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Single molecule waiting time distribution functions in quantum processes
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The statistics of single molecule blinking events often reveal underlying quantum mechanisms. The
golden rule rate expression for quantum transitions is shown to be the inverse of the mean waiting
time. The distribution function for the waiting time is related to the density of states such that simple
power-law distribution functions can be predicted based on the functional form for the density of
states. Explicit formulas are derived for waiting time distribution functions in three kinetic
processes: Quantum tunneling, intersystem conversion, and nonstationary electron transfer.
© 2001 American Institute of Physic§DOI: 10.1063/1.134221]7

I. INTRODUCTION Il. WAITING TIME DISTRIBUTION AND GOLDEN RULE
RATE
Technical advances in spectroscopic and microscopic As illustrated in Fig. 1a), a quantum system initially
methods have made it possible to detect and image molecular NS

. i . . In the ith state decays to a set of final states with the rate
dynamics and reactions of single particlésSuch measure- constant

ments often reveal detailed molecular information not avail-
able from ensemble averaged bulk data and thus provide a
better understanding of underlying mechanisms for dynamic

systems ranging from the low-temperature glass to room-

. . 11 . . . whereE; andE; are the energy levels of the initial and final
temperature biological systemist! A particularly interesting . . . ;
states, respectively, and;; is the coupling matrix. Even

f single molecular experiments is fluor n link- . . .
aspect of single molecular experiments is fluorescence b ith a single molecule, experimental measurements are re-

ing, which directly measures the fluorescence on and offo 0 gver a long period of time to collect meaningful data
waiting time distribution. Statistical methods to extract mi- for statistical analysis. With standard interpretation of quan-
croscopic information from single molecule measurementgym mechanics, each measurement samples a particular
pose interesting challenges for theorists'® For example,  quantum state according to the initial distribution and detects
using a modulated two-state reaction model, the two-everd particular rate constant. We assume here that initial states
echo in single molecule kinetics can be related to the underare fully relaxed through interactions with surroundings so
lying conformational dynamic¥° that there is no phase coherence between different initial
A quantum process consists of one or several quanturftates. As shown in Fig.(ft), each initial state represents a
transitions, with rate constants determined by initial and fina[€action channel with a stationary flé so that the waiting
states. Thus, the waiting time distribution is related to theme distribution for the process can be expressed as
distribution of rate constants, which in turn is related to the
density of quantum states. The golden rule rate constant is f(t):Z e_tkiki':i/ EI Fi, @)
essentially an ensemble averaged rate constant. Due to lim-
ited temporal resolution, conventional bulk experiments arevhich is related to the survival probabilit§(t) by S(t)
designed to measure the golden rule rate constant, whereisl_fgf(T)dT-

single molecule experiments are highly effective in obtaining As explained n a recen_t paptithe s'Fe_ltlonary flux ‘?'e' _
the waiting time distribution, especially for slow decay and pends on the specific experimental condition and the kinetics

long-time correlation. This paper is organized as fO||0WS'Of the system. In one scenario, the system is constantly
Thgd finition for th . P .p di g ) qi | ‘pumped back to the reactant such that the stationary flux
) € glnltlon or the waiting time |str_|_ ““9” and its r_e a becomesF;=k;p; . The waiting time distribution takes the
tionship to the golden rule rate are clarified in Sec. I. Simpleqm of

algebraic laws for the density of states and for rate constants 2
lead to the prediction of power-law decay in Sec. Il. Then, F(t)= 3 e ki p;
the basic formulation is applied to quantum tunneling in Sec. - Skip

lll, intersystem conversion in Sec. IV, and nonequmbrlum wherep; is the equilibrium population distribution of théh

electron transfer in Sec. V. Concluding remarks are given i itial state. The average waiting time is given by

2
k=3 S S(EEDIVyl? &
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Sec. VI.
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f, after bath averaging. Makarov and Metiu have shown how
=1 the radio frequencyrf) radiation can be used to control the

statistical properties of the photon emission events of a
) single moleculé!
=2 —

=3 —
Ill. POWER-LAW DECAY AND DENSITY OF STATES

£, f Equation(5) can be written in a continuous form as
(@ (b)
FIG. 1. A sketch of the quantum states involved in calculating the waiting f(t)= J exd —k(E)t]k(E)p(E)dE, (7
time distribution function{a) Quantum transitions from a given initial state
and (b) quantum transitions from a set of initial states to final states. wherep(E) is the density of states. The integral in Ed) is

usually dominated by a particular range of energy, where the

. . rate and the density of states follow the simple algebraic law:
which recovers the golden rul€SR) rate expressiorkgg K(E)=E* and p(E)<E*. As a result, Eq.(7) predicts a

=Ei_kipi s In fgct, it _is shown in a recent pap¥tthe mean Rower law decay

survival time is equivalent to the ensemble averaged golde

rule rate, as long as the reactive system is stationary. In an- f(t)oct ™ (#+¥+ /v, (8)
other possible scenario, single molecule experiments are re- .. | . . . : .
peated with the same initial preparation so that the flux i ndicating a possible relation between the waiting time dis-

proportional to the initial population distribution. Then, we tribution functionf(t) and _the density of stateps(l_E_).
have the waiting time distribution as As an example, consider a quantum transition between

two quasi-free particles in three-dimensional space, where
p(E)=\E. We further assume that the coupling matvix
does not strongly depend on energy such that the rate con-
stant is proportional to the density of final states. The energy
conservation relation requirds;=Ey+E;, whereE, is an
pi intrinsic energy difference or the laser carrier excitation fre-
<t>:§i: F/ Z Pi; (6) guency. Thus, for a given initial state, the density of final
' states is expandegh(E;)xEy+E;=Eq+Ei/2JEq+ -,
where the normalization conditiolijp;=1 is implied. The  and the corresponding rate constant is approximated as
difference between Eq$4) and Eq.(6) lies in the definition
of f(t), which is based on the occurrence of quantum tran- K(Ei)=ko+CEj+---, ©

sition events. In nonequilibrium thermodynamics, the rateyherek, is the constant part of the rate that is independent of
constant is extracted from the relaxation process to the equjye energy, and is the linear coefficient. The average over
librium population distribution, thus making no difference jnitial states in Eq(7) gives

between the above two scenarios. Usually, the initial popu- o
lation peaks within a narrow distribution so that the differ- _ e o
‘ (ko+CENt  E.dE.
ence between Eqg3) and Eq.(6) is not significant. For f(t)xf e KoVEidE;* =37, (10

simplicity, our discussion in the rest of this paper will use . ) . ,
Eq. (5). which predicts power-law decay within the time scale of

kot<1. This kind of power-law dependence has been ob-
valid only if there is no fixed phase relation between differ-S€rved in single quantum dot blinking phenoméh@hough
ent quantum states. As implied in the derivation of thethe underlying mechanisms for the power law dependence in

golden rule rate expression, fast dephasing is required to ré1€Se experiments have not been fully clarified, the scaling
duce quantum dynamics to classical kinetics. In the initia@r9ument presented here provides a possible interpretation.

preparation by an ultrafast laser pulse or between fast quan-

tum transitions, the phase relation is not dissipated by fluc-

tuating environments before a transition to another statgy. QUANTUM TUNNELING

Then, one has to calculate the waiting time distribution by

taking into account the evolution of the density matrix, ~ The quantum tunneling rate depends on the energy of the
which will not be discussed in this paper. Careful analysis ofnitial state in the reactant well. Under the Wentzel—
single molecule experiments in quantum systems raises if<ramers—Brillouin(WKB) approximation, the tunneling rate
teresting questions regarding quantum measurements, coh€an be expressed as

ence and dephasing, and the bath—system separation. _

Wolynes and co-workef$ have demonstrated that the inter- K(E) exl = S(B)/A], (D
ference between different paths results in quantum twinklingwhere S(E) =¢$V(q) — Edq is the semiclassical action for
i.e., the nontrivial moments of the system wave function,quantum tunneling. The corresponding waiting time prob-
which cannot be fully described by the reduced descriptiorability distribution is given by

f(t)=2, e itkip;, (5)

and the average waiting time as

The average over the initial distribution in E(R) is
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FIG. 2. A sketch of the intersystem conversion process, with double arrows
denoting intrasystem transition rate constants, and with the thick arrow de-
noting the population deletion from the sink state.

FIG. 3. A sketch of the solvent-controlled electron transfer process. The
nonstationary wave-packet motion is due to the nonequilibrium initial sol-
vent distribution.

f(t)zf e kKBK(E)p(E)dE

ocf e kB exp[—S(E)/ﬁ—,BE]dE/
with G, the diagonal element of the mati& at the crossing

statec. Here, the initial distribution is assumed to be in equi-

f p(E)dE, (12) librium, implying the stationary conditiolG(S) peq=peq/S-

S . . The Green function is expanded aS.(s)= /[s
where thermal equilibrium is assumed in the reactant well P o(8) =P, el

+b(s)], with G¢(s)= /e S[G¢(t) - dt, so that Eq.
p(E)xe PE. The stationary condition fok(E)p(E) gives (17)(2;” \t/)v(; rewcri(t?()en gge [Ge(t) = peegldt, so that Eq
S'(Eg)=—%pB, which defines the instanton ratek,

e B/t 2324 The steepest descent evaluation of Pe.eq
: f(s)= : (18)
K(E)p(E) results in s[kcb(s)+1]+Kepe eq
S(E) ~ S(Ep) | S'(Eo) 5 which can be inverted back fi(t) in real time. The average
% E=— o (E-Eo)"F-, (13 waiting time is evaluated directly from E¢L8), giving
where the linear term vanishes. With the WKB approxima- _d _keb(0)+1
tion, Eq.(12) reduces to (H=- a—sln f(s)ls=0= KePoeq (19
¢ kgt (koBt)?h whereb(0)= [3|Gc(t) — pceddt. The inverse of Eq(19),
(e 70" exp — 2S'(Eyp) |’ (14 k=1/Kt), recovers the familiar rate expression, which has

been derived in various contexts. In particular, Chernyak,
Schulz, and Mukamel mapped multistate electron transfer
into random walk and derived similar expressions for the
Waiting time distributior?®

whereS’(E) is related to the van Vleck determinant for the
instanton solutiod®?* For tunneling in multidimensional
space, the modes orthogonal to the reactive coordinate al
contribute to the density of states(E), and the functional
form of f(t) may be modified accordingly.

VI. NONEQUILIBRIUM ELECTRON TRANSFER

V. INTERSYSTEM CONVERSION The above model can be used to describe solvent-

We consider a generic model consisting\bstates with ~ controlled electron transfer with nonequilibrium initial distri-
the intra-system transition rate constants given by a matrijution functions. In Fig. 3, thél-state system is taken as the
K. As illustrated in Fig. 2, theN-state system converts to continuous diffusion coordinate, and the transition rate at the
another system at thestate with the rate constakf. The  degenerate stat, ask.=27V3/iS(E—E;)=ad(E—E,)
kinetics of the system is described by with V the electronic coupling constant and=27V?/#. If
the initial configuration is not equilibrated, E{.7) becomes

p(1)=Kp(t) —kepc(t), (15
where p is a vector corresponding to thi-statesp(t) f(s)= TCG(S)‘OC(S)’ (20)
={p;(t)}. The Laplace transform of the above vector equa- ¢’ Ve
tion yields wherep.(s) represents the density at the crossing state and

1 the dot- represents the integration of the diffusive reaction
S)=—p(0)= G(s)p(0), 16 coordinate. Transformation to the real time leads to
P(8)= i PO = g SSI(0) (16)
~ t
where Kc)i;=Kcdicdjc, p(0) is the initial distribution, and f(t)ZJ y(t=1)pc(7)dT, (21)
G(s) is the Green'’s functionG(s) =1/(s—K). The Laplace 0
transform of the waiting time distribution function is where y(7) is the memory kernel defined from E@0) as
kc Pc.eq a
f(s)=kepc(s)= T7kG(s) s (17 y(s)= 17 aGy(s)’ (22)
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In the limit of fast decay, the Markovian approximation, molecule detection of quantum coherence and interference
w71)—I'&(7), can be applied to the memory kernel remains an intriguing question. These and other problems
. will be explored in the future.

f(t)=f Y(1)d7 pe(t) =T pc(t), (23)
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