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Linear and nonlinear response functions of the Morse oscillator:
Classical divergence and the uncertainty principle

Jianlan Wu and Jianshu Caoa)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 8 May 2001; accepted 14 June 2001!

The algebraic structure of the quantum Morse oscillator is explored to formulate the coherent state,
the phase-space representations of the annihilation and creation operators, and their classical limits.
The formulation allows us to calculate the linear and nonlinear quantum response functions for
microcanonical Morse systems and to demonstrate the linear divergence in the corresponding
classical response function. On the basis of the uncertainty principle, the classical divergence is
removed by phase-space averaging around the microcanonical energy surface. For the Morse
oscillator, the classical response function averaged over quantized phase space agrees exactly with
the quantum response function for a given eigenstate. Thus, phase-space averaging and quantization
provide a useful way to establish the classical-quantum correspondence of anharmonic systems.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1389840#
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I. INTRODUCTION

Linear and nonlinear spectroscopy measurements ca
formulated generally as the response of the polarization
the incident electric fields.1,2 The response function is well
defined in terms of quantum transitions in eigenstate sp
and is often expressed as a summation of oscillations
damped oscillations. The classical limit of the quantum
sponse function is usually obtained by replacing commu
tion relations with Poisson brackets and neglecting term
higher order of the Planck constant. However, the class
response function thus defined diverges for a given ini
condition in phase space. As pointed out by van Kamp
even a weak perturbation leads to the failure of the class
nonequilibrium perturbation theory at sufficiently long time
therefore, the divergence poses a fundamental limitation
classical response theory.3 This argument does not lead t
practical difficulties in applying linear response theory b
cause the phase-space averaging over the Boltzmann d
bution cancels the divergence at long times. The same lin
reasoning also applies to the nonlinear response function
sociated with multidimensional spectroscopy.4–7 However,
different from linear response, the classical nonlinear
sponse function involves the stability matrix, which chara
terizes the chaotic behavior of classical dynamics. Based
this observation, Mukamel and co-workers have sugge
that the nonlinear response function can be a sensitive p
of classical chaos and that femtosecond pulse sequence
be designed to measure the stability matrix.8 Although the
Boltzmann averaging leads to finite response functions
thermal equilibrium systems, the classical divergence
mains a conceptual challenge. Since physical systems
intrinsically quantum mechanical, we speculate that the c
sical divergence can be removed by a careful constructio
the classical-quantum correspondence. Further, since Bo

a!Electronic mail: jianshu@mit.edu
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semiclassical quantization is exact for the Morse oscilla
the classical and quantum response functions should be
same for the leading order of the Planck constant.

We will address these questions with a detailed study
the Morse oscillator. The simple analytical solution for t
harmonic oscillator often provides the basis for understa
ing solid-state structures, molecular vibrations, and diss
tive Gaussian bath dynamics. These concepts become in
venient for describing large-amplitude anharmonic latt
dynamics, high overtone vibration, intramolecular ener
distribution, and structure transitions, because the anhar
nicity effect is so dominant that it has to be included in t
zeroth order representation. For these processes, the eig
lution of the Morse oscillator serves as a better starting po
In fact, the harmonic oscillator and the Morse oscillator re
resent two limiting cases of a unified algebraic description
molecular vibrations. Generally known as vibron models,
algebraic method employs Lie algebraic techniques, wid
used in particle and nuclear physics.9 The unitary group in
two dimensions,U(2), simultaneously describes the ha
monic oscillator as the subalgebraU(1) of U(2) and the
Morse oscillator as the subalgebraO(2) of U(2). Conse-
quently, similar to the harmonic oscillator, quantum mech
ics of Morse systems can be formulated with the annihilat
and creation operators but with a different commutation
lation ~cf. Appendix A!. As reviewed by Iachello and
Levine,9 much progress has been made in calculat
eigenspectra of Morse systems with the algebraic meth
The focus of our study is the dynamic response of the Mo
oscillator to the external field and the classical-quantum c
respondence of its nonlinear dynamics.

The clarification of the classical-quantum correspo
dence of anharmonic dynamics has several interesting im
cations. For example, Field and his co-workers have de
oped an effective Hamiltonian for the bending spectrum
acetylene at high excitation energy from high-resoluti
1 © 2001 American Institute of Physics
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spectroscopy. They found that classical motions associ
with the bending dynamics exhibit a transition from norm
modes to local modes as the excitation energy increases10,11

Similar transitions have been explored in the broader con
of intramolecular vibrational relaxation, isomerization, a
energy localization by Helleret al.12–19 A question in these
studies is the manifestation of classical chaos in quan
dynamics and possible spectroscopic measurements20,21

Wilkie and Brumer recently developed a quantum-class
correspondence via Liouville dynamics for both integra
and chaotic systems.22,23Recent progress in two-dimension
spectroscopy has stimulated calculations of the respo
function of anharmonic systems. Okumura and Tanim
have developed a Feynman diagram expansion for calc
ing the nonlinear response function of anharmonic mode24

Since the perturbation theory uses a harmonic basis set
anharmonic frequencies and couplings are evaluated
proximately through the renormalization of infinite expa
sion terms. Due to the difficulty of exact quantum calcu
tions, it is useful to develop classical or semiclassi
methods and to examine the nature of the classical appr
mation for the response function.25 Other relevant topics in-
clude the correspondence between the anharmonicity
molecular system and the phase coherence of op
excitation,26–31 and the relaxation process of a vibration
excited molecule coupled to a thermal bath.32–38As a special
case of integrable systems, our study of the Morse oscill
does not address all these issues, but will shed light on
classical-quantum correspondence of the nonlinear dyna
of anharmonic systems.

II. CLASSICAL AND QUANTUM MORSE OSCILLATOR

The derivation of the algebraic solution for the Mor
oscillator follows the review by Levine and Iachello.9 The
eigenstructure of the Morse oscillator can be construc
from the two-dimensional harmonic oscillator, described
U(2) algebraic operators, which satisfy the following com
mutation relationships:9,39–43

@ v̂,b#52b, @ v̂,b1#5b1, @b,b1#512
2v̂
N

. ~1!

The Hamiltonian of the Morse oscillator can be e
pressed as

Ĥ52
\2

2m

d2

dq2 1D~12e2bq!2

5
\v0N

2~N11!
~b1b1bb1!1

\v0

4~N11!
, ~2!

wherem is the mass of the Morse oscillator,D is the disso-
ciation energy, b is the anharmonic parameter,v0

5A2Db2/m, and N5A8Dm/\2b221. The Morse Hamil-
tonian is diagonal in theu@N#,v& basis, and the correspond
ing eigenenergyEv is

Ev5\v0F ~v11/2!2
~v11/2!2

N11 G , ~3!
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wherev50,1,...,@N/2#. As shown in Appendix A, the opera
tors b andb1 can be expressed explicitly in phase space

b1b15
cos 2u

AN
F N̂112~N11!e2bq1

4

~N11!b2 ebq/2

3
]

]q
ebq/2

]

]qG2 i
sin 2uebq

AN~N11!
S 2

b

]

]q
11D ~N̂22v̂ !,

~4!

whereu is the angle in the polar coordinate representatio
In classical mechanics, the action-angle variablesI and

f are used to describe the one-dimensional Mo
oscillator.44 Here, the action is defined as 2pI 5r p dq,
which differs from the standard notation by a factor of 2p.
The action-angle variables are related to the coordin
momentum variables via the transformation20

q5b21 lnF12~12l2!1/2cosf

l2 G ,
~5!

p5
mv0

b F ~12l2!1/2sinf

12~12l2!1/2cosfG ,
where l512I /I b and I b5A2mD/b25(N11)\/2. The
classical Hamiltonian becomes

H5
p2

2m
1D~12e2bq!25D~12l2!5

v0

2 S 2I 2
I 2

I b
D ,

~6!

where the actionI is a conserved quantity for one
dimensional anharmonic systems. The time evolution of
angular variablef(t) follows44

df~ t !

dt
5

]E

]I
5v0l, ~7!

which yieldsf(t)5f(0)1v0lt. It is further shown in Ap-
pendix A that the classical correspondence ofb1b1 is

b1b1↔ N11

AN
F12e2bq2

4ebqp2

b2~N11!2G
5

N11

AN
@2~12l2!1/2cosf#, ~8!

which provides a bridge between the classical and quan
response functions.

III. CLASSICAL AND QUANTUM RESPONSE
FUNCTIONS

A generalized quantum response function can
written as2,8

RQ
~2n11!~ tn ,...,t0!

5S i

\ D n

^@a~ tn!,@a~ tn21!,...,@a~ t1!,a~ t0!#...##&, ~9!

wherea(t) is the time-dependent polarization operator. T
correspondence between the quantum commutator and
classical Poisson bracket
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp



tio

ns

n
i

n

e

st

a

c
r,

r-

al
se
o-

e
hat

po-

-
ical-

5383J. Chem. Phys., Vol. 115, No. 12, 22 September 2001 Response functions of the Morse oscillator
1

i\
@A,B#↔$A,B%, ~10!

allows us to write the generalized classical response func
as

RC
~2n11!~ tn ,...,t0!

5~21!n^$a~ tn!,$a~ tn21!,...,$a~ t1!,a~ t0!%...%%&. ~11!

In this paper, we focus on the two lowest order respo
functionsR(3)(t) andR(5)(t1 ,t2)

RQ
~3!~ t !5

i

\
^@a~ t !,a~0!#&, ~12a!

RC
~3!~ t !52^$a~ t !,a~0!%&, ~12b!

and

RQ
~5!~ t1 ,t2!52

1

\2 ^@a~ t11t2!,@a~ t1!,a~0!##&, ~13a!

RC
~5!~ t1 ,t2!5^$a~ t11t2!,$a~ t1!,a~0!%%&. ~13b!

These formulas, especially the classical formulas, are
easy to use in numerical calculations and are simplified
Appendix C. Since the HamiltonianH depends on the actio
I, the third-order response function reduces to

RC
~3!~ t !52TrFa~ t !ȧ~0!

]r~ I !

]H G
52

1

2p R dI df a~ t !ȧ~0!
]I

]E

]r~ I !

]I
, ~14!

where r(I ) is the normalized distribution function of th
action I. Two functional forms ofr(I ) are examined in this
paper. The first one corresponds to the microcanonical di
bution, r(I )5d(I 2I 0), where I 0 is the action of a given
energy. With this distribution,RC

(3)(t) is simplified to

RC
~3!~ t !52

1

2pI b
]lF R df a~ t !

]a~0!

]f GU
I 5I 0

, ~15!

wherel512I /I b . The second one is a distribution with
width D aroundI 0

r̄~ I !5H 1/D, if I 02D/2,I ,I 01D/2

0, otherwise
. ~16!

Substituting Eq.~16! into Eq. ~14!, we obtain

R̄C
~3!~ t !5

1

2pD F R df a~ t !
]a~0!

]f U
I 5I 01D/2

2 R df a~ t !
]a~0!

]f U
I 5I 02D/2

G . ~17!

As shown in Appendix C, the nonlinear response fun
tion R(5)(t1 ,t2) can be simplified in two ways. In this pape
we adopt the first formula

RC
~5!~ t1 ,t2!5

1

2p R dI df$a~ t2!,a~ t1!%ȧ~0!
]I

]E

]r

]I
,

~18!
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so that the response function corresponding tor(I )5d(I
2I 0) is

RC
~5!~t1 ,t2!5

1

2pI b
]lF R df$a~ t2!,a~ t1!%

]a~0!

]f GU
I 5I 0

,

~19!

wheret15t1 andt25t22t1 , and the response function co
responding tor̄(I ) is

R̄C
~5!~t1 ,t2!52

1

2pD F R df$a~ t2!,a~ t1!%
]a~0!

]f U
I 5I 01D/2

2 R df$a~ t2!,a~ t1!%
]a~0!

]f U
I 5I 02D/2

G . ~20!

IV. THIRD-ORDER RESPONSE FUNCTION

With the introduction of the quantum and classic
Morse oscillators, we now explicitly calculate the respon
functions and examine their relationships. Although the p
larization operatora is usually the function of the coordinat
q, the operator solution for the Morse oscillator suggests t
the simplest form ofa is a function of the lowering and
raising operators. Therefore, our first choice is the linear
larization operator

a~ t !5
AN

N11
@b~ t !1b1~ t !#, ~21!

whose classical correspondence is

a~ I ,f!52~12l2!1/2cosf. ~22!

This choice ofa is not directly motivated by physical sys
tems but serves the purpose of demonstrating the class
quantum correspondence asb1b1 corresponds to a single
quantum transition. For a specific eigenstateu@N#,v&, we
haver5uv&^vu, so that the quantum response function is

RQ
~3!~ t !5

i

\
^@a~ t !,a~0!#&

5
i

\
^vu@a~ t !,a~0!#uv&

5
2

~N11!\ H ~v11!S 12
v11

N11D
3sinF S 12

2~v11!

N11 Dv0t G2vS 12
v

N11D
3sinF S 12

2v
N11Dv0t G J , ~23!

where Eq.~B4! is used.
We calculate the classical response functionRC

(3)(t) un-
der the same condition. The actionI v for the eigenstate
u@N#,v& is I v5(v11/2)\. Substituting Eq.~22! and I 05I v
into Eq. ~15!, we have
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. The third-order classical response function of the Morse oscillator@v055.0, N5199,v570, and the linear polarizationa52(12l2)1/2 cosf#: ~a!
with the microcanonical condition;~b! with the uncertainty widthD50.5\; ~c! with the uncertainty widthD5\; ~d! with the uncertainty widthD51.5\.
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RC
~3!~ t !52

1

2I b
]l@~12l2!sinv0lt#ul5lv

5
1

2I b
@2lv sinv0lvt2~12lv

2!v0t cosv0lvt#,

~24!

where lv512I v /I b . As predicted by van Kampan an
Mukamel, the amplitude of the linear response function
creases linearly with timet and diverges whent approaches
to infinity.3,8 Therefore, under the microcanonical conditio
the classical response function differs dramatically from
quantum response function, and classical simulations for
crocanonical systems become unstable at long times.

On the other hand, one can argue from the uncerta
principle that it is unphysical to measure the energy and
response of a system at the same time. Thus, instead o
microcanonical distribution function, we consider a distrib
tion with an uncertain widthD in the phase space around th
action I v , i.e., r(I )→ r̄(I ). Substituting Eq.~22! into Eq.
~17!, the modified response functionR̄C

(3)(t) becomes

R̄C
~3!~ t !5

1

2D
@~12l1

2!sinv0l1t2~12l2
2!sinv0l2t#,

~25!
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wherel1512(I v1D/2)/I b andl2512(I v2D/2)/I b . The
behavior of the modified classical response function depe
strongly on the widthD. As shown in Fig. 1, the respons
function R̄C

(3)(D,t) converges faster asD increases, and re
covers the exact quantum result whenD equals\. With the
linear polarization operator, the contribution to the respo
function is the transition betweenu@N#,v& and u@N#,v21&
and the transition betweenu@N#,v& and u@N#,v11&. Since
the linear response involves either the upper transition or
lower transition, classical dynamics can reproduce this ef
by settingD5\. In fact, with D5\, Eq. ~25! becomes

R̄C
~3!~ t !5

1

I b
H ~v11!S 12

v11

N11D sinF S 12
2v12

N11 Dv0t G
2vS 12

v
N11D sinF S 12

2v
N11Dv0t G J , ~26!

which is exactly the same as the quantum result in Eq.~23!.
The concept of configurational averaging has been invo
in several classical or semiclassical approximations of qu
tum dynamics, including wave-packet dynamics, nonad
batic dynamics, and centroid dynamics.45–50Surprisingly, the
phase-space averaging employed here reproduces the
quantum dynamics of an anharmonic system.

Next, we examine the quadratic polarization operator
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. The third-order classical response function of the Morse oscillator@v055.0, N5199,v570, and the quadratic polarizationa5(12l2)cos2 f#: ~a!
with the microcanonical condition;~b! with the uncertainty widthD5\; ~c! with the uncertainty widthD52\; ~d! with the uncertainty widthD53\.
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a~ t !5S AN

N11D 2

@b~ t !1b1~ t !#2, ~27!

with the classical correspondence

a~ I ,f!5@2~12l2!1/2cosf#2. ~28!

The quantum response functionRQ
(3)(t) is

RQ
~3!~ t !5

2

~N11!2\ H ~v11!~v12!S 12
v11

N11D
3S 12

v12

N11D sinF2v0S 12
2v13

N11 D t G
2v~v21!S 12

v
N11D S 12

v21

N11D
3sinF2v0S 12

2v21

N11 D t G J . ~29!

The classical response functionRC
(3)(t) under the same con

dition is

RC
~3!~ t !52

1

4I b
]l@~12l2!2 sin 2v0lt#ul5lv

b f

5
1

2I b
@2lv~12lv

2!sin 2v0lvt

2~12lv
2!2v0t cos 2v0lvt#, ~30!
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
which diverges at long times. It is then necessary to int
duce the uncertainty widthD into the phase-space integra
tion. However, for the quadratic polarization function, th
contribution to the response function is the transition b
tween u@N#,v& and u@N#,v22& and the transition betwee
u@N#,v& and u@N#,v12&. Comparing with the linear polar
ization operator, we increaseD to 2\ in Eq. ~30!, so that the
modified classical response function becomes

R̄C
~3!~ t !5

2

~N11!2\ H S v1
3

2D 2S 12
v13/2

N11 D 2

3sinF2v0S 12
2v13

N11 D t G
2S v2

1

2D 2S 12
v21/2

N11 D 2

3sinF2v0S 12
2v21

N11 D t G J , ~31!

which has exactly the same time dependence as the qua
result in Eq.~29!. Figure 2 shows the classical response fun
tion with difference widths and the convergence to the qu
tum result at\52.0.

The slight disagreement in the prefactors arises from
intrinsic difference between quantum and classical dynam
The quantum transition fromu@N#,v& to u@N#,v12& consists
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 3. The diagonal element of the fifth-order classical response function of the Morse oscillator@v055.0, N5199, v570 and the quadratic polarization
a5(12l2)cos2 f#: ~a! with the microcanonical condition;~b! with the uncertainty widthD5\; ~c! with the uncertainty widthD52\; ~d! with the uncertainty
width D53\.
s
,
ra

,

c

b

by

ed

y to
of two steps (v→v11→v12), whereas classical dynamic
corresponds to the average of these transitions. Hence
classical correspondence of these two steps is the ave
result, (v11/2→v13/2)2. Comparing these two results, (v
11) and (v12) in the first term of Eq.~29! correspond to
(v13/2) in the first term of Eq.~31!. For the same reason
(v) and (v21) in Eq. ~29! correspond to (v21/2) in Eq.
~31!. The difference is negligible in the largev limit, where
the classical-quantum correspondence becomes more a
rate. So, in the dissociation limit, Eq.~29! and Eq.~31! be-
come exactly the same. On the other hand, forv50 andv
51, the second part of the classical modified result has to
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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removed, since the lower quantum transition is prohibited
the lower bound at the ground state.

V. FIFTH-ORDER RESPONSE FUNCTION

The fifth-order response functionR(5)(t1 ,t2) contains
more detailed dynamical information that cannot be obtain
from the third-order response function. SinceR(5)(t1 ,t2)
vanishes for the linear polarization operator, it is necessar
use the quadratic polarization operator to calculateR(5)

3(t1 ,t2). For a specific eigenstateu@N#,v&, substituting Eq.
~27! and Eq.~B4! into Eq. ~13b!, we have
R~5!~t1 ,t2!52
N3

~N11!6\2 ^vu@@~b~ t2!1b1~ t2!!2,~b~ t1!1b1~ t1!!2#,~b1b1!2#uv&

52
16

~N11!3\2 H ~v11!~v12!S 12
v11

N11D S 12
v12

N11D S 12
2v13

N11 D sinFv0S 12
2v13

N11 D t2G
3sinFv0S 12

2v13

N11 D ~2t11t2!G2v~v21!S 12
v

N11D S 12
v21

N11D S 12
2v21

N11 D
3sinFv0S 12

2v21

N11 D t2GsinFv0S 12
2v21

N11 D ~2t11t2!G J . ~32!
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The fifth-order classical response function under the
crocanonical condition is given in Eq.~19!, which requires
the explicit calculation of$a(t2),a(t1)%. With the Poisson
bracket expressed in the action-angle variables and the
larization given asa5(12l2)cos2 f, we have

$a~ t !,a~0!%52
1

I b
F]a~ t !

]l

]a~0!

]f
2

]a~ t !

]f

]a~0!

]l G
5

1

I b
@l~12l2!~sin 2f~ t !2sin 2f~0!!

1l~12l2!sin 2v0lt

2~12l2!2v0t sin 2f~ t !sin 2f~0!#, ~33!

which can be easily generalized to$a(t2),a(t1)%. Substitut-
ing Eq. ~33! into Eq. ~19!, RC

(5)(t1 ,t2) is given as

RC
~5!~t1 ,t2!5

1

I b
2 @~12l2!~125l2!sinv0lt2

3sinv0l~2t11t2!1v0lt2~12l2!2

3sin 2v0l~t11t2!12v0lt1~12l2!2

3sinv0lt2 cosv0l~2t11t2!#, ~34!

which diverges along both thet1 andt2 axis. Again, we use
r̄(I ) instead ofr(I ) to remove the classical divergence, a
choose 2\ as the uncertainty widthD following the argument
for the quadratic polarization operator. Then, from Eq.~20!,
we have the modified fifth-order response function
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c
n
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FIG. 4. Two-dimensional contour of the fifth-order classical response fu
tion of the Morse oscillator@v055.0,N519, v55 and the quadratic polar-
ization a5(12l2)cos2 f#: ~a! with the microcanonical condition;~b! with
the uncertainty widthD52\.
R̄C
~5!~t1 ,t2!52

16

~N11!3\2 H S v1
3

2D 2S 12
v13/2

N11 D 2S 12
2v13

N11 D sinFv0S 12
2v13

N11 D t2GsinFv0S 12
2v13

N11 D ~2t11t2!G
2S v2

1

2D 2S 12
v21/2

N11 D 2S 12
2v21

N11 D sinFv0S 12
2v21

N11 D t2GsinFv0S 12
2v21

N11 D ~2t11t2!G J , ~35!
in-
onse

the
ion
res-
which reproduces the similar time dependence as the q
tum response function. Comparing Eq.~32! and Eq.~35!, the
slight discrepancy is the same as that appeared in the t
order response function for the quadratic polarizabil
Therefore, from the discussion in Sec. IV, (v11) and (v
12) in Eq.~32! correspond to (v13/2) in Eq.~35!, and (v)
and (v21) in Eq. ~32! correspond to (v21/2) in Eq. ~35!.
Figure 3 plots the diagonal value of the response func
and demonstrates the convergence with the increasing un
tainly width. Figure 4 compares the two-dimensional co
tours of the response functions with the microcanonical c
n-

d-
.

n
er-
-
-

dition and with the uncertainly widthD52\. Evidently, the
response function with the microcanonical condition
creases with time along both axes, whereas the resp
function averaged over the uncertainty widthD52\ shows
an echo along the diagonal cross section.

VI. CONCLUSION

To summarize, the unique algebraic structure of
quantum Morse oscillator allows us to define the creat
and annihilation operators, their explicit phase-space exp
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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sions, and the Morse coherence state. These relations
then used to calculate and compare the linear and nonli
response functions for microcanonical Morse oscillators. T
divergence in the classical response function can be remo
by taking a phase-space average resulting from the un
tainly principle. Further, the nearly exact classical-quant
correspondence can be established by quantizing the ph
space averaging:\ for the linear polarizability operator an
2\ for the quadratic polarizability operator. It is reasonab
to speculate that the approach applies to a polarization
erator with any combination of the annihilation and creat
operators. For future studies, we will explore nonintegra
systems, including coupled anharmonic oscillators and di
pative anharmonic oscillators. For these systems, it remai
challenge to formulate their linear and nonlinear respo
functions and to establish their classical-quantum corresp
dence. These studies are useful in the context of the cur
effort in developing two-dimensional optical spectroscopy
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APPENDIX A: ALGEBRAIC SOLUTION AND
PHASE-SPACE REPRESENTATIONS

In this Appendix, we use the algebraic method to co
struct the quantum mechanics of the one-dimensional Mo
oscillator and derive an explicit expression connecting
algebra operators and their phase-space representation
derivation and notation follow the extensive work of Levin
Iachello, Frank, and others.9,39,41,42 To describe the two-
dimensional harmonic oscillator, we introduce two pairs
boson creation and annihilation operators (t,t1) and
(s,s1), which satisfy the following relations:

@ai ,aj #50, @ai
1 ,aj

1#50, @ai ,aj
1#5d i j , ~A1!

whereai5t,s. These operators are represented by the
ferential operators acting on two coordinatesx andy,

t5
1

A2
S x1

]

]xD , t15
1

A2
S x2

]

]xD ,

~A2!

s5
1

A2
S y1

]

]yD , s15
1

A2
S y2

]

]yD .

The operators for aU(2) group can be constructed as

Jx5 1
2 ~s1s2t1t!, Jy5 1

2 ~t1s1s1t!,
~A3!

Jz5
i

2
~t1s2s1t!, N̂5~t1t1s1s!,

which are also the angular momentum operators with
invariant operatorJ5N̂/2.

Replacing the coordinatesx and y by the polar coordi-
natesr andu,
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ar
e
ed
er-

se-

p-

e
i-
a

e
n-
nt

d
e

t-

-
se
e
Our
,

f

f-

e

x5r cosu, y5r sinu, 0,r ,`, 2p,u,p,
~A4!

the phase-space expressions of the operatorsN̂, Jz , Jx , and
Jy are

N̂5
1

2 F r 22
1

r

]

]r S r
]

]r D2
1

r 2

]2

]u2G21, ~A5!

Jz5
i

2

]

]u
, ~A6!

Jx5
cos 2u

4 S 2r 21
]2

]r 22
1

r

]

]r
2

1

r 2

]2

]u2D
2

sin 2u

2 S 1

r

]2

]r ]u
2

1

r 2

]

]u D , ~A7!

Jy52
sin 2u

4 S 2r 21
]2

]r 22
1

r

]

]r
2

1

r 2

]2

]u2D
2

cos 2u

2 S 1

r

]2

]r ]u
2

1

r 2

]

]u D . ~A8!

Next, the operatorsN̂ andJz are diagonal in the eigen
stateuN,m&,

N̂uN,m&5NuN,m&, JzuN,m&5muN,m&, ~A9!

whereN̂ denotes the operator andN denotes the eigenvalue
To solve the eigenequations,uN,m& is factorized into the
radial part and the angular part,uN,m&5RN,m(r )e22imu,
where the radial partRN,m(r ) satisfies

1

2 F r 22
1

r

]

]r S r
]

]r D2
1

r 2

]2

]u2GRN,m~r !5~N11!RN,m~r !.

~A10!

With r 25(N11)e2bq, the radial part is rewritten as

F2
\2

2m

d2

dq2 1
\2b2

8m
~N11!2~e22bq2e2bq!GRN,m~r !

52
\2b2

2m
m2RN,m~r !, ~A11!

which is exactly the Schro¨dinger equation of the one
dimensional Morse oscillator. Consequently,RN,m(r ) is the
eigenstate of the one-dimensional Morse oscillator, the
sociation energy of the Morse oscillatorD, is related toN by
N115A8mD/\2b2, and themth eigenenergy of the one
dimensional Morse oscillator in Eq.~2! is

Em5
\2b2

8m
~N11!22

\2b2

2m
m2. ~A12!

With u50, the eigenstateuN,m& of the two-dimensional
harmonic oscillator is reduced toRN,m(r ), which is the
eigenstate of the one-dimensional Morse oscillator. The
fore, the one-dimensional Morse oscillator can be regar
as the one-dimensional projection of the two-dimensio
harmonic oscillator.

To further explore the algebraic method,Jx and Jy are
combined to define the raising and lowering operators

J15Jx1 iJy , J25Jx2 iJy , ~A13!
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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which satisfy

J1uN,m&5AJ~J11!2m~m11!uN,m11&,
~A14!

J2uN,m&5AJ~J11!2m~m21!uN,m21&,

with J5N/2. We now introduce three new operators,

b5
J1

AN
, b15

J2

AN
, v̂5

N̂

2
2Jz , ~A15!

which act on the eigenstateuN,m& as

buN,m&5
J1

AN
uN,m11&5AvS 12

v21

N D uN,v21&,

~A16!

b1uN,m21&5
J2

AN
uN,m&5A~v11!S 12

v
ND uN,v11&,

~A17!

v̂uN,m&5S N̂

2
2JzD uN,m&5vuN,v&, ~A18!

with v5N/22m. These relations are similar to those for t
one-dimensional harmonic oscillator. The eigenenergyEv
corresponding to the eigenstateuN,v& is rewritten as

Ev5\v0F S v1
1

2D2
~v11/2!2

N11 G , ~A19!

so that the Hamiltonian becomes

H5
N\v0

2~N11!
~bb11b1b!1

\v0

4~N11!
. ~A20!

Furthermore, we use Eq.~A8! to derive the differential
formulas of operatorsb andb1,

b5
e22iu

2AN
F N̂112r 21

]2

]r 222S 1

r

]

]r
2

1

r 2D JzG , ~A21!

b15
e2iu

2AN
F N̂112r 21

]2

]r 2 12S 1

r

]

]r
2

1

r 2D JzG , ~A22!

so that

b1b15
cos 2u

AN
S N̂112r 21

]2

]r 2D
1 i

2 sin 2u

AN
S 1

r

]

]r
2

1

r 2D Jz . ~A23!

However, we cannot setu50 in Eq. ~A23! before applying
operators on the wave function, because these operato
not commute with each other. The right way to use the
erators is first to apply them on the two-dimensional syst
and then setu50.

Finally, we derive the classical correspondence ofb
1b1 by rewriting Eq.~A23! as
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
do
-

b1b15
cos 2u

AN
F N̂112~N11!e2bq

1
4

~N11!b2 ebq/2
]

]q
ebq/2

]

]qG
2 i

sin 2uebq

AN~N11!
S 2

b

]

]q
11D ~N̂22v̂ !. ~A24!

Since in classical mechanics all variables commute, we
u50 so that the imaginary part in Eq.~A24! is removed.
Then, replacing the operators by the corresponding varia
and using the classical-quantum correspondence

\

i

]

]q
↔p, ~A25!

we obtain the classical correspondence ofb1b1 as

b1b1↔ N11

AN
S 12e2bq2

ebqp2

b2I b
2 D

5
N11

AN
@2~12l2!1/2cosf#. ~A26!

Thus, we have derived the explicit expressions forb andb1

and established their classical correspondence.

APPENDIX B: COHERENT STATE OF THE MORSE
OSCILLATOR

The fact that the harmonic oscillator and the Morse
cillator are two exactly solvable cases of theU(2) algebra
suggests that a formal solution for a driven Morse oscilla
can be formulated in a similar fashion as the coherent s
for a driven harmonic oscillator.51 In this Appendix, we de-
rive the time evolution ofb andb1 and construct the coher
ent state of the Morse oscillator. The time-dependent op
tors, defined in the Heisenberg picture,

b~ t !5eiH 0t/\be2 iH 0t/\, b1~ t !5eiH 0t/\b1e2 iH 0t/\,
~B1!

obey the equations of motion,

db~ t !

dt
5

1

i\
@b~ t !,H#,

db1~ t !

dt
5

1

i\
@b1~ t !,H#. ~B2!

Using the commutation relations, Eq.~B2! is rewritten as

db~ t !

dt
52 iv0b~ t !1 i

2v0

N11
b~ t !v̂,

~B3!
db1~ t !

dt
5 iv0b1~ t !2 i

2v0

N11
v̂b1~ t !,

which can be solved explicitly to give

b~ t !5e2 iv0tbei @2v0 /~N11!#v̂t,
~B4!

b1~ t !5eiv0te2 i @2v0 /~N11!#v̂tb1.

Next, we calculate the quantum mechanics of the Mo
oscillator driven by an external electric field. A simple an
effective approximation of the interaction is
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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V~ t !52@b~ t ! f ~ t !1b1~ t ! f * ~ t !#, ~B5!

where f (t) represents the time-dependent external field.
the interaction picture, the time evolution of the system w
an external interactionVI(t) is formally given as

uC~ t !& I5expF i

\ E
t0

t

VI~ t !dtG uC~ t0!& I . ~B6!

From Eq.~B4!, VI(t) for the Morse oscillator is given a

VI~ t !52@e2 iv0tbei @2v0 /~N11!#v̂t f ~ t !

1eiv0te2 i @2v0 /~N11!#v̂tb1 f * ~ t !#. ~B7!

Substituting Eq.~B7! into Eq. ~B6!, we obtain

uC~ t !& I5expH i

\ E
t0

t

@e2 iv0tbei @2v0 /~N11!#v̂t f ~ t !

1eiv0te2 i @2v0 /~N11!#v̂tb1 f * ~ t !#J uC~ t0!& I .

~B8!

Therefore, in principle, given the functional form off (t) and
the initial state of the system, we can determine the w
function at a later time. As a specific case, we determine
asymptotic limit witht052` andt5`. With u@N#,0& as the
initial state. Eq.~B8! becomes

uC~`!& I5eG~v,v̂ !b12bG1~v,v̂ !uC~2`!& I

5eG~v,v̂ !b12bG1~v,v̂ !uN,0&, ~B9!

where

G~v0 ,v̂ !5
i

\ E
2`

1`

e2 i @2v0 /~N11!#v̂t f * eiv0t dt. ~B10!

Equation~B10! is similar to the coherent state of a harmon
oscillator interacting with an external field. This similari
arises from the fact that both the Morse oscillator and
harmonic oscillator belong to theU(2) group. However, for
the Morse oscillator,G and G1 are operators, and the fre
quency is a function ofv, dramatically increasing the diffi
culty of evaluating the coherent state. Nevertheless, the
mal solution of the Morse oscillator coherent state
revealing and useful.

APPENDIX C: SIMPLIFICATION OF CLASSICAL
RESPONSE FUNCTIONS

In this Appendix, we simplify the third-order and fifth
order classical response functions. Substituting the two id
tities

Tr@$A,B%C#5Tr@A$B,C%#, ~C1!

and

$A,r%5$A,H%
]r

]H
5

dA

dt

]r

]H
, ~C2!

into Eq. ~12b!, the general expression ofRC
(3)(t) reduces to
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
n

e
e

e

r-

n-

RC
~3!~ t !52TrFa~ t !ȧ~0!

]r

]HG
52

r dI df a~ t !ȧ~0!~]r/]H !

r dI df r
. ~C3!

For the Morse oscillator,H is independent off, so that Eq.
~C3! is rewritten as

RC
~3!~ t !52

1

2p R dI df a~ t !ȧ~0!
]I

]E

]r

]I
, ~C4!

wherer(I ) is the normalized distribution function ofI. Gen-
erally, r is a function ofH, but, for integrable systems,H
depends only onI so thatr(H) is equivalent tor(I ).

Next, we simplify the fifth-order classical response fun
tion RC

(5)(t1 ,t2). The general form ofRC
(5)(t1 ,t2) is given in

Eq. ~13b!. Two possible approaches can be applied. The fi
approach is to substitute Eq.~C1! and Eq. ~C2! into Eq.
~13b!, so thatRC

(5)(t1 ,t2) is given as

RC
~5!~ t1 ,t2!5Tr@$a~ t2!,a~ t1!%$a~0!,r%#

5TrF $a~ t2!,a~ t1!%ȧ~0!
]r

]EG
5

1

2p R dI df$a~ t2!,a~ t1!%ȧ~0!
]I

]E

]r

]I
.

~C5!

The second approach starts from Eq.~C5! and then applies
Eq. ~C1! to the integrand. With the help of the chain rule, E
~C5! is written as

RC
~5!~ t1 ,t2!5TrF $a~ t2!,a~ t1!%ȧ~0!

]r

]EG
5TrFa~ t2!H a~ t1!,ȧ~0!

]r

]EJ G
5TrFa~ t2!ȧ~ t1!ȧ~0!

]2r

]E2G
1TrFa~ t2!$a~ t1!,ȧ~0!%

]r

]EG
5

1

2p F R dI df a~ t2!ȧ~ t1!ȧ~0!
]2r

]E2

1 R dI df a~ t2!$a~ t1!,ȧ~0!%
]r

]EG . ~C6!

In comparison, the first expression in Eq.~C5! is easy to
calculate and is adopted in the paper.
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