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Fourth-order quantum master equation and its Markovian bath limit
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~Received 14 September 2001; accepted 28 November 2001!

Fourth-order quantum master equations~FQMEs! are derived in both time nonlocal and local forms
for a general system Hamiltonian, with new detailed expressions for the fourth-order kernel, where
the bath correlation functions are explicitly decoupled from the system superoperators. Further
simplifications can be made for the model of linearly coupled harmonic oscillator bath.
Consideration of the high temperature Ohmic bath limit leads to a general Markovian FQME with
compact forms of time independent superoperators. Two examples of this equation are then
considered. For the system of a quantum particle in a continuous potential field, the equation reduces
to a known form of the quantum Fokker–Planck equation, except for a fourth-order potential
renormalization term that can be neglected only in the weak system-bath interaction regime. For a
two-level system with off-diagonal coupling to the bath, fourth-order corrections do not alter the
relaxation characteristics of the second-order equation and introduce additional coherence terms in
the equations for the off-diagonal elements. ©2002 American Institute of Physics.
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I. INTRODUCTION

Quantum master equations~QMEs!1–17 offer direct pre-
scriptions on how to evolve an open quantum system,
have provided canonical frameworks for the description
various quantum relaxation processes. Although formally
act equations are available,3–7 in practical applications18,19

the usual choices have been second-order equations su
Bloch–Redfield equation1–4 and its generalizations.8–14

These retain the necessary ingredients of the dissipa
quantum dynamics while being simple enough, and can
related to the microscopic properties of the system, an
portant asset hardly attainable by axiomatic approaches15–17

only.
However, the second-order QME~SQME!1–4,8–14has a

limitation, the assumption of weak system-bath interacti
With the advance of ultrafast spectroscopy and submic
cale experiments, increasing number of studies are being
formed for condensed phase systems where the weak sys
bath interaction does not necessarily hold. If suita
transformations20–22 can be found such that the weak inte
action regime is recovered, applications of the SQME
such systems after the transformation can be justified. O
erwise, explicit considerations of the higher order terms m
be necessary. Recent theoretical studies on the higher o
QME23–26 or its stochastic Schro¨dinger equation version27,28

have important implications in this respect.
Due to the perturbative nature, the interaction stren

regime where a higher order QME is applicable may not
dramatically larger than that of the SQME. However, mo
calculations26–28 demonstrate that higher order correctio
can bring substantial improvements in intermediate coup
regimes of physical relevance. In other cases, even
qualitative features can arise.24 These examples indicate th
a systematic extension of the SQME to a higher orde
worthwhile and that it may provide a more solid theoretic
understanding of open system quantum dynamics.
2700021-9606/2002/116(7)/2705/13/$19.00
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In the present paper, we derive a general and a deta
form of the fourth-order QME~FQME!. The expression for
the FQME where the superoperators are given by Liouv
operators, without explicit averaging over the bath degree
freedom, are well known.5–7,23–28Our new contribution is to
perform the explicit averaging over the bath, based on f
necessary assumptions, and to derive general expression
the kernels of the FQME, where the bath correlation fun
tions are decoupled from the system superoperators.
result leads to the ability to perform routine FQME calcu
tions for various systems and general formal analyses
some limiting situations. Our main focus here is on the lat
aspect, in one particular limit. We derive more detailed e
pressions of the kernels for the model of linearly coup
harmonic oscillator bath and then make a careful exam
tion of the Markovian bath limit.

For the model of linearly coupled harmonic oscillat
bath, the path integral formalism29–32 provides a powerful
alternative to the perturbation approaches. Caldeira
Leggett ~CL!30,31 applied the Feynman–Vernon influenc
functional formalism33 to a system of a quantum particle in
continuous potential field. In the limit where the bath b
comes Markovian, they derived a quantum Fokker–Pla
equation30 which has the correct classical limit. Hereafte
this will be called CL master equation~CLME!. Quite inter-
estingly, the CLME can also be derived from the SQME f
the same model.10,11,14Does this mean that consideration u
to the second order is exact for the CL model in the Marko
ian bath limit? Although various works on the model of ha
monic oscillator system seem to advocate this view,34–36 no
rigorous clarification is available for a general system Ham
tonian, as has been recently pointed out.37 Although a satis-
factory answer for this remains a challenge, the more mod
goal of examining the CLME at the fourth-order level can
achieved through our Markovian FQME.
5 © 2002 American Institute of Physics
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A two-level system coupled to the harmonic oscillat
bath has been studied numerous times, since it is the sim
nontrivial model mimicking an open discrete quantu
system.32 However, straightforward perturbative studies b
yond the second order are rare.23–26 Important contributions
were made by Skinner and co-workers23,24 who showed that
the dephasing time (T2) can be different from twice the
population relaxation time (T1) even when the system-bat
coupling is off-diagonal. More surprisingly,T2 can be greater
than 2T1 for a certain complex coupling. These results a
obtained for finite bath correlation time. According to the
formal expression for the pure dephasing time,24 however,
the second-order result ofT252T1 is recovered in the limit
where the bath timescale becomes zero. Thus for the m
of two-level system off-diagonally coupled to the Markovia
bath, the fourth-order corrections should appear only in
coherence terms. Confirmation of this and calculation of
coherence terms can be done quite easily using our gen
expression for the Markovian FQME.

The paper is organized as follows. In Sec. II, we der
FQMEs for a general system plus bath Hamiltonian. Sec
III considers the special case of linearly coupled harmo
oscillator bath. In Sec. IV, a Markovian FQME is derived
the high temperature Ohmic bath limit, which is then appl
to the above two examples of the system Hamiltonian,
CL model and a two-level system off-diagonally coupled
the bath. Section V summarizes conclusions and the im
cations of the present work.

II. GENERAL EXPRESSIONS FOR THE FOURTH-
ORDER EQUATION

Consider a closed composite of system plus bath w
the Hamiltonian given by

H5Hs1Hb1H15H01H1 , ~1!

where Hs is the system Hamiltonian,Hb the bath Hamil-
tonian, andH1 represents the interaction between the sys
and the bath. For the clarity of presentation, we assume
the interaction is a single product of a system operatorSand
a bath operatorB as follows:

H15SB. ~2!

All the following results are, however, general enough to
extended to the cases where the interaction is given by a
of terms like Eq.~2!. Appendix A provides derivations fo
this general situation, and all the results of the present
tion can be obtained from those in Appendix A by droppi
all the indices.

In the interaction picture defined by the zeroth-ord
HamiltonianH0 , the total density operator satisfies the fo
lowing time dependent quantum Liouville equation:

ṙ~ t !52 iL1~ t !r~ t ![2
i

\
@S~ t !B~ t !,r~ t !#, ~3!

where S(t)[eiH st/\Se2 iH st/\ and B(t)[eiH bt/\Be2 iH bt/\.
For notational convenience, we have used the same sym
for the interaction picture operators as those in the Sch¨-
dinger picture. Hereafter,all operators are defined in the
interaction picture unless specified otherwise.
Downloaded 03 Jun 2002 to 18.60.2.110. Redistribution subject to AIP
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The total density operator att50 is assumed to be th
following product form:

r~0!5s~0!rb , ~4!

wheres~0! is an arbitrary system density operator andrb is
an equilibrium bath density operator commuting withHb .
The bath part of the interaction Hamiltonian satisfies the f
lowing condition:

Trb$rbB%50, ~5!

which is always possible for a properly defined syste
Hamiltonian.

For the conditions as specified above, formally ex
quantum master equations with simple structure can be
rived. From these formally exact equations, the FQMEs
be obtained by making approximations valid up to the fou
order of the system-bath interaction. There are two w
known distinctive procedures. One uses the projection op
tor technique,3,5–10,38,39which leads to time-nonlocal~TN!
equation, and the other employs the generalized cumu
theorem,5–7,23,40 which leads to time-local~TL! equation.
When considered up to the infinite order, these two equati
are equivalent.5–7 Within the perturbative approximations
however, they become different.

A. Time-nonlocal fourth-order quantum master
equation „TN-FQME…

The TN equation is often called chronological orderi
prescription6 or time convolution7 equation. The derivation
can be made using the projection operator technique as m
tioned above. Although this procedure has been dem
strated many times,3,5–10,38,39we provide our own derivation
in Appendix A to make the present work self-containe
Equation ~A8! is the formally exact TN-QME for the re
duced system density operators(t)[Trb$r(t)%. The TN-
FQME can be found by making a second-order approxim
tion for exp(1)$2i*t

t dt8(12P)L1(t8)%. The result is Eq.
~A9!, which can be equivalently written as

ṡ~ t !'2E
0

t

dt~K~2!~ t,t!2K~4!~ t,t!!s~t!, ~6!

where

K~2!~ t,t![^L1~ t !L1~t!&, ~7!

K~4!~ t,t![E
t

t

dt1E
t

t1
dt2^L1~ t !L1~t1!L1~t2!L1~t!&

2^L1~ t !L1~t1!&^L1~t2!L1~t!&, ~8!

where ^¯&[Trb$¯rb%. When transformed back to th
Schrödinger picture, Eq.~6! involves time convolution inte-
grals, the solution of which may be obtained more easily
the Laplace domain. After the bath averaging is taken exp
itly, Eq. ~7! can be expressed as
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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2707J. Chem. Phys., Vol. 116, No. 7, 15 February 2002 Fourth-order quantum master equation
K~2!~ t,t!~• !5
1

\2 @S~ t !,^B~ t !B~t!&S~t!~• !

2^B~t!B~ t !&~• !S~t!#, ~9!

which corresponds to Eq.~A11! with all the indices dropped
This expression for the second-order kernel
well-known.10–12,14Similarly, Eq. ~8! can be expressed as

K~4!~ t,t!~• !5
1

\4 E
t

t

dt1E
t

t1
dt2@S~ t !,S~t1!F~ t,t1 ,t2 ,t;• !

2F†~ t,t1 ,t2 ,t;• !S~t1!#, ~10!

with

F~ t,t1 ,t2 ,t;• !5~^BtBt1
Bt2

Bt&2^BtBt1
&^Bt2

Bt&!St2
St~• !

2~^BtBtBt1
Bt2

&2^BtBt1
&^BtBt2

&!St2
~• !St

2~^Bt2
BtBt1

Bt&2^BtBt1
&^Bt2

Bt& !St~• !St2

1~^BtBt2
BtBt1

&2^BtBt1
&^BtBt2

&!~• !StSt2
, ~11!

where the time arguments were denoted as subscripts. E
tions ~10! and~11! correspond to Eqs.~A16! and~A17!, with
all the indices dropped. To our knowledge, this type of g
eral expression for the fourth-order kernel has not been
ported before.

Equations~6!, ~9!, ~10!, and ~11! form a closed set of
expressions for the TN-FQME. No assumption was made
the system Hamiltonian nor on the system-bath interac
within the form of Eq. ~2!. As expected, the fourth-orde
term involves four-time bath correlation functions and trip
integrations over time. Solving this in real time domain m
be time consuming. When considered in the Laplace dom
the Schro¨dinger picture version of Eq.~6! can have a rela-
tively simple structure and lend itself to a physically mo
vated approximation for the remaining infinite order term
Golosov and Reichman41 recently demonstrated that this a
proach enhances the accuracy a great deal when applied
different type of master equation.

B. Time-local fourth-order quantum master equation
„TL-FQME…

The TL equation is often called partial orderin
prescription6 or time convolutionless27 equation, and can be
obtained by employing the generalized cumulant theorem40

Alternatively,7 one can convert the TN equation to the co
responding TL equation by invertings~t! to s(t). At the
fourth-order level, this procedure can be performed in a s
plified manner shown below.

In Eq. ~6!, the second-order term can be replaced w
the following approximation:
Downloaded 03 Jun 2002 to 18.60.2.110. Redistribution subject to AIP
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K~2!~ t,t!s~t!5K~2!~ t,t!s~ t !2K~2!~ t,t!~s~ t !2s~t!!

'K~2!~ t,t!S s~ t !2E
t

t

dt1E
0

t1
dt2

3K~2!~t1 ,t2!s~t2! D
'K~2!~ t,t!S 12E

t

t

dt1E
0

t1
dt2

3K~2!~t1 ,t2! Ds~ t !, ~12!

where the second equality is obtained by integrating the s
ond order approximation of Eq.~6! from t to t and the third
equality by replacings(t2) with s(t). These approxima-
tions do not affect the accuracy of the equation up
the fourth order because the errors, when multiplied w
K(2)(t,t)K(2)(t1 ,t2), appear in the fifth and higher orde
terms. Similarly, the second term in the integrand of Eq.~6!
can be approximated as

K~4!~ t,t!s~t!'K~4!~ t,t!s~ t !, ~13!

without degrading the accuracy of the equation up to
fourth order. Employing the approximations given by Eq
~12! and ~13!, one can now transform Eq.~6! into the fol-
lowing TL equation:

ṡ~ t !'2~R~2!~ t !2R~4!~ t !!s~ t !, ~14!

where

R~2!~ t ![E
0

t

dtK~2!~ t,t!, ~15!

R~4!~ t ![E
0

t

dtK~4!~ t,t!2E
0

t

dtE
t

t

dt1E
0

t1
dt2

3K~2!~ t,t!K~2!~t1 ,t2!. ~16!

These two relaxation operators involve time integrations
K(2)(t,t) andK(4)(t,t), for which the detailed expression
are given by Eqs.~9! and ~10!. The TL-FQME, Eq.~14!, is
suitable for time domain study. Compared to the TL-SQM
solving this equation has an additional cost of calculating
four-time bath correlation functions and triple time integr
tions. However, if an explicit expression forR(4)(t) can be
found, implementation of the TL-FQME is no more difficu
than the TL-SQME. Before ending this section, it is mea
ingful to check the validity of the derivation presented he
by rewriting Eq.~16! in a more familiar form. In the second
term, the integration overt2 can be divided into the two
regions of 0<t2,t andt<t2,t1 . Interchangingt2 andt
for the latter case and inserting Eqs.~7! and~8! into the final
expression forR(4)(t), Eq. ~16! can be expressed as

R~4!~ t !5E
0

t

dt1E
0

t1
dt2E

0

t2
dt~^L1~ t !L1~t1!L1~t2!L1~t!&

2^L1~ t !L1~t1!&^L1~t2!L1~t!&

2^L1~ t !L1~t2!&^L1~t1!L1~t!&

2^L1~ t !L1~t!&^L1~t1!L1~t2!&!. ~17!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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This is the usual form of the fourth-order kernel found in t
literature,5–7,23–28and thus demonstrates the validity of th
derivation made in the present section.

III. LINEARLY COUPLED HARMONIC OSCILLATOR
BATH

For the model of linearly coupled harmonic oscillat
bath, the fourth-order terms can be simplified further. A
sume the bath Hamiltonian is given by

Hb5(
n

pn
2

2mn
1

mnvn
2

2
xn

2, ~18!

and the bath part of the interaction Hamiltonian given by E
~2! has the following form:

B52(
n

cnxn . ~19!

We consider the following canonical density operator:

rb5e2bHb/Zb , ~20!

whereZb5Trb$e
2bHb%, as the equilibrium density operato

defining the initial condition and the projection operator
Eq. ~A3!. For these specifications, the two-time bath cor
lation function is written as

^B~ t !B&5\~x~ t !2 iw~ t !!, ~21!

where

x~ t !5
1

p E
0

`

dvJ~v!coth~b\v/2!cos~vt !, ~22!

w~ t !5
1

p E
0

`

dvJ~v!sin~vt !, ~23!

with the spectral density defined as

J~v![
p

2 (
n

cn
2

mnvn
d~v2vn!. ~24!

The four-time bath correlation functions appearing
Eq. ~11! can be expressed as a sum of products of the t
time correlation functions, with the application of Wick
rule. The resulting expression for the more general case
sidered in Appendix A is given by Eq.~A18! or ~A20!. In
order to simplify the notation, we denote the commutator a
the anticommutator withS(t) as

C~ t !~• ![@S~ t !,•#, ~25!

A~ t !~• ![$S~ t !,•%, ~26!

and define the following superoperator:

D~ t,t8![x~ t2t8!C~ t8!2 iw~ t2t8!A~ t8!. ~27!

Then the second-order kernel given by Eq.~9! can be com-
pactly written as

K~2!~ t,t!5
1

\
C~ t !D~ t,t!. ~28!
Downloaded 03 Jun 2002 to 18.60.2.110. Redistribution subject to AIP
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The detailed form of the fourth-order kernel can be found
inserting Eq.~A20! with all the indices dropped into Eq
~10!, which is expressed as

K~4!~ t,t!5
1

\2 E
t

t

dt1E
t

t1
dt2C~ t !C~t1!

3~D~ t,t2!D~t1 ,t!1D~t1 ,t2!D~ t,t!!,

~29!

where the definitions of Eqs.~25!–~27! were used.
Inserting Eq.~28! into Eq. ~15!, one can show that the

second-order relaxation operator in the TL equation has
following form:

R~2!~ t !5
1

\ E
0

t

dtC~ t !D~ t,t!. ~30!

Inserting Eqs.~28! and~29! into Eq.~16!, one can show tha
the fourth-order relaxation operator in the TL equation c
be expressed as

R~4!~ t !5
1

\2 E
0

t

dt1E
0

t1
dt2E

0

t2
dt3C~ t !

3~C~t1!D~ t,t2!D~t1 ,t3!

2D~ t,t2!C~t1!D~t1 ,t3!

1C~t1!D~t1 ,t2!D~ t,t3!

2D~ t,t3!C~t1!D~t1 ,t2!!, ~31!

where the same manipulation as deriving Eq.~17! from
Eq. ~16! has been made but using the explicit forms
K(2)(t,t) andK(4)(t,t) given by Eqs.~28! and~29!. A simi-
lar structure can be seen in a different fourth-ord
analysis.42

Equations~28! and~29! are the final expressions for th
kernels of the TN-FQME, Eq.~6!, and Eqs.~30! and~31! are
those for the relaxation operators of the TL-FQME given
Eq. ~14!. The only assumption necessary for these simp
cations is the Wick’s rule, and no specification for the ba
time scale has been made yet. Compared to Eq.~29!, Eq.
~31! has additional two terms with different ordering an
sign. The net contribution of the four terms in Eq.~31! is
expected to diminish as the timescale of the bath decrea
Thus the fourth-order correction for the TL-SQME in th
Markovian bath limit may have a relatively simple structur

IV. HIGH TEMPERATURE OHMIC BATH LIMIT

Assume that the spectral density is given by

J~v!5hvQ~v/vc!, ~32!

whereQ(x) is a cutoff function decaying faster than 1/x and
vc is the cutoff frequency determining the spectral range
the bath, which is assumed to be much larger than the inv
of the system timescalets . In the high temperature limit of
b\vc!1, the real part of the bath correlation function, E
~22!, can be approximated as

x~ t !'
2h

b\p E
0

`

dvQ~v/vc!cos~vt ![
2h

b\
d̃~ t !. ~33!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Irrespective of the temperature, the imaginary part, Eq.~23!,
can be written as

w~ t !52hd̃8~ t !. ~34!

In Eqs.~33! and~34!, d̃(t) andd̃8(t) become the Dirac-delta
function and its derivative ifvc→`. Physically, however,
vc always remain finite, which is also consistent with t
high temperature condition stated above. Here we ass
that the system-bath time scale ratiovcts is large enough
such thatd̃(t) can be approximated as the genuine Dira
delta function when being integrated with slowly varyin
system operators.43 Otherwise,d̃(t) is still a well-defined
function localized neart;1/vc and with finited̃(0) of order
vc . To be consistent, however, one should disregard term
order 1/(vcts) or smaller in all other integrations involvin
d̃(t) and its derivative. Recognition of this fact is importa
in unambiguous evaluation of the fourth-order kernels as
be shown later. In the following, we assume thattvc@1.
Thus initial slippage dynamics44,45 is not a concern here.

The TL-FQME of Eq.~14! is suitable for the consider
ation of the Markovian bath limit. Inserting Eqs.~27!, ~33!,
and ~34! into Eq. ~30!,

R~2!~ t !5
1

\ E
0

t

dtC~ t !S 2h

b\
d̃~ t2t!C~t!1 ihd̃8~ t2t!A~t! D

'
h

b\2 CC2
ih

\
d̃~0!CA1

ih

2\
CȦ, ~35!

where all the operators in the last line have the same t
argumentt, which was omitted, andȦ5dA(t)/dt. For the
calculation ofR(4)(t), we insert Eq.~27! into Eq. ~31! and
arrange terms as follows:

R~4!~ t !5
1

\2 E
0

t

dt3E
0

t3
dt2E

0

t2
dt1C~ t !~k1~t1 ,t2 ,t3 ,t !

1k2~t1 ,t2 ,t3 ,t !!, ~36!

where a change of time integrands,t i→t2t i , has been
made, and the two kernelsk1 andk2 are given by

k1~t1 ,t2 ,t3 ,t ![x~t2!x~t32t1!~C1C2C32C2C1C3!

2 iw~t2!x~t32t1!~C1A2C32A2C1C3!

2 ix~t2!w~t32t1!~C1C2A32C2C1A3!

2w~t2!w~t32t1!~C1A2A32A2C1A3!,

~37!

and

k2~t1 ,t2 ,t3 ,t ![x~t22t1!x~t3!~C1C2C32C3C1C2!2 iw~t2

2t1!x~t3!~C1A2C32C3C1A2!

2 ix~t22t1!w~t3!~C1C2A32A3C1C2!

2w~t22t1!w~t3!~C1A2A32A3C1A2!.

~38!

In Eqs.~37! and~38!, the subscripts 1, 2, and 3 in the supe
operatorsC and A represent the time argumentst2t1 , t
Downloaded 03 Jun 2002 to 18.60.2.110. Redistribution subject to AIP
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2t2, and t2t3 , andx(t) and w(t) are given by Eqs.~33!
and ~34!. Due to the near singular nature of these functio
care should be taken in evaluating the integrations ofk1 and
k2 . The calculations are detailed in Appendix B.

In Eqs.~37! and~38!, each difference of the two simila
triple products ofC and/or A within a bracket vanishes i
their time arguments become the same. As a result, all te
proportional toW(0,0,0) in Appendix B do not contribute to
the integrations ofk1 andk2 in Eq. ~36!. The only contribu-
tion to the integration ofk1 is made by a term of the type o
Eq. ~B11!. Inserting W(t1 ,t2 ,t3)5C(t2t1)A(t2t2)A(t
2t3)2A(t2t2)C(t2t1)A(t2t3) into Eq. ~B11!, one can
show that

1

h2 E
0

t

dt3E
0

t3
dt2E

0

t2
dt1k1~t1 ,t2 ,t3 ,t !

5 1
8 ~ ĊAA2AĊA!1~«81 1

8!~CȦA2ȦCA!, ~39!

where the identity ofCA5AC has been used and«8 is de-
fined by Eq.~B13!. Similarly, only an identity of the type of
Eq. ~B14! makes contribution to the integration ofk2 in Eq.
~36!. Inserting W(t1 ,t2 ,t3)5C(t2t1)A(t2t2)A(t2t3)
2A(t2t3)C(t2t1)A(t2t2) into Eq. ~B14!, one can show
that

1

h2 E
0

t

dt3E
0

t3
dt2E

0

t2
dt1k2~t1 ,t2 ,t3 ,t !

5~«2 1
8!~ ĊAA2AĊA!1~«2«8!~CȦA2ACȦ!

1~2«2«82 1
8!~CAȦ2ȦCA!, ~40!

where « is defined by Eq.~B7!. Combining Eqs.~39! and
~40! into Eq. ~36!, and recognizing the following identity:

CAȦ2ȦCA5~CAȦ2CȦA!1~CȦA2ȦCA!

5~ACȦ2CȦA!1~AĊA2 ĊAA!, ~41!

one can show that the fourth-order relaxation operator,
~36!, becomes

R~4!~ t !'2«h2C~ ĊAA2AĊA!

2~«2 1
8!h

2C~CȦA2ACȦ!. ~42!

The two terms in this equation, by explicit manipulation
can be expressed as

~ ĊAA2AĊA!s5$@Ṡ,S#,$S,s%%, ~43!

~CȦA2ACȦ!s5~CȦA2CAȦ!s5@S,@@Ṡ,S#,s##.
~44!

Combining Eqs.~35! and ~42!–~44! and using the fact tha
CA(5AC) is equal to the commutation withS2, one can
show that the detailed expression of Eq.~14! for the linearly
coupled Markovian harmonic oscillator bath is given by
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ṡ'2
h

b\2 @S,@S,s##1 i d̃~0!
h

\
@S2,s#2

ih

2\
@S,$Ṡ,s%#

2«
h2

\2 @S,$@Ṡ,S#,$S,s%%#

2~«2 1
8!

h2

\2 @S,@S,@@Ṡ,S#,s###. ~45!

This is the main result, represented in the interaction pict
of the present section. The corresponding equation in
Schrödinger picture can be obtained by adding the iner
term due toHs . Before doing this, we first introduce a ba
system HamiltonianHs

0 and assume that

Hs5Hs
01 d̃~0!hS2. ~46!

The second termd̃(0)hS2 in above equation serves as
counter term canceling the second term on the right-h
side of Eq.~45!. The resulting FQMEin the Schro¨dinger
picture thus reads

ṡ'2
i

\
@Hs

0,s#2
h

b\2 @S,@S,s##2
ih

2\
@S,$Ṡ,s%#

2«
h2

\2 @S,$@Ṡ,S#,$S,s%%#

2~«2 1
8!

h2

\2 @S,@S,@@Ṡ,S#,s###, ~47!

where all the operators are definedin the Schro¨dinger pic-
ture. The same convention will be used hereafter.

Equation~47! is based on the assumption of timesca
separation,tsvc@1, and it is important to keep in mind tha
ts is the timescale ofHs , not ofHs

0. We denote the timescal
of the latter asts

0. If the dynamics due tod̃(0)hS2 occurs in
a time comparable tots

0, the condition ofts
0vc@1 is suffi-

cient to validate Eq.~47!. If the dynamics due tod̃(0)hS2 is
dominantly faster that that due toHs

0, subtle issues arise
First, the condition oftsvc@1 imposes an upper bound o
h, the detailed value of which varies with the type ofS.
Second, the approximation of Eq.~35! need to be revised to
maintain consistency with other approximations based on
timescale separation argument. The reason for this is
additional fourth-order term due to the definition ofHs as
Eq. ~46! appears inR(2)(t), which cannot be neglected in th
regime whered̃(0)hS2 dominates the fast dynamics. A de
tailed account of this aspect will be provided for the C
model considered later.

Another important feature of Eq.~47! is that the fourth-
order terms depend on the detailed nature of the cutoff fu
tion Q(x) through the value of«. Table I provides the nu-
merical values for some typical choices of the cut
function. No long time limit of« exists whenQ(x) is either
step function or exponential. For the former case, the va
of « is still bounded and may be approximated with its tim
average 1/p2. However, for the latter case,« diverges loga-
rithmically with time, the implication of which is that there i
no well-defined Markovian FQME for this type of cuto
function. For Gaussian and Drude cutoffs, the long time lim
Downloaded 03 Jun 2002 to 18.60.2.110. Redistribution subject to AIP
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of « is finite and of order unity. Considering the facts that t
fourth-order terms reflect the feedback of the bath in
sponse to system’s influence and that the bath timescale
not be separated with itself, the dependencies of the fou
order terms on the detailed nature of the high frequency b
components is physically sensible.

One may ask when the Markovian FQME becomes
dependent of the detailed nature of the cutoff function. Su
ming the two terms proportional to« in Eq. ~47!,

@S,$@Ṡ,S#,$S,s%%#1@S,@S,@@Ṡ,S#,s###5@S,$@Ṡ,S2#,s%#.
~48!

This relation implies that, as long as@Ṡ,S2#50, « does not
enter the fourth-order terms and the Markovian bath limit
uniquely defined. For a two-level system, an infinite numb
of possibilities exists for which such a condition is satisfie
For the case where the system consists of a quantum pa
in a continuous potential field, such a condition is not sa
fied in general. However, even in this case, if the net con
bution of Eq.~48! is smaller than other terms by an order
1/(vcts), one should disregard the term in order to mainta
consistency with other approximations based on the tim
cale separation.

A. Caldeira–Leggett model

For the CL model,30,31 the system Hamiltonian is given
by

Hs5
p2

2m
1V~q!1(

n

cn
2

2mnvn
2 q2[Hs

01hd̃~0!q2. ~49!

The system part in the interaction Hamiltonian of Eq.~2! is
the following position operator:

S5q. ~50!

The bath HamiltonianHb is given by Eq.~18!, and the bath
operatorB in the interaction Hamiltonian is given by Eq
~19!. For the choice of Eq.~50!,

Ṡ5q̇5
p

m
, ~51!

@Ṡ,S#52
i\

m
. ~52!

TABLE I. Functional types ofd̃(t) defined by Eq.~33! and the correspond-
ing values of« defined by Eq.~B7!. The limiting value oft→` in Eq. ~B7!,
if it exists, is shown.

Cutoff function d̃(t) «

Step function
sin~vct!

pt

2 sin2~vct/2!

p2

Exponential
vc

p~11~vct !
2!

1

2p2 ln~11~vct!
2!

Gaussian
vc

2Ap
e2~vct !2/4

1

2p

Drude
vc

2
e2vcutu

1

4
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Due to the relation of Eq.~52!, the last term in Eq.~47!
vanishes for the present model. Inserting Eqs.~50!–~52! into
Eq. ~47!, our FQME for the CL model in the Markovian bat
limit becomes

ṡ'2
i

\ FHs
02

«h2

m
q2,sG2

h

b\2 @q,@q,s##

2
ih

2\m
@q,$p,s%#. ~53!

This has the same form as the CLME30 except that there is an
additional potential renormalization term of fourth orde
Table I lists the values of« for different cutoff functions of
the spectral density.

Since terms of order 1/(vcts) have been disregarde
based on the assumption of timescale separation,vcts@1,
the fourth-order potential renormalization term in Eq.~53!
may not be meaningful if

h2&
m2

ts
3vc

, ~54!

which makes the additional potential renormalization te
also of order 1/(vcts). It is important to examine the rel
evance of this inequality to the assumption of timescale se
ration. The analysis varies with the degree of system-b
coupling. In the weak coupling regime ofh;m/(ts

02vc), the
second term of Eq.~49! has a comparable timescale asHs

0.
Thus h2;m2/(ts

04vc
2);m2/(ts

4vc
2). For this case, the con

dition of vcts@1 always guarantees Eq.~54!. If the system-
bath coupling becomes stronger such thath@m/(ts

02vc), the
second term in Eq.~49! sets the fast timescale ofHs . Thus
ts;Am/(hvc), which is equivalent toh2;m2/(ts

4vc
2). For

this case, the condition ofvcts@1 sets an upper bound o
the value ofh and also guarantees the condition of Eq.~54!.
Therefore, it is concluded that the assumption of timesc
separation always makes the new fourth-order term in
~53! of order 1/(vcts) or smaller. This implies that a mor
careful analysis is necessary before including the term in
final expression.

In the weak system-bath coupling limit ofh
;m/(ts

02vc), the fourth-order term is smaller thanHs
0 by an

order of 1/(vcts) and can be disregarded. Ifh
@m/(ts

02vc), the fourth-order term can be comparable to
larger thanHs

0. Thus one need more careful examination
the overall derivation. An account on this aspect has b
made in the paragraph below Eq.~47!. Due to the definition
of Hs as given by Eq.~49!, R(2)(t)s(t) in fact has an addi-
tional fourth-order term. Expansion ofA~t! in Eq. ~35! up to
the second order oft leads to46

R~2!~ t !'
h

b\2
CC2

ih

\
d̃~0!CA1

ih

2\
CȦ2

ih«

2\d̃~0!
CÄ,

~55!

where« is as defined by Eq.~B7!. In this expression, the las
term applied tos can be approximated as
Downloaded 03 Jun 2002 to 18.60.2.110. Redistribution subject to AIP
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th

le
q.

e
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2
ih«

\d̃~0!
CÄs52

ih«

\d̃~0!
@q,$q̈,s%#

'
2i«h2

m\
@q,$q,s%#, ~56!

using q̈'22hd̃(0)q/m which is valid for h@m/(ts
02vc).

One should keep in mind that we have temporarily adop
the interaction picture in Eqs.~55! and ~56!. Going back to
the Schro¨dinger picture and adding the additional term giv
by Eq. ~56! to Eq. ~53!, the Markovian FQME in the regime
of m/(ts

02vc)!h!mvc becomes

ṡ'2
i

\ FHs
01

«h2

m
q2,s G2

h

b\2 @q,@q,s##

2
ih

2\m
@q,$p,s%#. ~57!

This expression still differs from the CLME by an addition
quadratic potential renormalization term. Physically, the n
term tends to localize the system in the region where
system-bath interaction is minimal.

B. Two-level system

Assume the system consists of two levels,u1& and u0&,
and the system Hamiltonian is given by

Hs5\vsu1&^1u, ~58!

where the energy ofu0& state was assumed to be zero. T
system part of the interaction Hamiltonian is assumed to

S5e2 ifu1&^0u1eifu0&^1u, ~59!

wheref is an arbitrary phase factor. Due the assumption t
there are only two states,u0& and u1&, the square ofSsatisfies

S251. ~60!

This property makes the term given by Eq.~48! vanish and
the Markovian FQME for the present model uniquely d
fined. By the same reason, the difference betweenHs andHs

0

as given by Eq.~46! simply becomes a constant and can
disregarded. For above choices ofHs andS,

Ṡ5 ivse
2 ifu1&^0u2 ivse

ifu0&^1u, ~61!

@Ṡ,S#52ivs~ u1&^1u2u0&^0u!. ~62!

The detailed calculations of the terms in the FQME for t
present model are made in Appendix C, utilizing the Pa
matrices. The results are shown in Eqs.~C10!–~C12!. When
transformed to the state representation of the present sec
these can be equivalently written as

ṡ1152
2h

b\2 ~s112s00!2
hvs

\

52
2h

b\2 S 11
b\vs

2 Ds111
2h

b\2 S 12
b\vs

2 Ds00

52ṡ00, ~63!
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ṡ1052 ivsS 12
h2

\2Ds102
2h

b\2 s10

1S 2h

b\2 1 i
vsh

2

\2 De22ifs01, ~64!

ṡ015 ivsS 12
h2

\2Ds012
2h

b\2 s01

1S 2h

b\22 i
vsh

2

\2 De2ifs10, ~65!

where s i j 5^ i usu j &. Here the dimension ofh is different
from that for the CL model because of the difference in
system operatorS. Equation~63! satisfies the detailed ba
ance condition with respect toHs up to the first order ofb.
The fourth-order corrections do not enter the equations
the diagonal elements and do not change the apparent r
ation terms in the equations for the off-diagonal elements
long as the condition of Appendix A in Ref. 23 is satisfie
the fourth-order corrections do not affect the dephasing r
Thus the qualitative aspect of the SQME,T252T1 , remains
the same for the FQME. This result is also consistent w
the work of Laird and Skinner,24 where the pure dephasin
rate becomes zero in the limit where the bath response
becomes zero. Equations~64! and~65! show that part of the
fourth-order corrections can be included as the effective s
tem Hamiltonian. However, this correction is not reflected
the equation for the diagonal elements, Eq.~63!. In fact,
inclusion of these terms amounts to a sixth-order correct
Thus Eqs.~63!–~65! are consistent up to the fourth order, b
it is important to note that the equilibrium populations resu
ing from these equations are valid only up to the seco
order of the system-bath interaction.

For the present model, the fourth-order corrections
not alter the apparent relaxation characteristics of the SQ
However, this seems not a generic nature of the FQME
rather due to the simplicity of the model considered here.
example, for the more general case ofS5cosu (u1&^1u2u0&
3^0u)1sinu (e2ifu1&^0u1eifu0&^1u), by going through a proce
dure similar to that in Appendix C, one can easily show t
the fourth-order corrections alter the apparent dephasing
In addition, if one considers multiple system-bath couplin
and includes the effects of finite bath response time exp
itly, more dramatic effects similar to that observed by La
and Skinner may appear. For this purpose, one needs to
amine the general expression given in Appendix A for a s
cific model and also take all terms of order 1/(vcts) into
consideration. The corresponding expansions become m
complicated in this case, and a detailed presentation wil
provided in a separate paper.

V. CONCLUDING REMARKS

Based on the simple identity of Eq.~A10!, which results
from the cyclic symmetry of the trace operation in the ba
subspace, we have derived a new expression for the fou
order kernel, Eq.~10!, which completes the general and d
tailed forms of the TN-FQME and TL-FQME. For the mod
of linearly coupled harmonic oscillator bath, these equati
Downloaded 03 Jun 2002 to 18.60.2.110. Redistribution subject to AIP
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can be simplified further. The TN-FQME for this model
specified by Eqs.~6!, ~28!, and ~29!, and the TL-FQME by
Eqs. ~14!, ~30!, and ~31!. No assumption was made on th
form of the system Hamiltonian and on the type of the s
tem operator entering the interaction Hamiltonian of Eq.~2!,
and the derived expressions may facilitate the applicab
of the FQME for a broad range of systems.

Analytic considerations were made on the high tempe
ture Ohmic bath limit of the TL-FQME, which led to a
simple Markovian FQME with time independent superope
tors. Due to the fact that the bath timescale, however sma
may be, cannot be separated with itself, the resulting eq
tion has a subtle dependence on the nature of the cutoff fu
tion of the bath spectral density. This shows that there is
unique Markovian bath limit of the FQME in general, exce
for the case where the term given in Eq.~48! is zero or
negligible.

The Markovian FQME was applied to the CL mode
i.e., a one-dimensional quantum particle in a continuous
tential field with bilinear coupling to the harmonic oscillato
bath. The resulting equation has the same form as the CL
except that there is an additional fourth-order potential ren
malization term, which depends on the type of the cut
function. In the weak system-bath interaction regime ofh
;m/(ts

02vc), this term can be neglected according to t
timescale analysis. However, for moderately large syste
bath interaction, the final expression for the consist
fourth-order equation has an additional potential renorm
ization. Recently, a quantum Smoluchowski equation for
CL model has been derived,47,48 which shows that the
CLME30 and other variants49,50ensuring the positivity do no
become the desired form for strong damping unless the c
sical limit is taken first. The relevance of this to our prese
result is not clear at this point, but both of them indicate t
approximate nature of the CLME from two different perspe
tives.

The Markovian FQME was also applied to the model
a two-level system with an off-diagonal coupling23–26 to the
harmonic oscillator bath. We have confirmed that the four
order corrections in the Markovian bath limit do not exist
the relaxation terms nor in the dephasing terms, and h
derived explicit forms of the fourth-order corrections in th
coherence terms. However, this feature is limited to the s
cific type of the off-diagonal coupling considered. As me
tioned in Sec. IV B, for the more general case where th
are both diagonal and off-diagonal components in the sys
operator of the interaction Hamiltonian, the fourth-order c
rections also alter the dephasing rate.

We have limited our analysis of the TL-FQME only t
the high temperature Ohmic bath limit and considered t
simple well-known model systems. Although we have ide
tified corrections important in the intermediate system-b
coupling regime, these do not affect the main relaxat
characteristics of the SQME, which partly explain the go
performance of a SQME for a similar model and condition51

However, in the low temperature regime and/or for mo
realistic models with multiple system-bath interactions a
finite bath response time, the interplay between the co
ence and delayed responses can render the FQME to ex
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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a qualitatively different feature. The general result provid
in Secs. II and III will form an important starting point fo
the examination of these cases and for a clear understan
of possible new phenomena.
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APPENDIX A: DERIVATION OF THE TIME-NONLOCAL
„TN… EQUATION AND THE FOURTH-ORDER
APPROXIMATION

In the present section, we consider a general mode
the interaction Hamiltonian given by

H1~ t !5Sj~ t !Bj~ t !, ~A1!

where the Einstein convention was used for the summa
andSj (t) andBj (t) are, respectively, system and bath ope
tors in the interaction picture defined byH05Hs1Hb . All
other operators appearing in the present section are defi
in the same interaction picture. SinceHs and Hb commute
with each other, Sj (t)5eiH st/\Sje

2 iH st/\ and Bj (t)
5eiH bt/\Bje

2 iH bt/\. The bath operators in Eq.~A1! satisfy
the following condition:

Trb$rbBj%50, ~A2!

whererb is an equilibrium bath density operator commuti
with Hb .

Although the TN equation based on the projection o
erator technique has been derived many times previously
provide another derivation here to make the present w
self-contained. For this purpose, define the following proj
tion operator:

P~• ![rb Trb$•%. ~A3!

Due the condition of Eq.~A2! and the fact thatrb commutes
with Hb , this projection operator satisfies the following im
portant property:

PL1~ t !P50. ~A4!

Application ofP to Eq. ~3! and the use of Eq.~A4! leads to

Pṙ~ t !52 iPL1~ t !Qr~ t !, ~A5!

whereQ512P. On the other hand, application ofQ to Eq.
~3! with the use of Eq.~A4! leads to

Qṙ~ t !52 iL1~ t !Pr~ t !2 iQL1~ t !Qr~ t !. ~A6!

The formal solution of Eq.~A6! is

Qr~ t !52 i E
0

t

dte
~1 !

2 i *t
t dt8QL1~t8!L1~t!Pr~t!, ~A7!

where the fact thatQr(0)50, which results from Eq.~4!,
has been used, ande(1) is the time ordered exponential wit
chronological ordering. Inserting Eq.~A7! into Eq. ~A5! and
then taking trace over the bath, one can obtain the follow
quantum master equation:
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ṡ~ t !52E
0

t

dt^L1~ t !e
~1 !

2 i *t
t dt8~12P!L1~t8!L1~t!&s~t!,

~A8!

wheres(t)5Trb$r(t)% and ^¯&[Trb$¯rb%.
Equation~A8! is exact, but an explicit evaluation of th

time ordered exponential operator is difficult in general. F
this reason, perturbative approximations are usually ma
When the second-order approximation is made for the t
ordered exponential operator, one obtains the follow
fourth-order equation:

ṡ~ t !'2E
0

t

dt^L1~ t !L1~t!&s~t!

1E
0

t

dtE
t

t

dt1E
t

t1
dt2^L1~ t !L1~t1!

3~12P!L1~t2!L1~t!&s~t!, ~A9!

which is equivalent to Eqs.~6!–~8!.
Equation ~A9! is not, however, practically meaningfu

unless the bath averaging can be done explicitly. For the t
of the interaction Hamiltonian given by Eq.~A1!, this task
can be simplified with the use of the following identity:

Trb$@SjBj ,@SkBk ,O##%5@Sj ,Sk Trb$BjBkO%

2Trb$BkBjO%Sk#, ~A10!

where O is an arbitrary operator defined in the compos
Hilbert space of the system and the bath. The second-o
kernel in Eq.~A9! can be obtained by usingO25s(t)rb in
Eq. ~A10!, which results in

^L1~ t !L1~t!&s~t!5
1

\2 @Sj~ t !,^Bj~ t !Bk~t!&Sk~t!s~t!

2^Bk~t!Bj~ t !&s~t!Sk~t!#.

~A11!

The fourth-order kernel in Eq.~A9! can be obtained by in-
serting

O45~L1~t2!L1~t!2^L1~t2!L1~t!&!rbs~t! ~A12!

into Eq. ~A10!.
The expression forO4 in the Hilbert space is

O45~BlBmrb2^BlBm&rb!SlSms

2~BlrbBm2^BmBl&rb!SlsSm

2~BmrbBl2^BlBm&rb!SmsSl

1~rbBmBl2^BmBl&rb!sSmSl . ~A13!

The first trace on the right-hand side of Eq.~A10!, with O4

inserted, becomes

Trb$BjBkO4%5~^BjBkBlBm&2^BjBk&^BlBm&!SlSms

2~^BmBjBkBl&2^BjBk&^BmBl&!SlsSm

2~^BlBjBkBm&2^BjBk&^BlBm&!SmsSl

1~^BmBlBjBk&2^BjBk&

3^BmBl&!sSmSl . ~A14!

By direct manipulation, one can prove that
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Trb$BkBjO4%5~Trb$BjBkO4%!†. ~A15!

As a result, the fourth-order term in Eq.~A9! can be written
as

^L1~ t !L1~t1!~12P!L1~t2!L1~t!&s~t!

5
1

\4 @Sj~ t !,Sk~t1!F jk~ t,t1 ,t2 ,t;s~t!!

2F jk
† ~ t,t1 ,t2 ,t;s~t!!Sk~t1!#, ~A16!

where

F jk~ t,t1 ,t2 ,t;s~t!!

5~^BjBkBlBm&2^BjBk&^BlBm&!SlSms~t!

2~^BmBjBkBl&2^BjBk&^BmBl&!Sls~t!Sm

2~^BlBjBkBm&2^BjBk&^BlBm&!Sms~t!Sl

1~^BmBlBjBk&2^BjBk&^BmBl&!s~t!SmSl , ~A17!

where the time arguments of the operators with subscripj,
k, l, andm are, respectively,t, t1 , t2 , andt. Hereafter, the
same convention will be used.

For the model of the harmonic oscillator bath linea
coupled to the system, Eq.~A17! can be simplified, with the
use of Wick’s rule, as follows:

F jk~ t,t1 ,t2 ,t;s~t!!

5~^BjBl&^BkBm&1^BkBl&^BjBm&!SlSms~t!

2~^BjBl&^BmBk&1^BkBl&^BmBj&!Sls~t!Sm

2~^BlBj&^BkBm&1^BlBk&^BjBm&!Sms~t!Sl

1~^BlBj&^BmBk&1^BlBk&^BmBj&!s~t!SmSl .

~A18!

If one introduces the following notation for the bath corre
tion functions:

^Bj~ t !Bk&5\~x jk~ t !2 iw jk~ t !!, ~A19!

Eq. ~A18! can be rewritten as

F jk~ t,t1 ,t2 ,t;s~t!!

5\2~x j l xkm1xklx jm!@Sl ,@Sm ,s~t!##

2\2~w j l wkm1wklw jm!$Sl ,$Sm ,s~t!%%

2 i\2~x j l wkm1xklw jm!@Sl ,$Sm ,s~t!%#

2 i\2~w j l xkm1wklx jm!$Sl ,@Sm ,s~t!#%, ~A20!

where functions with indicesjl have time argumentt2t2 ,
those withkm havet12t, those withkl havet12t2 , and
those with jm have t2t. Either from Eq. ~A18! or Eq.
~A20!, one can prove thatF jk

† 5F jk for the model of the
harmonic oscillator bath.

APPENDIX B: INTEGRALS OF THE FOURTH-ORDER
TERMS IN THE MARKOVIAN BATH LIMIT

Consider an arbitrary time dependent system oper
W(t1 ,t2 ,t3) as a function oft1 , t2 , andt3 , which is de-
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fined in the interaction picture of the system Hamiltonia
The terms in Eq.~36! involve the following two types of
integrals:

E
0

t

dt3E
0

t3
dt2E

0

t2
dt1g~t2!h~t32t1!W~t1 ,t2 ,t3!,

~B1!

E
0

t

dt3E
0

t3
dt2E

0

t2
dt1g~t3!h~t22t1!W~t1 ,t2 ,t3!,

~B2!

whereg(t) andh(t) are eitherd̃(t) or d̃8(t), respectively. In
the following, we abbreviated̃(t) asd(t).

For the case where bothg(t)5h(t)5d(t), Eq. ~B1! be-
comes

E
0

t

dt3E
0

t3
dt2E

0

t2
dt1d~t2!d~t32t1!W~t1 ,t2 ,t3!

5E
0

t

dt2E
0

t2
dt1E

t2

t

dt3d~t2!d~t32t1!W~t1 ,t2 ,t3!

5E
0

t

dt2d~t2!E
0

t2
dt1E

t22t1

t2t1
dt3d~t3!W~t1,t2,t31t1!

50, ~B3!

and Eq.~B2! becomes

E
0

t

dt3E
0

t3
dt2E

0

t2
dt1d~t22t1!d~t3!W~t1 ,t2 ,t3!

5E
0

t

dt3d~t3!E
0

t3
dt2E

0

t2
dt1d~t1!W~t22t1 ,t2 ,t3!

50. ~B4!

In the final equalities of both Eqs.~B3! and ~B4!, d~t! was
regarded as the genuine Dirac-delta function. That is, te
of order 1/(vcts) or smaller were neglected. The same a
proximation will be used throughout this section.

For the case whereg(t)5d8(t) and h(t)5d(t), Eq.
~B1! becomes

E
0

t

dt3E
0

t3
dt2d8~t2!E

0

t2
dt1d~t32t1!W~t1 ,t2 ,t3!

5E
0

t

dt3d~t3!E
0

t3
dt1d~t1!W~t32t1 ,t3 ,t3!

2E
0

t

dt3E
0

t3
dt2d~t2!d~t32t2!W~t2 ,t2 ,t3!

52 1
8 W~0,0,0!, ~B5!

where the second equality was obtained by making a pa
integration overt2 and recognizing that the boundary ter
corresponding tot250 is zero and that the term containin
the derivative ofW with respect tot2 can be disregarded
because it is of order 1/(vcts). Similarly, Eq. ~B2! for the
choice ofg(t)5d8(t) andh(t)5d(t) becomes
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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E
0

t

dt3d~t3!E
0

t3
dt2E

0

t2
dt1d8~t22t1!W~t1 ,t2 ,t3!

52d~0!E
0

t

dt3d~t3!E
0

t3
dt2W~t2 ,t2 ,t3!

1E
0

t

dt3d~t3!E
0

t3
dt2d~t2!W~0,t2 ,t3!

52~«2 1
8!W~0,0,0!, ~B6!

where the second equality was obtained by making a pa
integration overt1 and disregarding the term containing th
derivative ofW, and

«5E
0

t

dt3d~t3!d~0!t3 . ~B7!

As can be seen from Table I this quantity is of order unity
larger and cannot be neglected.

For the case whereg(t)5d(t) and h(t)5d8(t), Eq.
~B1! becomes
-
-

fir
of
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E
0

t

dt3E
0

t3
dt2d~t2!E

0

t2
dt1d8~t32t1!W~t1 ,t2 ,t3!

52E
0

t

dt3E
0

t3
dt2d~t2!d~t32t2!W~t2 ,t2 ,t3!

1E
0

t

dt3E
0

t3
dt2d~t2!d~t3!W~0,t2 ,t3!

52 1
8 W~0,0,0!, ~B8!

where the second equality was obtained by a partial inte
tion overt1 and disregarding the term containing the deriv
tive of W. On the other hand, Eq.~B2! becomes

E
0

t

dt1E
t1

t

dt2d~t22t1!E
t2

t

dt3d8~t3!W~t1 ,t2 ,t3!

52E
0

t

dt1E
t1

t

dt2d~t22t1!d~t2!W~t1 ,t2 ,t2!

52E
0

t

dt2E
0

t2
dt1d~t1!d~t2!W~t22t1 ,t2 ,t2!

52 1
8 W~0,0,0!. ~B9!

Finally, for the case whereg(t)5h(t)5d8(t), Eq. ~B1!
becomes
E
0

t

dt3E
0

t3
dt2E

0

t2
dt1d8~t2!d8~t32t1!W~t1 ,t2 ,t3!

5E
0

t

dt2d~t2!d~0!W~t2 ,t2 ,t2!1E
0

t

dt3d~t3!d~t3!W~0,t3 ,t3!2E
0

t

dt3d~t3!d~0!W~t3 ,t3 ,t3!

1E
0

t

dt3E
0

t3
dt1d~t3!d~t1!W18~t32t1 ,t3 ,t3!1E

0

t

dt3E
0

t3
dt2d~t2!d~t32t2!W38~t2 ,t2 ,t3!

1E
0

t

dt3E
0

t3
dt2d~t2!d~t32t2!W28~t2 ,t2 ,t3!2E

0

t

dt3E
0

t3
dt2d~t2!d~t3!W28~0,t2 ,t3!, ~B10!
where partial integrations overt2 and then over the remain
ing variable have been made andWi8 denotes partial deriva
tive with respect to thei th argument ofW. In evaluating the
first three terms of this equation, expansions up to the
derivatives ofW should be made to retain finite terms
order unity. Then, Eq.~B10! reduces to

E
0

t

dt3E
0

t3
dt2E

0

t2
dt1d8~t2!d8~t32t1!W~t1 ,t2 ,t3!

5d0W~0,0,0!1 1
8 W18~0,0,0!1~«81 1

8!W28~0,0,0!

1~«81 1
4!W38~0,0,0!, ~B11!
st

where

d05E
0

t

dt3d~t3!d~t3!, ~B12!

«85E
0

t

dt3d~t3!d~t3!t3 , ~B13!

where d0 is of order d~0! while «8 is of order unity.
Similarly, Eq. ~B2! for the case ofg(t)5h(t)5d8(t) be-
comes
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E
0

t

dt3E
0

t3
dt2E

0

t2
dt1d8~t22t1!d8~t3!W~t1 ,t2 ,t3!

5d~0!E
0

t

dt2d~t2!W~t2 ,t2 ,t2!

2E
0

t

dt2d~t2!d~t2!W~0,t2 ,t2!

1d~0!E
0

t

dt3E
0

t3
dt2d~t3!W38~t2 ,t2 ,t3!

2E
0

t

dt3E
0

t3
dt2d~t3!d~t2!W38~0,t2 ,t3!

2E
0

t

dt2E
0

t2
dt1d~t2!d~t22t1!W18~t1 ,t2 ,t2!

5S d~0!

2
2d0DW~0,0,0!1~«2 1

8!W18~0,0,0!

1~«2«8!W28~0,0,0!1~2«2«82 1
8!W38~0,0,0!.

~B14!

APPENDIX C: DERIVATION OF THE FOURTH-ORDER
MASTER EQUATION FOR THE TWO-LEVEL
SYSTEM

In order to derive the final expression for the Markovi
FQME for the model of Sec. IV B, we employ the Pau
matrices,sx , sy , andsz . The system Hamiltonian of Eq
~58! can be written as

Hs5
\vs

2
~sz11!, ~C1!

and the interaction Hamiltonian of Eq.~59! can be written as

S5cosf sx1sinf sy . ~C2!

Equations~61!–~62! can be equivalently written as

Ṡ5vs~2cosf sy1sinf sx!, ~C3!

@Ṡ,S#52ivssz . ~C4!

The general form of the reduced system density operator
be written as

s5 1
2~11cxsx1cysy1czsz!. ~C5!

Due to the condition of Eq.~60!, for the present model, th
fourth-order equation of Eq.~47! reduces to

ṡ52
i

\
@Hs ,s#2

h

b\2 @S,@S,s##2 i
h

2\
@S,$Ṡ,s%#

1
h2

8\2 @S,@S,@@Ṡ,S#,s###. ~C6!

The terms in this expression can be calculated utilizing
properties of the Pauli matrices and the results are as follo
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e
s:

@S,@S,s##52czsz12~cos2 f cy2sinf cosf cx!sy

22~sinf cosf cy2sin2 f cx!sx

52czsz1cysy1cxsx1~cos 2f cy

2sin 2f cx!sy2~sin 2f cy1cos 2f cx!sx ,

~C7!

@S,$Ṡ,s%#522ivssz , ~C8!

@S,@S,@@Ṡ,S#,s###524vs~2 cos2 f cx1sin 2f cy!sy

14vs~sin 2f cx12 sin2 f cy!sx .

~C9!

Inserting Eqs.~C7!–~C9! into Eq. ~C6!, one can show
that the three real coefficients defined by Eq.~C5! satisfy the
following coupled differential equations:

ċx52vscy2
2h

b\2 ~~12cos 2f!cx22 sin 2f cy!

1
vsh

2

\2 ~~12cos 2f!cy1sin 2f cx!, ~C10!

ċy5vscx2
2h

b\2 ~~11cos 2f!cy2sin 2f cx!

2
vsh

2

\2 ~2~11cos 2f!cx1sin 2f cy!, ~C11!

ċz52
4h

b\2 cz2
2hvs

\
. ~C12!
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