1! Many-body polarization. Since the polarizability of
isolated atoms is isotropic, the scattering is of purely Ray-
leigh intensity and is not depolarized. In 1968, McTaugue
and Birnbaum observed so-called collision-induced light
scattering in dense rare gases Kr and Ar.24 Early experimen-
tal and theoretical studies of depolarized light scattering sig-
nal from spherical molecules were summarized by Gelbart.25

In the presence of binary collisions, two atoms form a tran-
sient diatomic molecule bond, which results in a vibrational
mode with an induced diatomic polarizability.26 The Raman
signal in rare gases arises from many-body induced polariza-
tion effects. The effects of dipole–induced-dipole interac-
tions on dielectric response and orientational relaxation of
polar fluids were studied by Deutch, Wertheim, and Wolynes,
among other theorists.27–32 Similar many-body polarization
effects in light scattering of molecular liquids were also ex-
plored by Ladanyi and Keyes, Madden, Tildesley, Steele,
etc.33–36 In Sec. II, we model many-body polarization effects
with the Drude oscillator model, which consists of oscilla-
tory dipoles interacting with the dipole–induced-dipole
~DID! tensor.37–40 The many-body effect on individuala!Electronic mail: jianshu@mit.edu
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Drude oscillators leads to an enhanced value for the atomic
polarizability, i.e., the renormalized polarizability. This en-
hanced polarizability has been derived within the mean
spherical approximation by Pratt and, independently, by
Hoye and Stell.41,42 In order to calculate the effects of many-
body polarization on Raman spectra, we use a simple re-
summation scheme in Appendix B to derive the renormalized
atomic polarizability and, more importantly, the renormal-
ized DID interaction tensor. Hence, we are able to reduce the
many-body polarization to the effective one-body polariz-
ability and two-body dipole–dipole tensor in Eq.~2.11!.

~2! Polarization selectivity. Multiple pulse photoexcita-
tion experiments are often carried out with different se-
quences of light polarization so that scattering intensities at
different polarization geometries can be used to probe orien-
tational dynamics. A well-known example is the third-order
off-resonant Raman experiment, where the anisotropic com-
ponent of the total polarizability, measured with the depolar-
ization geometry, can be well-separated from the isotropic
component of the total polarizability, observed along the
magic angle.1,43,44 Polarization selectivity is usually exam-
ined within the orientational diffusion model, which is ad-
equate for molecular liquids with large rotational friction.
Similar results can be obtained with other approaches includ-
ing the instantaneous normal mode method. However, for
atomic liquids, orientational relaxation is associated with the
transient interparticle bond but not with single-particle reori-
entational motions, rendering the diffusion model inappli-
cable. Thus, in Sec. III, we formulate a general treatment of
polarization selectivity using the isotropic symmetry of the
sample and the tensor property of the dipole–dipole interac-
tion.

~3! Gaussian factorization and mode coupling equa-
tions. Dynamic decomposition schemes have been widely
used in the theoretical studies of solvation dynamics, energy
relaxation and dephasing, charge transfer, etc.45–48One such
scheme invokes the Gaussian factorization of density fluc-
tuations at different times. The equilibrium distribution bro-
ken by the factorization approximation is partly recon-
structed by incorporating the liquid distribution function. In
the spirit of the mean spherical approximation, the direct pair
correlation function is approximated by the product of the
pair correlation function and the interaction potential. The
Gaussian factorization scheme is shown in Sec. IV C to re-
cover the standard mode coupling theory~MCT! equation for
the intermediate scattering function derived by Go¨tze
et al.49–51 Further, in Sec. IV D, we derive mode-coupling
equations for four-point time correlation functions in a simi-
lar way and demonstrate that the resulting mode coupling
equation is consistent with the hydrodynamic limit of the
four-point correlation function. This justifies the simple
Gaussian evaluation of the third-order Raman correlation
function in the long-time limit.

~4! Temporal profile of the response function. In general,
linear absorption spectra in liquids consist of a featureless
peak broadened by various liquid modes. The third-order Ra-
man spectrum is no exception in that its response function
exhibits a simple peak along the time axis. This seemingly
simple temporal profile is the result of the evolution of the

total polarizability in liquids. Early theoretical studies of the
depolarized light scattering spectrum were carried out by
Madden and Ladd, Litovitz, and Montrose52,53 and were
summarized in Ref. 54. The instantaneous normal mode
~INM ! method provides a new approach to analyzing liquid
and solvation dynamics.55–59 In particular, Fourkas, Keyes,
and their co-workers have employed the INM method to ana-
lyze the third-order and fifth-order liquid spectra.60–62Direct
numerical calculations of the temporal profile of third-order
and fifth-order response functions were carried out by Ma
and Stratt on liquid Xe63 and by Jansen, Snijders, and Dup-
pen on CS2 .64 Various theoretical treatments were introduced
to calculate spectral line-broadenings and solvation
dynamics.65–72Motivated by these works, in Sec. IV, we ap-
ply dynamic decomposition to the evaluation of the correla-
tion function of the total polarizability. The initial behavior
of the response function is fit to a Gaussian function with the
first few moments, and is extended to longer times by Gauss-
ian factorization of the four-point correlation function into a
product of linear hydrodynamic modes.50 In Sec. V, the cor-
relation function for the total polarizability tensor is sepa-
rated into the two-particle, three-particle, and four-particle
contributions. These contributions are evaluated with the
help of Kirkwood superposition and are approximated in
terms of two-body equilibrium averages and two-body time-
correlation functions. We analyze the relative contributions
from these terms and confirm the predicted ratio of the three
contributions in the long-time limit.53

The paper is organized according to the above-posed is-
sues, with supporting derivations presented in the appendi-
ces. Our analysis is verified by numerical simulations, with
the details described in Appendix C, and the numerical re-
sults are presented in relevant sections.

II. DRUDE OSCILLATOR MODEL AND ITS
RENORMALIZATION

The relevant microscopic information in the third-order
Raman experiment is described by the linear response func-
tion

R~ t !52^$P~ t !,P~0!%&52bĊ~ t !, ~2.1!

where b is the inverse temperature,$ % is the Poisson
bracket, andC(t)5^P(t)P(0)& is the time correlation func-
tion. The total Raman polarizability of the sampleP is a
second-rank tensor in three-dimensional Cartesian space, and
the response function and the correlation function are fourth-
rank tensors in three-dimensional Cartesian space. The tensor
elements describe Raman intensity profiles in various polar-
ization geometries.

To calculate the total polarizability of liquid Xe, we in-
troduce the Drude oscillator model, which consists of oscil-
lating dipoles interacting through the second-order dipole
tensorT. The mean square fluctuation of an isolated Drude
dipole isa/b with a the atomic polarizability. In this model,
the total polarizability tensor of a fluid composed ofN iden-
tical spherical Drude oscillators is

P~ t !5(
i j

N

a@I2aT~ t !# i j
21, ~2.2!
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where the summation is carried over all pairs of particles,
and P is a function of the evolving liquid configuration
through the coordinate dependence inTi j(t)5T@ri j(t)#. The
dipole–dipole interaction tensor is defined as

Tmn~r!5

3rmrn2dmnr2

r5 5

1

r3 Dmn~ r̂!, ~2.3!

wherem and n denote the three Cartesian coordinates,r is
the vector connecting a pair of liquid particles,r̂5r/r is the
corresponding unit vector, andD is the traceless dimension-
less tensorD~r̂!53r̂r̂2I.

A key issue in studying the polarizability spectrum of
liquids is the induced many-body polarization. The many-
body induced polarizability in atomic liquids is expanded as
an infinite expansion in terms ofT,

P5(
i j

aId i j1aTi ja1aTikaTk ja1¯, ~2.4!

where the repeated indices are summed implicitly. The first
term in Eq.~2.4! is a constant for atomic liquids and hence
will be ignored in dynamic calculations. The leading order
truncation ofP results in the pair interaction approximation

P'(
i

a1(
iÞ j

aTi ja, ~2.5!

where the first term is a constant and the second term corre-
sponds to the first-order dipole–induced-dipole interaction
~DID!. BecauseT is a traceless tensor, the pair interaction in
Eq. ~2.5! is the anisotropic part of the DID polarizability
with a time-dependent magnitude. The lack of the isotropic
polarizability component in the pair interaction fails to ex-
plain the Raman intensity observed at the magic angle.

To account for the isotropic DID polarizability, it is nec-
essary to include the next term in the expansion of Eq.~2.4!,
a3TikTk j , as shown in Fig. 1. Wheni5 j , this term contrib-
utes to the diagonal element and adds to the atomic polariz-
ability

Da5a3(
j

Ti jTjka
3rE dr g~r!Tr

T~r!2

3
dr

52a3rE g~r !

r6 dr, ~2.6!

which is an average over the pair distribution functiong(r).
WheniÞ j , this term contributes to the off-diagonal element
and adds to the dipole–dipole interaction

DT125arE dr3 g~r1 ,r2 ,r3!/g~r12!T~r13!T~r32!

'DTD~r12!D~ r̂12!1DT I~r12!I, ~2.7!

where the anisotropic componentDTD and the isotropic
componentDT I are expressed explicitly in Appendix A.
Combining Eqs.~2.6! and ~2.7!, we arrive at a new form of
the total Raman polarizability,

P'(
i

~a1Da !I1(
iÞ j

a~Ti j1DTi j!a, ~2.8!

which incorporates the three-body dipole–dipole interaction.
To leading order, two atoms form a transient molecular bond
through the dipole–induced-dipole interaction and give rise
to the anisotropic DID polarizability, whereas the three-body
polarization effect leads to the isotropic DID polarizability
and additional atomic polarizability.

In Appendix A, we explicitly evaluateDTD andDT I in
Eq. ~2.8! for a dilute hard-sphere system, where the pairwise
correlation function is a step functiong(r)50 for r<a and
g(r)51 for r>a, with a the hard-sphere diameter. After a
lengthy calculation in Appendix A, we obtain

DT I~r !5H 0, r>2a

arp

6a3 S r

a
22D 2S r

a
14D , r,2a

, ~2.9!

where the interaction vanishes atr>2a. Thus, the effective
isotropic DID interaction is a short-range interaction, and the
corresponding correlation function decays relatively fast ini-
tially. Similarly, we have from Appendix A

DTD~r !5H 2

4par

3r3 , r>2a

2

par

24a3 S 6a2r2r3

a3 D , r,2a

, ~2.10!

which is also a stepwise function. The long-range effect of
this term is to reduce the effective dipole–dipole interaction
strength by24par/3, which is independent of the hard-
sphere radius. These results will change as the liquid density
increases but remain a good guide for understanding three-
body polarization effects.

Following the same spirit, the higher-order many-body
polarization terms in Eq.~2.4! can modify the atomic polar-
izability and pair interaction. In Appendix B, the expansion
is explicitly re-summed to obtain a set of self-consistent
equations for the renormalized polarizabilityā and dipole
tensor T̄. The renormalized dipole propagator has both a
traceless anisotropic part and a diagonal isotropic partT̄

FIG. 1. Schematic of the three-body polarization effect. The solid line rep-
resents the dipole–dipole interaction between particles 1 and 2 with a fixed
separation, the dashed lines represent intermediate interactions being inte-
grated.
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5h II1hDD where the explicit expressions forhD and forh I

are derived in Appendix B. The introduction of the renormal-
ized quantities reduces the total polarizability tensor to

P'(
i

ā1(
iÞ j

āT̄i jā, ~2.11!

which now serves as the basis for further calculations.
Since the measured quantities are the correlation func-

tion and the response function, taking the thermal average on
the level of the polarizability tensor ignores the dynamic
effect of the integrated atoms in the expansion. In deriving
Eqs.~2.8! and~2.11!, the average of the dynamic trajectories
of the integrated atoms in the expansion reduces the possible
error, and we believe that the three-body averaging and
renormalization procedure are reliable in this study.

An example. As the first example, we explicitly calculate
the effective pair Raman polarizability for liquid Xe, both
from the analytical solutions in Appendix B and from the
three-body term in Appendix A. The pair potential for Xe
atoms is the Lennard-Jones potential with parameters given
in Appendix C, and thermal state of the Xe liquid is taken as
temperatureT* 50.75 and densityr*50.85, in reduced
units. The three-body corrections—Eqs.~2.9! and ~2.10!—
are evaluated for a step function with an optimal radius taken
from the WCA procedure. The resultingh I(r) andhD(r) are
plotted in Fig. 2 and are shown to predict the approximate
magnitudes of the many-body effects but fail to reproduce
the structures seen in renormalized results. This difference is
mainly due to the short-range order in the liquid Xe struc-
ture, which is not captured in the step function. We next
apply the WCA correlation function and evaluate the self-
consistent equation derived in Appendix B. The effectiveT̄
thus obtained is plotted in Fig. 2 and is compared with the
three-body results. In Fig. 3, the WCA pair correlation func-
tion is compared with the result from molecular dynamics
~MD! simulation, and the two curves are found to be nearly

identical in range of concern. Thus, the effective pair DID
tensor can be accurately obtained by solving the renormal-
ization equation with the WCA pair correlation function as
the input.

To examine temperature and density effects, we calcu-
late the two effective DID tensor componentshD(r) and
h I(r) for several densities in Fig. 4 and for several tempera-
tures in Fig. 5. The solution follows the same procedure as
described for Fig. 2. The contributions of the many-body
effect in Figs. 4 and 5 increase with the liquid density and
decrease with the liquid temperature. The many-body effects
can be observed from the positions and amplitudes of the
oscillations ofDhD(r) andh I(r). Evidently, the density de-
pendence of the effective DID tensor is strong, whereas the
temperature dependence is relatively weak. Since the in-
crease in thermal velocity with temperature will be a domi-
nant effect on liquid dynamics, the temperature dependence
of the effective DID tensor does not necessarily correspond
to the temperature dependence of the Raman correlation
function.

III. POLARIZATION SELECTIVITY

The response functionR(t) is known as the third-order
polarization, whose symmetry properties are well-studied. In
an isotropic sample, twenty-one tensor elements are nonzero
and only three elements are distinct for the third-order Ra-
man experiment~Rzzzz , Rzzyy , andRzyzy5Rzyyz!. The rota-
tional symmetryRzzzz5Rzzyy1Rzyzy1Rzyyz leaves two in-
dependent elements, which will be calculated in this paper.

Within the renormalized DID approximation, the corre-
lation function is expressed as

C~ t !5K S (
i j

āT̄i j~ t !ā D S (
kl

āT̄kl~0!ā D L
5ā4E drE dr8 T̄~r!P~r,r8,t !T̄~r8!, ~3.1!

whereP(r,r8,t) is the reduced joint probability distribution
function ~PDF! for finding a pair of liquid particles with
relative displacementr at time zero and a pair of liquid par-

FIG. 2. A plot of the renormalization anisotropic and isotropic radial func-
tions hD(r) and h I(r) calculated from the renormalization equation de-
scribed in Appendix C and from the three-body terms with a step function
for the pair correlation function. The Xe liquid is at reduced temperature
T* 50.75 and reduced densityr*50.85.

FIG. 3. A comparison of the exact pair correlation from the simulation and
the WCA approximation used in the renormalization equation for Fig. 2.
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ticles with relative displacementr8 at timet. For an isotropic
homogeneous liquid, the joint probability distribution func-
tion is expanded as

P~r,r8,t !5S 1

4p
D (

lmm8

Y lm~ r̂!P lmm8
~r,r8,t !Y lm8

* ~ r̂8!

5S 1

4p
D(

lm
Y lm~ r̂!P l~r,r8,t !Y lm* ~ r̂8!, ~3.2!

whereY lm is the spherical harmonic function. The symmetry
of isotropic liquids removes them-dependence in the radial
part, i.e.,P lmm8

5P ldm,m8
. Thus, substituting Eq.~3.2! into

Eq. ~3.1!, we have

C~ t !5S 1

4p
D ā4(

m
FE Y 2m~ r̂!D~ r̂!d r̂G

3FE Y 2m* ~ r̂8!D~ r̂8!d r̂8G
3FE drE dr8 r2hD~r !P2~r,r8,t !~r8!2hD~r8!G
1S 1

4p
D ā4FE Y 00~ r̂!I~ r̂!d r̂G

3E Y 00~ r̂8!I~ r̂8!d r̂8G
3FE drE dr8 r2h I~r !P0~r,r8,t !~r8!2h I~r8!G ,

~3.3!

where the first term is the contribution from the isotropic
DID polarizability, the second term is the contribution from
the anisotropic DID polarizability, and the cross term van-
ishes due to the tensor symmetry. Both terms can be factor-
ized as an angular part, which depends on the polarization
geometry, and a time-dependent radial part, which depends
on the dipole–dipole interaction potential. From Eq.~3.3!,
three independent components of the third-order polarization
tensor can be evaluated, giving

Czzzz~ t !5
4
5Caniso~ t !1C iso~ t !,

Czzyy~ t !52
2
5Caniso~ t !1C iso~ t !, ~3.4!

Czyzy~ t !5
3
5Caniso~ t !,

FIG. 4. A plot of the renormalized anisotropic and isotropic radial functions
~a! DhD(r) and ~b! h I(r), for a set of densities at a fixed temperature.

FIG. 5. A plot of the renormalized anisotropic and isotropic radial functions
~a! DhD(r) and ~b! h I(r), for a set of temperatures at a fixed density.
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where the symmetry relationCzzzz5Czyzy1Czyyz1Czzyy is
rigorously satisfied. Here, the anisotropic component ob-
tained in the depolarized Raman intensity is given by

Caniso~ t !

5ā4K (
i j

hD@r i j~0!#P2@ri j~0!rkl~ t !#(
kl

hD@rkl~ t !#L ,

~3.5!

whereas the isotropic component obtained from the Raman
intensity at the magic angle is given by

C iso~ t !5ā4K (
i j

h I@r i j~0!#(
kl

h I@rkl~ t !#L , ~3.6!

whereP l is thelth order Legendre polynomial. The polariza-
tion dependence in the above-given expressions is similar to
those derived for the rotational diffusion model or obtained
from the INM analysis. The essential difference is that for an
atomic fluid the transient dipole is formed by at least two
atoms. Hence, the anisotropic polarizability is independent of
the liquid density to leading order, and the isotropic polariz-
able is proportional to the liquid density.

In a dilute sample, the dipole interaction in Eq.~3.4! has
only the anisotropic component, so that the second term
C iso(t) can be ignored. As a result, the intensity ratios of the
three independent polarization components remain constant,

Czzzz~ t !:Czzyy~ t !:Czyzy~ t !54:22:3, ~3.7!

which is the same relation obtained for isolated molecules or
diffusing molecules. In fact, this relation is general and rig-

orous for any traceless tensor, because the first ratio is im-
posed by the zero-trace identityCzzzz1Czzyy1Czzxx50 and
the second ratio is imposed by the rotational symmetry. As
the liquid density increases, these ratios are contaminated by
the contribution from the isotropic part of the DID polariz-
ability and are no longer constant. The intensity at the magic
angle is due to the isotropic part and has a different time-
dependence from the anisotropic part.

The above-given analysis is independent of the type of
liquids, the form of interaction potentials, or the description
of particle motions. In general, the symmetry of the polariz-
ability tensorP completely characterizes the decomposition
of the Raman spectrum into independent polarization com-
ponents. Since the third-order polarization has two indepen-
dent components, we truncate or renormalize the many-body
polarization to the pair interaction form with a second-rank
tensor. To isolate more independent tensor components, we
have to resort to two-dimensional experiments, which can be
performed with more polarization geometries and thus have
higher selectivity~see Paper II!.

As a numerical example, we calculated the third-order
Raman correlation functionC(t) for liquid Xe. The simula-
tion details and the molecular model are described in Appen-
dix C. First, we employed the pair interaction approximation
of the total polarizability tensor,P5(aTa, which yields the
anisotropic component of the Raman intensity. Figures 6 and
7 show that the three components of the correlation function,
Czzzz(t), Czyzy(t), and Czzyy(t), follow the ratio 4:3:22
within computational errors. There, the three tensor elements
of liquid Xe were calculated with the full expression for the
total polarizability tensorP in Eq. ~2.2!, including both the
isotropic and anisotropic DID polarizabilities. As shown in

FIG. 6. A plot of the three elements of the third-order Raman correlation
function obtained from numerical simulations of liquid Xe. The total polar-
izability tensorP is calculated with the pair interaction approximation in
Eq. ~2.5!. The simulation box consists of 108 Xe particles interacting with
the Lennard-Jones potential at the reduced temperature ofT* 50.75 and the
reduced density ofr*50.85.

FIG. 7. A plot of the three tensor elements in Fig. 6 scaled according to the
ratio 4:22:3 as discussed in Sec. III. The scaled curves all fall on the same
master curve.
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Fig. 8, Czzzz(t) and Czzyy(t) are modified by an isotropic
component, and the absolute intensity ofCzyzy increases as
we include all the higher order DID interactions. In Fig. 9,
the anisotropic componentCaniso(t) and the isotropic compo-
nent C iso(t) are decomposed fromCzzzz(t), Czzyy(t), and
Czyzy(t) as

C iso5
1
3@Czzzz~ t !12Czzyy~ t !#,

~3.8!
Caniso5

5
12@Czzzz~ t !2Czzyy~ t !12Czyzy~ t !#.

As expected, the isotropic component is smaller than the
anisotropic component, with the ratio ofC iso(0)/Caniso(0)
around 0.1. SinceC iso(0)/Caniso(0)'h i

2/hd
2, this ratio is con-

sistent with the estimation of the ratio of the two components
of the effective DID tensor,h i /hd , in Sec. II. In fact, direct
numerical integration of Eqs.~16! and ~17! shows that the
anisotropic responseCaniso is one magnitude larger than the
isotropic responseC iso(t), which agrees very well with our
direct simulation of the full dipole–dipole interaction tensor.

IV. MOLECULAR HYDRODYNAMICS CALCULATIONS

A. Initial behavior: Gaussian fitting

The goal of molecular hydrodynamics calculations is to
predict Raman response from equilibrium properties and
other experimental measurements. Given the zero value of
the response function at the initial time and the exponential
decay at long times, the response has a maximal in between.
The maximal in the response function is mainly due to the
initial behavior and thereby can be predicted based on mo-
ment expansion. The Taylor expansion of the time correla-
tion functionC(t)5(n(21)nc2nt2n/(2n)! is defined by the
even momentc2n5^P

(n)
P

(n)&. We assume a Gaussian func-
tional form for the response function

x~ t !52ct expS 2g
t2

2 D , ~4.1!

where the two coefficients can be fitted to the second and
fourth momentsc5c2 and g5c4 /(3c2). Hence, the maxi-
mal of the response function occurs attm51/Al.

For simplicity, we evaluate the two moments for the
simple case of the two-body interaction with the bare
dipole–dipole interaction,P5a2( i jT i j . With only the an-
isotropic contribution, the different polarizations maintain a
fixed ratio, so that we need only theRzzzz component. The
first moment is given by

c25(
m

^]mTzz]mTzz&v0
2
512v0

2E g~r !

r6 dr ~4.2!

and the fourth moment is given by

c45(
mn

^@]m]nTvmvn1]mTFm /m#2&

53(
mn

V4^]m]nT]m]nT&1v0
2^]m]nV i j

2 &, ~4.3!

whereV i j
2

5] i] jU/m is the curvature andv0
2
5kBT/m. These

moments are evaluated explicitly in Appendix D, and the
predicted temporal profile is compared favorably with nu-
merical simulations in Fig. 10.

We notice that the integrated Raman intensity is given by
the initial value of the correlation function, i.e.,

E
0

`

R~ t !dt52bC~0!, ~4.4!

FIG. 8. A plot of the three elements of the third-order Raman correlation
function for simulated liquid Xe, whereP is the full polarizability tensor in
Eq. ~2.2!. The thermodynamic conditions and simulation details are the
same as in Fig. 6.

FIG. 9. A plot of the anisotropic and the isotropic contributions decomposed
from Czzzz(t), Czzyy(t), andCzyzy(t) in Fig. 8.
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whereC(0)5^PP& can be easily evaluated. Thus, the inte-
grated intensity imposes an additional constraint on the func-
tional fitting of the response function.

Another fitting is to start with the generalized Langevin
equation~GLE! for the total polarizability tensor

Ċ~ t !52E
0

t

M ~t !C~ t2t !dt, ~4.5!

whereM (t) is the memory kernel. The response function can
be solved in Laplace space, giving

x̂~s !52b@sĈ~s !2C~0!#5bC~0!
M̂ ~s !

s1M̂ ~s !
, ~4.6!

which, via numerical inversion of Laplace transform, gives
the time dependence of the response functionx(t). The
memory kernel can be fitted to a Gaussian function

M ~ t !5cM exp~2gMt2!, ~4.7!

where the coefficients are related to the initial moments of
the correlation function ascM5c2 /c0 and gM5(c4

2c2
2/c0). The Laplace transform of the Gaussian memory

kernel is

M̂ ~s !5

M 0

2
Ap

a
expS s2

4a D F211erfS s

2Aa
D G , ~4.8!

which is used in Eq.~4.6! to yield the response function. As
seen from Fig. 10, both Gaussian fitting procedures predict
the peak in the response function with reasonable accuracy,
but fail to reproduce the long-time slow decay. Thus, we
conclude the peak response of the Raman signal is due to the
inertial motion in liquids.

B. Direct Gaussian factorization

In the hydrodynamic limit, correlation functions can be
expressed in terms of collective hydrodynamic modes in liq-
uids. A simple way to establish this relationship is the Gauss-
ian factorization scheme, which treats liquid densities at dif-
ferent times as Gaussian variables and maintains thermal

equilibrium by incorporating equilibrium distribution func-
tions for the initial and final configurations. Formally, our
Gaussian scheme can be expressed as

lim
t→`

^r~G,t !r~G8,0!&5g~G !g~G8!PrPGr8PG8
G~r,r8,t !,

~4.9!

whereG andG8 represent the initial and final configurations,
respectively, andr and r8 are coordinates in the initial and
final configurations. The Gaussian factorization scheme can
be justified based on the central limit theorem and is appli-
cable to long-time large-displacement motions in the hydro-
dynamic limit. This simple scheme has appeared in literature
in various forms and contexts. For example, in Appendix E,
the force correlation function is decomposed into density
correlation functions, and the resulting expression has been
used by Banchi, Cherayil, Fayer, and their co-workers for
calculating vibrational relaxation rate.47,48

We now apply the Gaussian factorization scheme to cal-
culate the third-order Raman response function. To begin, the
polarizability tensor is written in Fourier space as

P5(
iÞ j

āT̄i jā5

ā2

V (
k

(
iÞ j

T̄~k!e ik~ri2rj !

5

ā2

V (
k

T̄~k!r~k!r* ~k!, ~4.10!

where r(k)5( i exp(2ikri) is the number density. In Eq.
~4.10!, the term withi5 j is excluded by setting the dipole
interaction to zero whenever the internuclear distance van-
ishes,T̄i5 j50. Substituting this expression into the correla-
tion function of the total polarizability, we have

C~ t !5

1

V2 ā4K (
k

T̄~k!r~k,t !r* ~k,t !

3U(
k8

T̄(k8)r(k8,0)r* (k8,0)L
'2Nrā4

1

~2p !3 E dkT̄g~k!T̄g~k!F2~k,t !, ~4.11!

whereF(k,t) is the intermediate scattering function. In Eq.
~4.11!, Tg(r)5T(r)g(r) is the dipole interaction operator
dressed by the pairwise distribution function. The essential
step in the derivation of Eq.~4.11! is the Gaussian factoriza-
tion of the density fluctuation, illustrated in Fig. 11 and ex-
plicitly expressed as

FIG. 10. A comparison of the anisotropic componentC zyzy(t) from mol-
ecule dynamics simulation, from the Gaussian approximation of the re-
sponse function, and from the Gaussian fitting of the memory function.

FIG. 11. Schematic of the Gaussian factorization of the four-point density
correlation function. The evolution of joint liquid densities atr1 and r2 is
factorized into the product of the propagation of single particle density. The
equilibrium condition of the liquid densities atr1 and r2 at time zero is
imposed by the pair correlation function, and the same equilibrium condition
is imposed for the two liquid densities at timet.
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^r~r1 ,t !r~r2 ,t !ur~r3,0!r~r4,0!&'g~r12r2!g~r32r4!

3@G~r12r3 ,t !G~r22r4 ,t !

1G~r22r3 ,t !G~r12r4 ,t !#, ~4.12!

where the equilibrium term does not contribute at long times.
Evaluation of the Gaussian factorization expression requires
numerical simulations or viscoelastic approximations for
F(k,t).73–75 Balucani and Zoppi have discussed Eq.~4.11!
extensively and have found reasonable agreement with the
experimental depolarized data.54

Since the Fourier transformation preserves the order of
the tensor, the intensity ratio of different polarizability geom-
etries from the anisotropic contribution remains constant,
and the intensity ratio of different polarizability configura-
tions from the isotropic contribution remains constant. Thus
the polarization dependence predicted by the hydrodynamic
models is consistent with the previous analysis of polariza-
tion selectivity in Sec. III.

The initial behavior is not included in Eq.~4.11! because
the Gaussian factorization is not applicable in the short time
regime. The structure of the Raman response function is
dominated by the features at relatively short time, so the
initial value corrections to the direct Gaussian factorization
can improve the accuracy of the scheme. To do this, we first
derive the GLE, which incorporates the initial behavior
through the frequency term, and apply Gaussian factorization
to the memory function instead of the correlation function.
Interestingly, this scheme is shown in the following to give
the mode-coupling equation for the intermediate scattering
function and the bilinear density fluctuation. Then, the
simple Gaussian factorization in Eq.~4.11! is shown to be
the hydrodynamic limit of the mode-coupling equation for
r~k!r~2k!.

C. Mode coupling equation for the intermediate
scattering function

We now demonstrate that the standard mode coupling
equation for the intermediate scattering functionF(k,t)
5^r(k,t)ur(k,0)& can be easily derived with the Gaussian
factorization scheme in combination with the mean spherical
approximation. The starting point is the generalized Lange-
vin equation~GLE! with two variablesr~k! andṙ(k), which
leads to a reduced GLE for the density fluctuation

F̈~k,t !1v2F~k,t !1E
0

t

M ~k,t2t !F~k,t !dt50. ~4.13!

Here, the effective frequency is defined as

v2
5

^ṙ2&

^r2&
5

k2
v

2

S~k!
~4.14!

with S(k) the structure factor andv2
5kBT/m the thermal

velocity, and the memory kernel is defined as

M ~k,t !5
^r̈1v2rue2iQLtur̈1v2r&

^ ṙ2&
, ~4.15!

whereQ512P is the orthogonal projection operator,L is
the Liouville operator, and the denominator iŝṙ ṙ&
5Nv0

2k2. The double time-derivative of the density operator
is defined as the Fourier transform

r̈~k!5S (
i

ikvie
ikriD 8

'(
i

i
kFi

m
e ikri

5(
iÞ j

i
k

m
@2¹f~ri j!#e ikri

5(
q

1

V

kq

m
f~k!@r~q!r~k2q!2N#, ~4.16!

wheref~k! is the Fourier transform of the interaction poten-
tial and the higher orderk2 term is ignored. The application
of the Gaussian factorization scheme to the relevant part of
the memory kernel leads to

^r̈ue iQLtur̈&5

1

V2m2 (
q

(
q8

~kq!~kq8!f~q!f~q8!

3^r~q!r~k2q!ue iQLtur~q8!r~k2q8!&

'S N

Vm D 2

(
q

@~kq!2fg~q!2

3F~q,t !F~k2q,t !1~kq!~k2
2kq!

3f~q!gfg~k2q!F~q,t !

3F~k2q,t !#, ~4.17!

wherefg(r)5f(r)g(r) is the dressed interaction potential.
Linearizing the Percus–Yevick closure leads to the following
approximation:

c~r!5~12ebf~r!!g~r!'2bf~r!g~r!, ~4.18!

wherec(r) is the direct solute–solvent correlation function.
Replacing2bf(r)g(r) with the direct correlation function
c(r) follows the same spirit as the mean spherical approxi-
mation. Further, we take the continuous limit ofk, and sym-
metrize the integrand. The resulting expression for the
memory kernel is written as

M ~k,t !5

rkBT

2mk2

1

~2p !3 E dq F~q,t !F~k2q,t !

3@~kq!c~q!1~k2
2kq!c~k2q!#2, ~4.19!

which is exactly the same expression derived with more
complicated mode coupling procedures.49,51,76

Combined with the mean spherical approximation for
the direct correlation function, the Gaussian factorization ap-
proach provides a simple and intuitive alternative to the for-
malism of mode coupling theory and helps one understand
the underlying assumptions involved in the mode coupling
approximation. Equation~4.12! applies to the long-time
large-displacement motion, but does not recover the equilib-
rium distribution. For low-temperature glasses, where the
system is not completely ergodic, the dynamic decomposi-
tion scheme has to be modified to incorporate dynamic het-
erogeneities observed on the experimental time scale.
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Our derivation of the mode-coupling equation for the
intermediate scattering function is simple but approximate.
About the same time as our derivation, a more rigorous treat-
ment was obtained by Zaccarelliet al.77 They related the
Newtonian equation for the liquid density to the generalized
Langevin equation forF(k,t) as in Eq.~4.13!, and then ex-
ploited the fluctuation-dissipation theorem to obtain an ex-
plicit expression for the memory kernel instead of the Mori–
Zwanzig form for the memory kernel. Both the random
phase approximation for the direct correlation function and
the Gaussian factorization for multipoint time correlation
functions were used to arrive at the mode-coupling equation
for F(k,t). Their derivation justifies the approximation for
the direct correlation function from a dynamic perspective
and reveals the self-consistent mean-field nature of the
mode-coupling equation forF(k,t). We will explore both
Gaussian factorization and the more rigorous derivation in a
future paper.

D. Mode-coupling equation for the bilinear density
fluctuation

The Gaussian fitting of the third-order Raman response
function is accurate for relatively short times but decays to
vanishingly small value. Direct Gaussian factorization of the
third-order response is valid only in the hydrodynamic re-
gime. Now we explore a possible way to combine these two
limits and obtain the mode-coupling equation of the Raman
spectrum. As shown earlier, the Raman correlation function
can be written as

C~ t !5

1

V2 ā4K (
k

T̄~k!r~k,t !r* ~k,t !

3U(
k8

T̄~k8!r~k8,0!r* ~k8,0!L
'

2

V2 ā4(
k

T̄~k!T̄~k!^Q1~k,t !Q1~k,0!&, ~4.20!

where Q1(k,t)5r(k,t)r(2k,t) is the bilinear density
mode, and the correlation between different wave vectors is
ignored.78 Unlike the linear density mode, there is no hydro-
dynamic equation to describe the bilinear mode. Direct
Gaussian decomposition reduces the four-point correlation
function to

^Q1~k,t !Q1~k,0!&'N2F2~k,t !, ~4.21!

which recovers the hydrodynamic expression, Eq.~4.11!. As
shown in the early derivation, applying the Gaussian factor-

ization to the memory kernel in GLE leads to a simple way
to obtain the mode-coupling equation. Here, we derive the
mode-coupling equation for the bilinear modeQ1(k,t) and
justify the direct Gaussian factorization as its long-time so-
lution.

To begin, a three-element basis setQ is defined asQ1

5r(k)r(2k), Q25r(k)P(2k)1r(2k)P(k), and Q3

5P(k)P(2k), whereP(k) is the momentum density func-
tion ~i.e., the longitudinal current!, P(k)5( iP ik exp(ikri),
P ik5Pik̂, andk̂ is the unit vector in thek direction. Here, a
simplified hydrodynamic approach is used in constructing
the basis set, in which the temperature fluctuation is
ignored.52,73 Within this basis set, we can write the GLE
using the Mori projection operator defined asP5^¯Q1&
•^QQ1&21Q. A complete mode-coupling description in-
cludes the projection onto differentk wave vectors. Follow-
ing the argument of Keyes and Oppenheim,78 the most im-
portant contribution arises from the diagonal parts. To
simplify the calculation, we consider only the diagonal con-
tributions in the derivation of GLE, giving

S Q̇1~ t !

Q̇2~ t !

Q̇3~ t !
D 5iS 0 V12 0

V21 0 V23

0 V32 0
D S Q1~ t !

Q2~ t !
Q3~ t !

D
2S K11 K12 K13

K21 K22 K23

K31 k32 K33

D * S Q1

Q2

Q3

D 1S f 1~ t !
f 2~ t !
f 3~ t !

D ,

~4.22!

where the asterisk~* ! stands for the time convolution, i.e.,
A* B5*0

t A(t2t)B(t)dt. Using the N-ordering method78

and the Gaussian factorization approximation, these frequen-
cies are given as

V125
k

m
, V21.

2k

bS~k !
, V23.

2k

m
, V32.

k

bS~k !
,

~4.23!

whereS(k) is the static structure factor. In Eq.~2.1!, vector
f (t) represents the fluctuation force defined asf (t)
5e i(12P)Lt(12P)Q̇, matrix K(t) represents the memory
kernel, given byK(t)5^ f (t) f 1&•^QQ1&21. Using the same
approximation for expressingr̈(k), the initial value of the
fluctuation forcef (0) becomes

S f 1~0!

f 2~0!

f 3~0!
D 5

im

k S 0

(
q

k"qfg
2~q !@r~k2q!r~q!r~2k!1r~q2k!r~2q!r~k!#/~mV !22vk

2Q1

(
q

k"qfg
2~q !@r~k2q!r~q!P~2k!1r~q2k!r~2q!P~k!#/~mV !2vk

2Q2

D , ~4.24!
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where only the linear term ofk is kept. Following a conven-
tional approach, we replace the operatore i(12P)Lt with the
full time propogatore iLt, and then use the fluctuation–
dissipation relation to derive the expression for the memory
kernel K(t). We apply two approximations in our calcula-
tion: the Gaussian factorization, which is assumed to be valid
for the long-time memory kernel, and the mean spherical
approximation~MSA!,77 c(k)'2bfg(k), used in the deri-
vation of the mode coupling equation forr(k,t). Thus, the
three nonzero elements are given by

K22~ t !.
r

mk2b

1

~2p !3 E dq C~k,q!F~k

2q,t !F~q,t !F~k,t !,

K31~ t !.
2r

3S~k !k2b2

1

~2p !3 E dq

3C~k,q!F~k2q,t !F~q,t !F~k,t !, ~4.25!

K33~ t !.
4r

3mk2b

1

~2p !3 E dq

3C~k,q!F~k2q,t !F~q,t !F~k,t !,

whereC(k,q)5c(q)2(k"q)2
1c(q)c(k2q)@k"(k2q)#, F is

the density correlation function~intermediate scattering
function!, F(k,t)5^rk(t)r2k(0)&/N, andF is the moment
correlation function~logitudinal current correlation func-
tion!, F(k,t)5b^Pk(t)P2k(0)&/Nm. Madden derived a
similar result, but he did not incorporate the dynamics of
mode-coupling effects.52 Equations~4.22! and ~4.25! relate
the four-point correlation functions to the linear density fluc-
tuation. Some of the approximations used are not necessary,
and a more rigorous derivation of the mode-coupling equa-
tion is presented in a future paper by Wu and Cao.

In principle, if the frequencies and memory kernels are
known, the correlation functions can be solved for a given
set of initial conditions from Eq.~4.25!. Here, instead of
numerical calculations, we use the mode-coupling equation
to justify the direct Gaussian factorization expression of the
four-point density correlation function. We begin by writing
Eq. ~4.22! explicitly as

Q̇1~ t !5i
k

m
Q2~ t !,

Q̇2~ t !5i
2kb

m2S~k !
Q1~ t !1i

2k

m
Q3~ t !2K22* Q21 f 2~ t !,

~4.26!

Q̇3~ t !5i
2kb

m2S~k !
Q2~ t !2K31* Q12K33* Q3~ t !1 f 3~ t !,

which yields the first-, second-, and third-order differential
equations for̂ Q1(t)Q1(0)&. Direct Gaussian factorization
of the three basis-set elements yield̂Q1(0)Q1(t)&
'N2F2(t), ^Q2(0)Q2(t)&'2N2F(t)F(t), ^Q3(0)Q3(t)&
'N2F(t)F(t), and cross terms. These approximate rela-
tions can be shown to satisfy the first-order and second-order
time differential equations exactly, and the third-order time
differential equation approximately, when the mode-coupling

equations forF(t) and F(t) are used. In other words, the
direct Gaussian factorization of the four-point density corre-
lation function is consistent with the long-time solution to
the mode-coupling equation in Eq.~4.26!, thus justifying the
hydrodynamic limit of the third-order Raman response func-
tion.

V. PAIR, TRIPLET, AND QUADRUPLET
CONTRIBUTIONS

An alternative to Gaussian factorization is the dynamic
Kirkwood superposition approximation, which decomposes
many-body time correlation functions into pair quantities.
The Gaussian factorization scheme is based on liquid densi-
ties in space, whereas the dynamic Kirkwood decomposition
is based on particles with specified identities. For example,
Skinner and co-workers have used the approximation to de-
velop a molecular theory for condensed phase
spectroscopy45,46 ~see Appendix E!. Here, we use a similar
approach to evaluate the contributions from two particles
~pair!, three particles~triplet!, and four particles~quadruplet!
to third-order Raman correlation function.

A. Two-particle contribution

With the renormalized DID interaction in Eq.~2.11!, the
time-dependent part of the correlation function can be de-
composed asC(t)5^P(t)P(0)&5C2(t)1C3(t)1C4(t),
whereCn(t) is the n-particle contribution. These terms are
explicitly given as

C2~ t !52ā4(
iÞ j

T̄i j~ t !T̄i j~0!

52N~N21!ā4^T̄12~ t !T̄12&, ~5.1!

C3~ t !54ā4 (
iÞ jÞk

T̄i j~ t !T̄jk~0!

54N~N21!~N22!ā4^T̄12~ t !T̄23~0!&, ~5.2!

C4~ t !5 (
iÞ jÞkÞl

ā4Ti j~ t !Tkl~0!

5N~N21!~N22!~N23!ā4^T̄12~ t !T̄34~0!&,

~5.3!

where the total number of interaction pairs adds up to
N2(N21)2.

For simplicity, we first calculate the two-particle contri-
bution to the time-correlation function of the total polariz-
ability

C2~ t !52ā4E dr1E dr2E dr18E dr28 T̄~r12!

3P0~r1 ,r2 ,r18 ,r28 ,t !T̄~r128 !, ~5.4!

whereP0 is the joint PDF for finding two particles atr1 and
r2 initially and then the same particles atr18 andr28 at a later
time t. The two sets of coordinates are transformed into rela-
tive coordinatesr5r12r2 andr85r182r28 and the center of
mass coordinatesrc5(r11r2)/2 andrc85(r181r28)/2, so that
P05Pc.m.(rc ,rc8 ,t)P rel(r,r8,t). It is implied here that the
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center-of-mass motion is decoupled from the relative motion
so that the joint PDF is a function of relative coordinates
only. Consequently,C2(t) becomes

C2~ t !52ā4NE drE dr8 T̄~r!P rel~r,r8,t !T̄~r8!

52ā4NrE drE dr8 T̄~r!g~r!G~r,r8,t !T̄~r8!,

~5.5!

which is identical to Eq.~5.4! with P0(t)52NP rel(t). In Eq.
~5.5!, the joint probability of the relative coordinate is writ-
ten asP rel(r,r8,t)5rg(r)G(r,r8,t), whereg(r) is the equi-
librium pair distribution function andG(t) is the Green’s
function. The initial value of the Green’s function is a delta
function G(r,r8,0)5g(r)d(r2r8) so that the two expres-
sions in Eqs.~5.1! and ~5.5! are equivalent.

As an alternative, the exact expression in Eq.~5.5! can
be rewritten as

C2~ t !52Nā4E dr8E drE dr0F 1

~2p !3 E dk expik~r2r0!G
3g~r0!T̄~r0!G~r,r8,t !T̄~r8!, ~5.6!

where the Fourier transform of the delta functiond(r2r0) is
inserted. Then, with the equilibrium averagêA(r)&
5r* drA(r)g(r) and the time-correlation function
^e ikr(0)T̄@r(t)#&5r* dr* dr8g(r)e ikrG(r,r8,t)T̄(r8), we
reduce Eq.~5.6! to

C2~ t !'2Vā4
1

~2p !3 E dk^e2ikrT̄~r!&^e ikr~0!T̄@r~ t !#&,

~5.7!

whereV5N/r is the volume and the approximation is due to
the over-accounting of the pair distribution functiong(r). It
turns out that this approximate form ofC2(t) is consistent
with the approximate expressions forC3(t) and C4(t) de-
rived in the following.

B. Dynamic Kirkwood superposition

To proceed, we evaluate the three-particle contribution

C3~ t !54ā4E dr1 dr2 dr3 dr18 dr28 dr38 T̄~r12!

3P0~r1 ,r2 ,r3 ,r18 ,r28 ,r38 ,t !T̄~r238 !

54Nā4E dr12dr23dr128 dr238 g~r1 ,r2 ,r3!

3T̄~r12!G~r12,r23,r128 ,r238 ,t !T̄~r238 !, ~5.8!

whereg is the three-body distribution function andG is the
three-body Green’s function with the initial conditionG(0)
5d(r122r128 )d(r232r238 ). Evidently, the integration over the
coordinates other thanr12 andr238 leads to the reduced prob-
ability function P in Eq. ~3.1! for the three-body contribu-
tion. To evaluate Eq.~5.8!, the delta functiond(r121r23

1r31) is inserted to constrain the initial triangular geometry
with the additional coordinater31. As illustrated in Fig. 12,

we decompose the three-body distribution function as
g(r1 ,r2 ,r3)5g(r12)g(r23)g(r31), and the three-body
Green’s function into the product of the two-body Green’s
functions,G(r12,r23,r128 ,r238 ,t)5G(r12,r128 ,t)G(r23,r238 ,t).
Consequently, the three-body contribution is factored

C3~ t !'4Nā4
1

~2p !3 E dk

3E dr12dr23dr31dr128 dr238 e ik~r121r231r31!

3g~r12!g~r23!g~r31!

3T̄~r12!G~r12,r128 ,t !G~r23,r238 ,t !T̄~r238 !

54Vā4
1

~2p !3 E dk^e ikr&^e ikrT̄~r!&

3^e ikr~0!T̄@r~ t !#&, ~5.9!

where the two-body functions are defined as in Eq.~5.7!. The
approximations involved can be viewed as an extension of
the Kirkwood superposition to the dynamic regime.

Next, the four-particle contribution is rewritten as

C4~ t !5Nā4E dr12dr23dr34dr12dr238 dr348

3g~r1 ,r2 ,r3 ,r4!T̄~r12!

3G~r12,r23,r34,r128 ,r238 ,r348 ,t !T̄~r348 !, ~5.10!

whereg is the four-body distribution function andG is the
four-body Green’s function. Evidently, the integration over
the coordinates other thanr12 and r348 leads to the reduced
probability distribution functionP in Eq. ~3.1! for the four-
body contribution. As illustrated in Fig. 13, we repeat the
same procedure as in the derivation of Eq.~5.9!, and factor-
ize C4(t) into the product of two-body averages and two-
body correlation functions as

C4~ t !'Vā4
2

~2p !3 E dk^e ikr&2^e ikrT̄~r!&

3^e ikr~0!T̄@r~ t !#&, ~5.11!

which differs from Eq.~5.9! only with a static factor̂ e ikr&.

FIG. 12. Schematic of the dynamic Kirkwood superposition approximation
for the three-body contribution to the polarizability tensor correlation func-
tion. The three-body propagation is approximated by the pair motion of
particles, and the three-body equilibrium is maintained initially through the
Kirkwood superposition.
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Finally, combining Eqs.~5.7!, ~5.9!, and~5.10! yields

C~ t !5Vā4
1

~2p !3 E dk~214^e ikr&12^e ikr&2!

3^e ikrT̄~r!&^e ikr~0!T̄@r~ t !#&, ~5.12!

where the relative weight of three contributions is approxi-
mately proportional tô e ikr(0)&. Evidently, the two-particle,
three-particle, and four-particle contributions have the same
angular dependence, and the same time dependence in Fou-
rier space but with different equilibrium weights. Using the
spherical harmonics expansion, we explicitly calculate the
two independent radial functions in Eq.~3.5! and in Eq.
~3.6!, giving

Caniso~ t !5

1

~2p !3 Vā4E dk~214^ j0~kr !&

12^ j0~kr !&2!^hD~r ! j2~kr !&

3^ j2~kr !G2~r,r8,t !hD~r8!& ~5.13!

and

C iso~ t !5

1

~2p !3 Vā4E dk~214^ j0~kr !&12^ j0~kr !&2!

3^h I~r ! j2~kr !&^ j0~kr !G0~r,r8,t !h I~r8!&,

~5.14!

where all the quantities are two-body equilibrium averages
and time-correlation functions.

The inherent structure in liquids leads to prominent
peaks in the two-body distribution function and time-
correlation function in Eqs.~5.13! and ~5.14! such that the
integral in Fourier space is dominated by these peaks. It then
follows from Eqs.~5.13! and ~5.14! that the contributions
from the two-particle, three-particle, and four-particle terms
share similar temporal profiles with the relative ratios deter-
mined by the static structure. In fact, by virtue of^e ikr&
5S(k)21, we can rewrite Eq.~5.12! as

C~ t !5Vā4
2

~2p !3 E dk$112@S~k!21#1@S~k!21#2%

3^e ikrT̄~r!&^e ikr~0!T̄@r~ t !#& ~5.15!

5Vā4
2

~2p !3 E dk S~k!2^e ikrT̄~r!&

3^e ikr~0!T̄@r~ t !#&, ~5.16!

where the ratios of the three contributions are related to the
structure factor. For relatively large wave number,S(k) be-
comes very small, so that the contributions follow the ratio:
C2 :C3 :C4'1:22:1. This ratio has been observed in nu-
merical simulations and has been analyzed by Laddet al.53

Their analysis applies a similar dynamic decomposition but
invokes free-particle diffusion instead of more general dy-
namic propagationG2 and G0 , thus ignoring the different
time dependencies between the depolarized component and
the isotropic component.

In deriving Eq. ~5.12!, we have made several assump-
tions: ~1! The center-of-mass motion is decoupled from the
relative motion.~2! The geometric constraint on the many-
body configuration is imposed only at the initial time.~3!
The many-body distribution function and the many-body
Green’s function are decomposed in a similar way as the
Kirkwood superposition approximation. These assumptions
emphasize the central role of pairwise relative motions and
local structures at short time scales but ignore possible col-
lective motions. Nevertheless, the resulting expressions
based on these assumptions allow us to understand and cal-
culate many-particle contributions in terms of two-body
properties.

C. Diffusion model

In general, the Green’s functionG l(t) decays faster as
the angular momentum numberl increases. We confirm this
statement with the help of the diffusion equation

]G l

]t
5D

1

r2

]

]r
r2

]

]r
G l2D

l~ l11!

r2 G l1Db
]

]r F]U

]r
G lG ,

~5.17!

where D is the diffusion constant for the relative motion
between two Xe atoms. The potential of mean force is deter-
mined from U(r)52KBT ln@g(r)#. Skinner and co-worker
also used a generalized time variable to incorporate the ini-
tial behavior on the coarse-grained level. Equation~5.17! can
be transformed into a Hermitian form and its time-dependent
solution can be formally expanded asG l(r,r8,t)
5(nfnl(r)fnl(r8)exp(2lnlt), where fnl(r) is the eigen-
function andlnl is the corresponding eigenvalue. The long-
time exponential decay is dominated by the first nonzero
eigenvaluel1l . Given the eigensolution forl50, the eigen-
value for nonzerol can be evaluated via perturbation theory

l ln'l0n1Dl~ l11!E fn0
2 ~r !

r2 dr, ~5.18!

which increases as a function ofl(l11). Therefore, the in-
tensity along the magic angle, associated withG0(t), decays
slower than the intensity from theCxzxz component, associ-
ated withG2(t). Though based on the diffusion model, we
believe that this conclusion holds in general.

FIG. 13. Schematic of the dynamic Kirkwood superposition approximation
for the four-body contribution to the polarizability tensor correlation func-
tion. The four-body propagation is approximated by the pair motion of par-
ticles, and the four-body equilibrium is maintained initially through an ex-
tension of the Kirkwood superposition.
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VI. CONCLUSIONS

To conclude, we summarize the main results in response
to the issues raised in Sec. I.

~1! Within the Drude oscillator model, the leading term
of the anisotropic part of the Raman response is determined
by the two-body dipole–dipole tensor, whereas the leading
term of the isotropic part of the Raman response is deter-
mined by the three-body dipole interaction. Higher order
many-body polarization terms can be incorporated through a
renormalization procedure. In comparison with the aniso-
tropic part, the isotropic part of the effective dipole tensor
has a short interaction range, thus resulting in a fast initial
decay in the isotropic response of atomic liquids.

~2! The three distinct tensor elements in the third-order
Raman response are decomposed into an isotropic compo-
nent and an anisotropic component with the coefficients de-
termined by the tensor properties of the dipole interaction.
The decomposition does not only apply to integrated scatter-
ing intensity or the peak intensity but is also valid for all the
time. Moreover, the polarization dependence obtained in this
fashion is general in that it does not rely on the particular
model of liquid dynamics or the type of liquids.

~3! The Gaussian factorization scheme treats liquid den-
sities at different times as Gaussian variables and maintains
the equilibrium distribution by imposing equilibrium distri-
bution functions. This procedure combined with the mean
spherical approximation for the direct correlation function
allows us to recover the mode-coupling equations for the
intermediate scattering function and the bilinear density cor-
relation function. Another approach based on the dynamic
Kirkwood superposition scheme decomposes the many-body
time correlation function into pair quantities. Although both
schemes can be understood as two possible realizations of
dynamic decomposition of high-order time correlation func-
tions, Gaussian factorization applies to density fluctuations
in space, whereas dynamic Kirkwood superposition applies
to particles in liquid.

~4! The two dynamic decomposition schemes are ap-
plied to the calculation of the third-order Raman response in
Xe with several observations.~i! The two-particle, three-
particle, and four-particle contributions to the Raman polar-
ization have similar temporal profiles in Fourier space but
with different amplitudes determined by the static structure.
~ii ! In dense liquids, the long-time decay of the isotropic
component is slower than that of the anisotropic component.
~iii ! The Gaussian fitting according to initial moments gives
a relatively good prediction of the response peak.~iv! The
Gaussian factorization scheme leads to a simple hydrody-
namic expression, which relates the Raman response to den-
sity fluctuations and predicts the dynamic response with rea-
sonable accuracy.

These analytic results are compared favorably with nu-
merical simulations and can be generalized to more compli-
cated liquids. Future research will be devoted to the calcula-
tion of fifth-order spectra~see Paper II! as well as the
modeling of nonlinear spectra of molecular liquids.
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APPENDIX A: THREE-BODY DIPOLE–DIPOLE
INTERACTION IN THE DILUTE HARD-SPHERE MODEL

The many-body polarizability is expanded in terms of
the dipole tensorT in Eq. ~2.4!, where the first term is the
polarizability of individual atoms and the second term leads
to the anisotropic part of the dipole–induced-dipole~DID!
interaction. To account for the isotropic DID polarizability,
we now evaluate the third terma3T i,kTk, j . The diagonal
element of this termi5 j adds to the atomic polarizability
given by Eq.~2.6!. The off-diagonal element of this term
contributes to the dipole–dipole interaction

DT125arE dr3 g~r1 ,r2 ,r3!/g~r12!T~r13!T~r32!

'arE dr3 g~r13!g~r32!T~r13!T~r32!, ~A1!

where the Kirkwood superposition approximation
g(r1 ,r2 ,r3)'g(r12)g(r23)g(r31) is adopted. The radial
function associated with the anisotropic polarizability is

DTD~r !52

ar

~2p !3 E dk@q2~k !#2j2~kr !, ~A2!

and the radial function associated with the isotropic polariz-
ability is

DT I~r !5

2ar

~2p !3 E dk@q2~k !#2j0~kr !, ~A3!

where j l is the lth order spherical Bessel function and
q2(k)52* j2(kr)g(r)/r3 dr.

In this appendix,DTD(r) andDT I(r) are calculated for
a dilute hard-sphere fluid. At the low-density limit, the pair-
wise correlation functiong(r) takes the form of the step
function,

g~r!5H 0, r<a

1, r.a
, ~A4!

wherea is the diameter of the liquid molecule. The Fourier
transform of the step function is given by

q2~k !54pFcoska

~ka !2 2

sinka

~ka !3G , ~A5!

where the angular part is given byD tensor. Substituting Eq.
~A5! into Eq. ~A3!, we have

DT I~r !5

2ar

~2p !3 E
0

`

~4p !3k2Fcoska

~ka !2 2

sinka

~ka !3G2

j0~kr !dk

5

16ar

a3y3 E
0

` sinx~xy cosxy2sinxy !2

x5 dx, ~A6!
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wherex5kr and y5a/r. Because the integrand is an even
function ofx, the lower limit of the integral can be expanded
to 2`, and the integral is expanded from real space to com-
plex space. Then, Eq.~A6! becomes

DT I~r !5

8ar

a3y3i E2`

` ~xy cosxy2sinxy !2

x5y6 e ix dx

5

2ar

a3y3i F E
2`

` 2x2y2
12

x5y6 e ix dx

1E
2`

` x2y2
12ixy21

x5y6 e i~112y !x dx

1E
2`

` x2y2
22ixy21

x5y6 e i~122y !x dxG
5

2ar

a3y3i
@I11I21I3#, ~A7!

where the three integrals are evaluated using the residue
theorem, giving

I15

~1212y2!pi

2
1

2~6y2
21!i

3
e21

1

4i

3
e23, ~A8!

I25

~112y !2~4y21!pi

24
1

~126y2
24y3!i

3
e21

2

2i

3
e23, ~A9!

I35sign~2y21!
~122y !2~114y !pi

24

1

~126y2
14y3!i

3
e21

2

2i

3
e23, ~A10!

with e an infinitesimal positive variable. Though each inte-
gral diverges at the smalle limit, the combination of three
integrals cancels out all the divergent terms, and the con-
verged sum in Eq.~A7! givesDT I(r) as

DT I~r !5H 0, r>2a

arp

6a3 S r

a
22D 2S r

a
14D , r,2a

, ~A11!

which is a step function at 2a.
The same approach is applied to the calculation of

DTD(r). First, DTD(r) is rewritten as

DTD~r !52

ar

~2p !3 E dkF4pS coska

k2a2 2

sinka

k3a3 D G2

3F S 3

x32

1

x D sinx2

3

x2 cosxG
52

8ar

a3y3 E
0

`

dx
1

x4 S 3 sinx

x3 2

3 cosx

x2 2

sinx

x D

3~xy cosxy2sinxy !2

52

8ar

a3y3 ~I182I282I38!, ~A12!

where I385I11I21I3 is the integral evaluated forDT I(r).
Using the residue theorem,I18 and I28 are calculated as

I185

3

8i E2`

`

dxF2~x2y2
11!

x7 e ix

1

x2y2
12ixy21

x7 e i~112y !x

1

x2y2
22ixy21

x7 e i~122y !xG
5S y6

12
1

y5

10
2

y3

24
1

y2

64
2

1

1920Dp

1sign~122y !S y6

12
2

y5

10
1

y3

24
2

y2

64
1

1

1920Dp,

~A13!

and

I285

3

8 E2`

`

dxF2~x2y2
11!

x6 e ix

1

x2y2
12ixy21

x6 e i~112y !x

1

x2y2
22ixy21

x6 e i~122y !xG
5S y5

10
2

y3

8
1

y2

16
2

1

320Dp

2sign~122y !S y5

10
2

y3

8
1

y2

16
2

1

320Dp, ~A14!

where both integrals converge. SubstitutingI18 , I28 , and I38

into Eq. ~A12!, we arrive at

DTD~r !5H 2

4par

3r3 , r>2a

2

par

24a3 S 6a2r2r3

a3 D , r,2a

, ~A15!

which modifies 1/r3 interaction.

APPENDIX B: RENORMALIZATION OF THE DRUDE
OSCILLATOR MODEL

To facilitate the analysis of Raman spectroscopy, we
present here a simplified derivation of the renormalized po-
larizability and dipole–induced-dipole~DID! propagator. We
follow the same notations used by Cao and Berne.40

In an isotropic fluid all particles are identical so that the
thermal average of the diagonal elements of the polarizabil-
ity tensor defines the renormalized polarizability
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ā5

1

3N
^Tr II&5^II&115 (

n50

`

an^Tn21&11, ~B1!

where the bracket designates the thermal average over disor-
dered liquid configurations. The expansion can be repre-
sented by diagrams with open circles as the tagged particles,
closed circles as the integrated particles, and lines as the DID
propagator. Wherever circles connect two or more otherwise
separated subdiagrams, the many-body distribution function
is factorized accordingly so that the configurational average
associated with subdiagrams can be decoupled from the con-
figurational average of the other parts of the diagram. With
this approximation, all the decorations at closed circles~i.e.,
all the subdiagrams singly connected to the backbone of the
diagram! can be removed by replacinga with the renormal-
ized quantityā. As demonstrated in Fig. 14, the many-body
integration of the decorations at the open circle can be re-
summed as

ā'a1aK (
i

T1iāTi1L a

1aK (
i

T1iāTi1L aK (
j

T1 jāTj1L a1¯

5

a

12a(~ ā !
, ~B2!

where( is the infinite sum of the simple connected diagrams
~i.e., decorations!. As shown in Fig. 15, the ring diagrams in
the ( expansion can be re-summed to yield

( ~ ā !'^T1iāTi1&1^T1iāTi jāTj1&

5rāE dr T~r!T̄~r!g~r!dr, ~B3!

where the renormalized propagatorT̄ will be explained
in the following. Here, the self-energy term( is evaluated
with the help ofT̄ instead of the Pade´ approximation or the
MSA solution for the dipolar fluid.

Following the definition for ā, we define the off-
diagonal element of the polarizability tensor as

P125 K aT

I2aTL
12

5āT̄~r12!ā, ~B4!

where the configurational average excludes indices 1 and 2.
First, all the decorations on the backbone can be removed by
replacing the polarizability by the renormalized polarizabil-
ity a→ā. Second, we keep only diagrams with linear chain
structures similar to the Dyson expansion and average over
the intermediate particles between indicesi and j. Third, the
equilibrium average over then-body distribution is approxi-
mately decomposed along the linear chain as

g~r1 ,r2 ,r3 ,...,rn!'g~r12r2!g~r22r3!

3g~r32r4!¯g~rn212rn!

3g~rn2r1!, ~B5!

which extends the Kirkwood approximation beyond the
three-body distribution function. With these approximations,
we re-sum the expansion of the dipole interaction in Fig. 16
and obtain

T̄~k!'T1ārTgTg1~ ārTg!2Tg1¯

5T2Tg1

Tg

12ārTg
, ~B6!

where the dipole tensorT~r! dressed by the pairwise distri-
bution functiong(r) is denoted asTg(r)5g(r)T(r). The
Fourier transform of the traceless tensor isT(k)
52* j2(kr)/r3dr D5T(k)D, where j2(kr) is the second-
order spherical Bessel function. Similarly,T̄g(k)
52* g(r) j2(kr)/r3dr D5Tg(k)D. Thus, the renormalized
propagator in Eq.~B6! is explicitly evaluated as

FIG. 14. The many-body expansion and re-summation of the renormalized
polarizability. The circle represents the tagged particle and the shaded area
represents the self-energy term(.

FIG. 15. The ring-diagram expansion of the self-energy(. Each closed
circle represents a dummy particle being integrated with a renormalized
polarizability, and each line represents dipole–induced-dipole interaction.

FIG. 16. The Dyson expansion of the renormalized dipole–induced-dipole
interaction. Each closed circle represents a dummy particle being integrated
with a renormalized polarizability, and each line represents dipole–induced-
dipole interaction.
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T̄'T2Tg1Tg

D12s~k !I

12s~k !22s2~k !
. ~B7!

The transformation back to coordinate space leads toT̄
5hDD1h II, where the anisotropic part is

hD~r !52

1

~2p !3 E dk j2~kr !

3FT~k !2Tg~k !1

Tg~k !

12s~k !22s~k !2G ~B8!

and the isotropic part is

h I~r !5

1

~2p !3 E dk j0~kr !FTg~k !
2s~k !

12s~k !22s~k !2G ,
~B9!

with s(k)5ārTg(k). We solve Eq.~B7! self-consistently
with Eq. ~B2! to yield the fully renormalizedā and T̄.
Hence, instead of the Pade´ approximation or the MSA solu-
tion for a dipolar fluid, we explicitly re-sum the diagrams
using a decomposition similar to the Kirkwood approxima-
tion.

APPENDIX C: MOLECULAR DYNAMICS SIMULATIONS
OF LIQUID Xe

Molecular dynamics simulations were carried out using
a cubic box containing 108 Xe atoms under the usual peri-
odic boundary condition and minimum image conventions.
The interaction between Xe atoms was modeled by a
Lennard-Jones potential

f~r !54eF S s

r D 12

2S s

r D 6G ~C1!

with parameterse5236.6kB and s53.88rA from the
literature.73 The Lennard-Jones system was equilibrated un-
der reduced temperatureT* 5kBT/e50.75 and reduced den-
sity r* 5rs3

50.85. The atomic polarizability of Xe varies
slightly in literature, and it is taken asa54.16rA3 in our
simulation, i.e.,a* 5a/s3

50.071.79,80 Equations of motion
were integrated using the leap-frog algorithm. The reduced
time unit issAm/e, which is 2.7 ps for liquid Xe. All quan-
tities in our simulations are reported in reduced units unless
specified otherwise. The time step for MD is 531023 re-
duced time unit. In accord with the spherical cutoff conven-
tion, all distance-dependent quantities were calculated within
a sphere of a radius of half the box length. The time corre-
lation functions were accumulated with a resolution of 5 time
steps. The molecular dynamics simulations were carried out
to 105 time steps from equilibrium configurations of the liq-
uid. Equilibrium properties, such as the static structure factor
and the velocity–velocity correlation function, were calcu-
lated and found within good agreement in previously pub-
lished results.73,81,82

As a numerical test, we use the the pair interaction ap-
proximation of the total polarizability tensorP5(aTa in
Eq. ~2.5!, which leads to the ratioCzzzz :Czyzy :Czzyy54:3:
22 for an isotropic system. In order to generate an isotropic
liquid sample, we compared two numerical methods. The
first method is the Ewald summation technique of deLeeuw,

Perram, and Smith in their calculation of dielectric constants
of polar fluids.83 In the Ewald summation, the dipole–dipole
interaction tensor is modified by the replica of the simulation
box and the continuum medium, giving

Ti j5
1

L3 ¹¹fEw~R i j /L !2

3

2es11

4p

3L3 I, ~C2!

where L is the size of the cubic system studied,es is the
dielectric constant of surrounding medium, andfEw is the
Ewald summation,

fEw~r!5 (
nÞ0

1

pn2 e2~pn/c !2
1i2pn"r

1(
n8

erfc~cur1n8u!

ur1n8u
~C3!

with c an arbitrary constant and erfc the complementary error
function. The constantc in our simulation is taken to be 5.0,
which is sufficiently large that the only contribution in the
real space part isn850 in the second term offEw . The
number of reciprocal vectorsn used in the first term offEw

is 63. In the second method, a simple spherical cutoff in the
dipole–dipole interaction at half the box length is employed
to recover the rotational symmetry of the cubic simulation
box. As shown in Table I, though the two methods predict
different values, they both give the same intensity ratio
Czzzz :Czyzy :Czzyy54:3:22, indicating the correct isotropic
condition. The Ewald summation has a more reliable theo-
retical basis; however, due to the constraint on CPU time, we
employ the simple spherical cutoff method in the simula-
tions.

APPENDIX D: INITIAL MOMENTS OF THE THIRD-
ORDER RAMAN CORRELATION FUNCTION

Because of the many-body polarization in atomic liq-
uids, the renormalized dipole–induced-dipole~DID! interac-
tion tensor,T̄5hD(r)D1h I(r)I, has both a traceless aniso-
tropic part and a diagonal isotropic part. In this appendix, we
derive the initial moments of the correlation functions within
the renormalized Drude oscillator model. Components ofT̄
along the arbitrary directionsm andn ~representingx, y, and
z! are given as

T̄mn5hD~r !~3nmnn2dmn!1h I~r !dmn

53hD~r !nmnn1~h I~r !2hD~r !!dmn , ~D1!

wherenm is the mth component of the unit vector anddmn

represents the delta function. First the leading order moment
of the correlation function is

TABLE I. The absolute intensity and ratio of the three tensor elements of
the third-order Raman correlation function in the pair interaction approxi-
mation. The ratios in both the Ewald summation method and the spherical
cutoff method are nearly the same.

C zzzz(0) Czyzy(0) Czzyy(0)

Ewald summation 0.003 05 0.002 34 20.001 52
Ratio 4.00 3.07 22.00
Spherical cutoff 0.002 51 0.001 93 20.001 26
Ratio 4.00 3.07 22.00
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c05^T̄mnT̄gl&5

^9hD
2 ~r !&r

15
~dmndgl1dmgdnl1dmldng!

1$2^hD~r !@h I~r !2hD~r !#&r

1^@h I~r !2hD~r !#2&r%dmndgl , ~D2!

where ^ f (r)&r represents the radial average,^ f (r)&r

5* f (r)g(r)r2 dr. The three distinct components of the cor-
relation function are

^T̄zzT̄zz&5^h I
2~r !1

4
5hD

2 ~r !&r , ~D3!

^T̄zzT̄yy&5^h I
2~r !2

2
5hD

2 ~r !&r , ~D4!

^T̄zyT̄zy&5^ 3
5hD

2 ~r !&r , ~D5!

which satisfy the polarization decomposition derived in Sec.
II.

Next we derive the second moment of the correlation
function. To begin, the first-order time derivative of the
renormalized DID tensor is

TG mn5@a1n inmnn1a2~nmdni1nndmi!1a3n idmn#v i ,
~D6!

where

a153hD8 2

6hD

r
, a25

3hD

r
, a35h I82hD8 , ~D7!

where the prime represents the spatial derivative with respect
to the radial coordinater, hD8 5]rhD , v i denotes theith com-
ponent of the velocity, and the repeated indices are summed
over implicitly. Then, we use Eq.~D7! to derive the second-
order moment,

c25^TG mnTG gl&5^] iT̄mn] iT̄gl&

5

1

mb K a1
2
14a1a2

15
1

2a2
2

3 L P~dd !mngl

1

1

mb K a3
2
1

2~2a2a31a1a32a2
2!

3 L dmndgl

5

1

mb K 3hD8
2

5
1

18hD
2

5r2 L
r

P~dd !2

1

mb
mngl

1K h I8
2
2hD8

2
2

6hD
2

r2 L
r

dmndgl , ~D8!

where operatorP represents the permutation of the indices
and P(dd)mngl5dmndgl1dmgdnl1dmldng . The three ten-
sor components are

^TG zzTG zz&5K 4

5 S hD8
2
16

hD
2

r2 D 1h I8
2L

r

, ~D9!

^TG zzTG yy&5K 2

2

5 S hD8
2
16

hD
2

r2 D 1h I8
2L

r

, ~D10!

^TG zyTG zy&5K 3

5 S hD8
2
16

hD
2

r2 D L
r

, ~D11!

which also satisfy the polarization decomposition relation.

Finally, we derive the fourth-order moment of the corre-
lation functions. To begin, we write the second-order time
derivative of the polarizability tensor as

TJ mn5

d

dt
~] jT̄mnv j!5~] iT̄mn!

F i

m
1v iv j] i j

2 T̄mn , ~D12!

where ] i j
2

5] i] j , F i represents theith component of the
force, which is related to the potentialU(r) by F i

52] iU(r). From Eq.~D12!, the fourth-order moment be-
comes

^TJ mnTJ gl&5^] i j
2 T̄mn]kl

2 T̄gl&^v iv jvkv l&

1 K ] i j
2 T̄mn

Fk

m
]kT̄glL ^v iv j&

1 K ]kl
2 T̄gl

F i

m
] iT̄mnL ^vkv l&

1

1

m2 ^F i] iT̄mnFk]kT̄gl&

5A11A21A31A4 , ~D13!

which is separated into four parts. These four parts in Eq.
~D13! are explicitly evaluated as

A15S 1

mb D 2

^] i j
2 T̄mn]kl

2 T̄gl&P~dd ! i jkl

5S 1

mb D 2

~^] i
2T̄mn] j

2T̄gl&12^] i j
2 T̄mn] i j

2 T̄gl& !, ~D14!

A25

kBT

m2 ^Fk] i
2T̄mn]kT̄gl&

52S 1

mb D 2

~^] i
2] j T̄mn] jT̄gl&1^] i

2T̄mn] j
2T̄gl& !,

~D15!

A352S 1

mb D 2

~^] iT̄mn] j
2] iT̄gl&1^] i

2T̄mn] j
2T̄gl& !,

~D16!

and

A452

kBT

m2 ^] i~] iT̄mnF j] jT̄gl!&

52

kBT

m2 @^] i
2T̄mnF j] jT̄gl&1^] iT̄mn] i~F j] jT̄gl!&

1^] iT̄mnF j] i jT̄gl&#

5

1

mb
^] iT̄mn] jT̄glV i j

2 &

1S 1

mb D 2

^] i j~] iT̄mn] jT̄gl!&. ~D17!

Here,V i j is the curvature,

V i j
2

5

1

m
] i jU~r !5c~r !d i j1d~r !n in j ~D18!
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with c(r)5]rU(r)/(mr) and d(r)5]r
2U(r)/m2]rU(r)/

(mr). Substituting the above-given four terms into Eq.
~D13!, the fourth-order moment is the sum of two terms

c45^TJ mnTJ gl&5

1

mb
^] iT̄mn] jT̄glV i j

2 &

13S 1

mb D 2

^] i
2T̄mn] j

2T̄gl&. ~D19!

The first term is further simplified to

^] iT̄mn] jT̄glV i j
2 &5^c~r !d i j] iT̄mn] jT̄gl

1d~r !n in j] iT̄mn] jT̄gl&

5^c~r !@ 1
15~a1

2
14a1a2

110a2
2!P~dd !mngl1~a3

2
1

2
3~2a2a3

1a1a32a2
2!!dmndgl#&r1^d~r !

3@ 1
15~a112a2!2P~dd !mngl1~a3

2

1
2
3~a1a312a2a3!!dmndgl#&r .

~D20!

For the second part, we first evaluate] i jT̄mn ,

] i jT̄mn5] i@a1n jnmnn1a2~nmdn j1nndm j!1a3n jdmn#

5F S a182

3a1

r D nmnn1S a382

a3

r
dmnD Gn in j

1S a1

r
nmnn1

a3

r
dmnD d i j1

a1

r
~dminn

1dninm!n j1S a282

a2

r D ~dm jnn1dn jnm!n i

1

a2

r
~dmidn j1dm jdni!, ~D21!

so that

^] i jT̄mn] i jT̄gl&

5

3

5 K 12
hD

2

r4 14
hDhD8

r3 26
hD8

2

r2 1hD9
2L

r

3P~d !mngl1K 224
hD

2

r4 112
hDhD8

r3 22
hD8

2

r2 2hD9
2

1

h I8
2

r2 1h I9
2L

r

dmndgl16K 3
hD

2

r4 24
hDhD8

r3 12
hD8

2

r2 L
r

3~dmgdnl1dmldng!. ~D22!

Substituting Eqs.~D20! and ~D22! into Eq. ~D19!, we have
the explicit expression of the fourth-moment of the correla-
tion function. As an example, we give theCzzzz component
as

^TJ zzTJ zz&

5

1

mb H K c~r !F4

5 S hD8
2
16

hD
2

r2 D 1h I8
2G L

r

1 K d~r !S 4

5
hD8

2
1h I8

2D L
r
J

33S 1

mb D 2K 4

5 S hD9
2
114

hD8
2

r2 236
hD8 hD9

r3 142
hD

2

r4 D
1S h I9

2
12

h I8
2

r2 D L
r

. ~D23!

We can show that all the fourth-order moments also satisfy
the polarization decomposition relation.

APPENDIX E: ENERGY GAP CORRELATION
FUNCTION

A key quantity in solvation dynamics is the energy gap
correlation function

C~ t !5K (
i

f@ri~ t !2r0~ t !#U(
j

f@rj~0!2r0~0!#L ,

~E1!

wheref is the interaction potential or the force between the
solvent and solute,ri is the coordinate of theith solvent
particle, andr0 is the coordinate of the solute particle. Many
experimental measurements can be related to the energy gap
correlation function, which in proper forms describes energy
relaxation and dephasing~electronic or nuclear!, solvation
dynamics, and charge transfer. The energy gap correlation
function has been evaluated within hydrodynamic theory by
Skinner, Fayer, Banchi, and their co-workers. Here we com-
pare their expressions from the unified perspective of dy-
namic decomposition.

1. Gaussian factorization

We begin by writing the correlation function as

C~ t !5E dr dr8 dr0 dr08P~r0 ,r,r08 ,r8,t !

3f~r2r0!f~r82r08!, ~E2!

where P is the joint density distribution function defined
earlier. The simple Gaussian factorization scheme results
in P(r0 ,r,r08 ,r8,t)'rGs(r0 ,r08 ,t)G(r,r8,t)g(r2r0)g(r8

2r08), whereGs is the self-correlation function for the solute
andG is the van Hove function for the solvent. Substituting
this expression into the correlation function, we obtain

C~ t !5E dr dr8 dr0 dr08Gs~r0 ,r08 ,t !

3G~r,r8,t !fg~r2r0!fg~r82r08!

5

r

~2p !3 E dk fg
2~k!F~k,t !Fs~k,t !, ~E3!

whereF(k,t) is the intermediate scattering function of the
solvent andFs(k,t) the self-intermediate scattering function
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of the solute. The dressed interaction potential is defined as
fg(r)5f(r)g(r) with g the solvent–solute pair correlation
function. Equation~E3! has been obtained by Hills using
various superposition approximations. Iff is the potential
responsible for the solute–solvent structure, we then apply
the mean spherical approximation and replace2bf(r)g(r)
with the direct correlation functionc(r). With this approxi-
mation, Eq.~E3! becomes

C~ t !5

r~kBT !2

~2p !3 E dk c2~k!F~k,t !Fs~k,t !, ~E4!

which has been used by Banchi, Cherayil, Fayer, and their
co-workers for calculating vibrational relaxation.47,48

The Gaussian factorization scheme starts to fail at short
times and does not recover the equilibrium distribution at the
initial time. To improve the accuracy of the Gaussian factor-
ization, one has to correct the initial value of the correlation
function while maintaining the structure of the dynamic de-
composition. One possible way to include the initial-value
correction is to rewrite Eq.~E3! as

C~ t !5rE dr dr8 G~r,r8,t !

3f~r2r0!f~r82r0!
r~r,r8,r0!

r~r,r8!
, ~E5!

where the solute motion is not included. Here,r(r,r8,r0) is
the density–density correlation function in the presence of
the solute, andr~r,r8! is the density–density correlation
function without the presence of the solute. The denominator
r~r,r8! cancels the van Hove function in the numerator at the
initial time, thus recovering the exact initial value. With the
Kirkwood decomposition approximation ofr(r,r8,r0), Eq.
~E5! recovers the simple Gaussian factorization expression in
Eq. ~E3!. Similar corrections can also be introduced in Fou-
rier space.

2. Dynamic Kirkwood superposition

We follow the method used by the Skinner group. First,
the energy gap correlation function is separated into the two-
particle and three-particle contributionsC2(t) and C3(t),
C(t)5C2(t)1C3(t). The two-body contribution is written
as

C2~ t !5(
i

^f@ri~ t !2r0~ t !#f@ri~0!2r0~0!#&

5rE dr1 dr18g~r1!f~r1!G~r1 ,r18 ,t !f~r18!, ~E6!

wherer1 and r18 are the solvent–solute separations at time
zero and timet, respectively, andG(r1 ,r18 ,t) is the Green’s
function for the solvent–solute motion. If the solute is im-
mobile, Eq.~E6! is exact because the center-of-mass motion
is irrelevant. The three-particle contribution involves two
solvent particles and the solute,

C3~ t !5(
iÞ j

^f@ri~ t !2r0~ t !#f@rj~0!2r0~0!#&

5r2E dr1 dr2 dr18 dr28 g~r1 ,r2 ,r12!

3f~r2!G~r1 ,r2 ,r18 ,r28 ,t !f~r18!, ~E7!

wherer8 is the solvent–solute separation at timet and r is
the solvent–solute separation at the initial time. The three-
body Green’s function is factorized into the two-body
solvent–solute Green’s function, and the Kirkwood superpo-
sition approximation is used to evaluate the three-body dis-
tribution function. Then, we have

C3~ t !'r2E dr1 dr2 dr18 f~r2!g~r1!g~r2!g~r12!

3G~r1 ,r18 ,t !f~r18!, ~E8!

which can be understood as a different dynamic factorization
scheme. As shown by the Skinner group, the above-given
expression forC3(t), in combination withC2(t), predicts
the energy gap correlation function with remarkable accu-
racy. The prediction of vibrational relaxation rate using this
approach is reliable and leads to simple physical
interpretation.45,46,84

Both dynamic Kirkwood superposition and Gaussian
factorization are designed to decompose multiple correlation
functions to linear correlation functions. The simple Gauss-
ian factorization scheme takes into account the solvent–
solvent density fluctuation but ignores the solute–solvent dy-
namic effect, whereas the dynamic Kirkwood superposition
takes into account the solute–solvent dynamics at low to
intermediate densities but ignores the solvent–solvent dy-
namics at high densities.85 Therefore, the first scheme works
better for weak solvent–solute interactions and the second
scheme works better for strong solvent–solute interactions.
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