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A generalized eigenequation is derived for the optimal pairs of phase-unlocked pump-dump fields
in the control of pure state molecular systems in the weak response regime. The associated
eigenvalues are further correlated to the yields of pump-dump control, thus the globally optimal pair
of phase-unlocked pump-dump fields is identified unambiguously. Presented is also a hierarchy of
reduction from the general Liouville-space density matrix control formulation in the strong response
regime to various linearized control equations in the weak response regime. Application to the
control of a molecular ro-vibronic level in the ground electronic surface reveals a novel symmetry
relation between the optimal pump field and its counterpart of the optimal dump field. ©1997
American Institute of Physics.@S0021-9606~97!00933-1#
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I. INTRODUCTION

Optimal control theory1–8 provides a solid backgroun
for using tailored laser fields to manipulate molecular mot
and chemical reactivity. In principle, the optimal control fo
mulation is capable of incorporating all molecular aspe
and experimental considerations in a coherent manner. A
general mathematical tool for searching the functional ma
mum, the optimal control theory leads usually to a comp
cated nonlinear equation which requires a numerically
pensive approach to solve. The resulting fields are howe
not only locally optimal but also too complicated to be e
perimentally realizable. To facilitate this problem, there h
been considerable effort on arriving a linearized version
control formalism.7–16 The simplest linearizable system
the control of one-photon achievable target.7–11 In this case,
the optimal control in the weak response regime can be
duced to an eigen-problem of a second order control
sponse function, whose eigenfunction and eigenvalue g
the optimal field and yield, respectively.7,8 The globally op-
timal field in the one-photon control scenario can thus
unambiguously identified. Moreover, we have found, at le
for the systems of study, that the globally optimal field
reasonably simple and robust, and retains as a good co
field as its intensity scales up to a moderately strong leve17

An example which successfully correlates theory8,18 and
experiment19 is the control of wave packet focusing on th
I2 B potential surface. The globally optimal field in the we
response regime serves as an ideal starting point to inv
gate the general but more complicated optimal control fie
in the strong response regime.

The linearization to control formulation beyond on
photon accessible targets, such as the pump-dump sch
proposed by Tannor and Rice,1 may also be achieved unde
certain experimental conditions.12–16 In their original work,1

Tannor and Rice considered the control with a pair of pha
unlocked weak fields and derived a linear equation for
optimal dump field with respect to a given pump field in t
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weak response regime. Yan13,14 has extended Tannor-Rice’
original idea and arrived at a pair of coupled quasi-line
optimal pump-dump equations in the weak response regi
This is done by expanding the pump~or dump! control ker-
nel to the first order in the pump~or dump! field and the
resulting control response function depends on its coun
part field.13,14 This approach can be generalized to reduc
phase-unlockedn-field (n-photon! control formulation inton
coupled quasi-linear control equations.15,16 Recently, we
have further derived the general density matrix formulat
for the optimal pump-dump control with two phase-unlock
coherent fields in the strong response regime.14

The remaining of this paper is organized as follows.
Sec. II, we summarize our recent development14 on the gen-
eral density matrix formulation of optimal phase-unlock
pump-dump control. The key result of this paper is in Sec.
where our previous general formulation14 is further reduced
to a standard eigenvalue problem in the pure state contro
the weak response regime@cf. Eq. ~27!#. This result is very
similar to recent work by Dubov and Rabitz12 in which a
different but related eigenequation was derived for the pha
locked two-photon control of pure state in the weak respo
regime. The detailed comparison between the pha
unlocked pump-dump control and its phase-locked coun
part will be presented elsewhere.20 In Sec. III, we also con-
nect the control yield to the eigenvalue in the optim
equation. Thus, theglobally optimal pair of phase-unlocked
pump-dump fields can be identified in the pure state w
control response regime. In Sec. IV, we apply the pum
dump control eigenequation developed in Sec. III to the
timal stimulated Raman pumping in which both the initi
system and the final target are in the molecular ro-vibro
levels on the ground electronic surface. In this case, a no
symmetry relation between the optimal pump field and
joint optimal dump field is rigorously established@cf. Eqs.
~33! and ~34!#. Included in Sec. IV is also a numerical ex
ample to demonstrate the underline control process. Fina
we summarize our result in Sec. V.

i-
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3472 Yan, Cao, and Shen: Optimal pump-dump control
II. GENERAL THEORY OF OPTIMAL PUMP-DUMP
CONTROL

In this section, we shall present the general formulati
developed in Ref. 14, for the optimal phase-unlocked pum
dump control of a molecular system involving two ele
tronic surfaces, the groundg and an excitede. The mo-
lecular Hamiltonian is assumed to be the form
H5Hgug&^gu1Heue&^eu. The total Hamiltonian in
the presence of a pair of pump-dump field
E(t;u)5E1(t)1e2 iuE2(t) that is locked at the specific rela
tive phaseu5u22u1, is given by

HT~ t;u!5H2D1E~ t;u!2D2E* ~ t;u!. ~1!

Here, we adopted the electronic rotating wave appr
imation.14 In the above equation,D15mue&^gu and
D25D1

† 5mug&^eu are two components of electron
ic transition dipoles. AsD1ug&5mue&,D2ue&5mug& and
D1ue&5D2ug&50, these two transition dipole componen
can also be viewed as the exciton creation and annihila
operators, respectively. In the following derivation, we sh
introduce the auxiliary Liouville-space dipole operato
D 6

l ,r , defined by their action on an arbitrary operatorÔ as14

D 6
l Ô[D6Ô, ~2a!

D 6
r Ô[2ÔD6 . ~2b!

Physically,D 1
l ~or D 2

r ) andD 2
l ~or D 1

r ) are responsible
for the electronic pumping and dumping, respectively, fro
the ket~or bra! side. The control target, which can genera
be represented by an operatorÂ, is chosen to be a certai
nuclear dynamic event in the ground electronic state. T
goal of control is to find the optimal phase-unlocked pair
pump-dump fields,$E1 ,E2%, so that they maximize the ex
pectation value of the targetÂ at a given target timet f ,

A~ t f !5^Tr@ÂrT~ t f ;u!#&5^Tr@ÂG T~ t f ,t0 ;u!r~ t0!&,
~3!

under certain experimental constraints that will further
specified in the following. In Eq.~3!, G T(t,t0 ;u) is the
Liouville-space propagator associating with the total Ham
tonian HT(t;u) @Eq. ~1!# in the presence ofu phase-locked
pump-dump fields; Tr denotes the trace over both the e
tronic and nuclear degrees of freedom in the molecular s
tem, while ^•••& stands for the statistic average over t
random distribution of relative phaseu between the pump
and the dump fields.

In this paper, we shall consider the optimal pump-du
control under the following three constraints. The first one
the phase-unlocked experimental condition as stated ea
in which u is assumed to be an evenly distributed rand
variable within @0,2p). The second constraint is that th
roles ofE1 andE2 in their interactions with the optical me
dium can be distinct as pump and dump, respectively. Th
the conventional pump-dump control scenario in which
power spectra of the two fields are separated away from e
other. In this case, the phase-lock may be neither experim
tally easy nor physically important to the control of targ
J. Chem. Phys., Vol. 107, N
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dynamics. The third constraint is the requirement of the fin
incident energy from each of the fields,j 51 and 2,

I j5E
t0

t f
dtuEj~t!u2. ~4!

Under these three constraints, we have derived14 the follow-
ing general coupled self-consistent control equations:

K j~t;t f !5l jEj~t!; with j 51 and 2, ~5!

for a pair of optimal pump-dump fields$E1 ,E2%. In Eq. ~5!,
t P @ t0 ,t f # and l j is a Lagrange multiplier for the finite
incident energy constraint in Eq.~4!. The inclusion of two
independent Lagrange multipliers,l1 and l2, is consistent
with the condition of the complete random phaseu. The key
quantities in Eq.~5! are the pump control kernelK1 and the
dump control kernelK2. They are formally given by14

K1~t;t f !5^~ i /\!Tr@ÂT~t;t f ,u!D 2
r rT~t;u!#&

[^K1* ~t;t f ,u!&, ~6a!

K2~t;t f !5^~ i /\!Tr@ÂT~t;t f ,u!D 2
l rT~t;u!#eiu&

[^K2~t;t f ,u!eiu&. ~6b!

Recall that the auxiliary Liouville-space dipole operato
D 2

r andD 2
l @Eq. ~2!#, are responsible for the pump and th

dump processes respectively. Similarly, the control kern
K1 andK2 @Eq. ~6!#, are for the pump control and the dum
control processes, respectively.K6(t;t f ,u), defined in the
second identities in Eq.~6!, are the two components o
theconventional single-field ~or phase-locked! control
kernel.7,14,17 They can be equivalently recast in terms
Hilbert-space operators only:7,14,17@cf. Eqs.~2! and ~6!#

K6~t;t f ,u!5~ i /\!Tr@ÂT~t;t f ,u!D6rT~t;u!#. ~7!

In Eqs.~6! and~7!, rT(t;u)[G T(t,t0 ;u)r(t0) is the density
matrix propagated forward from the initialt0 to t, while
ÂT(t;t fu)5ÂG T(t f ,t;u)5G T(t,t f ;u)Â is the target opera-
tor propagated backward from the finalt f to t. Since the
propagator is controlled by the total HamiltonianHT(t,u)
which depends on both the pumpE1 and the probeE2 fields,
the control kernelK j @Eq. ~6!# will also be functional of both
control fields. The control equations in Eq.~5! with j 51 and
2 should therefore be solved jointly and iteratively. The
sulting pump-dump fields are only locally optimal and a
often also too complicated and unrobust to be experiment
realizable.

The simplest linearized version of Eq.~5! can be ob-
tained by considering the optimal control in either the we
pump or/and the weak dump response regime.13,14 This can
be done by considering, at any givenEkÞEj , the perturba-
tive expansion of the control kernelK j @Eq. ~6!# to the first
order in the control fieldEj . In this case, Eq.~5! reduces to
the following form:13,14

E
t0

t f
dt8M j~t,t8;$Ek%!Ej~t8!5l jEj~t!; with j Þk51,2.

~8!
o. 9, 1 September 1997
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3473Yan, Cao, and Shen: Optimal pump-dump control
In Eq. ~8!, the Ek-dressed control response functionM j is
Hermitian with respect to their two time arguments and f
mally given by14 (t>t8)

M1~t,t8;$E2%!

5M1* ~t8,t;$E2%!

5~ i /\!2Tr@Â2~t;t f !D2
r

G 2~t,t8!D 1
l r2~t8!#, ~9a!

M2~t,t8;$E1%!

5M2* ~t8,t;$E1%!

5~ i /\!2Tr@Â1~t;t f !D 2
l

G 1~t,t8!D 1
r r1~t8!#. ~9b!

In these equations, the Green functionG k(t,t8) is defined
by the molecular Hamiltonian in the presence of the exter
field Ek only,13,14

Hk~ t !5H2D1Ek~ t !2D2Ek* ~ t !. ~10!

It also governs the forward propagated density mat
rk(t8)5G k(t8,t0)r(t0), and the backward propagated ta
get,Âk(t ;t f)5ÂG k(t f ,t)5G k(t,t f)Â, in Eq. ~9!. In deriv-
ing Eq.~9!, we included the random phaseu average.14 As a
result, all the phase-sensitive terms that contain explic
either twoD2’s or two D1’s do not contribute to the contro
response functionM j . We have also made use of the cond
tion thatE1 andE2 are distinct for the pump and the dum
respectively, as they interact with the optimal medium14

Therefore,M1 @Eq. ~9a!# that containsD 1
l and D 2

r de-
scribes the second-order pump response in which both
ket and the bra are excited by theE1 field @cf. Eq. ~2!#.
Similarly, M2 @Eq. ~9b!# that containsD 1

r and D 2
l de-

scribes the second-order dumping process in which both
ket and bra are de-excited by theE2 field. In fact,M j is the
Ek-dressed molecular response function for the control
pectation valueA(t f) @cf. Eq. ~3!# to the second order in th
Ej field. That is,13,14

Aj
~2!~ t f !5E

t0

t f
dtE

t0

t f
dt8M j~t,t8;$Ek%!Ej* ~t!Ej~t8!.

~11!

Substituting Eqs.~4! and ~8! into Eq. ~11!, we obtain
Aj

(2)(t f)5l j I j . The eigenvaluel1 in Eq. ~8! is therefore the
optimal pump control yieldA1

(2)(t f) with respect to the inci-
dent weak pump energyI 1 at the given dump fieldE2. Simi-
larly, the eigenvaluel2 is the weak dump control yield at th
given pump field. We can therefore identify,13,14 for any
given EkÞEj , the globally optimal weakEj control field as
the eigenfunction of Eq.~8! that corresponds to the large
eigenvaluel j . The above analysis is based on the viewpo
of single-photon pump~dump! control7 in the presence of an
arbitrary given dump~pump! field.13,14 In order to find the
optimal pair of pump-dump fields$E1 ,E2%, Eq. ~8! with
j 51 and 2 should be solved jointly and iteratively.14 In this
case, both fields should also be retained in the weak resp
regime. At each step of the iteration, the globally optim
field Ej can be obtained with respect to the given counterp
field EkÞEj . However, whether the globally optimal pair o
J. Chem. Phys., Vol. 107, N
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pump-dump field$E1 ,E2% can be obtained or not is yet to b
identified. In the next section, we shall consider the con
of pure state systems in which the globally optimal pair
pump-dump fields can be identified unambiguously in
weak response regime.

III. PUMP-DUMP CONTROL OF PURE STATE
SYSTEMS

The general Liouville space control formulation pr
sented in the previous section serves as the common b
ground for quantum, classical and semiclassical numer
implementations. In this section, we shall use the Hilb
space dynamics and consider the pump-dump contro
which both the initial systemr(t0) and the final targetÂ are
in the pure states. Let us denote them as

r~ t0!5uc~ t0!&^c~ t0!u, ~12a!

Â5uf&^fu. ~12b!

For completeness, we shall start with the general con
kernels,K1 andK2 @Eq. ~6!# in the strong response regime
For simplicity, let us focus on the auxiliary kernel
K6(t;t f ,u) of Eq. ~7!. In the pure state case, the propaga
density matrix and target in Eq.~7! at time tP@ t0 ,t f # are
given by:

rT~t;u!5ucT~t;u!&^cT~t;u!u, ~13a!

ÂT~t;t f ,u!5ufT~t;t f ,u!&^fT~t;t f ,u!u. ~13b!

Here, cT(t;u)[GT(t,t0 ;u)c(t0) and fT(t;t f ,u)
[GT(t,t f ;u)f are the forward propagated and the bac
ward propagated Hilbert space wave functions for the sys
and the target, respectively. The Hilbert space time propa
tor, GT(t,t8;u), is governed by the total Hamiltonia
HT(t;u) of Eq. ~1! at the given value of the relative phaseu.
Substituting Eq.~13! into Eq. ~7!, we obtain14

K6~t;t f ,u!5c* ~ t f ;u! f T
6~t;t f ,u!. ~14!

Here,

c~ t f ;u!5^fucT~ t f ;u!&, ~15!

is the amplitude of the target yield if the control is perform
under the phase-locked pump-dump scenario, and

f T
6~t;t f ,u!5~ i /\!^fT~t;t f ,u!uD6ucT~t;u!&. ~16!

The final phase-unlocked pure state control kernels,K1 and
K2, are then obtained by substituting Eq.~14! for Eq. ~6!.

We now turn to the field-dressed control response fu
tion, M j @Eq. ~9!# in the weak pump or the weak dump re
sponse regime. In the pure state case, we have:@cf. Eq. ~9!#

rk~t8!5uc~t8;$Ek%!&^c~t8;$Ek%!u, ~17a!

Âk~t;t f !5uf~t;t f ,$EK%!&^f~t;t f ,$Ek%!u. ~17b!

Both the forward propagation in the system wave funct
c(t8;$Ek%) and the backward propagation in the targ
f(t;t f ,$Ek%) are governed by theEk-dressed Hamiltonian
Hk of Eq. ~10!. Substituting Eq.~17! into Eq.~9!, and further
o. 9, 1 September 1997
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3474 Yan, Cao, and Shen: Optimal pump-dump control
making use of the definitions of Liouville-space operato
D6

l ,r of Eq. ~2! and G k(t,t8)Ô5Gk(t,t8)ÔGk
†(t,t8), we

can arrive at the following equations:14

M1~t,t8;$E2%!5 f 1* ~t;t f ,$E2%! f 1~t8;t f ,$E2%!, ~18a!

M2~t,t8;$E1%!5 f 2~t;t f ,$E1%! f 2* ~t8;t f ,$E1%!. ~18b!

Here, f 6 has the similar form asf T
6 @Eq. ~16!# and is given

by

f 6~t;t f ,$Ek%!5~ i /\!^f~t;t f ,$Ek%!uD6uc~t;$Ek%!&. ~19!

Equation~18! describes the unique feature for the pure st
pump-dump control case in which the field dressed-respo
function M j with two time variables can be factorized as
product of two single time variable functions. This featu
greatly reduces the computational effort on the evaluation
the pump-dump control response functionM j . In the case of
control a thermal equilibrium system, the right-hand-sides
Eq. ~18! should include the Boltzmann canonical ensem
summation over all populated states. Upon substituting
~18! into @Eq. ~8!# and followed by applying the phase
unlocked condition that allows the removal of an arbitra
constant phase factor, we obtain the following two simplifi
control equations:14

f 1* ~t;t f ,$E2%!5l18E1~t!, ~20a!

f 2~t;t f ,$E1%!5l28E2~t!. ~20b!

The constantl j8 in Eq. ~20! relates to the original Lagrang
multiplier, i.e. the eigenvaluel j in Eq. ~8!, as14

l185l1u E
t0

t f
dt8 f 1~t8;t f ,$E2%!E1~t8!u215~l1 /I 1!1/2,

~21a!

l285l2u E
t0

t f
dt8 f 2* ~t8;t f ,$E1%!E1~t8!u215~l2 /I 2!1/2.

~21b!

The second identities in Eqs.~21! were obtained by making
use of Eq.~20!, together with the definition ofI j in Eq. ~4!
for the total incident energy from thej th control field. A
similar result to Eq.~20b! was previously derived by Tanno
and Rice@cf. Eq. ~6! of Ref. 1# using the perturbation expan
sion of f 2 @cf. Eq. ~19!# to the first order in the fieldE1. In
their original work,1 the dump field is optimized for a give
weak pump field. Eq.~20! shows that the Tannor-Rice pump
dump scheme can be readily extended to a joint optimiza
of a pair of correlated optimal pump-dump fields.14 As we
discussed earlier, either Eq.~20a! or Eq. ~20b! can be used
independently to find the optimal weak fieldEj in the pres-
ence of the givenEkÞEj with arbitrary form and intensity.
This is done by propagatingc(t;$Ek%) forward and
f(t;$Ek%) backward respectively, followed by evaluatin
the dipole overlap to obtainf 6 @Eq. ~19!#, and thus the op-
timal control fieldEj @cf. Eq. ~20!#.

To find the pair of optimal pump-dump fields, Eqs.~20a!
and ~20b! shall be solved jointly and iteratively.14 By doing
that we shall also retain both of the control fields in the we
J. Chem. Phys., Vol. 107, N

Downloaded 25 Jun 2004 to 18.21.0.92. Redistribution subject to AIP l
,

e
se

f

f
e
q.

n

k

response regimes.14 Furthermore, the above analysis assu
only that, at each step of iteration, the unique~therefore also
the globally! optimal field Ej be obtained with respect to
given counterpart fieldEkÞEj . However, whether the glo
bally optimal pair of pump-dump field$E1 ,E2% can be ob-
tained or not is yet to be identified.

In the following, we shall explicitly consider the wea
pump-dump response regime and identify unambiguou
the globally optimal pair of control fields in this case. To d
this, we can start either withf T

6 @Eq. ~16!# or f 6 @Eq. ~19!#,
followed by the explicit first order expansion of the releva
quantity to the field it depends on. The former approach20 is
similar to the one used by Dubov and Rabitz12 where the
phase-locked pump-dump control was considered. In this
per, let us consider the latter approach. By carrying out
trace over the electronic degrees freedom, followed by
perturbation expansion of the relevant Schro¨dinger wave
functions to the lowest order in the control field, we c
recast Eq.~19! in the following form:

f 1~t;t f ,$E2%!5~ i /\!^fe~t;t f ,$E2%!umucg~t;$E2%!&

'~ i /\!^fe
~1!~t;$E2%!umucg

~0!~t !&

[E
t

t f
dt8B~t8,t!E2* ~t8!, ~22a!

f 2~t;t f ,$E1%!5~ i /\!^fg~t;t f ,$E1%!umuce~t;$E1%!&

'~ i /\!^fg
~0!~t !umuce

~1!~t;$E1%!&

[E
t0

t

dt8B~t,t8!E1~t8!. ~22b!

Here, B(t,t8) can be viewed as the Hilbert-space tw
photon control response function, defined by (t>t8)

B~t,t8!5^fg
~0!~t !uT̂~t2t8!ucg

~0!~t8!&, ~23!

with

T̂~ t ![~ i /\!2me2 iH et/\m, ~24!

being the dipole transition operator. In Eq.~23!,
ucg

(0)(t8)&5e2 iH g(t82t0)/\ucg(t0)& is the free forward
propagation of the initial system wave function, an
^fg

(0)(t)u5^fg(t f)ue2 iH g(t f2t)/\ the free backward propaga
tion of the final target wave function in the ground electron
state. The final coupled eigenequations for a pair of optim
pump-dump control fields in the weak response regime
then be obtained by substituting Eq.~22! into Eq. ~20!.

Before presenting the final eigenequations, we shall
examine the physical meaning of the eigenvaluel j8 @cf. Eq.
~21!# in the weak pump-dump response regime. Let us fi
introduce the joint yield for pump-dump control as

l25y~ t f ![
A~ t f !

I 1I 2
. ~25!

Sincel j5A(t f)/I j corresponds to the optimal yield with re
spect to the weakEj response regime in the presence of a
given EkÞEj field, the relationl25l1 /I 25l2 /I 1 will be
o. 9, 1 September 1997
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3475Yan, Cao, and Shen: Optimal pump-dump control
valid for the joint optimal pair of weak pump-dump field
Combined with Eq. ~21!, we have that l18(I 1 /I 2)1/2

5l28(I 2 /I 1)1/25l. In the weak pump-dump response r
gime, however, the incident energies from the optimal fie
act as scaling factors. Without losing the generality of
pump-dump control in the weak response regime, we
chooseI 15I 2 and thus obtain

l185l285l ~26!

as the square root of the joint control yield@Eq. ~25!#. We
have therefore arrived at the following generalized con
eigenequations@cf. Eqs.~20!–~26!# for the optimal pairs of
phase-unlocked pump-dump fields in the weak response
gime,

E
t

t f
dt8B* ~t8,t!E2~t8!5lE1~t!, ~27a!

E
t0

t

dt8B~t,t8!E1~t8!5lE2~t!. ~27b!

Furthermore, if$E1 ,E2% is the eigenfunction to Eq.~27! as-
sociating with the eigenvaluel, then $2E1 ,E2% or
$E1 ,2E2% is also the eigenfunction associating with the
genvalue of2l. However, these pairs of fields are the sa
in this paper in which the relative phaseu betweenE1 and
E2 is considered to be completely random. We shall the
fore consider only the solutions of Eq.~27! with positive
eigenvalues,l5@A(t f)/(I 1I 2)#1/2 @cf. Eq. ~25!#, which are
also the square roots of the control yields with respect to
product of incident field energiesI 1I 2 @cf. Eq. ~4!#. There-
fore, theglobally optimal pairof pump-dump fields in the
weak response regime can be obtained as the eigenfun
of Eq. ~27! associating with the largest positive eigenvaluel.
In order to see that Eq.~27! are indeed the joint eigenequa
tions for solving the optimal pair of pump-dump$E1 ,E2%
fields, let us consider the time-grid representation in the
gion @ t0 ,t f #. In this case, each ofE1(t) andE2(t) is a vector
of N elements, whileB(t,t8) is a lower-trigonalN3N ma-
trix, defined as

Bjk5H 0 for j ,k

B~ t j ,tk! for j >k
. ~28!

Equations~27! can thus be recast in the form of two standa
N3N Hermitian matrix eigenequations:

B†BE15l2E1 , ~29a!

BB†E25l2E2 . ~29b!

Equations~27! @or Eq.~29!# together with the above physica
argument on the eigenvaluel @Eq. ~25!# constitute the major
theoretical result of this paper. In this formulation, the op
mal pair of pump-dump control fields in the weak respon
regime can be obtained as an eigenequation problem an
solution is non-iterative. Furthermore, the globally optim
pair of pump-dump fields can be identified unambiguous
J. Chem. Phys., Vol. 107, N
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IV. OPTIMAL STIMULATED RAMAN PUMPING IN THE
WEAK RESPONSE REGIME

In this section, we shall limit our investigation to th
case where both the initial system and the final target w
functions are in ro-vibronic levels on the ground electron
surface, i.e.,ucg(t0)&5u i & and ufg(t f)&5u f &, with corre-
sponding eigenenergies ofe i and e f , respectively. In this
case, the weak pump-dump control response functionB of
Eq. ~23! assumes the following form:

B~t,t8!5e2 i e f ~ t f2t!/\Tf i~t2t8!e2 i e i ~t82t0!/\. ~30!

Here, Tf i(t)5^ f uT̂(t)u i & @cf. Eq. ~24!#, is the well-known
T-matrix elements for the Raman@more precisely the stimu
lated emission pumping21 ~SEP! or the stimulated Raman
pumping22 ~STIRAP!# f← i transition amplitude.23,24 Since
both the pump-dump control and the SEP or STIRAP sp
troscopic processes describe the same two-photon dyna
that excite the initialu i & level to the finalu f & level on the
ground surface via the intermediate excited electronic st
it is not surprising that they share the same dynamical qu
tity. The possibility of using the control formulation deve
oped in this section to design the optimal SEP or STIR
spectroscopic measurements or to extract the dynamic in
mation from the spectroscopic signals for the control fe
back will be investigated in future.

To proceed, let us introduce the following auxiliary fie
functions:

x1~ t !5e2 i e i t/\E1~ t !, ~31a!

x2~ t !5e2 i e f t/\E2~ t !. ~31b!

In this case, Eq.~27! reduces to

E
t

t f
dt8Tf i* ~t82t!x2~t8!5lx1~t!, ~32a!

E
t0

t

dt8Tf i~t2t8!x1~t8!5lx2~t!. ~32b!

For simplicity, we have removed the constant phase facto
the above equations, since the relative phase between the
control fields is anyhow unlocked. Equations~32a! and~32b!
are in fact not independent. By changing the time argum
of x1 to t01t and that ofx2 to t f2t, we can see that the
above two equations are just complex conjugate to e
other. We have thereforex1* (t01t)5x2(t f2t). This identity
leads to the following symmetry relation between the op
mal pump field and its counterpart of optimal dump field@cf.
Eq. ~31!#:

ei e i ~ t01t !/\E1* ~ t01t !5e2 i e f ~ t f2t !/\E2~ t f2t !. ~33!

The above symmetry relation can be recast in the freque
domain as

e2 iv~ t01t f !Ê2~v!5Ê1* ~v1v f i !, ~34!

whereÊj (v) is the Fourier transform ofEj (t):

Êj~v!5E
2`

`

d teivtEj~ t ![uÊj~v!ueiw j ~v!. ~35!
o. 9, 1 September 1997
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3476 Yan, Cao, and Shen: Optimal pump-dump control
Note that thenth order frequency chirp of fieldEj is defined
by cj

(n)5dn11w j (v5v̄ j )/dvn11, wherev̄ j is its central fre-
quency. Equations~33! and~34! lead therefore to the follow-
ing conclusions for the optimal pair of pump-dump field
$E1 ,E2%: ~i! their frequency chirps are of the same value b
opposite in signs;~ii ! their temporal spectra,uEj (t)u2, are
symmetric about the center, i.e. (t01t f)/2, of the interaction
region@ t0 ,t f #; ~iii ! the power spectrum of the optimal dum
field, uÊ2(v)u2, is red ~Stoke! shifted by v f i5(e f2e i)/\
compared with that of the pump field,uÊ1(v)u2. The above
three properties of optimal pair of pump-dump fields hold
the control of eigenstate in the absence of dephasing
relaxation processes.

As an example of implementation the formalism dev
oped in this section, let us consider the pump-dump con
of vibrational excitation in the iodine molecule. The mo
ecule begins in its groundX state which is coupled to th
exciteB state via pump or dump field interaction. For sim
plicity, we assume that the molecule begins at the vibro
groundn50 level in X and neglect the effects of molecula
rotation. The potential functions for I2 vibration in the elec-
tronic groundX state and in the electronic excitedB state are
chosen as the same as those used in Ref. 18. The targ
chosen to be then514 vibronic level inX, and the target
time is set to bet f5350 fs. The Raman frequency betwe
the final target and the initial vibronic level i
v f i52876 cm21. Shown in Fig. 1 and Fig. 2 are, respe
tively, the temporal and spectral profiles of the globally o
timal pair of pump-dump fields evaluated by using Eqs.~27!
with Eq. ~30!. Each field in this globally optimal pump-dum
pair consists of a nearly transform-limited pulse with t
temporal FWHM of 165 fs. The globally optimal pump fie
has the temporal center at 161 fs and the spectral cent
v153030 cm211veg ~i.e., the excess carrier frequency
3030 cm21). As the symmetry relation@Eqs. ~33! or ~34!#,
the corresponding dump field centers at 189 fs~i.e., t f2161
fs! with the carrier frequency ofv25v12v f i . In order to
understand the physical meaning of the carrier frequenc
the globally pump field, we also include in Fig. 2 a dashed
curve for the finite-time Raman excitation profile signal, d
fined by ~assumingt050)

FIG. 1. Globally optimal pair pump-dump fields for the target ofn 5 14 in
I2 X surface. The molecule begins atn 5 0. The fitted Gaussian pump puls
is also included in the dashed line.
J. Chem. Phys., Vol. 107, N
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SR~v;t f !5U E
0

t f
dt ei ~v1e i /\!tTf i~ t !U2

. ~36!

It is clear that the globally optimal pump field carries th
frequencyv1 at which the Raman excitation profile reach
its global maximum. For comparison, we consider also
pair of Gaussian pulses whose temporal and spectral cen
and temporal FWHM’s are set to be those of the globa
optimal pump-dump fields pair. Shown in the dashed cu
in Fig. 1 is the temporal profile of the fitted Gaussian pum
pulse. The corresponding fitted Gaussian dump field is
plotted since it can be obtained by the symmetry relation
Eq. ~33!. Figure 3 presents the control yield,A(t)/(I 1I 2)
with respect tolmax

2 @Eq. ~25!# as a function of time. The
solid line is for the globally optimal pump-dump pair whil
the dashed line is for the fitted Gaussian pump-dump pair@cf.
the dashed curve in Fig. 1#, which reaches about 90% of th
globally optimal result. In order to investigate the key facto
in the present control system of study, we also shift the te
poral centers of both the pump and dump pulses to 175
the center of the control interaction interval, while rema
the optimal carrier frequencies untouched. The result
yield in this case reduces only slightly further. The abo
analysis implies that the key factor in the present con

FIG. 2. Globally optimal pair pump-dump fields as the same as Fig
Included in the dashed line is also the Raman excitation profile define
Eq. ~36!.

FIG. 3. Relative control yieldy(t) @cf. Eq. ~25!# with respect tolmax
2 for

both the globally optimal pair of pump-dump fields~solid! and the fitted pair
of Gaussian fields~dashed!.
o. 9, 1 September 1997
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3477Yan, Cao, and Shen: Optimal pump-dump control
system is the spectral components of the control fields. T
is in consistent with the simple physical intuition of th
stimulated Raman pump-dump control.

V. SUMMARY AND CONCLUSION

In this paper, we systematically investigated the gene
theory of the optimal phase-unlocked pump-dump cont
We presented a hierarchy of reduction from the gene
Liouville-space density matrix control formulation in th
strong response regime and arrived at the general
eigenequation@Eq. ~27! with Eq. ~23!#, which is applicable
in the pure state weak control response regime. Besides
novel eigenequation@Eq. ~27!# for the optimal pump-dump
control, this work has also acclaimed the following acco
plishments.

We showed that the square of the eigenvalue@l in Eq.
~27!# is the pump-dump control yield,A(t f), with respect to
the incident pump-dump field energies product,I 1I 2 @cf. Eq.
~25! and the comments followed#. Therefore, the globally
optimal pair of phase-unlocked pump-dump control fields
the pure state and weak response regime is identified a
eigenfunction of Eq.~27! associating with the largest pos
tive eigenvaluel. Discussed and further demonstrated we
the numerical implementation of the eigenequation based
the time-grid representation@cf. Eqs. ~28! and ~29!#. The
implementation based on the expansion of the fields on a
of basis functions can also be carried out without major d
ficulty.

We further investigated the weak response optim
stimulated Raman pumping control in which both the init
system and the final target state are molecular eigenstate
the ground electronic surface~cf. Sec. IV!. In this case, we
derived the novel symmetry relation, i.e. Eqs.~33! and ~34!
and the discussion followed, between the optimal pump fi
and its counterpart dump field. Noted that the symmetry
lation described by Eqs.~33! and~34! holds rigorously only
for the control of eigenstate in non-dissipative systems.
may however expect certain qualitative properties will ret
in the other types of control systems. In a recent numer
example in which we considered the control of a highly e
cited I2 stretching wave packet localized in both coordina
and momentum in the groundX electronic state, the optima
pump-dump pair fields are shown to be of opposite sign
the chirps.14 The key quantity,Tf i(t) @cf. Eqs.~24! and~30!#,
in the optimal stimulated Raman pumping control proces
is the same as that in the Raman spectroscopic mea
ment.23,24 This property may lead to the possibility of usin
the control formulation developed in this paper to device
optimal SEP or STIRAP spectroscopic measurements o
extract the dynamic information from the optical signals
J. Chem. Phys., Vol. 107, N
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the control feedback. The simple numerical example p
sented in Sec. IV suggested a such kind of strong correlat

In conclusion, this work constitutes a systematic theo
of the optimal control with two phase-unlocked fields th
are physically distinct as the pump and the dump fields. T
is consistent with the well known Tannor-Rice contr
scenario.1 The method developed here can be readily app
to study the phase-unlocked pump-pump control proce
es.12,13 The theoretical framework in this paper provides
clear interplay of the variety of two-field control formula
tions in the strong response regime and in weak respo
regime, in terms of Liouville-space density matrix dynami
and in the Hilbert-space wave function representation. Co
parison of the phase-unlocked two-field control scenario w
its phase-locked counterpart2,12 will be made elsewhere.20
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