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Fourth-order quantum master equation and its Markovian bath limit
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Fourth-order quantum master equatigRQMES are derived in both time nonlocal and local forms

for a general system Hamiltonian, with new detailed expressions for the fourth-order kernel, where
the bath correlation functions are explicitly decoupled from the system superoperators. Further
simplifications can be made for the model of linearly coupled harmonic oscillator bath.
Consideration of the high temperature Ohmic bath limit leads to a general Markovian FQME with
compact forms of time independent superoperators. Two examples of this equation are then
considered. For the system of a quantum particle in a continuous potential field, the equation reduces
to a known form of the quantum Fokker—Planck equation, except for a fourth-order potential
renormalization term that can be neglected only in the weak system-bath interaction regime. For a
two-level system with off-diagonal coupling to the bath, fourth-order corrections do not alter the
relaxation characteristics of the second-order equation and introduce additional coherence terms in
the equations for the off-diagonal elements. 2002 American Institute of Physics.
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I. INTRODUCTION In the present paper, we derive a general and a detailed
_ _ form of the fourth-order QMEFQME). The expression for
Quantum master equatio®MEs)™""" offer direct pre-  the FQME where the superoperators are given by Liouville

scriptions on how to evolve an open quantum system, anfperators, without explicit averaging over the bath degrees of
have provided canonical frameworks for the description ofaedom. are well knowd="23-220ur new contribution is to

various quantum relaxation processes. Although formally ex

1-17

; i alte’ i fcal cationé19 perform the explicit averaging over the bath, based on few
;Ce Sg:j:l I((:)Q;caerse h?vael T)ezhlgeggi%“;? dsrpep Kl:Jztli(())ns such nescessary assumptions, and to derive general expressions for
d tﬁe kernels of the FQME, where the bath correlation func-

Bloch—Redfield equatidn* and its generalizatioris.** i 4 od f h ) wors. Thi
These retain the necessary ingredients of the dissipativéons are decoupled from the System Superoperators. This

quantum dynamics while being simple enough, and can béesult leads tp the ability to perform routine FQME caIcuIa—.
related to the microscopic properties of the system, an imtions for various systems and general formal analyses in
portant asset hardly attainable by axiomatic approdéhtls Some limiting situations. Our main focus here is on the latter
only. aspect, in one particular limit. We derive more detailed ex-
However, the second-order QMBQME)~*8-14has a  pressions of the kernels for the model of linearly coupled
limitation, the assumption of weak system-bath interactionharmonic oscillator bath and then make a careful examina-
With the advance of ultrafast spectroscopy and submicrogion of the Markovian bath limit.
cale experiments, increasing number of studies are being per- For the model of linearly coupled harmonic oscillator
formed for condensed phase systems where the weak systetvath, the path integral formaligt 2 provides a powerful
bath interaction does not necessarily hold. If suitablealternative to the perturbation approaches. Caldeira and
transformation®?? can be found such that the weak inter- Leggett (CL)**3! applied the Feynman—Vernon influence
action regime is recovered, applications of the SQME tofunctional formalism® to a system of a quantum particle in a
such systems after the transformation can be justified. Othontinuous potential field. In the limit where the bath be-
erwise, explicit considerations'of the hi'gher order tgrms Ma¥.omes Markovian, they derived a quantum Fokker—Planck
be necessan. Recent theoretical studies on the h',ghezg ordgfuatio® which has the correct classical limit. Hereafter,
QME. or its _stochas’_uc S(_:hntm_ger equation versigf this will be called CL master equatid€LME). Quite inter-
have important implications in this respect. estingly, the CLME can also be derived from the SQME for

Due to the perturbative nature, the interaction strengt 11,14 . . .
regime where a higher order QME is applicable may not behe same modéf Does this mean that consideration up

dramatically larger than that of the SQME. However, modelf[0 the sec.or?d order is exact' for the CL model in the Markov-
calculation€®-2% demonstrate that higher order corrections!a" bath limit? Although various works on the model of har-

. . . —36
can bring substantial improvements in intermediate couplingn©nic oscillator system seem to advocate this view no _
qualitative features can ari&&These examples indicate that tonian, as has been recently pointed HuAlthough a satis-

a systematic extension of the SQME to a higher order igactory answer for this remains a challenge, the more modest
worthwhile and that it may provide a more solid theoreticalgoal of examining the CLME at the fourth-order level can be
understanding of open system quantum dynamics. achieved through our Markovian FQME.
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A two-level system coupled to the harmonic oscillator The total density operator a0 is assumed to be the
bath has been studied numerous times, since it is the simplef&tllowing product form:
nontrivial model mimicking an open discrete quantum
systent? However, straightforward perturbative studies be- p(0)=0(0)pp, (4)

yond the second order are rdre2® Important contributions
were made by Skinner and co-wor'k%%r%“who showed that  \yhere(0) is an arbitrary system density operator angis

the dephasing timeT() can be different from twice the an equilibrium bath density operator commuting withy .
population relaxation timeT(,) even when the system-bath The path part of the interaction Hamiltonian satisfies the fol-
coupling is off-diagonal. More surprisingly, can be greater |oying condition:

than 2T, for a certain complex coupling. These results are

obtained for finite bath correlation time. According to their (pyB}=0 (5)
formal expression for the pure dephasing tithdowever, bb '
the second-order result df,=2T, is recovered in the limit
where the bath timescale becomes zero. Thus for the modaamiltonian
of two-level system off-diagonally coupled to the Markovian For the .con ditions as specified above, formally exact
bath, the fourth-order corrections should appear only in the . S '

. . . . guantum master equations with simple structure can be de-
coherence terms. Confirmation of this and calculation of theriYed From these formally exact equations, the FOMES can
Zgg?{;gg;}i tf?)i‘n:fsleciﬂnali?)\(/:]iggngul\lﬂtE easily using our gener e obtained by making approximations valid up to the fourth

The paper is organized as foIIow.s In Sec. Il we deriVeorder of the system-bath interaction. There are two well-
FOMESs for a general system plus bath Hamiltonian. Sectiorlfnown distinctive procedures. One uses the projection opera-

H ,5-10,38,39 H : .
[Il considers the special case of linearly coupled harmonié[Or technique’ which leads 1o time-nonloca(TN)

oscillator bath. In Sec. IV, a Markovian FQME is derived in equation, and the other employs the generalized cumulant

—7,23,40 \, 1i A ;
the high temperature Ohmic bath limit, which is then applied10"eM " which leads to time-localTL) equation.

S hen considered up to the infinite order, these two equations
to the above two examples of the system Hamiltonian, the

CL model and a two-level system off-diagonally coupled toﬁg?/v:\?::vg:in?beggﬁln d;t:flsrepn(?[rturbatlve approximations,
the bath. Section V summarizes conclusions and the impli- » (Ney '

cations of the present work. A. Time-nonlocal fourth-order quantum master
equation (TN-FQME)

hich is always possible for a properly defined system

IIl. GENERAL EXPRESSIONS FOR THE FOURTH- The TN equation is often called chronological ordering

ORDER EQUATION prescriptiofi or time convolutiod equation. The derivation
Consider a closed composite of system plus bath witttan be made using the projection operator technique as men-

the Hamiltonian given by tioned above. Although this procedure has been demon-
HeH A H 4+ H.—Hot+ H n strated many time$>-1°%3%ye provide our own derivation

st o D in Appendix A to make the present work self-contained.

where Hg is the system Hamiltoniartd,, the bath Hamil- Equation (A8) is the formally exact TN-QME for the re-

tonian, andH, represents the interaction between the systenduced system density operatoi(t)=Tr,{p(t)}. The TN-

and the bath. For the clarity of presentation, we assume th&QME can be found by making a second-order approxima-

the interaction is a single product of a system oper&tand  tion for exm){—iftfdr’(l—??)£1(7’)}. The result is Eq.

a bath operatoB as follows: (A9), which can be equivalently written as
H,=SB. ) t
All the following results are, however, general enough to be ~ o(t)~— deT(’C(Z)(t,T)—’C(‘”(LT))U( ), (6)

extended to the cases where the interaction is given by a sum

of terms like Eq.(2). Appendix A provides derivations for

this general situation, and all the results of the present sed/here

tion can be obtained from those in Appendix A by dropping

all the indices. K@(t,7)=(L1(t) L1(7)), (7)
In the interaction picture defined by the zeroth-order

HamiltonianH, the total density operator satisfies the fol- @ t n
lowing time dependent quantum Liouville equation: K(t,7)= deTlfT d7a(L1(t) L1(71) L4(72) L4(7))
[
p(t)==iLs(t)p(t)=— 2 [S(B(D).p(1)], 3 —(L1(t) La(m1))(La(72) L1(7)), (8

where S(t)=e"s'ise Hh and B(t)=e"e/ Be Hot'" where (--)=Trp{---pp}. When transformed back to the
For notational convenience, we have used the same symbdBchralinger picture, Eq(6) involves time convolution inte-
for the interaction picture operators as those in the Schrograls, the solution of which may be obtained more easily in
dinger picture. Hereafterll operators are defined in the the Laplace domain. After the bath averaging is taken explic-
interaction picture unless specified otherwise itly, Eq. (7) can be expressed as
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(2) — k(2) _ (2 _
’C(z)(t,T)(‘):ﬁ—lz[S(t),<B(t)B(T)>S(T)(') K9t n)o(r) =K, 7)o(t) — K91, 7)(a(t) —o(1))

%K(Z)(t,']')(a'(t)_ jthllede
T 0

—(B(n)B(1))(-)S(7)], 9
which corresponds to E¢A11) with all the indices dropped. XK@ (1y,75)0( Tz))
This expression for the second-order kernel is
well-known0-1214Similarly, Eq.(8) can be expressed as t n
~K2(t,7) 1—] drlf dr,
T 0
(4) _ 1 t 7'1 .
]C (taT)()_? TdTl . dTZ[S(t)vs(Tl)F(t17-117217-1') XIC(Z)(Tl,Tz))O'(t), (12)
—Fl(t, 7, 72,75 )S(7)], (100 where the second equality is obtained by integrating the sec-

ond order approximation of E@6) from 7 to t and the third

with equality by replacingo(7,) with o(t). These approxima-

tions do not affect the accuracy of the equation up to

the fourth order because the errors, when multiplied with
F(t,71,72,7-)=((BB,B,B,)— (BB, )B,B)S, S,(-)  K®(t,7)KP(ry,7,), appear in the fifth and higher order

terms. Similarly, the second term in the integrand of &).

_(<BTBtBrlB7'2>_<BIBTJ_><BTB7'2>)S7'2(')ST can be approximated as
~((B,,BB,B,)~ (BB, )(B,B))S()S,, K@t no(n)=KY(t,1)a(t), (13)

- without degrading the accuracy of the equation up to the
+(<BTBTthBH> <BtBTl><BTBTz>)(')STSTz' (11) fourth order. Employing the approximations given by Egs.

(12) and (13), one can now transform E¢6) into the fol-

where the time arguments were denoted as subscripts. EqU8Wing TL equation:

tions (10) and(11) correspond to Eq$A16) and(A17), with a(t)~—(RDt)—RD(t))a(1), (14)

all the indices dropped. To our knowledge, this type of gen-
: where

eral expression for the fourth-order kernel has not been re-

ported before.

Equations(6), (9), (10), and (11) form a closed set of
expressions for the TN-FQME. No assumption was made on . . . .
th_e _system Hamiltonian nor on the system-bath interaction R(‘”(t)Ef drld‘”(t,r)—f de dTlf lde
within the form of Eq.(2). As expected, the fourth-order 0 0 T 0
term involves four-time bath correlation functions and triple
integrations over time. Solving this in real time domain may XKE DL (r1,7). (16)
be time consuming. When considered in the Laplace domainfhese two relaxation operators involve time integrations of
the Schrdinger picture version of Eq(6) can have a rela- K®)(t,7) and K*)(t,), for which the detailed expressions
tively simple structure and lend itself to a physically moti- are given by Eqs(9) and(10). The TL-FQME, Eq.(14), is
vated approximation for the remaining infinite order terms.suitable for time domain study. Compared to the TL-SQME,
Golosov and Reichmé&hrecently demonstrated that this ap- solving this equation has an additional cost of calculating the
proach enhances the accuracy a great deal when applied tdaur-time bath correlation functions and triple time integra-
different type of master equation. tions. However, if an explicit expression f&4)(t) can be

found, implementation of the TL-FQME is no more difficult
than the TL-SQME. Before ending this section, it is mean-
ingful to check the validity of the derivation presented here
by rewriting Eq.(16) in a more familiar form. In the second
B. Time-local fourth-order quantum master equation term, the integration over, can be divided into the two
(TL-FQME) regions of < r,<7 and < 7,<7,. Interchangingr, and
for the latter case and inserting E@g) and(8) into the final
expression forR()(t), Eq. (16) can be expressed as

R<2>(t)zftdﬂc<2>(t,r), (15)
0

The TL equation is often called partial ordering
prescriptiofi or time convolutionless equation, and can be
obtained by employing the generalized cumulant thedtem. (@)1 t 1 72
Alternatively” one can convert the TN equation to the cor- '~ ()= | d71] d72 | d7((La(D) Lo(71) La(72) Lo(7))
responding TL equation by inverting(7) to o(t). At the
fourth-order level, this procedure can be performed in a sim- —(L1(1) L1(71))(La(72) L1( 7))
plified manner shown below. _ t

In Eg. (6), the second-order term can be replaced with (L0 L1(r2)){La(72) £2(7))
the following approximation: —(L1() Lo(7)L1(71) L1(72))). 17
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This is the usual form of the fourth-order kernel found in the The detailed form of the fourth-order kernel can be found by
literature®>="22-28and thus demonstrates the validity of the inserting Eq.(A20) with all the indices dropped into Eq.

derivation made in the present section. (10), which is expressed as

1 [t T
IC(“)(t,T):PJ dﬁf d7,C(t)C(7)
I1l. LINEARLY COUPLED HARMONIC OSCILLATOR ! !
BATH X(D(t,2)D(7q,7)+D(71,72)D(1,7)),

For the model of linearly coupled harmonic oscillator (29)
bath, the fourth-order terms can be simplified further. As-where the definitions of Eq$25)—(27) were used.
sume the bath Hamiltonian is given by Inserting Eq.(28) into Eq. (15), one can show that the
2 2 second-order relaxation operator in the TL equation has the
Hp=2 P

My, ,
n 2m, 2

ns (18  following form:

1 [t
and the bath part of the interaction Hamiltonian given by Eq.  RZ(t)= 7 deTC(t)D(t,T)- (30)
(2) has the following form:
Inserting Eqs(28) and(29) into Eq.(16), one can show that
B=— > CX,. (19  the fourth-order relaxation operator in the TL equation can
n be expressed as

We consider the following canonical density operator:

1 [t 1 2
RA(t)= —zf dTlf drzf d73C(t)
pb=e_BHb/Zb, (20) h 0 0 0

whereZ,=Trp{e #Hv}, as the equilibrium density operator X(C(1)D(t,72)D(71,73)
defining the initial condition and the projection operator of B
Eq. (A3). For these specifications, the two-time bath corre- D(t,72)C(71) D71, 73)

lation function is written as +C(1)D(71,72)D(t, 73)
(B()B)=1i(x(t)—ie(1)), (21) —D(t,73)C(11)D(71,72)), (31)
where where the same manipulation as deriving Efj7) from
1 e Eq. (16) has been made but using the explicit forms of
y(H)== f dwd(w)coth Bh w/2)cod wt), (220 K¥(t,7) andK“(t,7) given by Eqs(28) and(29). A simi-
m™Jo lar structure can be seen in a different fourth-order
1 (e analysis®?
o(t)= _f dwd(w)sin(wt), (23 Equations(28) and(29) are the final expressions for the
™Jo kernels of the TN-FQME, Eq6), and Egs(30) and(31) are
with the spectral density defined as those for the relaxation operators of the TL-FQME given by
Eq. (14). The only assumption necessary for these simplifi-
Cﬁ cations is the Wick’s rule, and no specification for the bath
J(“’)EEE m,wp, S(w— wp). (24 {ime scale has been made yet. Compared to (29), Eq.

. _ _ ~ (31 has additional two terms with different ordering and
The four-time bath correlation functions appearing insjgn. The net contribution of the four terms in E@1) is
Eqg. (11) can be expressed as a sum of products of the twogxpected to diminish as the timescale of the bath decreases.
rule. The resulting expression for the more general case cofyjarkovian bath limit may have a relatively simple structure.
sidered in Appendix A is given by EA18) or (A20). In
order to simplify the notation, we denote the commutator andy, HcH TEMPERATURE OHMIC BATH LIMIT
the anticommutator witls(t) as
Assume that the spectral density is given by

C(-)=[S(t),-], (25
J(w)= w0 (w/w,.), (32
AD)={SO), - 26 where® (x) is a cutoff function decaying faster tharxlnd
and define the following superoperator: w. is the cutoff frequency determining the spectral range of
N e ety i e e , the bath, which is assumed to be much larger than the inverse
D) =x (=)L) —ie(t=t) AL"). @n of the system timescale;. In the high temperature limit of
Then the second-order kernel given by E@). can be com- Bfiw <1, the real part of the bath correlation function, Eq.
pactly written as (22), can be approximated as
)(t,7)= = (t)~2—7]fwd O(wlwgcog o= -L31). (33
K9t )= gC(t)D(t,r). (28) X ghm o wO(w/we ol)= Bh .
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Irrespective of the temperature, the imaginary part, (8, -7, andt— 75, and y(t) and ¢(t) are given by Eqs(33)
can be written as and (34). Due to the near singular nature of these functions,
~, care should be taken in evaluating the integrations cnd
p(t)==7d"(1). (34 k5. The calculations are detailed in Appendix B.
In Egs.(33) and(34),3(t) andgr(t) become the Dirac-delta In Egs.(37) and(38), each difference of the two similar

function and its derivative ifo.—c. Physically, however, trip!e 'products ofC and/or A within a bracket vanishes if
. always remain finite, which is also consistent with thetheir time arguments become the same. As a result, all terms

high temperature condition stated above. Here we assunf¥oPortional tow(0,0,0) in Appendix B do not contribute to
that the system-bath time scale ratigr, is large enough the integrations ok, and «, in Eq. (36). The only contribu-

such thatd(t) can be approximated as the genuine Dirac tion to the mtegra.tlon Ok, IS made_by a term of the type of
g. (B11). Inserting W(7q,75,73) =C(t— 71) A(t— 75) A(t
delta function when being integrated with slowly varylng .
73) — A(t— 7,)C(t— 71) A(t— 73) into Eq. (B11), one can
system operatof§ Otherwise, 3(t) is still a well-defined

* show that
function localized near~ 1/w. and with finite 5(0) of order
w.. To be consistent, however, one should disregard terms of
order 1/(w.7s) or smaller in all other integrations involving —z deJ deJ’ d7iki(71,72,73,1)

‘5(t) and its derivative. Recognition of this fact is important

in unambiguous evaluation of the fourth-order kerels as will = 1 (cAA— ACA)+ (e’ + })(CAA— ACA), (39
be shown later. In the following, we assume that,>1.
Thus initial slippage dynami¢$*°is not a concern here.  \yhere the identity of.A=.AC has been used and is de-

The TL-FQME of Eq.(14) is suitable for the consider- fined by Eq.(B13). Similarly, only an identity of the type of
ation of the Markovian bath limit. Inserting Eq&27), (33),  Eq. (B14) makes contribution to the integration ef in Eq.
and(34) into Eq. (30), (36). Inserting W(ry,7,,73)=C(t— 1) A(t— 7,) A(t— 73)

—A(t—73)C(t— 1) A(t— 75) into Eq. (B14), one can show
@(t)=— f dTC(t)(—(S(t—T)C(T)‘H7775'(1:—7')./4(7')) that

1 [t 73 P
Bﬁzcc 5(0)CA+—CA (35) ;zJOdrsfo drzfo d7ika(71,72,73,1)

where all the operators in the last line have the same time = (z— 1)(CAA— ACA)+(e—&')(CAA— ACA)
argumentt, which was omitted, andd=d.A(t)/dt. For the o
calculation of R()(t), we insert Eq.(27) into Eq. (31) and +(2e—¢'— §)(CAA—ACA), (40
arrange terms as follows:
1 rt . . Wher_es is defined by Eq.(B?_)._Combining E_qs.(_39) gnd
R@(t)= ﬁfodﬁfo defo drC(t) (ky(Ty,70,73,t) (40 into Eq. (36), and recognizing the following identity:

o7 Ta0 1), (36) CAA—ACA=(CAA—CAA)+(CAA— ACA)

where a change of time integrands—t— =, has been =(ACA—CAA)+(ACA—-CAA),  (41)
made, and the two kernels, and k, are given by

K1(71,72,73,1) = x(72) X (73— 71)(C1CoC5— CoC1C3)
—i@(12) x(73— 71)(C1AC3— AC1C3)
—ix(72) ¢(73— 11)(C1C2.A3— CoC1.A)

one can show that the fourth-order relaxation operator, Eqg.
(36), becomes

RA(t)~ — e n?C(CAA— ACA)

—@(12) (73— 71)(Cr A Az~ AC1.A3), ~ (=9’ C(CAA=ACA). (42)
(37 The two terms in this equation, by explicit manipulations,
and can be expressed as
Ko(T1,72,73,1) = X(72— T1) X(73) (C1C2C5— C3C1Co) —i (7 (CAA— ACA) o=1[5S],{S, o)}, (43)
—11) X(73)(C1AC3—C3C1A) ) ) _ ) )
_ IX( T,— 7_1)()0(7_3)(C162A3_ A3C162) (C.A.A_ ACA)O': (CA.A_C.A.A)O': [S,[[S,S],O’]](44)
—@(1o— 71) p(73)(Cr A Az — A3C1.A).

Combining Eqgs.(35) and (42)—(44) and using the fact that
(39 CA(=AC) is equal to the commutation witB?, one can
In Egs.(37) and(38), the subscripts 1, 2, and 3 in the super- show that the detailed expression of Et4) for the linearly
operatorsC and A represent the time arguments =, t  coupled Markovian harmonic oscillator bath is given by
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7 - i in . TABLE I. Functional types oB(t) defined by Eq(33) and the correspond-
o~——=[S[S,c]]+i6(0)[S*o]— =5 [S{S,0}] ing values ofe defined by Eq(B7). The limiting value oft— in Eq. (B7),
B % 2% ing values ¢
if it exists, is shown.

2

e % [S,{[S, SIS, o1} Cutoff function () e
772 Step function _Sin(ﬂftuct) —2 sinz(;)ct/Z)
. ko
_(8_ %)F[SI[SI[[SvS]IU]]] (45) ) o, 1
N - - . - - Exponential m ﬁm(l.;.(%t)Z)
This is the main result, represented in the interaction picture, " 1
of the present section. The corresponding equation in the Gaussian j_e*(wc“z"‘ o
Schralinger picture can be obtained by adding the inertial 2w L
term due toHs. Before doing this, we first introduce a bare Drude D6 ug 7
system HamiltoniarH? and assume that 2

He=H2+5(0) S (46)

The second term5(0)»S? in above equation serves as a o ] S
counter term canceling the second term on the right-han8f8 is finite and of order unity. Considering the facts that the

side of Eq.(45). The resuling FQMEn the Schidinger fourth-order terms reflect the feedback of the bath in re-
picture thus reads sponse to system’s influence and that the bath timescale can-

not be separated with itself, the dependencies of the fourth-
order terms on the detailed nature of the high frequency bath
components is physically sensible.
) One may ask when the Markovian FQME becomes in-
e %[S,{[S,S],{S, o] de_pendent of the detailed n_ature of.the cutoff function. Sum-
ming the two terms proportional to in Eq. (47),

o~ — %—[Hg,a]— B—;[S,[S,a]]— IZ—Z[S'{S'U}]

2 ) . . _ . >
(o= D ISISIES) o] ap  (SUSSHSANIHSISISSLoN=(S (5501

where all the operators are defingdthe Schidinger pic-  This relation implies that, as long #§,5*]=0, & does not
ture. The same convention will be used hereafter. enter the fourth-order terms and the Markovian bath limit is
Equation(47) is based on the assumption of timescaleuniquely defined. For a two-level system, an infinite number
separationssw.>1, and it is important to keep in mind that of possibilities exists for which such a condition is satisfied.
74 is the timescale ofi, not ong. We denote the timescale For the case where the system consists of a quantum particle
of the latter as®. If the dynamics due t&(0)7S? occurs in in a continuous potential field, such a condition is not satis-
a time compar;ble ta?, the condition ofrlw.>1 is suffi- fied in general. However, even in this case, if the net contri-
Sy S . .
cient to validate Eq(47). If the dynamics due t&(0) 7S is bution of Eq.(48) is sm_aller than other terms by an ord_er O.f
dominantly faster that that due t°, subtle issues arise 1/(w.7s), one should disregard the term in order to maintain
First, the condition ofrew > 1 impoéés an upper bound 0;1 consistency with other approximations based on the times-

7, the detailed value of which varies with the type &f cale separation.

Second, the approximation of E(R5) need to be revised to A. Caldeira—Leggett model
maintain consistency with other approximations based on the
timescale separation argument. The reason for this is th%g/
additional fourth-order term due to the definition ldf as

Eq. (46) appears irR?)(t), which cannot be neglected in the p2 2
regime where3(0)»S? dominates the fast dynamics. A de- HS_ﬂJrv(qH;
tailed account of this aspect will be provided for the CL
model considered later.

Another important feature of E@47) is that the fourth-
order terms depend on the detailed nature of the cutoff func- S=q. (50
tion ®(x) through the value ot. Table | provides the nu-
merical values for some typical choices of the cutoff
function. No long time limit ofe exists when®(x) is either
step function or exponential. For the former case, the valu

For the CL modef®3! the system Hamiltonian is given

2_ 140 -y 2

=H +74(0)g°. (49
220 =HeT 730)e% (49
The system part in the interaction Hamiltonian of E2). is
the following position operator:

The bath Hamiltoniad, is given by Eq.(18), and the bath
operatorB in the interaction Hamiltonian is given by Eq.
é19). For the choice of Eq50),

of ¢ is still bounded and may be approximated with its time A ¢

average 1. However, for the latter case,diverges loga- S=q= m’ (5D
rithmically with time, the implication of which is that there is _

no well-defined Markovian FQME for this type of cutoff [5,S]=— f (52)
function. For Gaussian and Drude cutoffs, the long time limit ' m’
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Due to the relation of Eq(52), the last term in Eq(47)

i
vanishes for the present model. Inserting E§8)—(52) into - J]g CAo=—-——[0,{§,0}]
Eq. (47), our FQME for the CL model in the Markovian bath 7.6(0) 5(0)
limit becomes o
2ien
) ~ [a.{a,a}], (56)
'm_l_ HO_ﬂ 2 _i[ [ 1] m#;
g ﬁ S m q , O BﬁZ qv q,O’

using §~ —276(0)g/m which is valid for 7=>m/(7%w,).
iy One should keep in mind that we have temporarily adopted
- Zﬁm[q’{p’a}]' (53 the interaction picture in Eq¢55) and (56). Going back to
the Schrdinger picture and adding the additional term given
This has the same form as the CLRExcept that there is an  PY E-(56) to Eq. (53), the Markovian FQME in the regime

additional potential renormalization term of fourth order. Of m/(7¢%w;) < <mw becomes

Table 1 lists the values aof for different cutoff functions of i en?

the spectral density. o~—= HO+ qu,(r
Since terms of order 1{.7s) have been disregarded

based on the assumption of timescale separatiga>1, i

the fourth-order potential renormalization term in E§3) ~ 25 mlaiP.otl. (57)

may not be meaningful if

7
ph?

[a.[9,0]]

This expression still differs from the CLME by an additional
) m? quadratic potential renormalization term. Physically, the new
7 STTH), (54 term tends to localize the system in the region where the
sT¢ system-bath interaction is minimal.

which makes the additional potential renormalization termB. Two-level system
also of order 1/{p.7s). It is important to examine the rel-
evance of this inequality to the assumption of timescale sep
ration. The analysis varies with the degree of system-bat
coupling. In the weak coupling regime gf~m/(72%w,), the He=7 g 1)(1], (58)
second term of Eq49) has a comparable timescale I&S.
Thus 7?~m?/(1%%02)~m?/(r2w?). For this case, the con-
dition of w71 always guarantees E(4). If the system-
bath coupling becomes stronger such thatm/(rgzwc), the S=e 19|1)(0| +€e'¢|0)(1], (59)
second term in Eq49) sets the fast timescale éf;. Thus
s~ m/(nw.), which is equivalent ta>~m?/(72w?). For ~ where¢ is an arbitrary phase factor. Due the assumption that
this case, the condition ab.7s>1 sets an upper bound on there are only two statef)) and|1), the square oS satisfies
the value ofy and also guarantees the condition of Esf)). @1 (60
Therefore, it is concluded that the assumption of timescale '
separation always makes the new fourth-order term in Eqrhis property makes the term given by H48) vanish and
(53) of order 1/(w.7s) or smaller. This implies that a more the Markovian FQME for the present model uniquely de-
careful analysis is necessary before including the term in théined. By the same reason, the difference betwegandH(S’
final expression. as given by Eq(46) simply becomes a constant and can be
In the weak system-bath coupling limit ofy  disregarded. For above choicestbf andS,
~m/(7%0,), the fourth-order term is smaller th&t by an

Assume the system consists of two levels, and |0),
ind the system Hamiltonian is given by

where the energy of0) state was assumed to be zero. The
system part of the interaction Hamiltonian is assumed to be

order of 1/@,7) and can be disregarded. Ify S=iwe "|1)(0]—iwe' ?|0)(1], (61)
>m/(r§2wc), the fourth-order term can be comparable to or ) _
larger thanH?. Thus one need more careful examination of  [S,S]=2iwy(|1)(1|—[0){0). (62)

the overall derivation. An account on this aspect has bee
made in the paragraph below Eg.7). Due to the definition
of Hg as given by Eq(49), R®®)(t)o(t) in fact has an addi-
tional fourth-order term. Expansion of(7) in Eq. (35) up to
the second order of leads t4°

The detailed calculations of the terms in the FQME for the
present model are made in Appendix C, utilizing the Pauli
matrices. The results are shown in ES10—(C12. When
transformed to the state representation of the present section,
these can be equivalently written as

i 7~ in . ine . ) 27 nw
RA(t)~ —CC~ T HO)CA+ —2 CA~ —L—CA, 1=~ 7 (11— 00—
ph2 h 2 213(0) k
(55) 27 Bhog 27 Bhwg
T pR2\ Tt T2 Tt gzt T |
wheree is as defined by EqB7). In this expression, the last
term applied too can be approximated as =— 000, (63
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_ _ 7° 27 can be simplified further. The TN-FQME for this model is
010~ —lws( 1- 72|10 IB—thlo specified by Eqs(6), (28), and(29), and the TL-FQME by
Egs. (14), (30), and (31). No assumption was made on the
27 wsn? “2ig form of the system Hamiltonian and on the type of the sys-
+ Bh? tiz)8 "o, 64 tem operator entering the interaction Hamiltonian of &,
5 and the derived expressions may facilitate the applicability
5‘01=iws( 1— ’7_2) To1— 2_’72001 of the FQME for a broad range of systems.
h Bh Analytic considerations were made on the high tempera-
> on? ture Ohmic bath limit of the TL-FQME, which led to a
+ —772—i 3727 )eZifbgw, (65) simple Markovian FQME with time independent superopera-
ph h tors. Due to the fact that the bath timescale, however small it

where ij =<I|0‘|j> Here the dimension of; is different ~ may be, cannot be separated with itself, the resulting equa-
from that for the CL model because of the difference in thetion has a subtle dependence on the nature of the cutoff func-
system operatoB. Equation(63) satisfies the detailed bal- tion of the bath spectral density. This shows that there is no
ance condition with respect td up to the first order of3. unigue Markovian bath limit of the FQME in general, except
The fourth-order corrections do not enter the equations fofor the case where the term given in E&8) is zero or
the diagonal elements and do not change the apparent relagegligible.
ation terms in the equations for the off-diagonal elements. As  The Markovian FQME was applied to the CL model,
long as the condition of Appendix A in Ref. 23 is satisfied, i.e., a one-dimensional quantum particle in a continuous po-
the fourth-order corrections do not affect the dephasing ratgential field with bilinear coupling to the harmonic oscillator
Thus the qualitative aspect of the SQME,=2T,, remains  bath. The resulting equation has the same form as the CLME,
the same for the FQME. This result is also consistent withexcept that there is an additional fourth-order potential renor-
the work of Laird and Skinné# where the pure dephasing malization term, which depends on the type of the cutoff
rate becomes zero in the limit where the bath response timinction. In the weak system-bath interaction regimezof
becomes zero. Equatioii®4) and(65) show that part of the ~m/(rgzwc), this term can be neglected according to the
fourth-order corrections can be included as the effective sysimescale analysis. However, for moderately large system-
tem Hamiltonian. However, this correction is not reflected inbath interaction, the final expression for the consistent
the equation for the diagonal elements, E63). In fact, fourth-order equation has an additional potential renormal-
inclusion of these terms amounts to a sixth-order correctionization. Recently, a quantum Smoluchowski equation for the
Thus Eqs(63)—(65) are consistent up to the fourth order, but CL model has been derivéd?*® which shows that the
it is important to note that the equilibrium populations result-CLME®® and other varianf&*°ensuring the positivity do not
ing from these equations are valid only up to the secondecome the desired form for strong damping unless the clas-
order of the system-bath interaction. sical limit is taken first. The relevance of this to our present
For the present model, the fourth-order corrections daesult is not clear at this point, but both of them indicate the
not alter the apparent relaxation characteristics of the SQMEapproximate nature of the CLME from two different perspec-
However, this seems not a generic nature of the FQME butives.
rather due to the simplicity of the model considered here. For  The Markovian FQME was also applied to the model of
example, for the more general case ®*cos6(|1)(1|—|0)  a two-level system with an off-diagonal couplfig?®to the
x(0])+sin 6 (e '?|1)(0]+€?0)(1]), by going through a proce- harmonic oscillator bath. We have confirmed that the fourth-
dure similar to that in Appendix C, one can easily show thaiorder corrections in the Markovian bath limit do not exist in
the fourth-order corrections alter the apparent dephasing ratghe relaxation terms nor in the dephasing terms, and have
In addition, if one considers multiple system-bath couplingsderived explicit forms of the fourth-order corrections in the
and includes the effects of finite bath response time expliccoherence terms. However, this feature is limited to the spe-
itly, more dramatic effects similar to that observed by Lairdcific type of the off-diagonal coupling considered. As men-
and Skinner may appear. For this purpose, one needs to efoned in Sec. IV B, for the more general case where there
amine the general expression given in Appendix A for a speare both diagonal and off-diagonal components in the system
cific model and also take all terms of order d{fs) into  operator of the interaction Hamiltonian, the fourth-order cor-
consideration. The corresponding expansions become mofgctions also alter the dephasing rate.
complicated in this case, and a detailed presentation will be  \we have limited our analysis of the TL-FQME only to
provided in a separate paper. the high temperature Ohmic bath limit and considered two
simple well-known model systems. Although we have iden-
tified corrections important in the intermediate system-bath
coupling regime, these do not affect the main relaxation
Based on the simple identity of EGA10), which results  characteristics of the SQME, which partly explain the good
from the cyclic symmetry of the trace operation in the bathperformance of a SQME for a similar model and condifion.
subspace, we have derived a new expression for the fourtidowever, in the low temperature regime and/or for more
order kernel, Eq(10), which completes the general and de- realistic models with multiple system-bath interactions and
tailed forms of the TN-FQME and TL-FQME. For the model finite bath response time, the interplay between the coher-
of linearly coupled harmonic oscillator bath, these equationgnce and delayed responses can render the FQME to exhibit

V. CONCLUDING REMARKS
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a qualitatively different feature. The general result provided t iftdr (1-P)Ly ()

in Secs. Il and 11l will form an important starting point for o(t)=— fodﬂﬁl(t)e(ﬂf Ly(7))o(7),
the examination of these cases and for a clear understanding (A8)

f ibl h :
of possible new phenomena wherea(t)=Tro{p(t)} and(---y=Try{--pp}.

Equation(A8) is exact, but an explicit evaluation of the
time ordered exponential operator is difficult in general. For
this reason, perturbative approximations are usually made.

S.J. thanks Professors I. Oppenheim and D. R. Reichmajhen the second-order approximation is made for the time
for enlightening discussions. This research was supported yrdered exponential operator, one obtains the following
the NSF. fourth-order equation:
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t
_ o(t)~- f d7(Ly(t) L1(7))o(7)
APPENDIX A: DERIVATION OF THE TIME-NONLOCAL 0

(TN) EQUATION AND THE FOURTH-ORDER

t t T
APPROXIMATION +f dff dflf ld72<£1(t)£1(71)
0 T T

In the present section, we consider a general model of
the interaction Hamiltonian given by

H4(t)=S;(t)Bj(1), (A1)  which is equivalent to Eqg6)—(8).

. . . . Equation (A9) is not, however, practically meaningful
where the Einstein convention was used for the Summatloﬂnless the bath averaging can be done exolicitly. For the type
andS;(t) andB(t) are, respectively, system and bath opera- ging PICIEY. yp

tors in the interaction picture defined b,=Hg+Hy. All of the Interaction H_am|lt0n|an given by E("_'A‘l)’_th's _ta§k
L ; .__can be simplified with the use of the following identity:
other operators appearing in the present section are defined
in the same interaction pictureSinceHs and H,, commute Trp{[S;B; .[SBk, OI1} =[S; , S Trp{ B;BkO}
; (+) — aiHtlig a—iH T _
with each other, Sj(t)=¢€ Sie and Bj(t) —Tro{ByB;O}S(], (A10)

=efl/iB,e~Mul"" The bath operators in E¢A1) satisfy
the following condition: where O is an arbitrary operator defined in the composite
Hilbert space of the system and the bath. The second-order
Tro{ppBj} =0, (A2) " kernel in Eqg.(A9) can be obtained by usin@,= o(7)py, in
wherep,, is an equilibrium bath density operator commuting Ed. (A10), which results in
Although the TN equation based on the projection op-
erator technique has been derived many times previously, we

X(1=P)L1(72) L1(7)) 0 (7), (A9)

1
(L1(OLo(7))0(7) = 32[S(1)(Bj()B(7))Sc(7) o (7)

provide another derivation here to make the present work —(By(7)Bj(t))o(7)S(7)].
self-contained. For this purpose, define the following projec- (A11)
tion operator:
P The fourth-order kernel in EqA9) can be obtained by in-
P(-)=pp Trp{-}. (A3)  serting
D_uE the C(rJ]rjditior? of _Eq(AZ) and the fa}gt tha;]pb ;:(?lmm_ute_s On=(L1(72) L1(7) = (L1(72) L1(7))) ppo(7) (A12)
Wcl)trtat']f' r’[0|seftr(?1ect|on operator satisfies the following im- into Eq. (A10).
P property: The expression fo@, in the Hilbert space is
PLOP=0. (A4) O4= (BiBrpp—(BiBr)pp) SSnor
Application of P to Eqg. (3) and the use of EqA4) leads to (B1puBr— (BB1)pp) S oS
—BIPbPm™ \PmPI1/Pb
Ph(t)=—iPL1(t) Qp(1), (A5) BB (BB oSS
bBI [ b
where@=1-"P. On the other hand, application &f to Eq. " "
(3) with the use of Eq(A4) leads to +(ppBmB| —(BmB1)pp) 0SyS; - (A13)

(A6 The first trace on the right-hand side of E&10), with O,
inserted, becomes

Trp{BjByO4} = ((B{BiB|Brm) = (B;Bi){B|Bm)) S Sno
—((BmB;BB;)—(B;Bi)(BmB)) S oSy,
—((BBjB\Bm) —(BiBi){B|Bn))Sno'S,

Qp(t)=—iL1(t)Pp(t) =1 QL (1) Qp(1).
The formal solution of Eq(A6) is

t _ it - -
Qp(t)=—i f dre AT L (1 Pp( ),

where the fact thap(0)=0, which results from Eq(4),
has been used, argg, , is the time ordered exponential with +((BmBIBjBk) —(B;By)
chronological ordering. Inserting EGA7) into Eq.(A5) and

then taking trace over the bath, one can obtain the following X(BmBi))0SnS -
guantum master equation: By direct manipulation, one can prove that

(A14)
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Tro{ByB;Oa} = (Try{B;BxOa})". (A15)  fined in the interaction picture of the system Hamiltonian.
As a result, the fourth-order term in EGA9) can be written TTe te:ms in Eq/(36) involve the following two types of
s integrals:
t ks T
(L0 Lo(11)(A=P) Lo(72) Lo(1) 0 (7) jodTajo 3d7’2J02d7'19(7'2)h(7'3_ T )W(7y,72,73),
1
= (S0, S(rF (b 71,72, 7 0(7) (1)
t T3 T
_Fka(tyTl,szT;U(T))Sk(Tl)]y (A16) fodefo defo d7m9(73)h(7,— 1) W( 71,72, 73),
where (B2)
Fik(t, 7,72, 7, 0(7)) whereg(t) andh(t) are eitherd(t) or &' (t), respectively. In
= ((B;ByBB) —(B:B){BB)) S S (7) the following, we abbreviaté(t) as 5(t).
(BiBBiBm — (BB {BiBr) For the case where botf(t) =h(t) = §(t), Eq. (B1) be-
—((BmBjBkB) —(BjBi)(BmB))Sio(7) Sy, comes

—((BB;ByBm) —(B;Bi)(B|Bm)) Sma(7)S

t T3 T
+((BmBiBB) — (B,B)(BmB ) o(1SyS,  (A17) JodT3Jo dejo A718(72) o(ra= r)W(r1, 72, 75)

where the time arguments of the operators with subscyipts t 75 t
k, I, andm are, respectivelyt, 7;, 7,, and . Hereafter, the = deTsz dTlf d730(73) (73— 71)W( 71,73, 73)
same convention will be used. 2
For the model of the harmonic oscillator bath linearly t 72 t=m
coupled to the system, E¢A17) can be simplified, with the - Od7'25( 72) 0 dry o d736(73)W(7y, 75, T3+ 71)
use of Wick’s rule, as follows: 2
=0, B3
Fieltyma, 70, 750(7) 3
and Eq.(B2) becomes
= ((B{B)){(BiBum) + (B(B)(B;Bn))S Sr(7) a.82)
t T T
~((B{B)(BrB) + (ByB))(BrB;)) S 0(7) Sy J0d73J03d72f02d7-15(72—71)5(7-3)W(7-1,72,7-3)
—((BiB;j)(BiBm) +(BiBi)(BjBm)) S (1)
t T3 T
+((BBj){BmBk) +(B|Bi){BmBj)) 0(7) Sy . :f0d7'35(7'3)f0 deJO d76(m)W(71,— 71,72,73)
(A18)
If one introduces the following notation for the bath correla- (B4)
tion functions: In the final equalities of both Eq$B3) and (B4), &(7) was
(Bi(1)B) =7 (xix(1) —i @ix(1)) (A19) regarded as the genuine Dirac-delta function. That is, terms
! ! ) . of order 1/(w.7s) or smaller were neglected. The same ap-
Eq. (A18) can be rewritten as proximation will be used throughout this section.
Fi(t, 7,75, 70(7)) For the case wherg(t)=4'(t) and h(t)=4(t), Eq.
5 (B1) becomes
=X} XkmT XkiXjm) [ S5 [Sm,o(7)]]
t T3 T
1201 ekm+ ek @im{ S {Sm. o (1)}} fodefo d725'(7'2)f0 d716(73— 1) W( 71,72, 73)
—i52(Xj1 Pkm T XK1 @jm)[ S {Sm. ()} . v
— 2 @ixumt PXim{S [Smoo(DT},  (A20) T fod%b‘(%) fo d718(r)Wirs = 71,75,73)
where functions with indiceg have time argument— 7, ‘ o
those withkm have 7, — 7, those withkl have r,— 7,, and —f def d7,8(75) 8( 13— ) W( 75,75, T3)
those withjm have t— 7. Either from Eg.(A18) or Eq. 0 0
(A20), one can prove thaFka=ij for the model of the - 1W(000), (85)

harmonic oscillator bath.

where the second equality was obtained by making a partial
integration overr, and recognizing that the boundary term
corresponding ta,=0 is zero and that the term containing
the derivative ofW with respect tor, can be disregarded

Consider an arbitrary time dependent system operatdoecause it is of order 1d(.75). Similarly, Eq.(B2) for the
W(71,75,73) as a function ofry, 7,, and 3, which is de- choice ofg(t)=é’(t) andh(t)= §(t) becomes

APPENDIX B: INTEGRALS OF THE FOURTH-ORDER
TERMS IN THE MARKOVIAN BATH LIMIT
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fotd7'35(7'3) f:drzjofzdrla'(fz—TI)W(Tl,Tz,Ts) J;d@f:drza(rz) fOTZdTla’(T3— FOW(T1,75,73)
:_5(0)f0td7'35(7'3)forsdew(Tz,Tz-Ts) :_f;d73j073d725(72)5(73_ 7)) W( T2, 75,73)
+ Jotdfgé(rg) JOTsdeﬁ(TZ)W(O,Tz,Tg) + fotdrg fOT3d725(72)5(73)W(0172y7'3)
=—(s— HW(0,0,0), (B6) =—3W(0,0,0, (B8)

where the second equality was obtained by a partial integra-
tion overr, and disregarding the term containing the deriva-
where the second equality was obtained by making a partialve of W. On the other hand, E4B2) becomes
integration overr; and disregarding the term containing the

. . t t t
derivative OfW' and f dTlf d7'26( To— Tl)f dT3(S,(T3)W( T1,7'2,T3)
0 1 2

t t
t :_fdﬁf d728( 7= 71) 8(12)W( 71,72, 72)
SZJ d7r36(73)6(0) 73. (B7) 0 m
0
t 7'2
=- fodefo d718(71) (1) W( 75— 71,75, 72)
As can be seen from Table I this quantity is of order unity or ~ _ _ 1W(0,0,0). (B9)
larger and cannot be neglected.
For the case wherg(t)=45(t) and h(t)=4¢'(t), Eq. Finally, for the case wherg(t)=h(t)=45'(t), Eq. (B1)
(B1) becomes becomes

t T T
J’ dTaJ’ 3d7’2J 2d7’15'(7'2)5’(7'3_7'1)W(7'1,7'217'3)
0 0 0
t t t
:J0d7'25(7'2)5(0)w(7'2,7217'2)4'Jod7'35(7'3)5(7'3)W(0,7'3,7'3)_JodT35(7'3)5(0)W(7'3,T3,7'3)
t 7'3 t 7'3
+JodT3Jo d7'15(7'3)5(7'1)W1(7'3_7'1:7'3,7'3)"‘jodTafO d7,8(7;) 8( 13— 1) W3( 72,72, 73)

t 73 t T3
+fod73fo d7'25(7'2)5(7'3_TQ)Wé(’Tz,Tz,Tg)_jod73fo d’7'25(Tz)ﬁ(Ts)Wé(O,Tz,’Tg), (BlO)

where partial integrations over and then over the remain- where
ing variable have been made awy denotes partial deriva-

tive with respect to théth argument ofV. In evaluating the

first three terms of this equation, expansions up to the first s _f
derivatives of W should be made to retain finite terms of o
order unity. Then, Eq(B10) reduces to

td7'35(7'3) 5( 7'3), (BlZ)
0

t
t 73 7 e'= f dr36(73)8(713) 73, (B13)
desf def d716'(72) 8" (13— 7)W( 71,72, 73) 0
0 0 0
=5oW(0,0,0+ $W;(0,0,0+ (g’ + 5)W5(0,0,0) where &, is of order &0) while &’ is of order unity.
Similarly, Eq. (B2) for the case ofg(t)=h(t)=6'(t) be-
+(e'+ 3)W3(0,0,0), (B11)  comes
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t T T
f def 3d72f 2(31715'(72—71)5'(73)W(71.72,T3)
0 0 0
t
=5(0)f0d7'25(7'2)W(7'2,72,7'2)
t
—J0d725(72)5(72)W(0,72,7-2)
t T
+5(0)f dTgf YAy S(73)Wy( 1,72, 73)
0 0
t T3
_JodTSJo d7p6(73) 8(72)W3(0,75,73)

t T2
_fodTZJo d718(7) 8(13— T)Wy(71,72,72)

5(0)

2

5O>W(O,O,O)+(s— $W1(0,0,0)

+(e—e")WH(0,0,00+ (26 —&' — HW(0,0,0).
(B14)
APPENDIX C: DERIVATION OF THE FOURTH-ORDER

MASTER EQUATION FOR THE TWO-LEVEL
SYSTEM

In order to derive the final expression for the Markovian

FQME for the model of Sec. IVB, we employ the Pauli
matrices,oy, oy, ando,. The system Hamiltonian of Eq.
(58) can be written as

hwg
Hs=——(0,+1), (C1

and the interaction Hamiltonian of E(G9) can be written as

S=cos¢ oy +sing oy . (C2
Equations(61)—(62) can be equivalently written as

S=wy(—Cos o, +sing ay), (C3)

[S,S]=2iw0,. (C4)

Jang, Cao, and Silbey

[S.[S,g]]=2c,0,+2(cos ¢ c,—sing cose Cy) oy
—2(sin¢ cos¢ ¢, —sir? ¢ ¢, ) o
=2¢,0,+Cyoy+Cyayt(Cos2pc,
—sin2¢ c,)oy—(sin 2¢ ¢, +cos 2 C,) oy,
(C7)
[S{S.0}]=—2iws0,, (C8)
[S[SI[[SS],0]]]= —4ws2 cog ¢ c,+sin2¢ ¢,) o,
+4wg(sin 2¢ cy+2 sirf ¢ cy)oy.
(C9Y

Inserting Eqs.(C7)—(C9) into Eq. (C6), one can show
that the three real coefficients defined by Egb) satisfy the
following coupled differential equations:

2
Cx= — wsCy— B—;Z((l—cos 2¢)cy—2 sin2¢ cy)

2
ws7 .
+ 7((1—005 2p)cy+sin 24 c,),

(C10
: 27 .
Cy= wsCx— W((H—cos 2p)cy—sin2¢ c,)
ws772 .
- ?(2(1+cos 2p)cy+sin24cy), (C1y
) 4y 2nw
C,=— WCZ— TS (C12
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