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A phase-space representation of Bloch—Redfield theory is used to describe the dynamical evolution
of quantum dissipative systems. The resulting Liouville operator equations are capable of
incorporating both the master equation in eigenstate space and the stochastic equation in classical
phase space, and thus provide a useful framework for mixing classical, semiclassical, and quantum
dynamics for simulating complicated dissipative systems. In addition, the proper limit of quantum
dissipation, the approximate nature of the second-order cumulant truncation, the detailed balance of
quantum correlation functions, and the reduction of dissipation by a transformation of the bath
Hamiltonian are investigated within the framework of phase-space Bloch—Redfield theory.
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I. INTRODUCTION cess happens on a time scale much slower than the motion of
the thermal batR* The fast bath condition, i.e., the Markov-

In condensed phase chemistry, the competition betweelan assumption, is easily satisfied in nuclear magnetic
vibrational relaxation and activated barrier crossing or curveesonanc® (NMR) but not for the optical excitation of large
crossing is a major factor which determines the mechanismmolecules which relax on the picosecond time scale. A more
of a chemical proces: Take the example of photoinduced challenging problem arises from the eigenstate representa-
electron transfer, where a photon induces a coherent waugon of the master equation and the tensor algebra involved in
packet on the excited state surface, which is quicklythe evaluation of the relaxation coefficients. As a result, one
dephased and dissipated. After the molecular system reachesn deal at most with a few spins, as in NMR, and with
thermal equilibrium, the excited state population decays extow-dimensional systems such as diatomic molecules. How-
ponentially due to curve crossing. Because of the fact thagver, as discussed earlier, the number of degrees of freedom
vibrational relaxation happens much faster than electroo be included in the system explicitly can be significantly
transfer, the dynamics becomes a well-defined rate processrger than two. This is a fundamental limitation of the
described by electron transfer theory. However, if vibrationalBloch—Redfield equation when applied to optical excitation.
relaxation is not much faster than electron transfer, therFortunately, in most large molecules, only a small number of
curve crossing happens before the thermal equilibrium iglegrees of freedom are considered as quantum mechanical
reached. As a result, the rate description is no longer validand the rest can be handled as classical. Then, the classical
Indeed, recent progress in ultrafast spectrostopseveals  degrees of freedom can be described by the Fokker—Planck
that a laser-induced wave packet dynamical process is oftesgquation, or equivalently, the Langevin equation. For this
the interplay of coherence, dephasing, energy relaxation, angurpose, the eigenstate representation of the Bloch—Redfield
curve crossing in a dissipative environment. Therefore, thequation is not an adequate framework for incorporating
theoretical description of such a complicated relaxation proclassical dissipative dynamics; instead we should remove the

cess poses a major challenge to theorists. fast bath assumption and formulate Bloch—Redfield theory in
The formal definition of dissipation can be rigorously the space of momenta and coordinates.
derived from a reduced description of dynanfidsA practi- This work has also been stimulated by recent interest in

cal approach is to isolate the system of interest, to treat theoth the theoretical and applied aspects of the Bloch—
other coordinates as a thermal bath, and to approximate ttRedfield equatioR®** Although the use of the Bloch—
system—bath interaction as dissipation. Loosely speakingRedfield equation in condensed phase spectroscopy is not
dissipation is defined as the stochastic noise on deterministigearly as popular as in NMR, for the reasons argued earlier,
dynamics. Therefore, the separation of system and bath is nédr limited computational resources the approach remains the
arbitrary: One should include into the system all the coordi-method of choice and has been adopted in several
nates involved in the deterministic dynamics. For a solvatedtudies®*° For example, electron transfer is often modeled
molecule, these include all the intramolecular modes ands a two-level or three-level Redfield probléfmlong with
maybe the first solvation shell. Then, such a separation ahese new applications, advanced numerical techniques allow
system and bath is physically adequate for many chemicapplications of the Redfield theory to a large number of
processes. eigenstated’3® For an open Markovian quantum system, a
The standard relaxation theory is the Bloch—Redfieldgeneral mathematical form of the quantum dissipative equa-
theory, which consists of a set of master equations in théion has been derived by virtue of the semigroup transforma-
eigenstate space of the systBrf® The master equation de- tion method*?> Numerical algorithms for propagating these
scription is based on the assumption that the relaxation praypes of quantum operator equations have been
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implemented® Comparison of the Bloch—Redfield equation implying that there is no correlation between system and
with other quantum dissipative theories has also been carridoath at the initial time. As a result, the formal solution in Eq.
out for the quantum Brownian oscillator mod&f®® In a  (2.7) can be rewritten as

companion paper, a numerical study of this new theory,

along with the Bloch equation and the generalized Langevin = p (t)= < exp,| —i Jt ,%](t’)dt’}p,(0)> , (2.10
equation, has been performed for a dissipative Morse 0 b
oscillator™® where the bath average is defined as
This paper is organized as follows: The phase-space rep- g
resentation of Bloch—Redfield theory is presented in Sec. Il, TrsOpp(0)
<O>b=—-|—rbpb(0) : (2.1

then several aspects of the theory are discussed in Sec. lll,

and a summary concludes the paper in Sec. IV. . L . .
y pap We further assume that the interaction is within the linear

regime such that a second-order truncation in the cumulant
expansion of the bath average is sufficiently accurate. Con-

Il. THEORY sequently, the formal solution in E¢R.7) becomes

A. Reduced Liouville equation of motion
pi(t)=exp;

t t » 2 "
- | [Far avgaey A >>b}p.<o>,
(2.12
] which can be recast as a differential-integral equation
whereHy(q) andHy(x) are the system and bath Hamilto-
nians, respectively, and;(g,x) is the interaction between
the system and the bath. The total density matrix of the sys-
tem and bath obeys the Liouville equation of motfdn.

Consider the composite system—bath Hamiltonian

H=Hq(q) +Hp(X) + Vin(a,%), (2.9

t
p.(t)=—JO<,%’|(t)_%/,(t')>bp|(t’)dt’. (2.13

This reduced Liouville equation for the dissipative system is

o(t)=—i Z(t)o(t), (2.2  the starting point of Redfield’s analysis and has been derived
in various context$%4®
where the Liouville operator is defined by n variou X
, 1
Z0=—[H,0], (2.3 :
h B. Phase-space Bloch—Redfield theory

with commutator[ A,B]=AB—BA. Equation(2.2) can be
recast in the interaction picture as

o(t)=—iZ(t)ay(1), (2.9
where

Ul(t):ei(Ho+Hb)/ﬁa(t)e—i(Homb)/h, (2.5
and

Z(t)=¢'(HotHp) o7 @=1(HotHp) (2.6)

with %,,O=[Viy,0]/%. Formally, the solution to Eq2.4)
can be expressed as

t
o () =exp; —ifo,%.(t’)dt' o,(0), 2.7)

The interaction potential term in E(R.1) can always be
expanded as

Vin( 4.0 = 2 F;(00Q)(a). (2.14
In the rest of the paper, the ind¢>xand the summation over
j will be omitted for simplicity. It is convenient for further
analysis to introduce the force-force correlation function as

Co(t=t")=(F(OF(t'))p, (2.19

and its complex conjugate & (t—t')=C%(t—t'), where
F(t) is a Heisenberg operator evolving under the bath
HamiltonianH,, .

With these notations, the second-order commutator in
Eq. (2.13 can be explicitly resolved, giving

where the subscript- denotes the time-ordering of the ( %,(t)£,(t")p,(t"))y

Liouville operators.

Following the prescription of the reduced description,
we define the reduced density matrix for the system of inter-

est as

p(1)=Tryo(1), (2.8

where Tp means that a trace is performed over the bath
degrees of freedom. Assuming that the system—bath interac-
tion is turned off untilt=0, we can impose the initial con-

dition

o(0)=pp(0)p(0), (2.9

1
=2z (VIO IV (). (1) 1o

1
=72 ([Q(1),Qi(t")p (1) C(t =)
—pi(t)Q(t")C(t=t")])p. (2.16

Then, the reduced Liouville equation of E&.13 becomes

p()=—i%op()—[Q,G=(1) —G(1)], (2.17
where the quantum dissipation term is defined by
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C. Exponential decay correlation

1 (e
G (t)= — —iHg(t—t")/% t!
> h* foe Qp(t) The phase-space Bloch—Redfield theory can be simpli-

_ . fied enormously for an exponential decay friction kernel, de-
x e Mot=tIAC_(t—t")dt’, (218  fined as

and its Hermitian conjugat€&_(t)=GZ(t). The above ex- 7(t)=nDe”"", (2.23
pressions constitute a phase-space formulation of Redfieldith D the decay rate ang the friction strength. According
theory, which in the specific limit leads to the Bloch to the fluctuation—dissipation theorem, the classical force-
equatior®® Two key approximations underlying the Bloch force correlation function is given by

equation are to extend the upper limit of the time integral to _ B bt
the infinity and to replace(t’) by p(t) in the above inte- C()=kTn(t)=7kTDe ™, (2.29
gral. In addition, the rotating-wave-approximation, i.e., thewith k the Boltzmann constant. In the classical limit of the
secular approximation, is introduced in eigenstate space tpath, the quantum force-force correlation function becomes
yield the master equatiofl. Thereby removing these ap-

proximations is a major advantage of the general Redfield c_(t)=c(t)+i hB C(t), (2.25
analysis over the Bloch equation. 2

To proceed, taking the time derivative Gf. , we have  \yhere the pure imaginary term is required to maintain de-
tailed balance. This is necessary even at high temperature

G~ (1)=Qp(1)C~(0) =i %G (1) because of the quantum nature of the system—bath interac-
- A . tion. It should also be pointed out the exponential decay
+joe"HO“‘to)/ﬁQp(t’)e'HO“‘to)/’"C>(t—t’)dt’. function is not analytical at t=0, giving C(t)

=—y7D%Te P' and C(t)=7D3kTe P'— 7D?kTs(t").
(2.19 Making use of these relations, the integral form in Ej19
can now be removed. With the introduction fg=G-
The convolution integral for the quantum dissipation term in—G< , we have the linear operator equations
the above equation is not a convenient form for our purpose. 1
To this end, we mt_roduce the spectral densifyw) for the_ _ p(H)=—i Zep()+ = [Q,g(1)] (2.26
force-force correlation function such that the quantum dissi- if

pation term in Eq(2.19 can be expressedds and

J(w) - . 1
G>(t)=J do ——{[n(e)+1]g—(o.t) g(t)=—i7og() =Dg(t) + = #DKT[Q,p(1)]

1
g ek 220 ~ 7D 5 [Qup(V)]. @27
Here, n(w) is the occupation numben(w)=[expfBw)

—1]7%, and the two auxiliary functiong, andg_ obey with anticommutatofA,B]., =AB+BA.

As pointed out earlier, the exponential decay correlation
is a very special case because taking the time derivative of
the exponential decay correlation function does not change
the functional form of the correlation function. Due to this
fact, the general Langevin equation for an exponential decay
(2.22 friction kernel can be transformed into a pair of coupled

Langevin equation$*° Similarly, the phase-space Bloch—
respectively. Equation2.17), together with Egs.(2.20), Redf_ield theory, described in the last subsection for an expo-
(2.21), and(2.22), is the central result of phase-space B|0Ch_nent|al decay corre_lat_|0n,_ can be _formulated as a pair of
Redfield theory. To solve these coupled operator equation§OUP!ed quantum dissipative equations.
the bath can be effectively represented by a set of harmonic
oscillators weighted by the spectral density, and the quantum
dissipation due to each oscillator is described by a pair of|]. DISCUSSION
functionsg, andg_ which are solved simultaneously with
the system density matrig In this way, the quantum dissi-
pative dynamics under colored noigeon-Markovian sys- The white noise bath can be easily recovered by taking
temg can be transformed into coupled quantum dissipativehe limit of exponential decay noise as }Jim.,7(t)
dynamics under white nois@xtended Markovian systems = 78(t"). Without loss of generality, linear coupling is as-
As a result, the numerical techniques developed to propagatimed,Q=q, implying that the dissipation is coordinate-
the density matrix for white noié&can be used to solve for independent. Then, the two coupled Liouville equations in
the colored noise case as well. Egs.(2.26 and(2.27) can be reduced to

9-(@,1)=Qp(t) =i %og-(w,t) —iwg_(w,t)  (2.21)

and

g+(w,t)=Qp(t)—i_%)og+(w,t)+ia)g+(a),t),

A. Fokker—Planck equation
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C-(w)=e P°C_(w), (3.6)

which can be easily recognized as the detailed balance con-
(3.D)  dition. As a result, even at high temperature, direct substitu-
with M the mass ang the momentum operator. This result tion of quantum correlation functions by their classical coun-
was first obtained by Caldeira and Leggett based on Feyrterparts in Eq(2.19 will violate the detailed balance of the
man’s influence functional formulation of quantum system and thus fail to recover thermal equilibrium as the

. KT 19 1
p=—i%0p— —z [alapll+ 7 17 |% 5 [P.Als

dissipatiorr? stable solution.

Next, taking the classical correspondence] AfB]./2 By imposing the detailed balance condition in E(&5)
=AB and [A,B]/it={A,B}, we recover the classical or (3.6), we can approximate quantum correlation functions
Fokker—Planck equation by the corresponding classical ones. One choice is to identify

P n quantum linear response functions with their classical coun-
p={Hg.p}+ 7kT — p+ M 75 pp, (3.2 terparts, and the resulting quantum correlation functions are
p P then given by

where{, } is the Poisson bracket. - -
As pointed out earlier, in the Markovian limit, the gen- C>(0)=(hBol2) cothf fuwl2) + 1]Cu(w), 3.7

eral Liouville equation reduces to the Bloch equation inwhich holds exactly for a harmonic bath. This approach is
eigenstate space. Therefore, the above derivation of theffectively the dispersion polaron model pioneered by
quantum Fokker—Planck equation demonstrates the accuratyarshe”>>® The implication of Eq.(3.7) in the Bloch—

of the Bloch—Redfield equation in the Markovian limit. This Redfield theory has been discussed earlier by Bader and
is not surprising because the higher order commutators ig%erne‘?‘5 It is argued by Cao and Voththat replacing the
nored in Eq.(2.13 involve convolutions of force-force cor- classical correlation functions in E3.7) by the correlation
relation functions which will integrate to zero if the memory functions obtained from classical dynamics based on the cen-
time of the bath is much smaller than the time scale of thdroid potential energy surface provides a much better ap-

system. proximation for the quantum correlation functions.
For a general exponential decay noise, E§s26) and Expanding Eq(3.7) to first order in quantum correction,
(2.27 become Fokker—Planck-like equations in the classicalve obtain
limit, givin o -
9N C (@) =[1+ (7 Bw/2)|Co(w), (39
p={Ho.p}+{a.0} 33 which is obviously the same expression as Ej25. As
and seen from the derivation of the quantum and classical
g=1{H,,g}—Dg+ 7DKT{g,p} — 7D2qp. (3.4 Fokker—Planck equations in the previous subsection, the

imaginary part in Eq(2.25 gives rise to the last term in Egs.
These two coupled partial-differential equations can be un¢3.1) and (3.2), which is required to balance the diffusion
derstood as the first-order generalized Fokker—Planck equgerm in order to achieve the thermal equilibrium. Essentially,
tions corresponding to the general Langevin equation for thg is the quantum nature of the bath—system interaction that
exponential decay correlation. requires the introduction of the imaginary part in E2.25
It is well-known that the general Langevin equation with in order to maintain the detailed balance of the quantum
the exponential decay friction kernel can be reduced to &ystem. In fact, detailed balance can be used to test the self-

two-dimensional Markovian proces$>>° The resulting consistency of theories and algorithms for mixed quantum-
Fokker—Planck equation has three variables, and can hgassical systems.

transformed into an infinite series of coupled two-variable
Fokker—Planck equations. Therefore, the above two equa-

tions can be viewed as the leading two equations in thig. Transformation of the bath Hamiltonian
series. Here, the Fokker—Planck equations are examined as
the classical limit of phase-space Bloch—Redfield theory, so
that classical and quantum dissipative dynamics can b
treated on the same level of approximation.

The reduced equation of motion in E&.13) is obtained
nder the assumption that higher order cumulants can be
ignored. This is valid if the dissipation is weak or if the
correlation time of the dissipation is short, such as in the
Markovian limit. If neither of these conditions is satisfied,
the validity of the second-order truncation in £8.13 be-
comes questionable. This difficulty can be avoided if the
One of the basic properties of quantum correlation func-separation of system and bath is properly partitioned so that
tions is the periodic conditidfi®* the system—bath interaction becomes weak and noncorre-
. lated. There are many ways to achieve this. Here we will
C>(t=inf)=C(1), 39 introduce a transformation of the bath Hamiltonian to repar-
which is strikingly different from the time-reversal symmetry tition system and bath.
of classical correlation functions. In Fourier space, the above It is well-known that the general Langevin equation is
relation can be rewritten as equivalent to the harmonic bath motfetiescribed by

B. Detailed balance
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H=Ho(q) +Hp(X) +Vin(d,X) >c/m
0 b . int wg:%, (313
H EN: miXiZ miwiz Ci 2 39 Eci m;
- 0(q)+i=l 2 + 2 Xi_miw_zq ’ ( . ) C2 C2
i 0 i
where{m; ,w; ,c;} are a set of masses, frequencies, and cou- 0 '
pling constants for the bath oscillators. The spectral densitgnd an identity valid for an arbitrary variabig
of the force-force correlation function in E(.20 is related =z S c2m
to the harmonic bath by _L:wq 7— _ =icm (3.15
T mmg(wt+z) ° Siciimi(wi+z)”
2
™ Ci For derivation of these relations, see Appendix C in Ref. 59
J(w)= —— S(w—Ww), 3.1 - ' N
(@) Z 2 mjw; (0=w) (310 by Caldeira and Leggett, Ref. 60 by Garg, Onuchic, and

Ambegaokar, and Appendix B in Ref. 61 by Cao and Voth.
which defines the density of states of the bath oscillators. |n the context of electron transfer, the collective mode
This harmonic bath model is widely used in studying dissi-alone gives rise to the classical activation energy and elec-
pative processes such as quantum tunneling and condensgén transfer rate constafit. Therefore, it is reasonable to
phase spectroscopy. View wq as a characteristic frequency of the environment and

One approach is to identify a collective bath mode, toto include the rest of the bath only when the dissipation and
include it in the extended system, and to treat the rest of thguantum effects are significant. Furthermore, it should be
harmonic oscillators as the secondary bath. The systemoted that the dissipation on the Brownian oscillator by the
couples only to the collective bath mode, and the bath modgecondary bath is independent of the strength of the original
in turn couples to the secondary bath. Then, the compositfiction kernel. Since the collective bath mode captures the
Hamiltonian is expressed as major contribution to dissipation from the bath, the second-
ary dissipation is significantly weaker, and thereby the re-

2 - duced Liouville equation in Eq2.13 becomes applicable.

Co ,

1,01,
H=Hy(q)+ > MoXp+ 5 Mo®p| Xo™ Mow? q

(311 v, cONCLUSION

where the secondary bath Hamiltonian is In this paper, we have formulated the Bloch—Redfield
theory in phase-space and removed the Markovian approxi-

N-1r—-2 ——3 . . . .
H! (X) = E man+ Moy ~— Cn « 2 (3.12 mation used in the Bloch equation. The resulting operator
b i=1| 2 2 n Hn?;‘ o) |- ’ equations can be solved without tensor algebra and can be

reduced to the Bloch equation and the Fokker—Planck equa-

Here,mg, wq, andc, are the mass, frequency, and couplingtion in the proper limits. For an exponential decay correla-
constant of the collective bath mode, ad,,»,,C.} are a tion, the general formulation can be simplified to a pair of
set of masses, frequencies, and coupling constants for tteupled Liouville equations. However, the second-order cu-
secondary bath oscillators. To distinguish them from themulant truncation sets the limitation of the theory to weak
similar parameters in the harmonic bath Hamiltonian in Eq.couplings or short correlations. In this paper, we employ a
(3.9), the parameters for the secondary bath are denoted withroper partitioning of the system and bath Hamiltonians,
an overbar. By integrating out the secondary bath, the colwhich greatly extends the applicability of the phase-space
lective bath mode is effectively a Brownian oscillator. Bloch—Redfield equation. As an example, the transformation

The partitioning of the bath into the collective bath modebetween a Gaussian bath and a Brownian oscillator is stud-
and the secondary bath has been proposed earlier in the caed. In short, this composite theory represents a successful
text of quantum tunneling in dissipative systetidn the  attempt toward a phase-space relaxation theory which treats
case of electron transfer, E(B.9) corresponds to the spin- classical and quantum dissipative dynamics on the same
boson model, where an electronic variable couples to a hatevel of approximation.
monic bath, and E(3.11) corresponds to the model used by For the rigor of the theory, we have to address several
Garg et al,%° where an electronic variable couples a singleconceptual problems such as the positiveness of the density
nuclear coordinate, which then couples to a harmonic bathmatrix and high order correction. The root of possible nega-
For the accurate path integral treatment of quantum dissipaivity of the Redfield theory is primarily the second-order
tion, the two Hamiltonians described here are exactly equivacumulant truncation in deriving Eq(2.13. However, a
lent. Because of the approximate nature of the second cumyroper preparation of the initial bath-system configuration
lant expansion in Eq2.12), the partitioning of the bath can can significantly reduce the negative values in the Redfield
reduce the effective dissipation and thus increase the acctheory (without the secular approximatinff? There is no
racy of the phase-space Bloch—Redfield equations. better way to eliminate the negative values than to include

The transformation between these two Hamiltonians hakigher order cumulant expansion terms. Though such a
been established by relating the parameters of the Browniatmeory would be valid for arbitrary coupling strengths and
oscillator{xq,X,} to those of the original harmonic bafk;}: correlation times, it will be considerably more complicated
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