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Nonadiabatic instanton calculation of multistate electron transfer reaction
rate: Interference effects in three and four states systems
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For multistate electron transfer reactions with quantum reaction coordinates, nonadiabatic instanton
theory can provide a powerful and direct means of calculating the reaction rate without any
limitation to the magnitudes of electronic coupling constants. In order to examine its performance
in detail, the theory is applied to simple model systems with three and four electronic states which
have one and two bridge states respectively. Calculations for three states systems, varying the
through—bond coupling constant, show that the nonadiabatic instanton theory reproduces the results
of perturbation and adiabatic instanton theories in the limits of small and large coupling constants,
respectively. In the absence of through—space coupling, the crossover between the two limits is
smooth and monotonic. However, in the presence of through—space coupling, the crossover pattern
becomes sensitive to the relative phase of the two electronic channels and demonstrates substantial
interference effects. For a four states system that has two interfering through—bond coupling paths,
similar interference effect was observed. These results show that the nonadiabatic instanton method
can serve as a favorable means of understanding the general kinetics and exploring the interference
effects in the low-temperature bridge mediated and/or proton coupled electron transfer systems.
© 2001 American Institute of Physic§DOI: 10.1063/1.1371262

I. INTRODUCTION Among the various examples of quantum ET, systems of
Electron transfefET) reaction assumes a central role in PCET have relatively well defined characteristics and have

various chemical and biological processes. In each situatior?€€n Subject to extensive studfes~%0f particular biologi-
a proper characterization of ET forms an essential step tg=@! importance is the case where the proton moiety functions
wards fundamental understandings of the underlying mechdS @ hydrogen bond brid§emaking the ET reaction more
nism. Recent reviews® provide the general perspective of efficient. A grgat deal of understan_dlngs have t_)een achieved
numerous successful theories, extensive examples of ET thitrough a series of elegant experimental studies by Nocera
can be well explained by existing theories, and some remair@nd co-worker§:**~*°Cukier has laid an important theoreti-
ing problems where the theoretical issues have not been réal framework for this type of PCET, explaining experimen-
solved yet. One of these latter fields where active theoreticdplly observed isotope effects and clarifying important con-
efforts are currently under way, is multistate ET coupled toceptual issues such as sequentiality and concertedness of the
quantum modes. Typical examples in this category can beeaction mechanisfi"*® Later, he developed a dielectric
found from intramolecular ET involving synthetic organic continuum theory;*®**where both electron and proton are
(or organometalli):compound§,multicenter ET in biologi- treated on the same footing, resulting in one-dimensional
cal systems;*” ET across an adsorbate in heterogeneousgnultistate system. Soudackov and Hammes-Schffféim-
medial® and proton coupled ETPCET).2 proved upon this perspective by formulating a two-
Important features of multistate quantum ET can be capdimensional dielectric continuum theory, which can be ap-
tured by theories based on simplified model potentidlEs-  plied to more general situations. Recent applicafibros
pecially, in the weak coupling limit, kinetic and mechanistic their theory to model systems demonstrate its capacity in
aspects are well described by perturbation analysis. Howexplaining rich behavior. However, in both theories, a reli-
ever, as revealed by some recent experimentsaamuhitio  able calculation of the reaction rate seems limited to the
calculations,*® quantitative estimation of the reaction rate, weak electronic coupling regime.
considering all the microscopic details of a given reactive  |n more complicated situations of PCEY;?® protons
system, remains difficult in most cases, due to complicatedre actively involved in substantial molecular rearrange-
potential-energy surfaces and collective nonlinear reactiofents, bond breaking, and bond formation. In these cases,
coordinates. For these SyStemS, itis not always clear Wheth%rroton degrees of freedom p|ay a more active role as the
all the electronic couplings are weak enough to warrant pefreaction coordinate, and various behavior can emerge de-
turbation analysis. In addition, interference effétts’and  pending on the number and topology of different charge lo-
the dynamic role of quantum reaction coordinates may tUriyajization centers. In addition, the overall reaction may in-

out to be important. volve substantial tunneling of proton as well as of electron,
with the resulting isotope effects varying with the specifics

3Electronic mail: jianshu@mit.edu of systems>~26For example, a recent experim&hteports a
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kinetic isotope effect of 41.4, which is quite large comparedstates coexist, and the interference among them can result in
to those for systems involving protons in hydrogen bondrich kinetic behavior. The main concern is whether the nona-
bridge moiety only. Theoretical calculation of the reactiondiabatic instanton theory captures such effects. Tests of these
rate for these general situations is more challenging, becaus&o aspects form important criteria that can validate the ap-
nonlinearity of the reaction coordinate and quantum effectglication of the theory to real systems. In order to keep other
such as tunneling, nonadiabaticity, and interference need tigatures as simple as possible, we limit the nuclear coordi-
be considered. nate to one dimension, although calculation for at least two-
As illustrated by the PCET systems described abovegimensional nuclear coordinates is feasible and has been
developing a unified theoretical framework, applicable todone before?
systems with general reaction coordinates and arbitrary The sections are organized as follows. Section Il pre-
strength of coupling, is crucial for understanding a broadsents the formulation of the nonadiabatic instanton theory.
class of multistate quantum ET systems. To this end, on&ection Il provides results for model three and four states
may extend some analytic theofiés into more general Systems, and demonstrates that the desired properties are sat-
situations, as have been done for several three statdsfied. The paper concludes with several discussions in Sec.
problems®3~3¢ or utilize various successful path integral IV, which address physical implications of the present results
simulation®”*® semiclassical dynamic8;** and mixed and future directions of the theory.
quantum classical dynamics approacfe¥4’ In the
present work, we seek another possibility of employing thg, NIFIED FORMULATION
nonadiabatic instanton theory, which has been proposed by

Cao and Voth(CV)*®*° and improved by Schwieters and The formulation of the nonadiabatic instanton theory is
Voth (SV)* in a more consistent form later. provided in the present section. The starting expression and

Nonadiabatic instanton thed&7®is a multistate gener- formal development is different from previous orfés>°we
alization of the Origina| instanton theéﬂygﬂ for a Sing]e follow the traditional approach that includes the adiabatic

potentia|_energy surface. It can be app“ed whenever th.é']stanton theory as a IImItIng Situatiéﬁ_.%But the final rate
nuclear trajectory is coupled to discrete electronic states an@XPression is equivalent to that provided by S\when put
there are bottleneck regions which form effective barriers ofnto a discretized form.
nuclear tunneling. The main idea involved in this extension ~ FOr large barrier and low temperature, the decay rate of
is similar to that®>® of an open system, where the extra @ Mmetastable state °is given by
degrees of freedom are included as influence functional and 2 ImZ
the equation of motion becomes nonlocal in time. Although I'=—— ;

( OUC -al In ime. Althol Bh Z,
some earlier studi€$®2had assumed this idea implicitly in
analogy with Pechukas’ real time dynamics the%?rjt was WhereZ, is the reactant part of the partition function, and
the systematic exposition and thorough numerical studiels analytically continued complex partition function of the

made by CV®*°and later by S\?° which brought it into a  total reactive system. The physical and mathematical mean-

well-established methodology. ings of these terms are well-known in the adiabatic instanton
The nonadiabatic instanton calculation does not presupheory;?>° and similar definitions are possible for the

poses weak coupling or classical limit of the reaction coorPresent case as will become clear later.

dinate. Therefore, as long as temperature is sufficiently low, ~The total reactive system consists of one dimensional

its application is warranted for a general class of systemdluclear coordinate and discrete electronic states. Formally,

However, there are certain assumptions involved in théne can express the partition function of the total system as

theory. Most importantly, it presupposes that a given reac- .

tion can be characterized by noninterfering nuclear tunneling Z=f dqo"'f don_1, -+ > (dol(kole™ H|ky)|ay)

trajectories. As a result, nuclear coherence cannot be ac- Koo kn-a

counteq for within that approacfiwhich might be a critical X (A1l (K1l e knd an) )

factor if the symmetry of the system allows degenerate

nuclear tunneling trajectories. On the other hand, the effect®r an arbitraryN. In above equations= /N and the cyclic

of electronic interference along a given nuclear trajectory ifoundary condition ofly= do andky= ko was imposed.q;)

inherent in the formalism, which is an essential motivation infePresents a position state of the continuous nuclear degree

applying the theory to multistate systems. of freedom, andk;) a discrete electronic statl. is the total
Although the nonadiabatic instanton the8ry°has been system Hamiltonian given by

formulated for an arbitrary number of states, calculations ~ ~

have been performed only for systems with two electronic H=Ho+H,, ©)

states. The present paper goes beyond these examples amioere

@

extends the nonadiabatic instanton method to three and four "

states systems. For two states systems, the theory reproduces |:|O:p_”| + 2 AKX, (4)
the correct behavior in the limits of small and large coupling 2m (=1 7k

constants. These properties can be examined in the multistate M

systems. In addition, for the present case, more electronic H1=2 V(@) K)(KI. (5)
paths connecting the initial donor and the final acceptor k=1
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In Eq. (4), 1 is the identity operator in the space of electronic 1 (s )

states with the dimension ofl. It is assumed that the cou- M(ILAC)D~INQLge(-)]) — %J’o dr(V" (7)) g, 94(7)

pling matrix elements ofA,, are real and symmetric. In Eq.

(5), Vi(q) represents the diabatic potential-energy surface of 1 (sn . 1

the kth electronic state. 20 Jo dr(Vv (T)>qo<-)6Q(T)2+ 252
By convention, we defingl) as the reactar{tiono state

and|M) as the productacceptoy state. It is assumed that the

nuclear coordinat@ can serve as a good criterion for the

distinction of these two states. Specifically, it is assumed that

there are two disjoint sets & and S, and that the Boltz-

mann factor of statel) (|M)) is dominantly larger than \ypere

those of others iffje S;(S;). In this sense, the rate for the

nuclear trajectory to tunnel from the region$fto S, can 1 N N

always be identified as the electron transfer rate from state (V' (7)aq()= mTre{J[%(');O,T]V’(QO(T))

|1) to |M), irrespective of the magnitudes of the electronic

coupling constants. X[ qo(-); 7,81} (12)
A path integral expression for the partition function of

Eqg. (2) can be obtained using the following approximation: with

Bh Bh , ] , ,
xjo dffo A7 Clqo(-); 7,7 184( 1) 84(7'),

(11)

<q’|<k’|e*€':'|k”>|q”) (V' (do(7))); 1= 8. Vi(do( 7). (13
. . A In Eg. (1), <V”(7')>q0(.) is defined in a way similar to Eq.
%<q/|<kr|e—eHl/2€—eHOe—eH1/2|k//>|q//> (12), and
m p: m 2 C[qO(.);T’T/]E<V,(T)V/(T,)>qo(')_<v/(7)>%(')
= V528X — 552(0"—0")%( Jw k(a",9" €),
ZEﬁ ZEﬁ (6) X<V,(’T,)>q0(,), 7_# ’T,, (14)
where with
’ ’ ’ 1 3
Jk/’ku(q’,q”;E)Eeikar(q’)m(k’|ei€2k#|Ak|‘k><ll|k”> <V (T)V (T )>q0()E J[qo()] Tre{J[QO()yO,T<]
xer e, @ < (Ao 7)Aol )i 7= 7]

We define an operatal(q’,q"; ) in the space of electronic XV’ (do(7-))I[ao(+); 7=, B}, (15)

states, with the components given by Eg. In the limit of o B , o
N—o, we also define the following electronic influence Wheré 7<=min(z7') and 7. =max(r,7). It is important to
functional operator: recognize that the average quantities defined above are all

functionals of the patlyg(-).

Expanding the kinetic-energy term in E@), and com-
bining with the expansion of Eq11), one can show that the
first-order terms in the functional expansion of the partition
where 7' =j'e and 7'=j"e. Taking the limit of N—oc in function vaqish_and only the_quadratic_terms suryive, around
Eq. (2) and utilizing the above definition of E¢8), one can the path satisfying the following “classical” equation of mo-
obtain the following path integral expression for the partition o™

Jac-); 7, 1= 1im I(q;r ,0j 15 €) - I(Ajr_1,Gjr5€), ()

N— o0

function: " /
Mo(7) =(V'(7))qy(-)- (16)
7= f Dq(-)e” lfﬁfgﬁdfmqf)Z/ZJ[q( 91, 9) Given that there are more than one such trajectories and they
are well separated from each other, the partition function of
with Eqg. (9) can be approximated as
n -~ — 1/ f B drmigg(7)2/2
Ia()I=Tre{d[a(-);0,841}, (10 Z= 2, e Mo emeT gl )] f Daa-)

whereTr, is the trace over electronic states. 1 (ph )

The electronic influence functional defined by Etp) is Xexp[ T2 fo d76q(7)Dldo(-);716a(7) ¢, (A7)
positive definite. Taking a logarithm and expanding around a
path ofgg(-) up to the second order, one can approximate itwhereD[qo(-): 7] is an integro-differential operator defined
as by
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D[qo(.);T]f(T)E{_ma72_+<v//(7_)>q0(4)}f(7-) mode.Slﬂ_)(?)wever, as is _done _ for .adiabatic instanton
theory; a proper analytic continuation leads to the fol-

lowing imaginary value:

i Bh W, N

with f(7) being an arbitrary periodic function. Z0="5 2wh 117 JJAD]

The “classical” trajectories ofqy(-)’s satisfying Eq. by ) o
(16) should be periodic inr with the period ofgh. Trivial ~ WhereAy's are eigenvalues dd[qy(-); 7], the prime in the
solutions with this nature are constant trajectories. The read2roduct means excluding the zero eigenvalue, and
tant part of the partition function comes from expansion Bh
around one such constant solution, locally maximizing We=m| d7g5(7). (25)
Jlq(-)] within the reactant region &, . In order to find this 0
constant solution, we first introduce the following effective Inserting Egs.(22) and (24) into Eq. (1), the decay rate is

__f hdJ,C q T | f (T 18
% 0 [ 0(')1 ) ] ( )1 ( )
e*l/ZﬁWbJ[qb(.)], (24)

potential: given by
1 Wp ( ToAq v —1/25W,
= — — = _— b .

Ve(Q) Bln(J[q]), (19 =+~ (m e Jap(-)113[a,], (26)
which is defined only for the class of constant trajectorieswhich corresponds to the nonadiabatic generalization of the
g(-)=gq. Then, adiabatic instanton theory. This is the main formal result of

, , the present paper. Previously, only the discretized version

Ve(a)=(V'(7))q- 20 was reported®
If one definesq, as the position of the local minimum of
Ve(g) in the reactant regiors; , then (V'(r)), =Vi(g,) !l RESULTS FOR MODEL SYSTEMS
=0. That is,q(7) =q, is a constant solution of E¢16). As In the present section, the results of calculation for

a result, the reactant part of the partition function becomesmodel systems are provided. A discretized version of Eq.
(26) is used as described in Appendix A, with=200. In
Zr:J[qr]J Dsq(-) order to compare easily with the perturbation theory, we as-
sume all the diabatic potential-energy surfaces are those of
1 [ph shifted or displaced harmonic oscillators with the same fre-
XeXP[ o5 fo dréq(7)D[q,;7]6q(7) (. (21)  quency ofw. The mass of the coordinate is denoted as.
In all the calculations, the units were chosen such that
SinceDJ[q,, 7] is positive definite, the above path integral =w=#=1, andB=10 in these units.
amounts to stable Gaussian integrals and can be integrated to Before going through the main results, it is meaningful
be to provide some estimates of the units and temperature cho-
sen here. If one assumes that the mass is equal to that of
] N 22) proton and the well frequency is equal to 2000 ¢mthe
Hn\/A—L’ corresponding units of mass and time arext1D %*g and
_ o _ 1.7x10 s, In order to maké: =1, the remaining unit of
where\is a normalization constant antd’s are eigenval-  |ength should be equal to 0.32 A. The Boltzmann constant in
ues of the operatoD[q ; 7]. these units have the value of 22073, and =10 corre-

The barrier part of the partition function is defined as thesponds toT=45K. Thus, we are concerned here in a very
semiclassical expansion around the trajectories which join Obw-temperature regime. This choice was made in order to
coexist inS; andS,. We assume that the temperature andgpsyre that there exists instanton solution over the broad
topology of the potential allows existence of nontrivial peri- range of coupling constants considered. In actual systems
odic trajectories with periogh#, and that there is one domi- \yhere the coupling constant is in a small limited range, the

nant trajectory, denoted ag,(7), with the smallest action. temperature one can apply the present method might be
Then, the barrier part of the partition function can be ap-higher.

proximated as

Z.=Jq,

A. Three states system without through—space

Zb%e— 1/ﬁf€fldrmqb(r)2/2\][qb( . )] f ng( . ) COUp|Ing

A three state system consisting fif), [2), and |3) is
1 (Bh considered|1) corresponds to the donor state gBgto the
xexp{ - ﬁfo d7éq(7)Dlap(-);7] 5Q(T)}- (23)  acceptor state. There is no direct coupling betwdgrand
I3), i.e., no through—space coupling, and it is assumed that
Unlike D[q,;7],D[qy(-);7] has a nontrivial zero eigen- the coupling betweefi) and|2) is the same as that between
value solutiong,(-). This solution has one node, and there |2) and |3), which is denoted ad (through—bond coupling
should be an additional solution of the operatorconstant The present model thus corresponds to an ideal-
D[qgy(-); 7], which has no node and a negative eigenvalueized version of symmetric bridge mediated B without di-
The above integral diverges due to this negative eigenvalueect interaction between the donor and acceptor states due to
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FIG. 1. Nonadiabatic instanton rates for three cases of bridge state potential:
Vp,=11,8, and 5. The second-order perturbation results are shown as

dotted—dashed lines, and the adiabatic instanton results are shown as thifs 5 e |owest adiabatic potential-energy surfasetid lines for three
solid lines. values ofA: 0.01, 2.37, and 5. For each case\qf, the higher potential-
energy surface corresponds to the smaller valug.dfong dashed lines are
] ) the effective potential-energy surfaces calculated by(Bf).
either large distance or symmetry reason. The quantum reac-

tion coordinate in the present case can be considered as col-
lective polarization coordinate in the low-temperature limitbatic instanton theory, the quantum limit of adiabatic ET
and/or the proton coordinate, depending on the type of #heory. Thus it is shown that the nonadiabatic instanton

given system. theory interpolates the nonadiabatic regime and the true adia-
The form of|2|0 of Eq. (4), for the present case, is given batic regime, which accounts for the lowering of the effec-
by tive nuclear barrier height and thus has much larger rate than
> the adiabatic limit of the Landau;Zenner expression. As in
|:|0:p_] +A(1)2]+]2)(1|+[2)(3|+]3)2]). (2D the case of tvx{o electronic stat®s>°the crossover is smooth
2m and monotonic.

The effects of the variation of the bridge state potential

The diabatic potential-energy surfaces entefingof Eq. (5) on the reaction rates can be clearly seen in Fig. 1. First, the

are given by relative rates for different values of, are quite insensitive
2 5 to the magnitudes of the coupling constakitSecond, larger
Vi(@)=——(q+0o)%, (28 yalues ofV, tend to delay the crossover to the adiabatic
5 limit. Qualitatively, however, the three curves show similar
V,(q)= m_‘*’qurV 29 pattern. This is somewhat in contrast to the adiabatic instan-
2 2 b ton theory results, for which the reaction rates for the cases
M of V,=8 andV,=11 approach each other quite closelyAas
V3(Q)+T(q—%)2- (300  decreases. Figure 2 shows the lowest adiabatic potential-

energy surfaces for three values dfand these seem to ex-
whereqo=4. In the units estimated above, this correspond$lain the observed trend. The lowest adiabatic surfaces for
to about 1.28 A. Thus our model represent situations wheréhe two cases o¥,=11 andV,=8 are almost identical for

substantial bond rearrangements OCCur. the smallest Coupling constant while it is not the case for
Calculations were done with three different choices ofVb=>5- . o -
V,=11, 8, and 5 inV,(q) of Eq. (29). Figure 1 shows the In the small coupling constant limit, the adiabatic

reaction rates with the variation df, from 0.01 to 5. Also  Potential-energy surface does not serve as a proper means for
shown are the results based on the second-order perturbatife understanding of the calculated nonadiabatic reaction
theory as described in Appendix B and the adiabatic instant@te. Figure 2 provides additional effective potential-energy
ton theory results for the lowest adiabatic potential-energypurfaces as long dashed lines, which serve this purpose bet-
surfaces. The apparent values of the reaction rates look vef¢l- They are potential energies calculated along each instan-
small. However, considering that the unit time scale as estiton trajectory by the following expression:

mated above is on the order of 1¥}s, the range of the q

reaction rates covers experimentally relevant time scales. In Vin(Q)=Vao(%(0))+f da’(V'(7/))qy() 3D

the weak coupling limit, the nonadiabatic instanton theory ()

results agree with those of the perturbation theory. As thavhere V,{q,(0)) is the value of the lowest adiabatic
coupling constant increases, they approach those of the adipetential-energy surface at the boundary of the instanton tra-
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-8
v,=11
-13
S
V,=8 ®
-
—-18
V,=5
_23 L L
-2 -1 0
LoglO(AIZ)
4 FIG. 4. Nonadiabatic instanton resu(olid lines with open symboldor a
q,(1) three state system with through—space coupling. Perturbation theory results

are given by dotted-dashed lines and the adiabatic instanton results for the

FIG. 3. Instanton trajectories fak=0.01 (solid line), 2.37 (long dashed lowest surfaces are given by solid lines with corresponding filled symbols.

line), 4.0 (dotted—dashed line

jectory, g,(0), and 7y is the imaginary time satisfying’ to the case of SymmeFric ET with both bridge mediation and
—qp(7q’). A time origin has been set such thep(0) through—space coupling. Recent. examples show that such
<qp(7)<qp(B#/2). Thus,Vi,(q) is a potential defined only ~Situations can oceur for Iarge_ﬂemble mo[ec@ﬁaer for the
within the bound of the instanton trajectory, and it reflectsc@se where there is an additional functional group in the
the amount of work required for the nuclear trajectory tobridge compoung? Interference effects can be important in
tunnel through the barrier region. In all the three cases othis case. We assume the formtef of Eq. (4) as

Vi, Vin(q)’s look quite similar in the weak electronic cou-
pling limit. The reason for this is that quantum delocalization
plays a bigger role and washes out the small details of the
bare potential-energy surfaces.

Comparison ofV;,(gq) with the adiabatic potential sur-
face in Fig. 2 shows that their relative difference can serve
a measure of nonadiabaticity as mentioned betdfeor ex-
ample, whenA =0.01, the two curves are substantially dif-
ferent in all three cases of,. WhenA=2.37, they are quite
close for the case of,=5, while the difference betweenthe o hore only the case bf,=11.

two curves for the case o,=11 is still large. Finally, when In the small coupling constant limit, the qualitative fea-

fA:'[EI, one can\cr}ot_ofl;sce(;n;hehﬁ/vo poterl}t?icfenergy surf:;ceﬁjre of the nonadiabatic reaction rate can be inferred from
or ef caties 0 b_m Einll ’TV;'] ne aks)ma tl' erence Cl?n N perturbation theory. Considered up to second order, the tran-
s_e?n tor _thetﬁase b == ttese ohserva_l IO,?-S alre all €oN- sition probability from|1) to [3) has two contributions of a
SIS eFr_1 Wi 3 € cr_(()jsso;/r?r pat erln s OV;T‘ ;)n i '9. t ton t direct transition and an indirect one via the intermediate state
. lgure 5 provides the actual nonadiabalic instanton trag, |2). The probability of the former event is proportional to
jectories. For the smallest coupling constant #0.01, 4A13|2 and that of the latter is thA;)|*/V2, when considered
I|.ttle d|ﬁerence can be seen betyveen the mstantpn.trayect ndependently. If there is a large disparity in the magnitudes
ries for different values o¥,, which reflects the similarity of |Ad and A2V, , independent consideration can be
ozhtheheﬁzctlfve tpr)]oteintlalstcalculﬁ\ted by Itz@tlkﬁ:o; :Ee justified and only the dominant one will govern the overall
° tert a:cnth’ prt et argge; ioup;gfg_cgqs an h ’ ”e reaction rate. However, when they are comparable, their con-
extent ot the Instanton trajectory 1o, =5 1S much Smaller - i, tions should be considered on the same footing and the
than of[her cases. This is also consistent with th_e shape of tkrlgaction rate can be sensitive to their relative phase. The
p?]t.eﬂt';ll showr;]for tr|1|e case GiszsthandAchS in Fig. 2, major concern here is whether the nonadiabatic instanton
which has much smaller curvature than others. theory can correctly reproduce this qualitative feature. If it
does, then, the next question is how the theory predicts in-
terference effects in the moderately large coupling constant
In the present subsection, the effect of the direct couregime where the perturbation theory does not work well.
pling between stated) and|3), the so called through—space In order to answer the first question, we performed cal-
coupling, is considered. Thus the present model correspondasilations for the two cases df;;= +0.01, a weak through—

n2

Flo= =1+ Al | 12| +2)(1| +]2)(2] +3)2])

+A55(1)(3[+[3)(1]), (32)
R/hich corresponds to the simplest extension of the Hamil-
tonian given in the previous subsection. The same diabatic

potentials, units, and value @gf, are used. In order to focus
more on the effect of the through—space coupling, we con-

B. Three states system with through—space coupling
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-9 | V— A13=1 V—N A =4,=0.1
A—AA =]
£ . Q@
o 14| o0
& -u g
2 -1 0 -2 -1 0

LoglO(AIZ) Loglﬂ(AIZ)

FIG. 5. Nonadiabatic instanton resufslid lines with open symbolgor a FIG. 6. Nonadiabatic instanton results for a four states system with two
three system with through—space coupling. Perturbation theory results afiegenerate bridge states.

given by dotted-dashed lines and the adiabatic instanton results for the low-

est surfaces are given by solid lines with corresponding filled symbols.

correct quantification of the reaction rate in multistate sys-
tems.

space coupling limit. Figure 4 shows the results. A striking

interference effect can be seen, and the nonadiabatic instag- Four states system

ton theory agrees fairly well with the second order perturba-

tion theory results, calculated as described in Appendix B'ma dzn?r:lgi,nIcatlguelig?nniiefc\)/\;haetfel:rrs?:r?itlzfinmtgﬂ‘zlreszsée;?f:(fs
Because,— €,<0 in Eq.(B4), one can see that the negative ' y

value of A;; results in constructive interference, while the can be found. The model is assumed to have two bridge

positive sign leads to destructive one. As, increases, on states,2) and|3), which are not coupled to each other, but

the other hand, the results of the nonadiabatic instantoﬁre coupled to the donor staf#), and the acceptor state),

theory, for both cases a&f ;3= +0.01, approach those of the Independently. Thus,
adiabatic instanton theory, which are almost equal for the. [
present case. These confirm that the theory reproduces a C(B'llﬂ:ﬁl + A 1)(2]+[2)(1]) + Arx(|2)(4] +]4)(2])
rect interference pattern and approaches both the weak and
strong coupling limits properly. +Aga(| 1)(3[+[3)(L)) + Azq(|3)(4] +[4)(3]), (33

In order to address the next question, we performed cakyhere it is assumed that the coupling betwé@rand|4) is
culations for Ajg==1, cases with moderately large the same as that betwet and|2). On the other hand, the
through—space coupling constants. The results are shown ghpling between1) and|3) is not necessarily the same as
Fig. 5. Interestingly, a qualitative feature similar to that of that petweer]3) and|4). In order to emphasize the interfer-
the perturbation theory can be seen, but the valud of  ence effect, we assume that the potential-energy surfaces of
where the interference is maximized appears somewhat Iatqg> and|3) are the same, as in some model systems of PCET

Although the perturbation theory provides a qualitatively rgaction That is, the diabatic potential-energy surfaces are
correct picture, actual nonadiabatic calculation is necessaryjyen py

for an accurate quantification of the reaction rate. In the )
present case, the two adiabatic instanton theory results also Vy(q) = m—w(q+q )2 (34)
show substantial difference, and the two results of the nona- ! 2 o’
diabatic instanton theory approach these different adiabatic 2
ones in the limit of large through—bond coupling constant. Vo(q)=Va(q) = m_wq2+vb, (35)

Two important aspects are worth stressing. First, in the 2
presence of additional through—space coupling, the increase M2
of the through bond coupling does not always lead to the V,(q)= T(q—qo)z, (36)
increase of the reaction rate for the case of destructive inter-
ference. Second, the variation of the phase of the throughwhereqy,=4 as before, an¥, was chosen to be 11. Calcu-
space coupling, or that of only one through—bond couplinglations were done as described in Appendix A with the same
can be a very efficient means for the control of the overallset of parameters, except that there are now four electronic
reaction rate. Whether such an effect can be found in naturstates. Figure 6 shows the phase effects for both small and
or in experiments is not so clear, but, as recent calculdtions large magnitudes dfA ;3 =|A3,|, with the variation ofA ;,.
for photosynthetic reaction center suggest, proper account of Interference effects similar to three states systems can be
all the coupling constants should be an important factor irseen. In the present case, the maximum interference appears
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when the absolute value df;, is equal to that ofA 3, be-  trated in the beginning of Sec. Ill. In addition, it has been
cause both processes involvit®) and|3) are of second or- assumed that there exists a well defined reaction coordinate
der. The degrees of interference are similar for both smalthat can be used to monitor the progress of reaction. There-
and large magnitudes df\,5=|A3,. Although the model fore, the examples where the present theory is suitable are
considered here is too simplistic, it has some relevance ttow-temperature intramolecular ET with distinctive reactant
PCET in the low-temperature regime, where excited protorand product configurations, bridge mediated ET where there
states can be disregarded and the polarization coordinate bis-a well defined polarization coordinate serving as a quan-
have quantum mechanically. The present calculation sugum reaction coordinate, and PCET reactions with a signifi-
gests substantial interference effect for such a situation. Excant tunneling of the proton coordinate.

perimental verification of this might be possible for well Finally, we conclude the paper with a few comments on
designed synthetic systems. theoretical and numerical issues which need further atten-

tion. First, no clear criterion for the existence of the instanton
IV. DISCUSSION trajectory has been found yet. That is, an explicit expression

In this paper, the nonadiabatic instanton theory was sucf-or. the crossover temperaturel does not. ex!sF, unlike in the
iabatic instanton theory. This makes it difficult to assess

cessfully applied to three and four states systems and w heth . term is in th ime for th i
shown to account for electronic interference effects. Within' o 1e' @ gIVEN System IS in Ih€ proper regime for tiné appli-
ation of the instanton theory before the calculation is per-

our knowledge, this is the first demonstration of such effect d A bl ¢ d thi biquity is t
from the perspective of instanton theory. For the chosen s prmed. A possibie way 1o go aroun IS ambiguity 1S 1o

of parameters, the difference in the reaction rate, between tHét'I'2e the nonadiabatic centrofd Second, for the case of a

constructive and destructive interference cases, is about ﬁ\;gal time propagator, it is known that there can be multiple

orders of magnitudes. Even though this large difference wergrationary pgthg. Whether the same is trug an(_j whet_her 'F
can play an important role for the present situation of imagi-

not observed in actual situations, it still illustrates that ne- " " tel  thi int. Third. th
glecting through—space couplings or additional through—nary IMe propagation are not clear at this point. 1hird, the

bond channels can result in substantial overestimation or urp_umencgl method'of finding an instanton trgjectory as de-
derestimation of actual reaction rate. scribed in Appendix A has been successful in most param-

In the present work, calculations were limited to simpleeter regime of the models considered, but there are some

one-dimensional model systems in order to emphasize thlémh!t'ﬂg S|ttcjjatt|o_rllsdvyh(2re thed.mifh?r?] doe; not wlork_ weII%
unique features of multistate systems. However, applicatio Ich are detailed in Appendix A. Theé main conclusion o

to more general and realistic situations are possible, and ca;l;t ]E)ret_;ent pe(ljpertls Zgrdly agfected_tt))ly t.h's numencatl '?S‘tﬁe’
reveal new interesting aspects. First, one can consider mo urther understanding and possible improvement ot the

general shapes of potential-energy surfaces and study tﬁyjjmerical algorithm is important for future applications of

role of anharmonicity and the effects of different curvaturesthe theory to real systems.

for different electronic states. Second, it is possible to con-

sider the cases where the nuclear reaction coordinate RCKNOWLEDGMENTS
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dimensional nuclear coordinates are possible, and these cafhrporation, Petroleum Research Fund, and National Sci-

demonstrate different behavior depending on the topology ofnce Foundation.

the potential-energy surfaces. For two-dimensional cases,

there can be more than one instanton trajggtories connegti%PENDlx A: NUMERICAL METHOD

the reactant and the product states. In addition, more various

routes of sequential mechanisms are possible. Considerations In actual calculation, the limit d— <o is not taken, and

of all these possibilities and determination of the dominantone assumes a finite but large enoudghCorrespondingly,

ongs) are essential in determining the reaction mechanisnthe imaginary time ofr can take only discrete values;

of a give system. =j €, and the electronic influence functional operator defined
The reaction rate considered in the present work correby Eq.(8) is approximated by a finite number of products as

sponds to coherent concerted mechanism, which does nfallows:

allow thermal relaxation of the intermediate states. For mul- ) - ] A )

tistate systems, however, there are other competing routes of 9Ld(")i 7y 7jr]=~(Qjr Gy 15 €)= I(Qjr—1.qj 'e).Al

sequential mechanisms where the intermediate states are ac- (AL)

tually populated and fully relaxed. Within the instanton ap-Also, the “classical” equation of motion, Eq16), is re-

proach, it is also possible to calculate the reaction rates ddlaced with the following finite difference equation:

these sequential mechanisms by performing separate instan- &2

Fon calcqlatlons for each pair of po.tent|al-ener.gy surfaces qoyj+1—2q0’j+q0'j_1=E(V’(Tj)>qo(,), (A2)

involved in each step of the sequential mechanism and then

calculating the overall reaction rate combining those of allwhereqg;=q(7;). Finally, the eigenvalues entering Ed)

the steps involved. are approximated by those of thex N matrix D [qq(-)], a
As is usual for instanton theory, the nonadiabatic instanfinite N approximation for the operator defined by E8),

ton theory presupposes sufficiently low temperature as illusthe component of which is given by
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m becomes small enough. In the calculations of the main text,
(D Ao()Djjr == 22(8},jr-1728)j+ & jr+1) the upper bound o€ was set to X104,
For a given model system, calculations were made at 20
. _ values of the varying through—bond coupling constant, uni-
V' (7)))ag) 015~ NC[qO(‘)'TJ' 7], formly spaced in the given interval, except for the cases of
destructive interference. For these latter cases, more points
(A3) were needed near the minimum in order to reproduce
smoothly the dip in the reaction rate. As the coupling con-
stant approaches the value where the reaction rate becomes
minimum, however, we found it difficult to obtain the de-
sired convergence. The results shown in the texts are for only

Slnce_the righthand S'de. of Egr2) depe_nds implicitly those points with convergences within the bound set above.
on the trajectoryto be determingdh self-consistent approach Thus, the minimum value of the reaction rate for the cases of
is needed in the calculation of the instanton trajectory. Ajaqiryctive interferences might have some errors

simple way for this is an iteration procedure described as
follows: (i) Choose a reasonable initial guess for the instan-

ton trajectory; (ii) calculate the electronic influence func- AppeNDIX B: SECOND-ORDER PERTURBATION
tional operator along the given trajectory using B&l); (i) ~ THEORY EXPRESSION AND ITS CALCULATION
solve the equation of motion, EGA2), iteratively employing

the electronic influence functional as determined by the step  Here, we derive an expression for the general three state
of (ii); (iv) use the trajectory determined in st@ip) as anew Systems where there are both through—spase;)( and
input and repeat the stegis) and (iii ) until enough conver- through—bondA 1, andA »3) couplings. When considered up

gence is reached. In stéji ), the iteration is done by repeat- to the second-order time-dependent perturbation theory, the
ing the following cycle of update: electronic space matrix element of the propagator is given by

wherej, j'=0,..N—1. When these discretized approxima-
tions are inserted into E¢26), the resulting rate expression
is equivalent to that provided by SV.

-~ it - , -

2 <3|e7|Ht/ﬁ|1>= _ _f dt/efth(tft )/hA eﬂhlt It
€ ) 31

205= 9811+ O3 = — (V' (77)%)q), 1=0,.N—1, fiJo
A4 1 T t’ . ’
(Ad) _FL dt,fo dtre - hatt-tVnp
until enough convergence is achieved. In the calculations for A A
the model systems in the text, the update of B) was X @ ihat=thp , o=ingt"/h (B1)

done 100 times at each step. . L .
: ; . . . We denote the diabatic vibrational states of the electronic
The iteration pr r ri ve, which will .
e iteration procedure described above, ¢ be tates of 1, 2, and 3 @k, |m), and|n), respectively. Then

named as ITER hereafter, has quite a simple structure. How?
ever, the convergence of the procedure is very slow in gen<-n|<3|e7n3|t/ﬁ|1>||>

eral, and sometimes a desired convergence is not reached at

all. Alternatively, one can use a more systematic Newton— i—A ftdt’e“fn(t‘t'>’h“fl”ﬁ<n|I)—A32A21
Rapson(NR) procedure as applied by S which accounts A h?

for the dependence of the electronic influence functional on

the nuclear trajectory simultaneously. Although, each step of « jtdt’ ft,dt"E e ien(t=t)/t

the NR procedure takes longer than ITER, the overall con- 0 0 m

vergence of NR is faster than ITER. However, for some e

cases, the NR procedure leads to instability and does not X~ 'tem IM(E=0/A=iatihnim)y(m]l), (B2)
produce a trz_ijectory with enough convergence. We foungynere y—0+. Performing integration ovet”, one can
that augmenting the NR procedure with the ITER procedurgnqow that

can prevent such a problematic situation from happening in A

most cases. Thus, the following is the overall algorithm wee's/"(n|(3]e~H"%|1)|I)

adopted in finding the nonadiabatic instanton solutiGn: i

Choose the straight line solution connecting the minima of  _ _ ! ftdtrei(enfq)t’/ﬁ

the reactant and product state potential as the initial trajec- h)o

tory; (ii) calculate the electronic influence functional opera-

tor; (i) apply the NR procedurdiv) apply the stepsii) and %
(iii ) of the ITER procedure twice. The steps frgmto (iv)

described _here_ cqnsntute our cqmposne method of fmdm%vhere it has been assumed tieidfi— m
the nonadiabatic instanton solution. We repeated the steps
from (i) to (iv) until the measure of convergence defined a

|
A31<'1||>+A32A21§ % ; (B3)

HNIh <
S Taking the absolute square of E@B3) and the time
derivative, summation over all the final electronic states
1 ) 5 gives rise to the following expression for the transition rate
€ / from thel vibrational state of the donor electronic state to the
C=— 11— 200+ qoi—1— —(V'(7 o, (A5
sz: Qoj+1~ 4o To,j-1 m< ( J)>q0() (A5) acceptor state:
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