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Single molecule waiting time distribution functions in quantum processes
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~Received 18 August 2000; accepted 29 November 2000!

The statistics of single molecule blinking events often reveal underlying quantum mechanisms. The
golden rule rate expression for quantum transitions is shown to be the inverse of the mean waiting
time. The distribution function for the waiting time is related to the density of states such that simple
power-law distribution functions can be predicted based on the functional form for the density of
states. Explicit formulas are derived for waiting time distribution functions in three kinetic
processes: Quantum tunneling, intersystem conversion, and nonstationary electron transfer.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1342217#
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I. INTRODUCTION

Technical advances in spectroscopic and microsco
methods have made it possible to detect and image molec
dynamics and reactions of single particles.1,2 Such measure
ments often reveal detailed molecular information not av
able from ensemble averaged bulk data and thus provid
better understanding of underlying mechanisms for dyna
systems ranging from the low-temperature glass to roo
temperature biological systems.3–11A particularly interesting
aspect of single molecular experiments is fluorescence bl
ing, which directly measures the fluorescence on and
waiting time distribution. Statistical methods to extract m
croscopic information from single molecule measureme
pose interesting challenges for theorists.12–18 For example,
using a modulated two-state reaction model, the two-ev
echo in single molecule kinetics can be related to the un
lying conformational dynamics.18,19

A quantum process consists of one or several quan
transitions, with rate constants determined by initial and fi
states. Thus, the waiting time distribution is related to
distribution of rate constants, which in turn is related to t
density of quantum states. The golden rule rate constan
essentially an ensemble averaged rate constant. Due to
ited temporal resolution, conventional bulk experiments
designed to measure the golden rule rate constant, whe
single molecule experiments are highly effective in obtain
the waiting time distribution, especially for slow decay a
long-time correlation. This paper is organized as follow
The definition for the waiting time distribution and its rel
tionship to the golden rule rate are clarified in Sec. I. Sim
algebraic laws for the density of states and for rate const
lead to the prediction of power-law decay in Sec. II. The
the basic formulation is applied to quantum tunneling in S
III, intersystem conversion in Sec. IV, and nonequilibriu
electron transfer in Sec. V. Concluding remarks are given
Sec. VI.

a!Electronic mail: jianshu@mit.edu
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II. WAITING TIME DISTRIBUTION AND GOLDEN RULE
RATE

As illustrated in Fig. 1~a!, a quantum system initially
in the ith state decays to a set of final states with the r
constant

ki5(
f

2p

\
d~Ef2Ei !uVi f u2, ~1!

whereEi andEf are the energy levels of the initial and fin
states, respectively, andVi f is the coupling matrix. Even
with a single molecule, experimental measurements are
peated over a long period of time to collect meaningful d
for statistical analysis. With standard interpretation of qua
tum mechanics, each measurement samples a partic
quantum state according to the initial distribution and dete
a particular rate constant. We assume here that initial st
are fully relaxed through interactions with surroundings
that there is no phase coherence between different in
states. As shown in Fig. 1~b!, each initial state represents
reaction channel with a stationary fluxFi so that the waiting
time distribution for the process can be expressed as

f ~ t !5(
i

e2tkikiFiY (
i

Fi , ~2!

which is related to the survival probabilityS(t) by S(t)
512*0

t f (t)dt.
As explained in a recent paper,18 the stationary flux de-

pends on the specific experimental condition and the kine
of the system. In one scenario, the system is consta
pumped back to the reactant such that the stationary
becomesFi5kir i . The waiting time distribution takes th
form of

f ~ t !5
( e2ki tki

2r i

( kir i
, ~3!

wherer i is the equilibrium population distribution of theith
initial state. The average waiting time is given by

^t&5E
0

`

f ~ t !tdt5
r i

( ikir i
5

1

kGR
, ~4!
7 © 2001 American Institute of Physics
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which recovers the golden rule~GR! rate expressionkGR

5( ikir i . In fact, it is shown in a recent paper,19 the mean
survival time is equivalent to the ensemble averaged gol
rule rate, as long as the reactive system is stationary. In
other possible scenario, single molecule experiments are
peated with the same initial preparation so that the flux
proportional to the initial population distribution. Then, w
have the waiting time distribution as

f ~ t !5(
i

e2ki tkir i , ~5!

and the average waiting time as

^t&5(
i

r i

ki
Y (

i
r i , ~6!

where the normalization condition( ir i51 is implied. The
difference between Eqs.~4! and Eq.~6! lies in the definition
of f (t), which is based on the occurrence of quantum tr
sition events. In nonequilibrium thermodynamics, the r
constant is extracted from the relaxation process to the e
librium population distribution, thus making no differenc
between the above two scenarios. Usually, the initial po
lation peaks within a narrow distribution so that the diffe
ence between Eqs.~3! and Eq. ~6! is not significant. For
simplicity, our discussion in the rest of this paper will u
Eq. ~5!.

The average over the initial distribution in Eq.~2! is
valid only if there is no fixed phase relation between diffe
ent quantum states. As implied in the derivation of t
golden rule rate expression, fast dephasing is required to
duce quantum dynamics to classical kinetics. In the ini
preparation by an ultrafast laser pulse or between fast q
tum transitions, the phase relation is not dissipated by fl
tuating environments before a transition to another st
Then, one has to calculate the waiting time distribution
taking into account the evolution of the density matr
which will not be discussed in this paper. Careful analysis
single molecule experiments in quantum systems raises
teresting questions regarding quantum measurements, c
ence and dephasing, and the bath–system separa
Wolynes and co-workers20 have demonstrated that the inte
ference between different paths results in quantum twinkli
i.e., the nontrivial moments of the system wave functio
which cannot be fully described by the reduced descript

FIG. 1. A sketch of the quantum states involved in calculating the wai
time distribution function:~a! Quantum transitions from a given initial stat
and ~b! quantum transitions from a set of initial states to final states.
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after bath averaging. Makarov and Metiu have shown h
the radio frequency~rf! radiation can be used to control th
statistical properties of the photon emission events o
single molecule.21

III. POWER-LAW DECAY AND DENSITY OF STATES

Equation~5! can be written in a continuous form as

f ~ t !5E exp@2k~E!t#k~E!r~E!dE, ~7!

wherer(E) is the density of states. The integral in Eq.~7! is
usually dominated by a particular range of energy, where
rate and the density of states follow the simple algebraic l
k(E)}En and r(E)}Em. As a result, Eq.~7! predicts a
power law decay

f ~ t !}t2~m1n11!/n, ~8!

indicating a possible relation between the waiting time d
tribution function f (t) and the density of statesr(E).

As an example, consider a quantum transition betw
two quasi-free particles in three-dimensional space, wh
r(E)}AE. We further assume that the coupling matrixVi f

does not strongly depend on energy such that the rate
stant is proportional to the density of final states. The ene
conservation relation requiresEf5E01Ei , whereE0 is an
intrinsic energy difference or the laser carrier excitation f
quency. Thus, for a given initial state, the density of fin
states is expanded,r(Ef)}AE01Ei5AE01Ei /2AE01¯ ,
and the corresponding rate constant is approximated as

k~Ei !5k01cEi1¯ , ~9!

wherek0 is the constant part of the rate that is independen
the energy, andc is the linear coefficient. The average ov
initial states in Eq.~7! gives

f ~ t !}E e2~k01cEi !tk0AEidEi}
e2k0t

t3/2 , ~10!

which predicts power-law decay within the time scale
k0t,1. This kind of power-law dependence has been
served in single quantum dot blinking phenomena.22 Though
the underlying mechanisms for the power law dependenc
these experiments have not been fully clarified, the sca
argument presented here provides a possible interpretat

IV. QUANTUM TUNNELING

The quantum tunneling rate depends on the energy of
initial state in the reactant well. Under the Wentze
Kramers–Brillouin~WKB! approximation, the tunneling rat
can be expressed as

k~E!} exp@2S~E!/\#, ~11!

whereS(E)5rAV(q)2Edq is the semiclassical action fo
quantum tunneling. The corresponding waiting time pro
ability distribution is given by

g
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f ~ t !5E e2tk~E!k~E!r~E!dE

}E e2tk~E! exp@2S~E!/\2bE#dEY
E r~E!dE, ~12!

where thermal equilibrium is assumed in the reactant w
r(E)}e2bE. The stationary condition fork(E)r(E) gives
S8(E0)52\b, which defines the instanton rate,k0

}e2S(E0)/\.23,24 The steepest descent evaluation
k(E)r(E) results in

S~E!

\
1bE5

S~E0!

\
1

S9~E0!

2\
~E2E0!21¯ , ~13!

where the linear term vanishes. With the WKB approxim
tion, Eq. ~12! reduces to

f ~ t !}e2k0t expF2
~k0bt !2\

2S9~E0! G , ~14!

whereS9(E) is related to the van Vleck determinant for th
instanton solution.23,24 For tunneling in multidimensiona
space, the modes orthogonal to the reactive coordinate
contribute to the density of states,r(E), and the functional
form of f (t) may be modified accordingly.

V. INTERSYSTEM CONVERSION

We consider a generic model consisting ofN states with
the intra-system transition rate constants given by a ma
K. As illustrated in Fig. 2, theN-state system converts t
another system at thec state with the rate constantkc . The
kinetics of the system is described by

ṙ~ t !5Kr~ t !2kcrc~ t !, ~15!

where r is a vector corresponding to theN-states r(t)
5$r i(t)%. The Laplace transform of the above vector equ
tion yields

r~s!5
1

s2K1 k̂c

r~0!5
1

11Gk̂c

G~s!r~0!, ~16!

where (k̂c) i j 5kcd icd jc , r~0! is the initial distribution, and
G(s) is the Green’s function,G(s)51/(s2K). The Laplace
transform of the waiting time distribution function is

f ~s!5kcrc~s!5
kc

11kcGc~s!

rc,eq

s
, ~17!

FIG. 2. A sketch of the intersystem conversion process, with double arr
denoting intrasystem transition rate constants, and with the thick arrow
noting the population deletion from the sink state.
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with Gc the diagonal element of the matrixG at the crossing
statec. Here, the initial distribution is assumed to be in eq
librium, implying the stationary conditionG(s)req5req/s.
The Green function is expanded asGc(s)5rc,eq/@s
1b(s)#, with Gc(s)5*0

`e2st@Gc(t)2rc,eq#dt, so that Eq.
~17! can be rewritten as

f ~s!5
rc,eq

s@kcb~s!11#1kcrc,eq
, ~18!

which can be inverted back tof (t) in real time. The average
waiting time is evaluated directly from Eq.~18!, giving

^t&52
]

]s
ln f ~s!us505

kcb~0!11

kcrc,eq
, ~19!

whereb(0)5*0
`uGc(t)2rc,eq]dt. The inverse of Eq.~19!,

k51/̂ t&, recovers the familiar rate expression, which h
been derived in various contexts. In particular, Cherny
Schulz, and Mukamel mapped multistate electron trans
into random walk and derived similar expressions for t
waiting time distribution.25

VI. NONEQUILIBRIUM ELECTRON TRANSFER

The above model can be used to describe solve
controlled electron transfer with nonequilibrium initial distr
bution functions. In Fig. 3, theN-state system is taken as th
continuous diffusion coordinate, and the transition rate at
degenerate stateEc as kc52pV2/\d(E2Ec)5ad(E2Ec)
with V the electronic coupling constant anda52pV2/\. If
the initial configuration is not equilibrated, Eq.~17! becomes

f ~s!5
kc

11kc•Gc~s!
rc~s!, ~20!

whererc(s) represents the density at the crossing state
the dot• represents the integration of the diffusive reacti
coordinate. Transformation to the real time leads to

f ~ t !5E
0

t

g~ t2t!rc~t!dt, ~21!

whereg~t! is the memory kernel defined from Eq.~20! as

g~s!5
a

11aGc~s!
. ~22!

s
e-

FIG. 3. A sketch of the solvent-controlled electron transfer process.
nonstationary wave-packet motion is due to the nonequilibrium initial s
vent distribution.
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In the limit of fast decay, the Markovian approximatio
g~t!→Gd~t!, can be applied to the memory kernel

f ~ t !5E
0

`

g~t!dt•rc~ t !5Grc~ t !, ~23!

with G the effective rate constant. The Markovian limit
g(s0) is evaluated for a time scale 1/s0 smaller than the
crossing ratearc but longer than the decay time for solve
relaxation, i.e.,

~ ln b!8us5s0
.s0.arc,eq, ~24!

so that we have

G5
a

11b~0!a
, ~25!

whereb(s0) is approximated byb(0). Forequilibrium elec-
tron transfer,rc(t)5rc,eq, the above argument leads to th
solvent-controlled electron transfer rate expression.26–31

In the framework of classical Marcus theory,32 the non-
equilibrium distribution functionr(t) is expressed as

rc~ t !5A b

4pl
exp2

b

4l
@l2Es~ t !#2, ~26!

whereEs(t) is the time-dependent solvation energy andl is
the reorganization energy. Applying the Debye solvat
model, we have approximately the waiting time distributi
for high barriers

f ~ t !5
arc~ t !

11atD /l
, ~27!

with the solvation energy

Es~ t !5Es~0!e2t/tD. ~28!

Similar results can also be obtained from the harmonic b
model.33–35 As can be seen from Eq.~26!, the waiting time
distribution directly measures the motion of the solvati
energy in electron transfer.

VII. CONCLUDING REMARKS

In this paper, we have investigated single molecule w
ing time distribution functions in various quantum process
including tunneling, intersystem conversion, and nonstati
ary electron transfer. In addition to direct and accurate m
surements of the waiting time distribution, single molecu
experiments also reveal the inhomogeneities of reaction r
and possible correlations. Furthermore, the possible si
Downloaded 23 Mar 2001 to 18.60.2.110. Redistribution subject
n

th

t-
s,
-

a-
r
es
le

molecule detection of quantum coherence and interfere
remains an intriguing question. These and other proble
will be explored in the future.
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