Optimal pump-dump control: Linearization and symmetry relation
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A generalized eigenequation is derived for the optimal pairs of phase-unlocked pump-dump fields
in the control of pure state molecular systems in the weak response regime. The associated
eigenvalues are further correlated to the yields of pump-dump control, thus the globally optimal pair
of phase-unlocked pump-dump fields is identified unambiguously. Presented is also a hierarchy of
reduction from the general Liouville-space density matrix control formulation in the strong response
regime to various linearized control equations in the weak response regime. Application to the
control of a molecular ro-vibronic level in the ground electronic surface reveals a novel symmetry
relation between the optimal pump field and its counterpart of the optimal dump field. 999
American Institute of Physic§S0021-960607)00933-]

I. INTRODUCTION weak response regime. Y&rt*has extended Tannor-Rice’s
. " . . original idea and arrived at a pair of coupled quasi-linear
Optimal control the_or§/ provides a solid background  optimal pump-dump equations in the weak response regime.
for using tailored laser fields to manipulate molecular motiontis is done by expanding the punbar dump control ker-

and chemical reactivity. In principle, the optimal control for- nel to the first order in the pumfor dump field and the

mulation is capable of incorporating all molecular aspects : : .

. . . . resulting control response function depends on its counter-
and experimental considerations in a coherent manner. As & ' field™®24 This approach can be generalized to reduce a
general mathematical tool for searching the functional maxiP ' PP 9

mum, the optimal control theory leads usually to a Comp“_phase—unlocked-fieId (n-photon control formulation intan
cated nonlinear equation which requires a numerically exSoupled quasi-linear control equatiotis® Recently, we
pensive approach to solve. The resumng fields are howevéiave further derived the general denSity matrix formulation
not only locally optimal but also too complicated to be ex- for the optimal pump-dump control with two phase-unlocked
perimentally realizable. To facilitate this problem, there hascoherent fields in the strong response regtfhe.

been considerable effort on arriving a linearized version of  The remaining of this paper is organized as follows. In
control formalism’™'® The simplest linearizable system is Sec. Il, we summarize our recent developniton the gen-
the control of one-photon achievable tar§et: In this case, eral density matrix formulation of optimal phase-unlocked

the optimal control in the weak response regime can be rés;mp_dqump control. The key result of this paper is in Sec. Ill

duced to an.e|gen-problern of a s.econd Or‘?'ef control "Swhere our previous general formulati8ris further reduced
sponse function, whose eigenfunction and eigenvalue giv

the optimal field and yield, respectivél. The globally op- f a standard eigenvalue problem in the pure state control in

timal field in the one-photon control scenario can thus bethe weak response reginief. Eq. (27)]. This result is very

unambiguously identified. Moreover, we have found, at Ieas?'_m'Iar to recent Wor_k by DUb9V and Ralﬁzm which a

for the systems of study, that the globally optimal field is different but related eigenequation was derived for the phase-
reasonably simple and robust, and retains as a good contr§icked two-photon control of pure state in the weak response
field as its intensity scales up to a moderately strong IEvel. regime. The detailed comparison between the phase-
An example which successfully correlates thédfyand  unlocked pump-dump control and its phase-locked counter-
experiment® is the control of wave packet focusing on the part will be presented elsewhettln Sec. lll, we also con-

I, B potential surface. The globally optimal field in the weak nect the control yield to the eigenvalue in the optimal
response regime serves as an ideal starting point to investiguation. Thus, thglobally optimal pair of phase-unlocked
gate the general but more complicated optimal control ﬁem?)ump-dump fields can be identified in the pure state weak

in the strong response regime. control response regime. In Sec. IV, we apply the pump-

The Ilnearl_zatlon to control formulation beyond one- dump control eigenequation developed in Sec. Il to the op-
photon accessible targets, such as the pump-dump scherpe ) L . -
imal stimulated Raman pumping in which both the initial

proposed by Tannor and Rienay also be achieved under ) ) . :
certain experimental conditiod&26In their original work! system and the final target are in the molecular ro-vibronic

Tannor and Rice considered the control with a pair of phasel-evels on the ground electronic surface. In this case, a novel
unlocked weak fields and derived a linear equation for théymmetry relation between the optimal pump field and its
optimal dump field with respect to a given pump field in thejoint optimal dump field is rigorously establish¢df. Egs.

(33) and (34)]. Included in Sec. IV is also a numerical ex-
dpresent address: Dept. of Chemistry and Biochemistry, University of Cali—ample to demonstrate the underline control process. Fma”y'
fornia at San Diego, La Jolla, CA 92093-0339. we summarize our result in Sec. V.
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Il. GENERAL THEORY OF OPTIMAL PUMP-DUMP dynamics. The third constraint is the requirement of the finite
CONTROL incident energy from each of the fieldss 1 and 2,

In this section, we shall present the general formulation, |= tfd E 2 4
developed in Ref. 14, for the optimal phase-unlocked pump- "i™ t 7IEj ()] )
dump control of a molecular system involving two elec- ) ]
tronic surfaces, the groundg and an excitece. The mo-  Under these three constraints, we have defit/due follow-

lecular Hamiltonian is assumed to be the form ofiNg general coupled self-consistent control equations:
H=Hglg)(g|+He)e|. The_ total Hamiltonian _ in K;(7t)=\;E;(7); withj=1 and 2, (5)
the presence of a pair of pump-dump fields, . . .
E(t; 6) =E,(t) + e~ "PE,(t) that is locked at the specific rela- for a pair of optimal pump-dump field€, ,E,}. In Eq. (5),
tive phased= 6,— 6,, is given by 7 € [to,t;] and \; is a Lagrange multiplier for the finite
_ _ . incident energy constraint in E§4). The inclusion of two
Hi(t;0)=H-D.,E(t;6)-D_E*(t;0). @) independent Lagrange multipliers; and \,, is consistent
Here, we adopted the electronic rotating wave approxWwith the condition of the complete random phaserhe key
imation* In the above equation, D, =pule)(g] and quantities in Eq(5) are the pump control ke.rndatll and the
D_=D'=u|g)e] are two components of electron- dump control kerneK,. They are formally given by
ic transition dipoles. AsD,|g)=u|e),D_|e)=u|g) and N A . _
D.|e)=D_|g)=0, these two transition dipole components Ku(mt) =((/R) Tl Ar(7itr,0)7 Zpr(7:0)])
can also be viewed as the exciton creation and annihilation =(K* (7t 0 6
. . . . < +(T! fo )>1 ( a)
operators, respectively. In the following derivation, we shall
introduce the auxiliary Liouville-space dipole qperators, Ko(7t) =((iI1R) T Ax(7:t;,0) 2 " pr(7;6)]€'%)
&', defined by their action on an arbitrary operafbas

. A =(K_(7t;,0)€e'%). (6b)
) =D. ™ . . .
7 -0=D-0, (23 Recall that the auxiliary Liouville-space dipole operators,
9" d=-0D. . (2b) 7" ando " [Eq. (2)], are responsible for the pump and the

dump processes respectively. Similarly, the control kernels,
Physically,” !, (or ") and ' (or /) are responsible K, andK, [Eq. (6)], are for the pump control and the dump
for the electronic pumping and dumping, respectively, fromcontrol processes, respectivek.. (7;t;,6), defined in the
the ket(or bra side. The control target, which can generally second identities in Eq(6), are the two components of
be represented by an operatdr is chosen to be a certain theconventional single-field (or phase-locked control
nuclear dynamic event in the ground electronic state. Th&ernel/*1" They can be equivalently recast in terms of
goal of control is to find the optimal phase-unlocked pair ofHilbert-space operators only:*1’[cf. Egs.(2) and (6)]
pump-dump fields{E,,E,}, so that they maximize the ex-

pectation value of the targdt at a given target time;, Ke (7, 0)=(11A) T Ar(7t;, 0)D 2 pr(7:0) ]. @)
_ ~ _ _ ~ ) In Egs.(6) and(7), p1(7; 6)=<51(7,tg; 6) p(to) is the density

A(te) =(Tr[Ap(ts; 0)1) = (T AZ(ts ,to; 0)p(to)), matrix propagated forward from the initiah to 7, while

_ _ _ _ Ar(7:t:0)=AZ(t;, 7. 0) = Z1(7.t ;) A iis the target opera-
under certain experimental constraints that will further beyq, propagated backward from the finglto . Since the
specified in the following. In Eq(3), 41(7,t0;6) is the  propagator is controlled by the total Hamiltoniahy(t, 6)
Liouville-space propagator associating with the total Hamil-yyhich depends on both the purfig and the prob&, fields,
tonianH+(t; 6) [Eq. (1)] in the presence of phase-locked  the control kernek [Eq. (6)] will also be functional of both
pump-dump fields; Tr denotes the trace over both the elecsontrol fields. The control equations in E&) with j=1 and
tronic aqd nuclear degrees of freedo.m.m the molecular sysy should therefore be solved jointly and iteratively. The re-
tem, while (- - -) stands for the statistic average over thegyiting pump-dump fields are only locally optimal and are
random distribution of relative phasg between the pump  often also too complicated and unrobust to be experimentally
and the dump f|e|dS. rea“zab|e_

In this paper, we shall consider the optimal pump-dump  The simplest linearized version of E¢6) can be ob-
control under the following three constraints. The first one is;zined by considering the optimal control in either the weak
the phase-unlocked experimental condition as stated earli%ump or/and the weak dump response regiié This can
in which ¢ is assumed to be an evenly distributed randomye gone by considering, at any givep+E;, the perturba-
variable within[0,27). The second constraint is that the e expansion of the control ke, [Eq. (6)] to the first

roles of E; andE; in their interactions with the optical me- rder in the control fieldE; . In this case, Eq(5) reduces to
dium can be distinct as pump and dump, respectively. This ighe following form?314

the conventional pump-dump control scenario in which the

power spectra of the two fields are separated away from eac;l[u !t
other. In this case, the phase-lock may be neither experimenk,
tally easy nor physically important to the control of target ©)]

dT,M](T,T,,{Ek})EJ(T,):)\]E](T), with J#k=1,2
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In Eq. (8), the Ey-dressed control response functidhy is  pump-dump field E, ,E,} can be obtained or not is yet to be
Hermitian with respect to their two time arguments and for-identified. In the next section, we shall consider the control
mally given by* (r=17") of pure state systems in which the globally optimal pair of
M '(E pump-dump fields can be identified unambiguously in the
(77" {E2}) weak response regime.
=M7 (7", 7{Es})

. ~ oo N , I1l. PUMP-DUMP CONTROL OF PURE STATE
=(i/h)2TH AN Tt L Co( 7,7 ) D pa( 7], 98 SvSTEMS

Mo(7, 7" ;{E1}) The general Liouville space control formulation pre-
=M%+, 7{Es}) sented in the previous section serves as the common back-
22t ground for quantum, classical and semiclassical numerical
=(ilh)2THA( 1t 7 Su(7,7) 7 " py(7')].  (9b)  implementations. In this section, we shall use the Hilbert

space dynamics and consider the pump-dump control in

In these equations, the Green functisn(r,7') is defined  \hich poth the initial systermp(to) and the final targeh are
by the molecular Hamiltonian in the presence of the external, ihe pure states. Let us denote them as

field E, only, %
p(to)=(to) ){¥(to)l, (129

Hi(t)=H—D. Ex(t) = D_E (V). (10 A
It also governs the forward propagated density matrix, A=lo)(4l. (12h
p(7) =S (7 10) p(to), and the backward propagated tar- For completeness, we shall start with the general control
get, A (7 ;) =AZ(t;,7) = (1A, in Eq.(9). In deriv- kernel_s,Kll gnd K, [Eq. (6)] in the strong response regime.
ing Eq.(9), we included the random phaseaveragé? As a For simplicity, let us focus on the auxiliary kernels,
result, all the phase-sensitive terms that contain explicithyK=(7:t¢,6) of Eq.(7). In the pure state case, the propagated
either twoD _’s or two D ,’s do not contribute to the control density matrix and target in Eq7) at time 7e[to,t;] are
response functioM ;. We have also made use of the condi- 9'V€N by:

tion thatE, andE, are distinct for the pump and the dump, p1(7,0)=|¢1(7,0) ) (7, 0)], (133
respectively, as they interact with the optimal meditfm. )
Therefore,M; [Eq. (9a)] that containsZ ', and " de- Ar(7t,0)=| dr(7its,0)){ Pr(Tits,0)]. (13b

scribes the second-order pump response in which both tr\qere (7 0) = . .
. . ’ T( 7, 0)_GT( T!tO ’ 0) ’/f(to) and d)T( T’tf 10)
ket and the bra are excited by tlg field [cf. Eq. (2)]. =G+(r.t;:6)¢ are the forward propagated and the back-

L P g | _ . .
Similarly, M, [Eq. (9b)] that contains>, and &/~ de- a4 hronagated Hilbert space wave functions for the system

scribes the second-order dumping process in which both thg d the t t tivelv. The Hilbert fi _
ket and bra are de-excited by tkg field. In fact,M; is the na e target, respectively. 1he HIert space fime propaga

d d lecul ¢ ion for th | tor, Gy(7,7';0), is governed by the total Hamiltonian
E\- ressed molecular response unction for the coptro eXHT(t;a) of Eq. (1) at the given value of the relative phage
pectation valuéA(t;) [cf. Eg.(3)] to the second order in the Substituting Eq(13) into Eq. (7), we obtair*

E; field. That is!®** ’

- Ke(mte,0)=c*(t;; 0 (7t;,0). (14)
AP(t)= | dr| dr'M(r, 7 {EHEF(DE|(7). Here,
to to
(11 c(te; 0)=(o|yr(ts;0)), (15

Substituting Egs.(4) and (8) into Eg. (11), we obtain
Afz)(tf)=)\jlj . The eigenvalué ; in Eq. (8) is therefore the
optimal pump control yieldA{?)(t) with respect to the inci-
dent weak pump energy at the given dump field,. Simi- 7 (7t 0)=(i/h)(pr(t;,0)|D | ¢hr(7:0)). (16)

larly, the eigenvalua, is the weak dump controll4yield atthe The final phase-unlocked pure state control kerniéjsand
given pump field. We can therefore identlfy; for any k. are then obtained by substituting Ed44) for Eq. (6).
givenE,#E;, the globally optimal wealg; control field as We now turn to the field-dressed control response func-
the eigenfunction of Eq(8) that corresponds to the largest tion, M; [Eq. (9)] in the weak pump or the weak dump re-

eigenvalue\; . The above analysis is based on the viewpointSponse regime. In the pure state case, we HaieEq. (9)]
of single-photon pumpdump controfl’ in the presence of an

arbitrary given dumppump field.**** In order to find the p(7") = (7 {ED (7 {EG)], (179
optimal pair of pump-dump field$E,,E,}, Eq. (8) with ~ ] ]

j=1 and 2 should be solved jointly and iterativéfyin this Admit) =|d(mite {ED) ¢(itr (B (17b
case, both fields should also be retained in the weak respon8mth the forward propagation in the system wave function
regime. At each step of the iteration, the globally optimal(7';{E,}) and the backward propagation in the target
field Ej can be obtained with respect to the given counterparty(;t;,{E,}) are governed by th&,-dressed Hamiltonian
field E,#E;. However, whether the globally optimal pair of H, of Eq.(10). Substituting Eq(17) into Eq.(9), and further

is the amplitude of the target yield if the control is performed
under the phase-locked pump-dump scenario, and
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making use of the definitions of Liouville-space operators response regimeéd.Furthermore, the above analysis assures
7" of Eq. (2) and Li(7,7')O=Gy(r, r’)(A)GE(T, '), we only that, at each step of iteration, the uniqtieerefore also
can arrive at the following equatior$: the globally optimal field E; be obtained with respect to a
, . ) given counterpart field,# E;. However, whether the glo-
Mi(7, 7" {Eah) =1 (mts {E2Dfo (75t {E2}), (188 pally optimal pair of pump-dump fieldE,,E,} can be ob-
. _ ) . . tained or not is yet to be identified.

Ma(7, 7" {Ba}) = fo (7t (R (7751 {Ea}). (18D In the following, we shall explicitly consider the weak
Here,f. has the similar form aé; [Eq. (16)] and is given pump-dump response regime and identify unambiguously
by the globally optimal pair of control fields in this case. To do

) this, we can start either withy [Eq. (16)] or f.. [Eq. (19)],
fe(mit B =1/A)(S(t {BHID=|d({ED). (19 tollowed by the explicit firsth(;rder expansion of the relevant
Equation(18) describes the unique feature for the pure statéjuantity to the field it depends on. The former appréaeh
pump-dump control case in which the field dressed-responsgimilar to the one used by Dubov and Rabitwhere the
function M; with two time variables can be factorized as aPhase-locked pump-dump control was considered. In this pa-
product of two single time variable functions. This featurePer, let us consider the latter approach. By carrying out the
greatly reduces the computational effort on the evaluation offace over the electronic degrees freedom, followed by the
the pump-dump control response functidn . In the case of ~Perturbation expansion of the relevant Sdinger wave
control a thermal equilibrium system, the right-hand-sides ofunctions to the lowest order in the control field, we can
Eq. (18) should include the Boltzmann canonical ensemble'ecast Eq(19) in the following form:

summation over all populated states. Upon substituting Eqg. fo(rt JESV=(i/A t, IE JE
(18) into [Eq. (8)] and followed by applying the phase- (it {B2D) = (1TR)(bel 73ty {E2D) sl rg( 7{ERD))

unlocked condition that allows the removal of an arbitrary ~ (iR PP (T{ED |l (7))

constant phase factor, we obtain the following two simplified

control equations? _ ftde,B(T, DEL(F) (224
1 (rt (B2 =N Ea(), (209 ’

f_(mte {E2}) = (i/7)(bg( it {E1}) | | the( :{E1}))

f,(T;tf,{El}):)\éEz(T). (20b) 0
~(i15)( (7| P (T{E1}))

The constant\j’ in EqQ. (20) relates to the original Lagrange

multiplier, i.e. the eigenvalug; in Eq. (8), as* T
= | d7'B(7,7)E«(7"). (22b)

to

tf
Ni=Na| | A7 (7t {EQDE (7)) = (N /1)
! 1|ft0 7 (7t BB (A1) Here, B(7,7') can be viewed as the Hilbert-space two-

(21a  photon control response function, defined by=(r")
t Y=t O NT(re Y] O
xé:kzlvftde’ft(T’;tfa{El})El(T,)|7l:()\2/|2)1/2' B(T,T )_<¢g (T)|T(T T )|l//g (T ))u (23)
0

(21b) with

The second identities in Eq&21) were obtained by making T()=(i/h)2peHelly, (24)
use of Eq.(20), together with the definition of; in Eq. (4)
for the total incident energy from thgh control field. A
similar result to Eq(20b) was previously derived by Tannor
and Ricegcf. Eq.(6) of Ref. 1] using the perturbation expan-
sion of f_ [cf. Eq. (19)] to the first order in the fiel&E;. In
their original work! the dump field is optimized for a given
weak pump field. Eq(20) shows that the Tannor-Rice pump-
dump scheme can be readily extended to a joint optimizatio
of a pair of correlated optimal pump-dump fieldsAs we
discussed earlier, either EROg or Eq. (20b can be used
independently to find the optimal weak fiellj in the pres-
ence of the giverkE,# E; with arbitrary form and intensity.
This is done by propagating/(7;{E,}) forward and
¢(7;{E,}) backward respectively, followed by evaluating A(ty)
the dipole overlap to obtaif. [Eq.(19)], and thus the op- A=y (ty)= T
timal control fieldE; [cf. Eq. (20)]. 12
To find the pair of optimal pump-dump fields, E420a Since\;=A(t;)/1; corresponds to the optimal yield with re-
and (20b) shall be solved jointly and iteratively.By doing  spect to the weak; response regime in the presence of any
that we shall also retain both of the control fields in the weakgiven E,#E; field, the relation\>=\,/1,=\,/l; will be

being the dipole transition operator. In Eq(23),

|\ (r))y=e Hel™ W/t y (1)) is the free forward
propagation of the initial system wave function, and
()| =(pg(ts)|e~ Mot~ V"% the free backward propaga-
tion of the final target wave function in the ground electronic
state. The final coupled eigenequations for a pair of optimal
pump-dump control fields in the weak response regime can
then be obtained by substituting E&2) into Eq. (20).

Before presenting the final eigenequations, we shall re-
examine the physical meaning of the eigenvauiie[cf. Eq.
(21)] in the weak pump-dump response regime. Let us first
introduce the joint yield for pump-dump control as

(25
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valid for the joint optimal pair of weak pump-dump fields. IV. OPTIMAL STIMULATED RAMAN PUMPING IN THE
Combined with Eq. (21), we have that\j(I,/1,)¥* ~ WEAK RESPONSE REGIME

=\5(12/1)Y*=X\. In the weak pump-dump response re- |n this section, we shall limit our investigation to the
gime, however, the incident energies from the optimal fieldsase where both the initial system and the final target wave
act as scaling factors. Without losing the generality of thefynctions are in ro-vibronic levels on the ground electronic
pump-dump control in the weak response regime, we cagyrface, i.e.|y(to))=1i) and |py(ts))=|f), with corre-

choosel; =1, and thus obtain sponding eigenenergies @f and e, respectively. In this
L, case, the weak pump-dump control response fundioof
M=A=A (26) Eq. (23) assumes the following form:
as the square root of the joint control yidlHq. (25)]. We B(r,7)=e t&t— AT (r— z/)e ia(7 ~to)/h (30)

have therefore arrived at the following generalized control .

eigenequationgcf. Eqs. (20)—(26)] for the optimal pairs of ~Here, T (1) =(f[T(1)[i) [cf. Eq. (24)], is the well-known

phase-unlocked pump-dump fields in the weak response rd-matrix elements for the Ramdmore precisely the stimu-

gime, lated emission pumpify (SEP or the stimulated Raman
pumping? (STIRAP)] f«i transition amplitudé>?* Since

Y e N both the pump-dump control and the SEP or STIRAP spec-
JT d7'B* (7', 7)Ea(7") =NEq(7), (273 troscopic processes describe the same two-photon dynamics
that excite the initialli) level to the final|f) level on the
T ground surface via the intermediate excited electronic state,
t dr'B(7,7")Ei(7")=NEy(7). (27D it is not surprising that they share the same dynamical quan-
0 tity. The possibility of using the control formulation devel-

sociating with the eigenvaluex, then {—E,; E,} or  SPectroscopic measurements or to extract the dynamic infor-

{E,,—E,} is also the eigenfunction associating with the ej-mation from the spectroscopic signals for the control feed-
genvalue of— \. However, these pairs of fields are the sameback will be investigated in future.

in this paper in which the relative phagebetweenE, and To proceed, let us introduce the following auxiliary field
E, is considered to be completely random. We shall therefunctions:

fore consider only the solutions of E7) with positive X, (t)=e 1aUiE (1), (319
eigenvaluesh =[A(t;)/(111,)]*? [cf. Eq. (25)], which are et

also the square roots of the control yields with respect to the ~ Xa(t)=e '"“""Ex(t). (31b

product of incident field energiels !, [cf. Eq. (4)]. There- |y this case, Eq(27) reduces to
fore, theglobally optimal pairof pump-dump fields in the

weak response regime can be obtained as the eigenfunction ftde’T*-(T’— IXo( ) = AX(7) (329
of EqQ.(27) associating with the largest positive eigenvalue i 2 v
In order to see that Eq27) are indeed the joint eigenequa- T
tions for solving the optimal pair of pump-dunife,,E,} dr' Ti(7— 7)) X (7') = NXo( 7). (32b
fields, let us consider the time-grid representation in the re- to
gion[to,t¢]. In this case, e,ac_h @&, (1) andEy(t) isavector  pqr gimplicity, we have removed the constant phase factor in
of N elements, whileB(7,7") is a lower-trigonaNXxN ma- 6 ahove equations, since the relative phase between the two
trix, defined as control fields is anyhow unlocked. Equatiof®2a and(32b)
are in fact not independent. By changing the time argument

= S (28 of x; to tg+t and that ofx, to t;—t, we can see that the

B(tj,ty) forj=k above two equations are just complex conjugate to each
other. We have thereforg (to+1t) =X,(t;—t). This identity
leads to the following symmetry relation between the opti-
mal pump field and its counterpart of optimal dump fipdél

B'BE,=\?E,, (299  Ea- BV
ei Ei(t0+t)/hE1‘ (t0+ t) — e*ief(tfft)/hEz(tf _t) . (33)

T

0 forj<k
Bjk

Equationg27) can thus be recast in the form of two standard
NXN Hermitian matrix eigenequations:

BBTE,=\?E,. (29b) _ _
The above symmetry relation can be recast in the frequency

Equations27) [or Eq.(29)] together with the above physical domain as
argument on the eigenvalae[Eq. (25)] constitute the major Zin A .
theoretical result of this paper. In this formulation, the opti- € T B (@) =B (0t wp), (34)
mal pair of pump-dump control fields in the weak responsq,\,heref;j(w) is the Fourier transform o, (t):
regime can be obtained as an eigenequation problem and the
solution is non-iterative. Furthermore, the globally optimal éj(w):f

. . lore, 1 / d te'E () =|Ej(w)| €41, (35)
pair of pump-dump fields can be identified unambiguously. o
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FIG. 1. Globally optimal pair pump-dump fields for the targetvof 14 in FIG. 2. Globally optimal pair pump-dump fields as the same as Fig. 1.
I, X surface. The molecule beginsat= 0. The fitted Gaussian pump pulse Included in the dashed line is also the Raman excitation profile defined in
is also included in the dashed line. Eq. (36).

Note that then" order frequency chirp of fiele; is defined . )
by Cj(n)Zdn+1qoj(w=wj)/dwn+l, wherew; is its central fre- SR(w;tf)z‘ f "t dlo+e T, (1) (36)
qguency. Equation&33) and(34) lead therefore to the follow- 0
ing conclusions for the optimal pair of pump-dump fields, |t js clear that the globally optimal pump field carries the
{Ey1.Eo}: (i) their frequency chirps are of the same value butfrequencyw, at which the Raman excitation profile reaches
opposite in signsfii) their temporal spectrd£;(t)|? are s global maximum. For comparison, we consider also the
symmetric about the center, i.dot()/2, of the interaction  pajr of Gaussian pulses whose temporal and spectral centers,
region[to,t]; (iii) the power spectrum of the optimal dump and temporal FWHM's are set to be those of the globally
field, |E,(w)|?, is red (Stoke shifted by ws=(e;—€)/h  optimal pump-dump fields pair. Shown in the dashed curve
compared with that of the pump fieltE;(w)|2. The above in Fig. 1 is the temporal profile of the fitted Gaussian pump
three properties of optimal pair of pump-dump fields hold forpulse. The corresponding fitted Gaussian dump field is not
the control of eigenstate in the absence of dephasing anplotted since it can be obtained by the symmetry relation of
relaxation processes. Eq. (33). Figure 3 presents the control yieldy(t)/(1115)

As an example of implementation the formalism devel-with respect tonz., [Eq. (25)] as a function of time. The
oped in this section, let us consider the pump-dump contrgsolid line is for the globally optimal pump-dump pair while
of vibrational excitation in the iodine molecule. The mol- the dashed line is for the fitted Gaussian pump-dump][péir
ecule begins in its grounX state which is coupled to the the dashed curve in Fig]lwhich reaches about 90% of the
excite B state via pump or dump field interaction. For sim- globally optimal result. In order to investigate the key factors
plicity, we assume that the molecule begins at the vibronidn the present control system of study, we also shift the tem-
groundr=0 level in X and neglect the effects of molecular poral centers of both the pump and dump pulses to 175 fs,
rotation. The potential functions fog Vibration in the elec- the center of the control interaction interval, while remain
tronic groundX state and in the electronic excitBdstate are the optimal carrier frequencies untouched. The resulting
chosen as the same as those used in Ref. 18. The targetyield in this case reduces only slightly further. The above
chosen to be ther=14 vibronic level inX, and the target analysis implies that the key factor in the present control
time is set to be;=350 fs. The Raman frequency between
the final target and the initial vibronic level is
w;;=2876 cm L. Shown in Fig. 1 and Fig. 2 are, respec- - - - r T
tively, the temporal and spectral profiles of the globally op-
timal pair of pump-dump fields evaluated by using EGS) 0.8k
with Eq. (30). Each field in this globally optimal pump-dump £
pair consists of a nearly transform-limited pulse with the
temporal FWHM of 165 fs. The globally optimal pump field
has the temporal center at 161 fs and the spectral center at 04
w,=3030 cm 1+ weg (i.€., the excess carrier frequency of

Yield

3030 cm'1). As the symmetry relatiofEgs. (33) or (34)], 0'25

the corresponding dump field centers at 18%ifs.,t;—161 0.0f— = T
fs) with the carrier frequency ofo,= w,— ws;. In order to 0 100 200 300
understand the physical meaning of the carrier frequency of Time (fs)

the globally pump field, we also include in Fig a dashed FIG. 3. Relative control yield/(t) [cf. Eq. (25)] with respect tox2,,, for

curve for the ﬁn_ite'time Raman excitation profile signal, de-pot the globally optimal pair of pump-dump fieltlid) and the fitted pair
fined by (assuming,=0) of Gaussian field¢dashedl
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system is the spectral components of the control fields. Thithe control feedback. The simple numerical example pre-
is in consistent with the simple physical intuition of the sented in Sec. IV suggested a such kind of strong correlation.

stimulated Raman pump-dump control. In conclusion, this work constitutes a systematic theory
of the optimal control with two phase-unlocked fields that
V. SUMMARY AND CONCLUSION are physically distinct as the pump and the dump fields. This

aiF' consistent with the well known Tannor-Rice control

theory of the optimal phase-unlocked pump-dump Control_scenariol. The method developed here can be readily applied
We presented a hierarchy of reduction from the general® 13F33d¥hth?h phastg—uln]locked lekmp-FhL!mp control prdocess-
Liouville-space density matrix control formulation in the es.~ 1he Iheoretical lramework in IS paper provides a
strong response regime and arrived at the generalize ear interplay of the variety of two-field control formula-

eigenequatiofEq. (27) with Eq. (23], which is applicable tIOI’l.S n ,th? stron% Ii('espo'lrrse reglmde anf n \{[vealé response
in the pure state weak control response regime. Besides tfg9!ME, 1N terms ot Liouville-space density matrix dynamics

; ; - d in the Hilbert-space wave function representation. Com-
novel eigenequatiohEq. (27)] for the optimal pump-dump and . e
control, this work has also acclaimed the following accom-Parison of the phase-unlocked two-field control scenario with
plishménts its phase-locked counterpatt will be made elsewher®.
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