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Nonadiabatic instanton calculation of multistate electron transfer reaction
rate: Interference effects in three and four states systems

Seogjoo Jang and Jianshu Caoa)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 14 December 2000; accepted 21 March 2001!

For multistate electron transfer reactions with quantum reaction coordinates, nonadiabatic instanton
theory can provide a powerful and direct means of calculating the reaction rate without any
limitation to the magnitudes of electronic coupling constants. In order to examine its performance
in detail, the theory is applied to simple model systems with three and four electronic states which
have one and two bridge states respectively. Calculations for three states systems, varying the
through–bond coupling constant, show that the nonadiabatic instanton theory reproduces the results
of perturbation and adiabatic instanton theories in the limits of small and large coupling constants,
respectively. In the absence of through–space coupling, the crossover between the two limits is
smooth and monotonic. However, in the presence of through–space coupling, the crossover pattern
becomes sensitive to the relative phase of the two electronic channels and demonstrates substantial
interference effects. For a four states system that has two interfering through–bond coupling paths,
similar interference effect was observed. These results show that the nonadiabatic instanton method
can serve as a favorable means of understanding the general kinetics and exploring the interference
effects in the low-temperature bridge mediated and/or proton coupled electron transfer systems.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1371262#
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I. INTRODUCTION

Electron transfer~ET! reaction assumes a central role
various chemical and biological processes. In each situa
a proper characterization of ET forms an essential step
wards fundamental understandings of the underlying mec
nism. Recent reviews1–3 provide the general perspective
numerous successful theories, extensive examples of ET
can be well explained by existing theories, and some rem
ing problems where the theoretical issues have not been
solved yet. One of these latter fields where active theoret
efforts are currently under way, is multistate ET coupled
quantum modes. Typical examples in this category can
found from intramolecular ET involving synthetic organ
~or organometallic! compounds,2 multicenter ET in biologi-
cal systems,1,4–7 ET across an adsorbate in heterogene
media,1,3 and proton coupled ET~PCET!.8

Important features of multistate quantum ET can be c
tured by theories based on simplified model potentials.1,3 Es-
pecially, in the weak coupling limit, kinetic and mechanis
aspects are well described by perturbation analysis. H
ever, as revealed by some recent experiments andab initio
calculations,9,10 quantitative estimation of the reaction rat
considering all the microscopic details of a given react
system, remains difficult in most cases, due to complica
potential-energy surfaces and collective nonlinear reac
coordinates. For these systems, it is not always clear whe
all the electronic couplings are weak enough to warrant p
turbation analysis. In addition, interference effects11–13 and
the dynamic role of quantum reaction coordinates may t
out to be important.

a!Electronic mail: jianshu@mit.edu
9950021-9606/2001/114(22)/9959/10/$18.00
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Among the various examples of quantum ET, systems
PCET have relatively well defined characteristics and h
been subject to extensive studies.8,14–26Of particular biologi-
cal importance is the case where the proton moiety functi
as a hydrogen bond bridge,8 making the ET reaction more
efficient. A great deal of understandings have been achie
through a series of elegant experimental studies by Noc
and co-workers.8,14–16Cukier has laid an important theoret
cal framework for this type of PCET, explaining experime
tally observed isotope effects and clarifying important co
ceptual issues such as sequentiality and concertedness o
reaction mechanism.8,17,18 Later, he developed a dielectri
continuum theory,8,18,19 where both electron and proton a
treated on the same footing, resulting in one-dimensio
multistate system. Soudackov and Hammes-Schiffer20,21 im-
proved upon this perspective by formulating a tw
dimensional dielectric continuum theory, which can be a
plied to more general situations. Recent applications22 of
their theory to model systems demonstrate its capacity
explaining rich behavior. However, in both theories, a re
able calculation of the reaction rate seems limited to
weak electronic coupling regime.

In more complicated situations of PCET,23–26 protons
are actively involved in substantial molecular rearrang
ments, bond breaking, and bond formation. In these ca
proton degrees of freedom play a more active role as
reaction coordinate, and various behavior can emerge
pending on the number and topology of different charge
calization centers. In addition, the overall reaction may
volve substantial tunneling of proton as well as of electro
with the resulting isotope effects varying with the specifi
of systems.23–26For example, a recent experiment26 reports a
9 © 2001 American Institute of Physics
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kinetic isotope effect of 41.4, which is quite large compar
to those for systems involving protons in hydrogen bo
bridge moiety only. Theoretical calculation of the reacti
rate for these general situations is more challenging, bec
nonlinearity of the reaction coordinate and quantum effe
such as tunneling, nonadiabaticity, and interference nee
be considered.

As illustrated by the PCET systems described abo
developing a unified theoretical framework, applicable
systems with general reaction coordinates and arbit
strength of coupling, is crucial for understanding a bro
class of multistate quantum ET systems. To this end,
may extend some analytic theories27–32 into more general
situations, as have been done for several three st
problems,33–36 or utilize various successful path integr
simulation,37,38 semiclassical dynamics,39–43 and mixed
quantum classical dynamics approaches.37,44–47 In the
present work, we seek another possibility of employing
nonadiabatic instanton theory, which has been proposed
Cao and Voth~CV!48,49 and improved by Schwieters an
Voth ~SV!50 in a more consistent form later.

Nonadiabatic instanton theory48–50 is a multistate gener
alization of the original instanton theory51–57 for a single
potential-energy surface. It can be applied whenever
nuclear trajectory is coupled to discrete electronic states
there are bottleneck regions which form effective barriers
nuclear tunneling. The main idea involved in this extens
is similar to that58,59 of an open system, where the ext
degrees of freedom are included as influence functional
the equation of motion becomes nonlocal in time. Althou
some earlier studies60–62 had assumed this idea implicitly i
analogy with Pechukas’ real time dynamics theory,39 it was
the systematic exposition and thorough numerical stud
made by CV48,49 and later by SV,50 which brought it into a
well-established methodology.

The nonadiabatic instanton calculation does not pres
poses weak coupling or classical limit of the reaction co
dinate. Therefore, as long as temperature is sufficiently l
its application is warranted for a general class of syste
However, there are certain assumptions involved in
theory. Most importantly, it presupposes that a given re
tion can be characterized by noninterfering nuclear tunne
trajectories. As a result, nuclear coherence cannot be
counted for within that approach,59 which might be a critical
factor if the symmetry of the system allows degener
nuclear tunneling trajectories. On the other hand, the eff
of electronic interference along a given nuclear trajectory
inherent in the formalism, which is an essential motivation
applying the theory to multistate systems.

Although the nonadiabatic instanton theory48–50has been
formulated for an arbitrary number of states, calculatio
have been performed only for systems with two electro
states. The present paper goes beyond these example
extends the nonadiabatic instanton method to three and
states systems. For two states systems, the theory reprod
the correct behavior in the limits of small and large coupli
constants. These properties can be examined in the multi
systems. In addition, for the present case, more electr
paths connecting the initial donor and the final accep
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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states coexist, and the interference among them can resu
rich kinetic behavior. The main concern is whether the no
diabatic instanton theory captures such effects. Tests of th
two aspects form important criteria that can validate the
plication of the theory to real systems. In order to keep ot
features as simple as possible, we limit the nuclear coo
nate to one dimension, although calculation for at least tw
dimensional nuclear coordinates is feasible and has b
done before.50

The sections are organized as follows. Section II p
sents the formulation of the nonadiabatic instanton theo
Section III provides results for model three and four sta
systems, and demonstrates that the desired properties ar
isfied. The paper concludes with several discussions in S
IV, which address physical implications of the present resu
and future directions of the theory.

II. UNIFIED FORMULATION

The formulation of the nonadiabatic instanton theory
provided in the present section. The starting expression
formal development is different from previous ones.48–50We
follow the traditional approach that includes the adiaba
instanton theory as a limiting situation.52–56But the final rate
expression is equivalent to that provided by SV,50 when put
into a discretized form.

For large barrier and low temperature, the decay rate
a metastable state52–56 is given by

G5
2

b\

Im Z

Zr
, ~1!

whereZr is the reactant part of the partition function, andZ
is analytically continued complex partition function of th
total reactive system. The physical and mathematical me
ings of these terms are well-known in the adiabatic instan
theory,52–56 and similar definitions are possible for th
present case as will become clear later.

The total reactive system consists of one dimensio
nuclear coordinate and discrete electronic states. Form
one can express the partition function of the total system

Z5E dq0¯E dqN21(
k0

¯ (
kN21

^q0u^k0ue2eĤuk1&uq1&

3¯^qN21u^KN21ue2eĤukN&uqN&, ~2!

for an arbitraryN. In above equation,e5b/N and the cyclic
boundary condition ofqN5q0 andkN5k0 was imposed.uqj&
represents a position state of the continuous nuclear de
of freedom, andukj& a discrete electronic state.Ĥ is the total
system Hamiltonian given by

Ĥ5Ĥ01Ĥ1 , ~3!

where

Ĥ05
p̂2

2m
Î 1 (

k51

M

(
lÞk

Dkluk&^ l u, ~4!

Ĥ15 (
k51

M

Vk~ q̂!uk&^ku. ~5!
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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In Eq. ~4!, Î is the identity operator in the space of electron
states with the dimension ofM. It is assumed that the cou
pling matrix elements ofDkl are real and symmetric. In Eq
~5!, Vk(q) represents the diabatic potential-energy surface
the kth electronic state.

By convention, we defineu1& as the reactant~donor! state
anduM& as the product~acceptor! state. It is assumed that th
nuclear coordinateq can serve as a good criterion for th
distinction of these two states. Specifically, it is assumed
there are two disjoint sets ofSr and Sp and that the Boltz-
mann factor of stateu1& (uM &) is dominantly larger than
those of others ifqPSr(Sp). In this sense, the rate for th
nuclear trajectory to tunnel from the region ofSr to Sp , can
always be identified as the electron transfer rate from s
u1& to uM &, irrespective of the magnitudes of the electron
coupling constants.

A path integral expression for the partition function
Eq. ~2! can be obtained using the following approximatio

^q8u^k8ue2eĤuk9&uq9&

'^q8u^k8ue2eĤ1/2e2eĤ0e2eĤ1/2uk9&uq9&

5A m

2e\2 expH 2
m

2e\2 ~q82q9!2J Jk8,k9~q8,q9;e!,

~6!

where

Jk8,k9~q8,q9;e![e2eVk8~q8!/2^k8ue2e(kÞ lDkluk&^ l uuk9&

3e2eVk9~q9!/2. ~7!

We define an operatorĴ(q8,q9;e) in the space of electronic
states, with the components given by Eq.~7!. In the limit of
N→`, we also define the following electronic influenc
functional operator:

Ĵ@q~• !;t8,t9#[ lim
N→`

Ĵ~qj 8 ,qj 811 ;e!¯ Ĵ~qj 921 ,qj 9 ;e!, ~8!

where t85 j 8e and t95 j 9e. Taking the limit of N→` in
Eq. ~2! and utilizing the above definition of Eq.~8!, one can
obtain the following path integral expression for the partiti
function:

Z5E Dq~• !e21/\*0
b\dtmq̇~t!2/2J@q~• !#, ~9!

with

J@q~• !#[Tre$Ĵ@q~• !;0,b\#%, ~10!

whereTre is the trace over electronic states.
The electronic influence functional defined by Eq.~10! is

positive definite. Taking a logarithm and expanding aroun
path ofq0(•) up to the second order, one can approximat
as
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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ln~J@q~• !# !' ln~J@q0~• !# !2
1

\ E
0

b\

dt^V8~t!&q0~• !dq~t!

2
1

2\ E
0

b\

dt^V9~t!&q0~• !dq~t!21
1

2\2

3E
0

b\

dtE
0

b\

dt8C@q0~• !;t,t8#dq~t!dq~t8!,

~11!

where

^V8~t!&q0~• ![
1

J@q0~• !#
Tre$Ĵ@q0~• !;0,t#V̂8~q0~t!!

3 Ĵ@q0~• !;t,b\#% ~12!

with

~V̂8~q0~t!!! j ,k5d j ,kVk8~q0~t!!. ~13!

In Eq. ~11!, ^V9(t)&q0(•) is defined in a way similar to Eq
~12!, and

C@q0~• !;t,t8#[^V8~t!V8~t8!&q0~• !2^V8~t!&q0~• !

3^V8~t8!&q0~• ! , tÞt8, ~14!

with

^V8~t!V8~t8!&q0~• ![
1

J@q0~• !#
Tre$Ĵ@q0~• !;0,t,#

3V̂8~q0~t,!!Ĵ@q0~• !;t, ,t.#

3V̂8~q0~t.!!Ĵ@q0~• !;t.,b\#%, ~15!

wheret,5min(t,t8) and t.5max(t,t8). It is important to
recognize that the average quantities defined above ar
functionals of the pathq0(•).

Expanding the kinetic-energy term in Eq.~9!, and com-
bining with the expansion of Eq.~11!, one can show that the
first-order terms in the functional expansion of the partiti
function vanish and only the quadratic terms survive, arou
the path satisfying the following ‘‘classical’’ equation of mo
tion:

mq̈0~t!5^V8~t!&q0~• !. ~16!

Given that there are more than one such trajectories and
are well separated from each other, the partition function
Eq. ~9! can be approximated as

Z' (
q0~• !

e21/\*0
b\dtmq̇0~t!2/2J@q0~• !#E Ddq~• !

3expH 2
1

2\ E
0

b\

dtdq~t!D@q0~• !;t#dq~t!J , ~17!

whereD@q0(•):t# is an integro-differential operator define
by
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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D@q0~• !;t# f ~t![$2m]t
21^V9~t!&q0~• !% f ~t!

2
1

\ E
0

b\

dt8C@q0~• !;t,t8# f ~t8!, ~18!

with f (t) being an arbitrary periodic function.
The ‘‘classical’’ trajectories ofq0(•)’s satisfying Eq.

~16! should be periodic int with the period ofb\. Trivial
solutions with this nature are constant trajectories. The re
tant part of the partition function comes from expansi
around one such constant solution, locally maximizi
J@q(•)# within the reactant region ofSr . In order to find this
constant solution, we first introduce the following effecti
potential:

Ve~q!52
1

b
ln~J@q# !, ~19!

which is defined only for the class of constant trajectori
q(•)5q. Then,

Ve8~q!5^V8~t!&q . ~20!

If one definesqr as the position of the local minimum o
Ve(q) in the reactant regionSr , then ^V8(t)&qr

5Ve8(qr)
50. That is,q(t)5qr is a constant solution of Eq.~16!. As
a result, the reactant part of the partition function becom

Zr5J@qr #E Ddq~• !

3expH 2
1

2\ E
0

b\

dtdq~t!D@qr ;t#dq~t!J . ~21!

Since D@qr ,t# is positive definite, the above path integr
amounts to stable Gaussian integrals and can be integrat
be

Zr5J@qr #
N

PnALn
r

, ~22!

whereN is a normalization constant andLn
r ’s are eigenval-

ues of the operator,D@qr ;t#.
The barrier part of the partition function is defined as t

semiclassical expansion around the trajectories which joi
coexist inSr and Sp . We assume that the temperature a
topology of the potential allows existence of nontrivial pe
odic trajectories with periodb\, and that there is one dom
nant trajectory, denoted asqb(t), with the smallest action
Then, the barrier part of the partition function can be a
proximated as

Zb'e21/\*0
b\dtmq̇b~t!2/2J@qb~• !#E Ddq~• !

3expH 2
1

2\ E
0

b\

dtdq~t!D@qb~• !;t#dq~t!J . ~23!

Unlike D@qr ;t#,D@qb(•);t# has a nontrivial zero eigen
value solution,q̇b(•). This solution has one node, and the
should be an additional solution of the opera
D@qb(•);t#, which has no node and a negative eigenval
The above integral diverges due to this negative eigenv
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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mode. However, as is done for adiabatic instan
theory,51–57 a proper analytic continuation leads to the fo
lowing imaginary value:

Zb5
ib\

2
A Wb

2p\

N
Pn8AuLn

bu
e21/2\WbJ@qb~• !#, ~24!

whereLn
b’s are eigenvalues ofD@qb(•);t#, the prime in the

product means excluding the zero eigenvalue, and

Wb5mE
0

b\

dtq̇b
2~t!. ~25!

Inserting Eqs.~22! and ~24! into Eq. ~1!, the decay rate is
given by

G5A Wb

2p\ S PnLn
r

Pn8uLn
bu D

1/2

e21/2\WbJ@qb~• !#/J@qr #, ~26!

which corresponds to the nonadiabatic generalization of
adiabatic instanton theory. This is the main formal result
the present paper. Previously, only the discretized vers
was reported.50

III. RESULTS FOR MODEL SYSTEMS

In the present section, the results of calculation
model systems are provided. A discretized version of
~26! is used as described in Appendix A, withN5200. In
order to compare easily with the perturbation theory, we
sume all the diabatic potential-energy surfaces are thos
shifted or displaced harmonic oscillators with the same f
quency ofv. The mass of theq coordinate is denoted asm.
In all the calculations, the units were chosen such tham
5v5\51, andb510 in these units.

Before going through the main results, it is meaning
to provide some estimates of the units and temperature
sen here. If one assumes that the mass is equal to th
proton and the well frequency is equal to 2000 cm21, the
corresponding units of mass and time are 1.7310224g and
1.7310214s. In order to make\51, the remaining unit of
length should be equal to 0.32 Å. The Boltzmann constan
these units have the value of 2.231023, andb510 corre-
sponds toT545 K. Thus, we are concerned here in a ve
low-temperature regime. This choice was made in orde
ensure that there exists instanton solution over the br
range of coupling constants considered. In actual syst
where the coupling constant is in a small limited range,
temperature one can apply the present method might
higher.

A. Three states system without through–space
coupling

A three state system consisting ofu1&, u2&, and u3& is
considered.u1& corresponds to the donor state andu3& to the
acceptor state. There is no direct coupling betweenu1& and
u3&, i.e., no through–space coupling, and it is assumed
the coupling betweenu1& and u2& is the same as that betwee
u2& and u3&, which is denoted asD ~through–bond coupling
constant!. The present model thus corresponds to an ide
ized version of symmetric bridge mediated ET1,3 without di-
rect interaction between the donor and acceptor states du
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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either large distance or symmetry reason. The quantum r
tion coordinate in the present case can be considered as
lective polarization coordinate in the low-temperature lim
and/or the proton coordinate, depending on the type o
given system.

The form ofĤ0 of Eq. ~4!, for the present case, is give
by

Ĥ05
p̂2

2m
Î 1D~ u1&^2u1u2&^1u1u2&^3u1u3&^2u!. ~27!

The diabatic potential-energy surfaces enteringĤ1 of Eq. ~5!
are given by

V1~q!5
mv2

2
~q1q0!2, ~28!

V2~q!5
mv2

2
q21Vb , ~29!

V3~q!1
mv2

2
~q2q0!2, ~30!

whereq054. In the units estimated above, this correspon
to about 1.28 Å. Thus our model represent situations wh
substantial bond rearrangements occur.

Calculations were done with three different choices
Vb511, 8, and 5 inV2(q) of Eq. ~29!. Figure 1 shows the
reaction rates with the variation ofD, from 0.01 to 5. Also
shown are the results based on the second-order perturb
theory as described in Appendix B and the adiabatic ins
ton theory results for the lowest adiabatic potential-ene
surfaces. The apparent values of the reaction rates look
small. However, considering that the unit time scale as e
mated above is on the order of 10214s, the range of the
reaction rates covers experimentally relevant time scales
the weak coupling limit, the nonadiabatic instanton theo
results agree with those of the perturbation theory. As
coupling constant increases, they approach those of the a

FIG. 1. Nonadiabatic instanton rates for three cases of bridge state pote
Vb511, 8, and 5. The second-order perturbation results are show
dotted–dashed lines, and the adiabatic instanton results are shown a
solid lines.
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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batic instanton theory, the quantum limit of adiabatic E
theory. Thus it is shown that the nonadiabatic instan
theory interpolates the nonadiabatic regime and the true a
batic regime, which accounts for the lowering of the effe
tive nuclear barrier height and thus has much larger rate t
the adiabatic limit of the Landau–Zenner expression. As
the case of two electronic states,48–50the crossover is smooth
and monotonic.

The effects of the variation of the bridge state poten
on the reaction rates can be clearly seen in Fig. 1. First,
relative rates for different values ofVb are quite insensitive
to the magnitudes of the coupling constant,D. Second, larger
values of Vb tend to delay the crossover to the adiaba
limit. Qualitatively, however, the three curves show simil
pattern. This is somewhat in contrast to the adiabatic ins
ton theory results, for which the reaction rates for the ca
of Vb58 andVb511 approach each other quite closely asD
decreases. Figure 2 shows the lowest adiabatic poten
energy surfaces for three values ofD and these seem to ex
plain the observed trend. The lowest adiabatic surfaces
the two cases ofVb511 andVb58 are almost identical for
the smallest coupling constant while it is not the case
Vb55.

In the small coupling constant limit, the adiabat
potential-energy surface does not serve as a proper mean
the understanding of the calculated nonadiabatic reac
rate. Figure 2 provides additional effective potential-ene
surfaces as long dashed lines, which serve this purpose
ter. They are potential energies calculated along each ins
ton trajectory by the following expression:

Vin~q!5Vad~qb~0!!1E
qb~0!

q

dq8^V8~tq8!&qb~• ! , ~31!

where Vad(qb(0)) is the value of the lowest adiabatic
potential-energy surface at the boundary of the instanton

ial:
as
thinFIG. 2. The lowest adiabatic potential-energy surfaces~solid lines! for three
values ofD: 0.01, 2.37, and 5. For each case ofVb , the higher potential-
energy surface corresponds to the smaller value ofD. Long dashed lines are
the effective potential-energy surfaces calculated by Eq.~31!.
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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jectory, qb(0), andtq8 is the imaginary time satisfyingq8
5qb(tq8). A time origin has been set such thatqb(0)
<qb(t)<qb(b\/2). Thus,Vin(q) is a potential defined only
within the bound of the instanton trajectory, and it refle
the amount of work required for the nuclear trajectory
tunnel through the barrier region. In all the three cases
Vb ,Vin(q)’s look quite similar in the weak electronic cou
pling limit. The reason for this is that quantum delocalizati
plays a bigger role and washes out the small details of
bare potential-energy surfaces.

Comparison ofVin(q) with the adiabatic potential sur
face in Fig. 2 shows that their relative difference can serve
a measure of nonadiabaticity as mentioned before.48 For ex-
ample, whenD50.01, the two curves are substantially d
ferent in all three cases ofVb . WhenD52.37, they are quite
close for the case ofVb55, while the difference between th
two curves for the case ofVb511 is still large. Finally, when
D55, one cannot discern the two potential energy surfa
for the cases ofVb58 and 5, while a small difference can b
seen for the case ofVb511. These observations are all co
sistent with the crossover pattern shown in Fig. 1.

Figure 3 provides the actual nonadiabatic instanton
jectories. For the smallest coupling constant ofD50.01,
little difference can be seen between the instanton traje
ries for different values ofVb , which reflects the similarity
of the effective potentials calculated by Eq.~31!. On the
other hand, for the largest coupling constant ofD55, the
extent of the instanton trajectory forVb55 is much smaller
than other cases. This is also consistent with the shape o
potential shown for the case ofVb55 andD55 in Fig. 2,
which has much smaller curvature than others.

B. Three states system with through–space coupling

In the present subsection, the effect of the direct c
pling between statesu1& and u3&, the so called through–spac
coupling, is considered. Thus the present model correspo

FIG. 3. Instanton trajectories forD50.01 ~solid line!, 2.37 ~long dashed
line!, 4.0 ~dotted–dashed line!.
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to the case of symmetric ET with both bridge mediation a
through–space coupling. Recent examples show that s
situations can occur for large flexible molecules63 or for the
case where there is an additional functional group in
bridge compound.64 Interference effects can be important
this case. We assume the form ofĤ0 of Eq. ~4! as

Ĥ05
p̂2

2m
Î 1D12~ u1&^2u1u2&^1u1u2&^2u1u3&^2u!

1D13~ u1&^3u1u3&^1u!, ~32!

which corresponds to the simplest extension of the Ham
tonian given in the previous subsection. The same diab
potentials, units, and value ofq0 are used. In order to focu
more on the effect of the through–space coupling, we c
sider here only the case ofVb511.

In the small coupling constant limit, the qualitative fe
ture of the nonadiabatic reaction rate can be inferred fr
perturbation theory. Considered up to second order, the t
sition probability fromu1& to u3& has two contributions of a
direct transition and an indirect one via the intermediate s
of u2&. The probability of the former event is proportional
uD13u2 and that of the latter is touD12u4/Vb

2, when considered
independently. If there is a large disparity in the magnitud
of uD13u and uD12u2/Vb , independent consideration can b
justified and only the dominant one will govern the over
reaction rate. However, when they are comparable, their c
tributions should be considered on the same footing and
reaction rate can be sensitive to their relative phase.
major concern here is whether the nonadiabatic instan
theory can correctly reproduce this qualitative feature. I
does, then, the next question is how the theory predicts
terference effects in the moderately large coupling cons
regime where the perturbation theory does not work well

In order to answer the first question, we performed c
culations for the two cases ofD13560.01, a weak through–

FIG. 4. Nonadiabatic instanton results~solid lines with open symbols! for a
three state system with through–space coupling. Perturbation theory re
are given by dotted-dashed lines and the adiabatic instanton results fo
lowest surfaces are given by solid lines with corresponding filled symb
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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space coupling limit. Figure 4 shows the results. A striki
interference effect can be seen, and the nonadiabatic ins
ton theory agrees fairly well with the second order pertur
tion theory results, calculated as described in Appendix
Becausee l2em,0 in Eq.~B4!, one can see that the negativ
value of D31 results in constructive interference, while th
positive sign leads to destructive one. AsD12 increases, on
the other hand, the results of the nonadiabatic instan
theory, for both cases ofD13560.01, approach those of th
adiabatic instanton theory, which are almost equal for
present case. These confirm that the theory reproduces a
rect interference pattern and approaches both the weak
strong coupling limits properly.

In order to address the next question, we performed
culations for D13561, cases with moderately larg
through–space coupling constants. The results are show
Fig. 5. Interestingly, a qualitative feature similar to that
the perturbation theory can be seen, but the value ofD12

where the interference is maximized appears somewhat l
Although the perturbation theory provides a qualitative
correct picture, actual nonadiabatic calculation is neces
for an accurate quantification of the reaction rate. In
present case, the two adiabatic instanton theory results
show substantial difference, and the two results of the no
diabatic instanton theory approach these different adiab
ones in the limit of large through–bond coupling constan

Two important aspects are worth stressing. First, in
presence of additional through–space coupling, the incre
of the through bond coupling does not always lead to
increase of the reaction rate for the case of destructive in
ference. Second, the variation of the phase of the throu
space coupling, or that of only one through–bond coupli
can be a very efficient means for the control of the ove
reaction rate. Whether such an effect can be found in na
or in experiments is not so clear, but, as recent calculatio65

for photosynthetic reaction center suggest, proper accoun
all the coupling constants should be an important facto

FIG. 5. Nonadiabatic instanton results~solid lines with open symbols! for a
three system with through–space coupling. Perturbation theory result
given by dotted-dashed lines and the adiabatic instanton results for the
est surfaces are given by solid lines with corresponding filled symbols.
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correct quantification of the reaction rate in multistate s
tems.

C. Four states system

Finally, calculations for a four states model system a
made, mainly to examine whether similar interference effe
can be found. The model is assumed to have two bri
states,u2& and u3&, which are not coupled to each other, b
are coupled to the donor state,u1&, and the acceptor state,u4&,
independently. Thus,

Ĥ05
p̂2

2m
Î 1D12~ u1&^2u1u2&^1u!1D12~ u2&^4u1u4&^2u!

1D13~ u1&^3u1u3&^1u!1D34~ u3&^4u1u4&^3u!, ~33!

where it is assumed that the coupling betweenu2& and u4& is
the same as that betweenu1& and u2&. On the other hand, the
coupling betweenu1& and u3& is not necessarily the same a
that betweenu3& and u4&. In order to emphasize the interfe
ence effect, we assume that the potential-energy surface
u2& and u3& are the same, as in some model systems of PC
reaction.8 That is, the diabatic potential-energy surfaces
given by

V1~q!5
mv2

2
~q1q0!2, ~34!

V2~q!5V3~q!5
mv2

2
q21Vb , ~35!

V4~q!5
mv2

2
~q2q0!2, ~36!

whereq054 as before, andVb was chosen to be 11. Calcu
lations were done as described in Appendix A with the sa
set of parameters, except that there are now four electr
states. Figure 6 shows the phase effects for both small
large magnitudes ofuD13u5uD34u, with the variation ofD12.

Interference effects similar to three states systems ca
seen. In the present case, the maximum interference app

re
w-

FIG. 6. Nonadiabatic instanton results for a four states system with
degenerate bridge states.
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when the absolute value ofD12 is equal to that ofD13, be-
cause both processes involvingu2& and u3& are of second or-
der. The degrees of interference are similar for both sm
and large magnitudes ofuD13u5uD34u. Although the model
considered here is too simplistic, it has some relevanc
PCET in the low-temperature regime, where excited pro
states can be disregarded and the polarization coordinate
have quantum mechanically. The present calculation s
gests substantial interference effect for such a situation.
perimental verification of this might be possible for we
designed synthetic systems.

IV. DISCUSSION

In this paper, the nonadiabatic instanton theory was s
cessfully applied to three and four states systems and
shown to account for electronic interference effects. Wit
our knowledge, this is the first demonstration of such effe
from the perspective of instanton theory. For the chosen
of parameters, the difference in the reaction rate, between
constructive and destructive interference cases, is about
orders of magnitudes. Even though this large difference w
not observed in actual situations, it still illustrates that n
glecting through–space couplings or additional throug
bond channels can result in substantial overestimation or
derestimation of actual reaction rate.

In the present work, calculations were limited to simp
one-dimensional model systems in order to emphasize
unique features of multistate systems. However, applica
to more general and realistic situations are possible, and
reveal new interesting aspects. First, one can consider m
general shapes of potential-energy surfaces and study
role of anharmonicity and the effects of different curvatu
for different electronic states. Second, it is possible to c
sider the cases where the nuclear reaction coordinat
coupled to bath modes, with the use of relevant influe
functional.48,49 Third, applications to systems with two
dimensional nuclear coordinates are possible, and these
demonstrate different behavior depending on the topolog
the potential-energy surfaces. For two-dimensional ca
there can be more than one instanton trajectories conne
the reactant and the product states. In addition, more var
routes of sequential mechanisms are possible. Considera
of all these possibilities and determination of the domin
one~s! are essential in determining the reaction mechan
of a give system.

The reaction rate considered in the present work co
sponds to coherent concerted mechanism, which does
allow thermal relaxation of the intermediate states. For m
tistate systems, however, there are other competing route
sequential mechanisms where the intermediate states ar
tually populated and fully relaxed. Within the instanton a
proach, it is also possible to calculate the reaction rate
these sequential mechanisms by performing separate in
ton calculations for each pair of potential-energy surfa
involved in each step of the sequential mechanism and
calculating the overall reaction rate combining those of
the steps involved.

As is usual for instanton theory, the nonadiabatic inst
ton theory presupposes sufficiently low temperature as il
Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
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trated in the beginning of Sec. III. In addition, it has be
assumed that there exists a well defined reaction coordi
that can be used to monitor the progress of reaction. Th
fore, the examples where the present theory is suitable
low-temperature intramolecular ET with distinctive reacta
and product configurations, bridge mediated ET where th
is a well defined polarization coordinate serving as a qu
tum reaction coordinate, and PCET reactions with a sign
cant tunneling of the proton coordinate.

Finally, we conclude the paper with a few comments
theoretical and numerical issues which need further at
tion. First, no clear criterion for the existence of the instan
trajectory has been found yet. That is, an explicit express
for the crossover temperature does not exist, unlike in
adiabatic instanton theory. This makes it difficult to ass
whether a given system is in the proper regime for the ap
cation of the instanton theory before the calculation is p
formed. A possible way to go around this ambiguity is
utilize the nonadiabatic centroid.66 Second, for the case of
real time propagator, it is known that there can be multi
stationary paths.67 Whether the same is true and whether
can play an important role for the present situation of ima
nary time propagation are not clear at this point. Third,
numerical method of finding an instanton trajectory as
scribed in Appendix A has been successful in most para
eter regime of the models considered, but there are s
limiting situations where the method does not work we
which are detailed in Appendix A. The main conclusion
the present paper is hardly affected by this numerical iss
but further understanding and possible improvement of
numerical algorithm is important for future applications
the theory to real systems.
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APPENDIX A: NUMERICAL METHOD

In actual calculation, the limit ofN→` is not taken, and
one assumes a finite but large enoughN. Correspondingly,
the imaginary time oft can take only discrete values,t j

5 j e, and the electronic influence functional operator defin
by Eq.~8! is approximated by a finite number of products
follows:

Ĵ@q~• !;t j 8 ,t j 9#' Ĵ~qj 8 ,qj 811 ;e!¯ Ĵ~qj 921 ,qj 9 ;e!.
~A1!

Also, the ‘‘classical’’ equation of motion, Eq.~16!, is re-
placed with the following finite difference equation:

q0,j 1122q0,j1q0,j 215
e2

m
^V8~t j !&q0~• ! , ~A2!

whereq0,j5q0(t j ). Finally, the eigenvalues entering Eq.~1!
are approximated by those of theN3N matrix De@q0(•)#, a
finite N approximation for the operator defined by Eq.~18!,
the component of which is given by
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~De@q0~• !# ! j , j 852
m

e2 ~d j , j 82122d j , j 81d j , j 811!

1^V9~t j !&q0~• !d j , j 82
b

N
C@q0~• !;t j ,t j 8#,

~A3!

where j, j 850,...,N21. When these discretized approxim
tions are inserted into Eq.~26!, the resulting rate expressio
is equivalent to that provided by SV.50

Since the righthand side of Eq.~A2! depends implicitly
on the trajectoryto be determined, a self-consistent approac
is needed in the calculation of the instanton trajectory.
simple way for this is an iteration procedure described
follows: ~i! Choose a reasonable initial guess for the inst
ton trajectory; ~ii ! calculate the electronic influence fun
tional operator along the given trajectory using Eq.~A1!; ~iii !
solve the equation of motion, Eq.~A2!, iteratively employing
the electronic influence functional as determined by the s
of ~ii !; ~iv! use the trajectory determined in step~iii ! as a new
input and repeat the steps~ii ! and ~iii ! until enough conver-
gence is reached. In step~iii !, the iteration is done by repea
ing the following cycle of update:

2q0,j
new5q0,j 11

old 1q0,j 21
old 2

e2

m
^V8~t j !

old&q0~• ! , j 50,...,N21,

~A4!

until enough convergence is achieved. In the calculations
the model systems in the text, the update of Eq.~A4! was
done 100 times at each step.

The iteration procedure described above, which will
named as ITER hereafter, has quite a simple structure. H
ever, the convergence of the procedure is very slow in g
eral, and sometimes a desired convergence is not reach
all. Alternatively, one can use a more systematic Newto
Rapson~NR! procedure as applied by SV,50 which accounts
for the dependence of the electronic influence functional
the nuclear trajectory simultaneously. Although, each ste
the NR procedure takes longer than ITER, the overall c
vergence of NR is faster than ITER. However, for som
cases, the NR procedure leads to instability and does
produce a trajectory with enough convergence. We fou
that augmenting the NR procedure with the ITER proced
can prevent such a problematic situation from happening
most cases. Thus, the following is the overall algorithm
adopted in finding the nonadiabatic instanton solution:~i!
Choose the straight line solution connecting the minima
the reactant and product state potential as the initial tra
tory; ~ii ! calculate the electronic influence functional ope
tor; ~iii ! apply the NR procedure;~iv! apply the steps~ii ! and
~iii ! of the ITER procedure twice. The steps from~i! to ~iv!
described here constitute our composite method of find
the nonadiabatic instanton solution. We repeated the s
from ~ii ! to ~iv! until the measure of convergence defined

C5
1

N (
j

Uq0,j 1122q0,j1q0,j 212
e2

m
^V8~t j !&q0~• !U2

, ~A5!
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becomes small enough. In the calculations of the main t
the upper bound ofC was set to 1310214.

For a given model system, calculations were made a
values of the varying through–bond coupling constant, u
formly spaced in the given interval, except for the cases
destructive interference. For these latter cases, more po
were needed near the minimum in order to reprodu
smoothly the dip in the reaction rate. As the coupling co
stant approaches the value where the reaction rate beco
minimum, however, we found it difficult to obtain the de
sired convergence. The results shown in the texts are for o
those points with convergences within the bound set abo
Thus, the minimum value of the reaction rate for the case
destructive interferences might have some errors.

APPENDIX B: SECOND-ORDER PERTURBATION
THEORY EXPRESSION AND ITS CALCULATION

Here, we derive an expression for the general three s
systems where there are both through–space (D13) and
through–bond~D12 andD23! couplings. When considered u
to the second-order time-dependent perturbation theory,
electronic space matrix element of the propagator is given

^3ue2 iĤ t/\u1&52
i

\ E
0

t

dt8e2 i ĥ3~ t2t8!/\D31e
2 i ĥ1t8/\

2
1

\2 E
0

T

dt8E
0

t8
dt9e2 i ĥ3~ t2t8!/\D32

3e2 i ĥ2~ t2t9!/\D21e
2 i ĥ1t9/\. ~B1!

We denote the diabatic vibrational states of the electro
states of 1, 2, and 3 asul&, um&, and un&, respectively. Then

^nu^3ue2 iĤ t/\u1&u l &

52
i

\
D31E

0

t

dt8e2 i en~ t2t8!/\2 i e l t8/\^nu l &2
D32D21

\2

3E
0

t

dt8E
0

t8
dt9(

m
e2 i en~ t2t8!/\

3e2 i ~em2 ig!~ t82t9!/\2 i e l t9/\^num&^mu l &, ~B2!

where g→01. Performing integration overt9, one can
show that

ei ent/\^nu^3ue2 iĤ t/\u1&u l &

52
i

\ E
0

t

dt8ei ~en2e l !t8/\

3S D31̂ nu l &1D32D21(
m

^num&^mu l &
e l2em1 ig D , ~B3!

where it has been assumed thatei (e l2em1 ig)t8/\!1.
Taking the absolute square of Eq.~B3! and the time

derivative, summation over all the final electronic sta
gives rise to the following expression for the transition ra
from thel vibrational state of the donor electronic state to t
acceptor state:
icense or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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kl5
2p

\
r3~e l !UD31̂ nl u l &1D32D21(

m

^nl um&^mu l &
e l2em1 ig U2

, ~B4!

wherenl is the vibrational state of the electronic state ofu3&
such thatenl

5e l . For the model systems considered in t
text, r3(e l)51/(\v). The final expression for the reactio
rate is then given by

k5
1

Z1
(

l
e2be lkl , ~B5!

whereZ15S le
2be l. In the calculation, the summations we

truncated atl 53 andm560. For the choice of paramete
given in the text, consideration only up tol 53 excludes the
resonance transfer. The assumption behind this truncatio
that the thermal weights for the higher possible reson
states are much smaller than the resonance enhancemen
tor of 1/ugu2.
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