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Linear and nonlinear response functions of the Morse oscillator:
Classical divergence and the uncertainty principle
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The algebraic structure of the quantum Morse oscillator is explored to formulate the coherent state,
the phase-space representations of the annihilation and creation operators, and their classical limits.
The formulation allows us to calculate the linear and nonlinear quantum response functions for
microcanonical Morse systems and to demonstrate the linear divergence in the corresponding
classical response function. On the basis of the uncertainty principle, the classical divergence is
removed by phase-space averaging around the microcanonical energy surface. For the Morse
oscillator, the classical response function averaged over quantized phase space agrees exactly with
the quantum response function for a given eigenstate. Thus, phase-space averaging and quantization
provide a useful way to establish the classical-quantum correspondence of anharmonic systems.
© 2001 American Institute of Physic§DOI: 10.1063/1.1389840

I. INTRODUCTION semiclassical quantization is exact for the Morse oscillator,

Linear and nonlinear spectroscopy measurements can Bge classical and guantum response functions should be the
formulated generally as the response of the polarization t§&Me for the leading order of the Planck constant.
the incident electric field5? The response function is well- We will address these questions with a detailed study of
defined in terms of quantum transitions in eigenstate spacé'® Morse oscillator. The simple analytical solution for the
and is often expressed as a summation of oscillations drarmonic oscillator often provides the basis for understand-
damped oscillations. The classical limit of the quantum reiNg solid-state structures, molecular vibrations, and dissipa-
sponse function is usually obtained by replacing commutative Gaussian bath dynamics. These concepts become incon-
tion relations with Poisson brackets and neglecting terms itenient for describing large-amplitude anharmonic lattice
higher order of the Planck constant. However, the classicalynamics, high overtone vibration, intramolecular energy
response function thus defined diverges for a given initiaﬂistribution, and structure transitions, because the anharmo-
condition in phase space. As pointed out by van Kampenhicity effect is so dominant that it has to be included in the
even a weak perturbation leads to the failure of the classicaeroth order representation. For these processes, the eigenso-
nonequilibrium perturbation theory at sufficiently long times; lution of the Morse oscillator serves as a better starting point.
therefore, the divergence poses a fundamental limitation tén fact, the harmonic oscillator and the Morse oscillator rep-
classical response theohyThis argument does not lead to resent two limiting cases of a unified algebraic description of
practical difficulties in applying linear response theory be-molecular vibrations. Generally known as vibron models, the
cause the phase-space averaging over the Boltzmann distelgebraic method employs Lie algebraic techniques, widely
bution cancels the divergence at long times. The same line afsed in particle and nuclear physit&he unitary group in
reasoning also applies to the nonlinear response function asvo dimensions,U(2), simultaneously describes the har-
sociated with multidimensional spectroscdpy. However, monic oscillator as the subalgebti(1) of U(2) and the
different from linear response, the classical nonlinear reMorse oscillator as the subalgeb@(2) of U(2). Conse-
sponse function involves the stability matrix, which charac-quently, similar to the harmonic oscillator, quantum mechan-
terizes the chaotic behavior of classical dynamics. Based ojgs of Morse systems can be formulated with the annihilation
this observation, Mukamel and co-workers have suggestegnd creation operators but with a different commutation re-
that the nonlinear response function can be a sensitive prohgtion (cf. Appendix A. As reviewed by lachello and
of classical chaos and that femtosecond pulse sequences gagine? much progress has been made in calculating
be designed to measure the stability mafriithough the  eigenspectra of Morse systems with the algebraic method.
Boltzmann averaging leads to finite response functions fofrhe focus of our study is the dynamic response of the Morse
thermal equilibrium systems, the classical divergence repgcillator to the external field and the classical-quantum cor-
mains a conceptual challenge. Since physical systems afg@spondence of its nonlinear dynamics.
intrinsically quantum mechanical, we speculate that the clas- The clarification of the classical-quantum correspon-

sical divergence can be removed by a careful construction Qfence of anharmonic dynamics has several interesting impli-
the classical-quantum correspondence. Further, since BohrStions. For example, Field and his co-workers have devel-

oped an effective Hamiltonian for the bending spectrum of
dElectronic mail: jianshu@mit.edu acetylene at high excitation energy from high-resolution

0021-9606/2001/115(12)/5381/11/$18.00 5381 © 2001 American Institute of Physics

Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5382 J. Chem. Phys., Vol. 115, No. 12, 22 September 2001 J. Wu and J. Cao

spectroscopy. They found that classical motions associategherev=0,1,...[N/2]. As shown in Appendix A, the opera-
with the bending dynamics exhibit a transition from normaltorsb andb* can be expressed explicitly in phase space as
modes to local modes as the excitation energy increédsés.

i . ; cos 20| -
Slmllar transitions h_ave .been explort_ad |n.the brqadgr context | p+— N+1—(N+1)e B+ . eBal2
of intramolecular vibrational relaxation, isomerization, and IN (N+1)8
energy localization by Helleet al’*"°A question in these .
studies is the manifestation of classical chaos in quantum 9 gz d| . SN 20eP9 (2 4 -
. : : X—ePlVo—e|—j ———| = —=+1|(N—-20),
dynamics and possible spectroscopic measurem@fits. aq aq \/N(N+1) B dq
Wilkie and Brumer recently developed a quantum-classical
correspondence via Liouville dynamics for both integrable 4

and chaotic systenfé:>>Recent progress in two-dimensional where 6 is the angle in the polar coordinate representation.
spectroscopy has stimulated calculations of the response In classical mechanics, the action-angle varialblesd
function of anharmonic systems. Okumura and Tanimurap are used to describe the one-dimensional Morse
have developed a Feynman diagram expansion for calculabscillator** Here, the action is defined asm2=¢ p dq,

ing the nonlinear response function of anharmonic mé8es. which differs from the standard notation by a factor of. 2
Since the perturbation theory uses a harmonic basis set, tiée action-angle variables are related to the coordinate-
anharmonic frequencies and couplings are evaluated apromentum variables via the transformafidn

proximately through the renormalization of infinite expan- 20172

. oo 1-(1—\°)"“cosg¢
sion terms. Due to the difficulty of exact quantum calcula-  gq=8"1In 5
tions, it is useful to develop classical or semiclassical A
methods and to examine the nature of the classical approxi- poo| (1=\2)Y2sing
mation for the response functiéh Other relevant topics in- p= 1 (1227
clude the correspondence between the anharmonicity of a B ( )7 cosé
molecular system and the phase coherence of opticathere A\=1—1/1, and lp=\2uD/B%?=(N+1)%/2. The

®)

excitation?®~3! and the relaxation process of a vibrational classical Hamiltonian becomes

excited molecule coupled to a thermal bath*®As a special 2 |2

case of integrable systems, our study of the Morse oscillator H= L +D(1—e P92=D(1-\?)= 2o 2| — _> ,

does not address all these issues, but will shed light on the 2 2 I
classical-quantum correspondence of the nonlinear dynamics ©®)
of anharmonic systems. where the actionl is a conserved quantity for one-

dimensional anharmonic systems. The time evolution of the
angular variablep(t) follows**

Il. CLASSICAL AND QUANTUM MORSE OSCILLATOR do(t) _ JE

The derivation of the algebraic solution for the Morse dt d
oscillator follows the review by Levine and lacheflathe ~ which yields¢(t)= ¢(0)+ woht. It is further shown in Ap-
eigenstructure of the Morse oscillator can be constructegrendix A that the classical correspondencebefb™ is
from the two-dimensional harmonic oscillator, described by

= WA, (7)

. : . . N+1 4ePip?
U(2) algebraic operators, which satisfy the following com- b+bte—|1-e Al
mutation relationship&3°-43 IN BA(N+1)
. . 20 N+1
[0,b]==b, [5,6%]=b", [bb ]=1-"-. () :W[_(l_)\Z)lmcosd)]' ®
The Hamiltonian of the Morse oscillator can be ex-\yhich provides a bridge between the classical and quantum
pressed as response functions.
- #2 d?
- _ A B2
H= 2u dq2 +D(1-e ") I1l. CLASSICAL AND QUANTUM RESPONSE
FUNCTIONS
_ PwoN sty 20 2 i i
_m( ) ANTD (2 Writt/gn ge;grahzed quantum response function can be

where u is the mass of the Morse oscillatd, is the disso- RE2n 1)t
ciation energy, 8 is the anharmonic parameterpg Q

=\2DB% w, andN= 8D u/%?B?—1. The Morse Hamil- ( i
“\a

eito)

<[a(tn),[a(tn,1),...,[a(tl),a(to)]...]]>, (9)

tonian is diagonal in thg{N],v) basis, and the correspond-
ing eigenenerg¥, is

22 where «(t) is the time-dependent polarization operator. The
(v+1/2 correspondence between the quantum commutator and the
E,=fhwg (v+1/2) = N+1 | @ classical Poisson bracket

Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 115, No. 12, 22 September 2001 Response functions of the Morse oscillator 5383

1 so that the response function correspondingptd) = &(I
—[AB]~{AB]}, 10 —1g)is
allows us to write the generalized classical response functiog(S) 1 § q ) . da(0)
as c (ﬁﬂ'z)—mr?x Hla(ty), af l)}W -
RE™D(t,,....to) (19)

=(—D"{a(ty) {a(ty_1),... {a(ty),a(ty)}...}}). (1)  wherer;=t; andr,=t,—t;, and the response function cor-

In this paper, we focus on the two lowest order respons«5eSponding tp(l) is
functionsR®)(t) andR®)(t,,t,) da(0)

I¢ I=lg+Al2

— 1
RE(rim) =~ 5x | § dolatty).alty)

RE()= 1+ ([a(t),a(0)]), (123
Jda(0)

. (20
¢ ‘||0—A/2

R (H)=—({a(t),a(0)}), (12b - jgdqﬁ{a(tz).a(tl)}

and

1 -
Rg)(tlvtz): _ ﬁ([a(tl-i-tz),[a(tl),a(O)]]), (133 IV. THIRD-ORDER RESPONSE FUNCTION

. With the introduction of the quantum and classical
RO (ty,t)=({a(ti+ty) {a(ty),a(0)}}). (13D Morse oscillators, we now explicitly calculate the response

These formulas, especially the classical formulas, are ndtnctions and examine their relationships. Although the po-
easy to use in numerical calculations and are simplified ifarization operator is usually the function of the coordinate

Appendix C. Since the Hamiltoniar depends on the action & the operator solution for the Morse oscillator suggests that

I, the third-order response function reduces to the simplest form ofa is a function of the lowering and
' raising operators. Therefore, our first choice is the linear po-

R (t)=—Tr| a(t)a(0) ‘9;(_:)} larization operator
1 al dp(l) (t) N [b(t)+b™(1)] (21
. p a(l)= —— ,
:_Z §d|d¢a(t)a(0)£7, (14 N+1

where p(l) is the normalized distribution function of the whose classical correspondence is

actionl. Two functional forms ofp(l) are examined in this = (1—)\2)12
! . . - yp)=—(1—A COS¢. 22
paper. The first one corresponds to the microcanonical distri- (1.4) ( ) ¢ 22

bution, p(1)= (1 —10), Where(lso) is the action of a given  This choice ofe is not directly motivated by physical sys-
energy. With this distributionR¢"(t) is simplified to tems but serves the purpose of demonstrating the classical-

1 da(0) guantum correspondence bs-b* corresponds to a single
R(t)=——a, f}g de a(t) , (15  quantum transition. For a specific eigenstétd],v), we
27l ad || _ - o
I=lg havep=|v)(v|, so that the quantum response function is
whereA=1—1/l,. The second one is a distribution with a i
width A aroundl Rg’)(t): g([a(t),a(O)D
_ 1/A, if 1g—AR2<I<Iy+A/2 _
p(l)= . : (16) i
0, otherwise = g(v|[a(t),a(0)]|v>

Substituting Eq(16) into Eq. (14), we obtain

2

RI() =~ fﬁd‘ﬁ“(t)ﬂ (N+1)ﬁ[(v N N1

2mA I I=1g+AR2

<sin [ 1 2(v+1) 1 v
9a(0) . N+1 )@t T T RET
- papay . (17)
I=1g—AR2 , 2v
) ) . XSIF{ 1-——wot ], (23

As shown in Appendix C, the nonlinear response func- N+1

tion R®)(t,,t,) can be simplified in two ways. In this paper,

we adopt the first formula where Eq.(B4) is used.

We calculate the classical response funci{i¥(t) un-
1 - ap der the same condition. The actidy for the eigenstate
(5 - = -
Re(tuta) =5 fﬁd' dia(ts),a(t)}a(0) 72 25 |INTb) is I,= (v + 1/2)4. Substituting Eq(22) andlo=1,
(18 into Eq. (15), we have
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FIG. 2. The third-order classical response function of the Morse oscillaig# 5.0, N=199,v =70, and the quadratic polarizatien=(1—\?)cog ¢]: (a)
with the microcanonical conditior(b) with the uncertainty widtlA=#; (c) with the uncertainty widtlA=24; (d) with the uncertainty widthA=3%.

N
N+1
with the classical correspondence

2 which diverges at long times. It is then necessary to intro-

+ 2
[b(H)+b" (D], (27 duce the uncertainty width into the phase-space integra-
tion. However, for the quadratic polarization function, the

a(t)=

contribution to the response function is the transition be-
a(l,¢)=[—(1—1?)Y?cos¢]?. (28)  tween|[N],v) and|[N],v—2) and the transition between
I[[N],v) and|[N],v+2). Comparing with the linear polar-

The quantum response functié;(t) is 1L _ .
ization operator, we increageto 2% in Eq. (30), so that the

R 2 1 1 v+1 modified classical response function becomes
o (V= Nz |V -t |
) oyt 3 RE0) 2 . 3\2 v+3/2\2
v+ v+ c = v+ — —
_ 0 g _ (N+1)%% 2 N+1
x(l N+1)sm2w0(1 NT1 t} |
1 X 'r{z (1 2vt3 t}
v— Sin 2wg| 1— ———
o — _ _ N+1
v(v 1)(1 N+1 (l N+1) \
oy 1 ( 1)2(1 v 1/2)
U— —|\UV— & T A
. B 2 N+1
X sin Zwo(l N+l)tH' (29
. . 2v—-1
The classical response functlﬁg’)(t) under the same con- Xsir{2w0< 1— o= )1, (32)
dition is N+1

1 which has exactly the same time dependence as the quantum
RO(t)= - TR L \?)?sin 2woht]|y -, bf result in Eq.(29). Figure 2 shows the classical response func-
b tion with difference widths and the convergence to the quan-
tum result ath=2.0.
The slight disagreement in the prefactors arises from the
intrinsic difference between quantum and classical dynamics.
—(1=\3)2wot cos 2w\, ], (30 The quantum transition frofiN],v) to |[N],v+2) consists

1
= 5r[2n,(1- A2)sin 2w\t
b
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FIG. 3. The diagonal element of the fifth-order classical response function of the Morse osEillgtoB.0, N=199,v =70 and the quadratic polarization
a=(1-\?)cog ¢]: (a) with the microcanonical conditiorib) with the uncertainty widttA =7%; (c) with the uncertainty widttA=2%; (d) with the uncertainty
width A=3#.

of two steps ¢ —v+1—v+2), whereas classical dynamics removed, since the lower quantum transition is prohibited by
corresponds to the average of these transitions. Hence, tliee lower bound at the ground state.

classical correspondence of these two steps is the average

result, @ +1/2—v + 3/2)?>. Comparing these two resultg; (

+1) and @ +2) in the first term of Eq(29) correspond to V. FIFTH-ORDER RESPONSE FUNCTION

(v+3/2) in the first term of Eq(31). For the same reason, The fifth-order response functioR®)(7;,7,) contains

(v) and @—1) in Eq. (29 correspond to{—1/2) in Eq. more detailed dynamical information that cannot be obtained
(31). The difference is negligible in the largelimit, where  from the third-order response function. SinB&)(r;,7,)

the classical-quantum correspondence becomes more acaotanishes for the linear polarization operator, it is necessary to
rate. So, in the dissociation limit, E(R9) and Eq.(31) be- use the quadratic polarization operator to calculgfé@
come exactly the same. On the other hand,/fet0 andv X(1,7,). For a specific eigenstateN],v), substituting Eq.
=1, the second part of the classical modified result has to b&7) and Eq.(B4) into Eq. (13b), we have

N3
R (71, 72)= ~ oz (LB b (12) 2 (b(t) +b* (1)1 (b+b*)2]lo)

(1 v+2 L . 20+3\)

TN+ T ol T N¥L) 2
_ul1 v 1 v—1 (1 2v—1

vl DI | N L N

| .

v+1
N+1

2v+3
N+1

(v+D(v+2)|1—- sin

16
(N+1)3%42
(1 2v+3 )2

o 17 N ) (2Tt )~
2v—1 2v—1
(O]} 1_ N+l T (O} 1_ N+1 (2Tl+72)
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The fifth-order classical response function under the mi-
crocanonical condition is given in Eq19), which requires
the explicit calculation of a(t,),a(t;)}. With the Poisson
bracket expressed in the action-angle variables and the po-
larization given asy=(1—\?)cos ¢, we have

1| da(t) ﬂa(O)_ da(t) da(0)

{a®),a(O}= = 2= 07" 55 —ax

= %[A(l—)\z)(sin 24 (t)—sin 2¢(0))
b

+A(1—\?)sin 2w\t

—(1—\?)2wgt sin2¢4(t)sin 2¢(0)], (33

which can be easily generalized ta(t,),a(t;)}. Substitut-
ing Eq. (33) into Eq.(19), R®)(7,,7,) is given as

1
RO (71,75) = I—Z[(l—xz)(l—5>\2)sinwomz
b

X SiNw (2714 75) + woh To(1— \2)?
X sin 2(1)0)\( Tl+ 7'2) + 2(1)0)\ Tl(l_ )\2)2

X SiNwo\ 75 COSwoA (271 + 75) ], (34

which diverges along both thg andr, axis. Again, we use

p(1) instead ofp(1) to remove the classical divergence, and i onal e fifth-order clasical .
choose 2 as the uncertainty width followina the araument FIG. 4. Two-dimensional contour of the fifth-order classical response func-
Y 9 9 tion of the Morse oscillatofwy=5.0,N=19,v =5 and the quadratic polar-

for the quadratic pplari_zation operator. Then, fro_m E2)), ization = (1—A?)cog ¢]: (a) with the microcanonical conditior(b) with
we have the modified fifth-order response function the uncertainty widthA=24.

5(5) __176 +3)2 1_U+3/2‘2(1_20+3 i 1_2U+3) i 1_2U+3)2 +
¢ (M) =Nz ||V 2 N+ 1 T A e i e A et R i v AR
1\? v—1/2\? 2v—1\ 2v—1 ) ' v—
_(U_Z) (1_ N+1) (1_ N+1)S|n wo(l_l\Hl)Tz Sin wo(l_w)(271+72) ], (35

[

which reproduces the similar time dependence as the quaulition and with the uncertainly widtth=2%. Evidently, the

tum response function. Comparing E§2) and Eq.(35), the  response function with the microcanonical condition in-
slight discrepancy is the same as that appeared in the thirg¢reases with time along both axes, whereas the response
order response function for the quadratic polarizability.function averaged over the uncertainty widik=2% shows
Therefore, from the discussion in Sec. \€1) and ¢  an echo along the diagonal cross section.

+2) in Eq.(32) correspond tof + 3/2) in Eq.(35), and @)

a_nd @—1) in Eq. (32_) correspond tof—1/2) in Eq.(35). V1. CONCLUSION

Figure 3 plots the diagonal value of the response function

and demonstrates the convergence with the increasing uncer- To summarize, the unique algebraic structure of the
tainly width. Figure 4 compares the two-dimensional con-quantum Morse oscillator allows us to define the creation
tours of the response functions with the microcanonical conand annihilation operators, their explicit phase-space expres-
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sions, and the Morse coherence state. These relations are x=r cosf, y=rsing, 0<r<w, —x<O<,

then used to calculate and compare the linear and nonlinear (A4)
response functions for microcanonical Morse oscillators. Th
divergence in the classical response function can be remov

%He phase-space expressions of the oper&lon]sz, Jy, and
by taking a phase-space average resulting from the uncer”

are

tainly principle. Further, the nearly exact classical-quantum . 1| , 1 J d 1 52
correspondence can be established by quantizing the phase- N= IR FE( ol T2 o -1 (AS)
space averagingi for the linear polarizability operator and )
2h for the quadratic polarizability operator. It is reasonable 3 ! i (AB)
to speculate that the approach applies to a polarization op- ~% 2 40’
erator with any combination of the annihilation and creation 5 5
. . . cos 20 g 19 1 9
operators. For future studies, we will explore nonintegrable J= (—r2+ -5 _2)
systems, including coupled anharmonic oscillators and dissi- 4 o ror reae
pative anharmonic oscillators. For these systems, it remains a sin20/1 & 1 9
challenge to formulate their linear and nonlinear response — (——— —Z—), (A7)
functions and to establish their classical-quantum correspon- 2 rorgé r= a0
dence. These studies are useful in the context of the current sin 20 P2 19 1 &
effort in developing two-dimensional optical spectroscopy. Jy=- 4 ( —r2 2 T ar 12 (9—02)
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To solve the eigenequationgl\,m) is factorized into the
radial part and the angular parN,m)=Ry n(r)e ™,
where the radial pafRy (r) satisfies

APPENDIX A: ALGEBRAIC SOLUTION AND
PHASE-SPACE REPRESENTATIONS

In this Appendix, we use the algebraic method to con- 194 P 1 g2
struct the quantum mechanics of the one-dimensional Morse | r?— — o r(9—> 2o Ru,m(r)=(N+1)Ry m(r).
oscillator and derive an explicit expression connecting the? ror T

algebra operators and their phase-space representation. Our (A10)
derivation and notation follow the extensive work of Levine, With r>=(N+1)e™#9, the radial part is rewritten as
lachello, Frank, and othefs®*42To describe the two-

hZ d2 ﬁ2ﬁ2
dimensional harmonic oscillator, we introduce two pairs of| — o F+ 8—(N+1)2(e*2ﬂq—e*ﬁq) Rn,m(r)
boson creation and annihilation operators, ") and m aq M
(o,0"), which satisfy the following relations: h2p?
- N =— m?Ry m(T), (A11)
[ai,a;]=0, [& ,a;]=0, [a;,a; ]=46, (AL) 2 '
wherea; = 7,0. These operators are represented by the difwhich is exactly the Schdinger equation of the one-
ferential operators acting on two coordinateandy, dimensional Morse oscillator. Consequenty m(r) is the
eigenstate of the one-dimensional Morse oscillator, the dis-
e 1 ot 9 T+:i — 9 sociation energy of the Morse oscillatDy is related taN by
V2 x|’ V2 x|’ N+1=.8uD/%?B?, and themth eigenenergy of the one-
(A2) dimensional Morse oscillator in ER) is
1 ( J 1 J 202 202
= — y+_), 0'+:_(y__) :hﬂ Z_hB 2
NA ay NA ay En 8.0 (N+1) e m-. (A12)
The operators for & (2) group can be constructed as With 6=0, the eigenstatiN,m) of the two-dimensional
I=3(cTo—71"7), I=3(rTo+a"7), harmonic oscillator is reduced tRy ,(r), which is the

_ (A3)  eigenstate of the one-dimensional Morse oscillator. There-
e N — (ot + fore, the one-dimensional Morse oscillator can be regarded

J,=5(t70—0"1), N=(r"7+t0 0), . . o : i
2 as the one-dimensional projection of the two-dimensional

which are also the angular momentum operators with thg'armOnIC oscillator. )
invariant operatoﬂ=N/2 To further explore the algebraic methal}, andJ, are

Replacing the coordinatesandy by the polar coordi- combined to define the raising and lowering operators
natesr and 6, J=3+1dy, J =31y, (A13)
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which satisfy

JLIN,my=+J(J+1)—m(m+1)|N,m+1),
(A14)

J_IN,m)y=J(J+1)—m(m—1)|N,m—1),

with J=N/2. We now introduce three new operators,

b="5, b=, §=o-y (A15)
W W e
which act on the eigenstatdl,m) as
bIN.M) = [N m-+ 1) = (1 U_1)|N 1)
m)=—=|N,m+1)=\/v| 1- —||N,v—
1 \/N ’ N 1 1
(A16)
b N, m—1)= 2= [N,m) = \/ (v +1)[ 1 U)|N +1)
’ - == ’ = v - N U ’
N N
(A17)
) N
v|N,m)=<§—JZ)|N,m>=v|N,v>, (A18)
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cos 2| ~ B
b+b"=——+—|N+1—(N+1)e 4

VN

4 7 sz’ eﬁq/ZE}

Jr(N+1) dq aq
2 4

_ sin26ef 1
B dq

TN N+D)

Since in classical mechanics all variables commute, we set
0=0 so that the imaginary part in EgA24) is removed.
Then, replacing the operators by the corresponding variables
and using the classical-quantum correspondence

hod

(N—20).

(A24)

T EHP’ (A25)
we obtain the classical correspondencéefb™ as
N+1 efip?
b+ b+<—>—( 1-e Pi— —2—)
JIN B215
N+1
=——[—(1-1»)Y2cos¢]. (A26)
N

with v =N/2—m. These relations are similar to those for the Thus, we have derived the explicit expressionstf@ndb*

one-dimensional harmonic oscillator. The eigenenekgy
corresponding to the eigenstdte,v) is rewritten as

- 1\ (v+1/2)7° AL
vTheo |0t 3] TR ) (A19)
so that the Hamiltonian becomes
Nha)o i n (UO
H—m(bb +b b)+m (A20)

Furthermore, we use E@A8) to derive the differential
formulas of operators andb™*,

be’z”’leézzlal‘] A21
BN AT Ve e
b+—em N+1-r2+ a2+2 to 1 J A22
BN oz tAT g )Y A2

so that

. cos2| - ) 92
b+bt = | N+1—r24+ —

JN ar
2sin20(1 9 1
+1 \/N Fﬁ_r_z 7 (A23)

However, we cannot se1=0 in Eq. (A23) before applying

operators on the wave function, because these operators do b(t)=e~
not commute with each other. The right way to use the op-
erators is first to apply them on the two-dimensional system

and then sep=0.

Finally, we derive the classical correspondence bof

+b™ by rewriting Eq.(A23) as

and established their classical correspondence.

APPENDIX B: COHERENT STATE OF THE MORSE
OSCILLATOR

The fact that the harmonic oscillator and the Morse os-
cillator are two exactly solvable cases of th€2) algebra
suggests that a formal solution for a driven Morse oscillator
can be formulated in a similar fashion as the coherent state
for a driven harmonic oscillaté*- In this Appendix, we de-
rive the time evolution ob andb™ and construct the coher-
ent state of the Morse oscillator. The time-dependent opera-
tors, defined in the Heisenberg picture,

b(t)=eHotlipe iHotlh [+ (t)=giHotliptg=iHotl

(B1)
obey the equations of motion,

db(t) 1 b(t) H db*(t) _ b* (1) H B2

—at " ipPH]L — = [b (D, H]. (B2

Using the commutation relations, E@2) is rewritten as

db(t) 209 .
T: —iweb(t)+i mb(t)v,
B3
db;t(t) —iweb™ (1) —i ﬁ:’(’labwt), o
which can be solved explicitly to give
iwotbei[Za)O/(NJrl)]{)t,
(B4)

b+(t) — eiwote—i[ZmO/(N+1)]ﬁtb+ .

Next, we calculate the quantum mechanics of the Morse
oscillator driven by an external electric field. A simple and
effective approximation of the interaction is
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V(t)=—[b(t)f(t)+bT(t)f*(1)], B5 .9
(H=—[b)f(t)+b™ () f*(t)] (B5) RO(t)= —Tr a(t)a(o)_p}
where f(t) represents the time-dependent external field. In JH
the interaction picture, the time evolution of the system with $dl deb a(t) @(0)(apldH)
an external interactiol,(t) is formally given as =— (C3
$dlidep
i t . -
|‘I’(‘)>':e"”[|%f V(D) dt|[W(tg)), . (B6) For the Mor'se oscillatoid is independent of, so that Eq.
to (C3) is rewritten as
From Eq.(B4), V,(t) for the Morse oscillator is given as 1 . adl d
a ® ¢ RI(M)=— > fﬁdld¢a(t)a(0)a—Ea—f, (C4

Vl(t) e [e_iwotbei[zwo /(N+ 1)]{)tf(t)
wherep(l) is the normalized distribution function of Gen-

el lZeo VTG T (1) . (B7) erally, p is a function ofH, but, for integrable systems]
Substituting Eq(B7) into Eq. (B6), we obtain depends only o so thatp(H) is equivalent too(1).
- Next, we simplify the fifth-order classical response func-
|\If(t)>,=exp{l—f [e-iwotp gil2e0/(N+ Dt (1) tion RO)(t,,t,). The general form oR®)(ty,t,) is givenin
i Ji, Eqg. (13b). Two possible approaches can be applied. The first
approach is to substitute EC1) and Eq.(C2) into Eq.
+ el @oteil200/(N+ DIoty + £ ()] [W (1)), . (13b), so thatR®)(t,,t,) is given as
. RE(t1,t2) =T {a(ta),a(t) Ha(0),p}]
Therefore, in principle, given the functional form ffft) and =Trl{a(t,),a(ty)}a(0) &_p
the initial state of the system, we can determine the wave JE

function at a later time. As a specific case, we determine the 1 _
asymptotic limit withty= — andt=—cc. With |[[N],0) as the =5 f# dl dé{a(ty),a(ty)}a(0)
.. o

initial state. Eq.(B8) becomes

al dp
JE ol

. . C5
| W (e0)), = eBledb" ~bC" (@.0)|p (—co)), 9
The second approach starts from EG5) and then applies
= g8(@0)b" ~bG (wd)|N 0), (89)  Ed.(CY) to the integrand. With the help of the chain rule, Eq.
(C5H) is written as
where i
i [ RE(ty,t,) =Trl {a(t,),a(t )}d(O)&—p}
G(wo,ﬁ)zgf e [200/(N+ Dot gloct gt (B10) c 2 A JE
e ) | ”
Equation(B10) is similar to the coherent state of a harmonic =Tr a(ty)] a(ty),a(0) E
oscillator interacting with an external field. This similarity )
arises from the fact that both the Morse oscillator and the _T : (0 7°p
harmonic oscillator belong to tHe(2) group. However, for =Tra(ty)a(t) a(0) 7=
the Morse oscillatorG and G* are operators, and the fre- ) 5
guency is a function ob, dramatically increasing the diffi- Tl act ). a(0 _P}
culty of evaluating the coherent state. Nevertheless, the for- a(tz){a(ty),«(0)} JE
mal solution of the Morse oscillator coherent state is 1 7
revealing and useful. = ; .
g 271_[ é dide a(tz)a(tl)a(O)a—Ez
did (0 2P
APPENDIX C: SIMPLIFICATION OF CLASSICAL + % ld¢ a(tz){a(ty),a(0)} ZE|. (CO)

RESPONSE FUNCTIONS . . . . .
In comparison, the first expression in E@5) is easy to

In this Appendix, we simplify the third-order and fifth- calculate and is adopted in the paper.
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