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A phase-space representation of Bloch–Redfield theory is used to describe the dynamical evolution
of quantum dissipative systems. The resulting Liouville operator equations are capable of
incorporating both the master equation in eigenstate space and the stochastic equation in classical
phase space, and thus provide a useful framework for mixing classical, semiclassical, and quantum
dynamics for simulating complicated dissipative systems. In addition, the proper limit of quantum
dissipation, the approximate nature of the second-order cumulant truncation, the detailed balance of
quantum correlation functions, and the reduction of dissipation by a transformation of the bath
Hamiltonian are investigated within the framework of phase-space Bloch–Redfield theory.
© 1997 American Institute of Physics.@S0021-9606~97!52032-0#
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I. INTRODUCTION

In condensed phase chemistry, the competition betw
vibrational relaxation and activated barrier crossing or cu
crossing is a major factor which determines the mechan
of a chemical process.1,2 Take the example of photoinduce
electron transfer, where a photon induces a coherent w
packet on the excited state surface, which is quic
dephased and dissipated. After the molecular system rea
thermal equilibrium, the excited state population decays
ponentially due to curve crossing. Because of the fact
vibrational relaxation happens much faster than elect
transfer, the dynamics becomes a well-defined rate pro
described by electron transfer theory. However, if vibratio
relaxation is not much faster than electron transfer, th
curve crossing happens before the thermal equilibrium
reached. As a result, the rate description is no longer va
Indeed, recent progress in ultrafast spectroscopy3–5 reveals
that a laser-induced wave packet dynamical process is o
the interplay of coherence, dephasing, energy relaxation,
curve crossing in a dissipative environment. Therefore,
theoretical description of such a complicated relaxation p
cess poses a major challenge to theorists.

The formal definition of dissipation can be rigorous
derived from a reduced description of dynamics.6,7 A practi-
cal approach is to isolate the system of interest, to treat
other coordinates as a thermal bath, and to approximate
system–bath interaction as dissipation. Loosely speak
dissipation is defined as the stochastic noise on determin
dynamics. Therefore, the separation of system and bath is
arbitrary: One should include into the system all the coor
nates involved in the deterministic dynamics. For a solva
molecule, these include all the intramolecular modes
maybe the first solvation shell. Then, such a separation
system and bath is physically adequate for many chem
processes.

The standard relaxation theory is the Bloch–Redfi
theory, which consists of a set of master equations in
eigenstate space of the system.8–23 The master equation de
scription is based on the assumption that the relaxation
3204 J. Chem. Phys. 107 (8), 22 August 1997 0021-9606/9
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cess happens on a time scale much slower than the motio
the thermal bath.24 The fast bath condition, i.e., the Markov
ian assumption, is easily satisfied in nuclear magne
resonance25 ~NMR! but not for the optical excitation of large
molecules which relax on the picosecond time scale. A m
challenging problem arises from the eigenstate represe
tion of the master equation and the tensor algebra involve
the evaluation of the relaxation coefficients. As a result, o
can deal at most with a few spins, as in NMR, and w
low-dimensional systems such as diatomic molecules. H
ever, as discussed earlier, the number of degrees of free
to be included in the system explicitly can be significan
larger than two. This is a fundamental limitation of th
Bloch–Redfield equation when applied to optical excitatio
Fortunately, in most large molecules, only a small numbe
degrees of freedom are considered as quantum mecha
and the rest can be handled as classical. Then, the clas
degrees of freedom can be described by the Fokker–Pla
equation, or equivalently, the Langevin equation. For t
purpose, the eigenstate representation of the Bloch–Red
equation is not an adequate framework for incorporat
classical dissipative dynamics; instead we should remove
fast bath assumption and formulate Bloch–Redfield theor
the space of momenta and coordinates.

This work has also been stimulated by recent interes
both the theoretical and applied aspects of the Bloc
Redfield equation.26–41 Although the use of the Bloch–
Redfield equation in condensed phase spectroscopy is
nearly as popular as in NMR, for the reasons argued ear
for limited computational resources the approach remains
method of choice and has been adopted in sev
studies.33,39 For example, electron transfer is often model
as a two-level or three-level Redfield problem.36 Along with
these new applications, advanced numerical techniques a
applications of the Redfield theory to a large number
eigenstates.37,38 For an open Markovian quantum system,
general mathematical form of the quantum dissipative eq
tion has been derived by virtue of the semigroup transform
tion method.42 Numerical algorithms for propagating thes
types of quantum operator equations have be
7/107(8)/3204/6/$10.00 © 1997 American Institute of Physics
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3205Jianshu Cao: A study of Bloch-Redfield theory
implemented.43 Comparison of the Bloch–Redfield equatio
with other quantum dissipative theories has also been ca
out for the quantum Brownian oscillator model.44,45 In a
companion paper, a numerical study of this new theo
along with the Bloch equation and the generalized Lange
equation, has been performed for a dissipative Mo
oscillator.46

This paper is organized as follows: The phase-space
resentation of Bloch–Redfield theory is presented in Sec
then several aspects of the theory are discussed in Sec
and a summary concludes the paper in Sec. IV.

II. THEORY

A. Reduced Liouville equation of motion

Consider the composite system–bath Hamiltonian

H5H0~q!1Hb~x!1Vint~q,x!, ~2.1!

whereH0(q) and Hb(x) are the system and bath Hamilto
nians, respectively, andVint(q,x) is the interaction between
the system and the bath. The total density matrix of the s
tem and bath obeys the Liouville equation of motion.47

ṡ~ t !52 i L~ t !s~ t !, ~2.2!

where the Liouville operator is defined by

LO5
1

\
@H,O#, ~2.3!

with commutator@A,B#5AB2BA. Equation~2.2! can be
recast in the interaction picture as

ṡ I~ t !52 i L I~ t !s I~ t !, ~2.4!

where

s I~ t !5ei ~H01Hb!/\s~ t !e2 i ~H01Hb!/\, ~2.5!

and

L I~ t !5ei ~H01Hb!L inte
2 i ~H01Hb!, ~2.6!

with L intO5@Vint ,O#/\. Formally, the solution to Eq.~2.4!
can be expressed as

s I~ t !5exp1F2 i E
0

t

L I~ t8!dt8Gs I~0!, ~2.7!

where the subscript1 denotes the time-ordering of th
Liouville operators.

Following the prescription of the reduced descriptio
we define the reduced density matrix for the system of in
est as

r~ t !5Trbs~ t !, ~2.8!

where Trb means that a trace is performed over the b
degrees of freedom. Assuming that the system–bath inte
tion is turned off untilt50, we can impose the initial con
dition

s~0!5rb~0!r~0!, ~2.9!
J. Chem. Phys., Vol. 107,
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implying that there is no correlation between system a
bath at the initial time. As a result, the formal solution in E
~2.7! can be rewritten as

r I~ t !5K exp1F2 i E
0

t

L I~ t8!dt8Gr I~0!L
b

, ~2.10!

where the bath average is defined as

^O&b5
Tr0Orb~0!

Trbrb~0!
. ~2.11!

We further assume that the interaction is within the line
regime such that a second-order truncation in the cumu
expansion of the bath average is sufficiently accurate. C
sequently, the formal solution in Eq.~2.7! becomes

r I~ t !5exp1F2E
0

tE
0

t8
dt8 dt9^L I~ t8!L I~ t9!&bGr I~0!,

~2.12!

which can be recast as a differential-integral equation

ṙ I~ t !52E
0

t

^L I~ t !L I~ t8!&br I~ t8!dt8. ~2.13!

This reduced Liouville equation for the dissipative system
the starting point of Redfield’s analysis and has been deri
in various contexts.10,48

B. Phase-space Bloch–Redfield theory

The interaction potential term in Eq.~2.1! can always be
expanded as

Vint~q,x!5(
j

F j~x!Qj~q!. ~2.14!

In the rest of the paper, the indexj and the summation ove
j will be omitted for simplicity. It is convenient for furthe
analysis to introduce the force-force correlation function

C.~ t2t8!5^F~ t !F~ t8!&b , ~2.15!

and its complex conjugate asC,(t2t8)5C.* (t2t8), where
F(t) is a Heisenberg operator evolving under the b
HamiltonianHb .

With these notations, the second-order commutator
Eq. ~2.13! can be explicitly resolved, giving

^L I~ t !L I~ t8!r I~ t8!&b

5
1

\2 ^@VI~ t !,@VI~ t8!,r I~ t8!##&b

5
1

\2 ^@QI~ t !,QI~ t8!r I~ t8!C.~ t2t8!

2r I~ t8!QI~ t8!C,~ t2t8!] &b . ~2.16!

Then, the reduced Liouville equation of Eq.~2.13! becomes

ṙ~ t !52 i L0r~ t !2@Q,G.~ t !2G,~ t !#, ~2.17!

where the quantum dissipation term is defined by
No. 8, 22 August 1997
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3206 Jianshu Cao: A study of Bloch-Redfield theory
G.~ t !5
1

\2 E
0

t

e2 iH 0~ t2t8!/\Qr~ t8!

3e2 iH 0~ t2t8!/\C.~ t2t8!dt8, ~2.18!

and its Hermitian conjugateG,(t)5G.
1(t). The above ex-

pressions constitute a phase-space formulation of Red
theory, which in the specific limit leads to the Bloc
equation.48 Two key approximations underlying the Bloc
equation are to extend the upper limit of the time integra
the infinity and to replacer(t8) by r(t) in the above inte-
gral. In addition, the rotating-wave-approximation, i.e., t
secular approximation, is introduced in eigenstate spac
yield the master equation.10 Thereby removing these ap
proximations is a major advantage of the general Redfi
analysis over the Bloch equation.

To proceed, taking the time derivative ofG. , we have

Ġ.~ t !5Qr~ t !C.~0!2 i L0G.~ t !

1E
0

t

e2 iH 0~ t2t0!/\Qr~ t8!eiH 0~ t2t0!/\Ċ.~ t2t8!dt8.

~2.19!

The convolution integral for the quantum dissipation term
the above equation is not a convenient form for our purpo
To this end, we introduce the spectral densityJ(v) for the
force-force correlation function such that the quantum dis
pation term in Eq.~2.19! can be expressed as49

G.~ t !5E dv
J~v!

p\
$@n~v!11#g2~v,t !

1n~v!g1~v,t !%. ~2.20!

Here, n(v) is the occupation numbern(v)5@exp(\bv)
21#21, and the two auxiliary functionsg1 andg2 obey

ġ2~v,t !5Qr~ t !2 i L0g2~v,t !2 ivg2~v,t ! ~2.21!

and

ġ1~v,t !5Qr~ t !2 i L0g1~v,t !1 ivg1~v,t !, ~2.22!

respectively. Equation~2.17!, together with Eqs.~2.20!,
~2.21!, and~2.22!, is the central result of phase-space Bloc
Redfield theory. To solve these coupled operator equati
the bath can be effectively represented by a set of harm
oscillators weighted by the spectral density, and the quan
dissipation due to each oscillator is described by a pair
functionsg1 andg2 which are solved simultaneously wit
the system density matrixr. In this way, the quantum dissi
pative dynamics under colored noise~non-Markovian sys-
tems! can be transformed into coupled quantum dissipa
dynamics under white noise~extended Markovian systems!.
As a result, the numerical techniques developed to propa
the density matrix for white noise43 can be used to solve fo
the colored noise case as well.
J. Chem. Phys., Vol. 107,
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C. Exponential decay correlation

The phase-space Bloch–Redfield theory can be sim
fied enormously for an exponential decay friction kernel, d
fined as

h~ t !5hDe2Dt, ~2.23!

with D the decay rate andh the friction strength. According
to the fluctuation–dissipation theorem, the classical for
force correlation function is given by

C~ t !5kTh~ t !5hkTDe2Dt, ~2.24!

with k the Boltzmann constant. In the classical limit of th
bath, the quantum force-force correlation function becom

C.~ t !5C~ t !1 i
\b

2
Ċ~ t !, ~2.25!

where the pure imaginary term is required to maintain
tailed balance. This is necessary even at high tempera
because of the quantum nature of the system–bath inte
tion. It should also be pointed out the exponential dec
function is not analytical at t50, giving Ċ(t)
52hD2kTe2Dt and C̈(t)5hD3kTe2Dt2hD2kTd(t1).
Making use of these relations, the integral form in Eq.~2.19!
can now be removed. With the introduction ofi\g5G.

2G, , we have the linear operator equations

ṙ~ t !52 i L0r~ t !1
1

i\
@Q,g~ t !# ~2.26!

and

ġ~ t !52 i L0g~ t !2Dg~ t !1
1

i\
hDkT@Q,r~ t !#

2hD2
1

2
@Q,r~ t !#1 , ~2.27!

with anticommutator@A,B#15AB1BA.
As pointed out earlier, the exponential decay correlat

is a very special case because taking the time derivativ
the exponential decay correlation function does not cha
the functional form of the correlation function. Due to th
fact, the general Langevin equation for an exponential de
friction kernel can be transformed into a pair of coupl
Langevin equations.24,50 Similarly, the phase-space Bloch
Redfield theory, described in the last subsection for an ex
nential decay correlation, can be formulated as a pair
coupled quantum dissipative equations.

III. DISCUSSION

A. Fokker–Planck equation

The white noise bath can be easily recovered by tak
the limit of exponential decay noise as limD→`h(t)
5hd(t1). Without loss of generality, linear coupling is a
sumed,Q5q, implying that the dissipation is coordinate
independent. Then, the two coupled Liouville equations
Eqs.~2.26! and ~2.27! can be reduced to
No. 8, 22 August 1997
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3207Jianshu Cao: A study of Bloch-Redfield theory
ṙ52 i L0r2
hKT

\2 @q,@q,r##1
1

i\

h

M Fq,
1

2
@p,q#1G ,

~3.1!

with M the mass andp the momentum operator. This resu
was first obtained by Caldeira and Leggett based on Fe
man’s influence functional formulation of quantu
dissipation.51

Next, taking the classical correspondence of@A,B#1/2
5AB and @A,B#/ i\5$A,B%, we recover the classica
Fokker–Planck equation

ṙ5$H0 ,r%1hkT
]2

]p2 r1
h

M

]

]p
pr, ~3.2!

where$ , % is the Poisson bracket.
As pointed out earlier, in the Markovian limit, the ge

eral Liouville equation reduces to the Bloch equation
eigenstate space. Therefore, the above derivation of
quantum Fokker–Planck equation demonstrates the accu
of the Bloch–Redfield equation in the Markovian limit. Th
is not surprising because the higher order commutators
nored in Eq.~2.13! involve convolutions of force-force cor
relation functions which will integrate to zero if the memo
time of the bath is much smaller than the time scale of
system.

For a general exponential decay noise, Eqs.~2.26! and
~2.27! become Fokker–Planck-like equations in the class
limit, giving

ṙ5$H0 ,r%1$q,g% ~3.3!

and

ġ5$H0 ,g%2Dg1hDkT$q,r%2hD2qr. ~3.4!

These two coupled partial-differential equations can be
derstood as the first-order generalized Fokker–Planck e
tions corresponding to the general Langevin equation for
exponential decay correlation.

It is well-known that the general Langevin equation w
the exponential decay friction kernel can be reduced t
two-dimensional Markovian process.50,52,53 The resulting
Fokker–Planck equation has three variables, and can
transformed into an infinite series of coupled two-varia
Fokker–Planck equations. Therefore, the above two eq
tions can be viewed as the leading two equations in
series. Here, the Fokker–Planck equations are examine
the classical limit of phase-space Bloch–Redfield theory
that classical and quantum dissipative dynamics can
treated on the same level of approximation.

B. Detailed balance

One of the basic properties of quantum correlation fu
tions is the periodic condition48,54

C.~ t2 i\b!5C,~ t !, ~3.5!

which is strikingly different from the time-reversal symmet
of classical correlation functions. In Fourier space, the ab
relation can be rewritten as
J. Chem. Phys., Vol. 107,
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Ĉ.~v!5e2b\vĈ,~v!, ~3.6!

which can be easily recognized as the detailed balance
dition. As a result, even at high temperature, direct subst
tion of quantum correlation functions by their classical cou
terparts in Eq.~2.19! will violate the detailed balance of th
system and thus fail to recover thermal equilibrium as
stable solution.

By imposing the detailed balance condition in Eqs.~3.5!
or ~3.6!, we can approximate quantum correlation functio
by the corresponding classical ones. One choice is to iden
quantum linear response functions with their classical co
terparts, and the resulting quantum correlation functions
then given by

Ĉ.~v!5~\bv/2!@coth~\bv/2!11#Ĉcl~v!, ~3.7!

which holds exactly for a harmonic bath. This approach
effectively the dispersion polaron model pioneered
Warshel.55,56 The implication of Eq.~3.7! in the Bloch–
Redfield theory has been discussed earlier by Bader
Berne.35 It is argued by Cao and Voth57 that replacing the
classical correlation functions in Eq.~3.7! by the correlation
functions obtained from classical dynamics based on the c
troid potential energy surface provides a much better
proximation for the quantum correlation functions.

Expanding Eq.~3.7! to first order in quantum correction
we obtain

Ĉ.~v!5@11~\bv/2!#Ĉcl~v!, ~3.8!

which is obviously the same expression as Eq.~2.25!. As
seen from the derivation of the quantum and class
Fokker–Planck equations in the previous subsection,
imaginary part in Eq.~2.25! gives rise to the last term in Eqs
~3.1! and ~3.2!, which is required to balance the diffusio
term in order to achieve the thermal equilibrium. Essentia
it is the quantum nature of the bath–system interaction
requires the introduction of the imaginary part in Eq.~2.25!
in order to maintain the detailed balance of the quant
system. In fact, detailed balance can be used to test the
consistency of theories and algorithms for mixed quantu
classical systems.

C. Transformation of the bath Hamiltonian

The reduced equation of motion in Eq.~2.13! is obtained
under the assumption that higher order cumulants can
ignored. This is valid if the dissipation is weak or if th
correlation time of the dissipation is short, such as in
Markovian limit. If neither of these conditions is satisfie
the validity of the second-order truncation in Eq.~2.13! be-
comes questionable. This difficulty can be avoided if t
separation of system and bath is properly partitioned so
the system–bath interaction becomes weak and nonco
lated. There are many ways to achieve this. Here we
introduce a transformation of the bath Hamiltonian to rep
tition system and bath.

It is well-known that the general Langevin equation
equivalent to the harmonic bath model58 described by
No. 8, 22 August 1997
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3208 Jianshu Cao: A study of Bloch-Redfield theory
H5H0~q!1Hb~x!1Vint~q,x!

5H0~q!1(
i 51

N Fmiẋi
2

2
1

miv i
2

2 S xi2
ci

miv i
2 qD 2G , ~3.9!

where$mi ,v i ,ci% are a set of masses, frequencies, and c
pling constants for the bath oscillators. The spectral den
of the force-force correlation function in Eq.~2.20! is related
to the harmonic bath by

J~v!5(
i

p

2

ci
2

miv i
d~v2wi !, ~3.10!

which defines the density of states of the bath oscillato
This harmonic bath model is widely used in studying dis
pative processes such as quantum tunneling and conde
phase spectroscopy.

One approach is to identify a collective bath mode,
include it in the extended system, and to treat the rest of
harmonic oscillators as the secondary bath. The sys
couples only to the collective bath mode, and the bath m
in turn couples to the secondary bath. Then, the compo
Hamiltonian is expressed as

H5H0~q!1
1

2
m0ẋ0

21
1

2
m0v0

2S x02
c0

m0v0
2 qD 2

1Hb8~ x̄!,

~3.11!

where the secondary bath Hamiltonian is

Hb8~ x̄!5 (
n51

N21 F m̄nxG n
2

2
1

m̄nv̄n
2

2 S x̄n2
c̄n

m̄nv̄n
2 x0D 2G . ~3.12!

Here,m0 , v0 , andc0 are the mass, frequency, and coupli
constant of the collective bath mode, and$m̄n ,v̄n ,c̄n% are a
set of masses, frequencies, and coupling constants for
secondary bath oscillators. To distinguish them from
similar parameters in the harmonic bath Hamiltonian in E
~3.9!, the parameters for the secondary bath are denoted
an overbar. By integrating out the secondary bath, the
lective bath mode is effectively a Brownian oscillator.

The partitioning of the bath into the collective bath mo
and the secondary bath has been proposed earlier in the
text of quantum tunneling in dissipative systems.59 In the
case of electron transfer, Eq.~3.9! corresponds to the spin
boson model, where an electronic variable couples to a
monic bath, and Eq.~3.11! corresponds to the model used b
Garg et al.,60 where an electronic variable couples a sing
nuclear coordinate, which then couples to a harmonic b
For the accurate path integral treatment of quantum diss
tion, the two Hamiltonians described here are exactly equ
lent. Because of the approximate nature of the second cu
lant expansion in Eq.~2.12!, the partitioning of the bath can
reduce the effective dissipation and thus increase the a
racy of the phase-space Bloch–Redfield equations.

The transformation between these two Hamiltonians
been established by relating the parameters of the Brow
oscillator$x0 ,x̄n% to those of the original harmonic bath$xi%:
J. Chem. Phys., Vol. 107,
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v0
25

( ici
2/mi

(ci
2/miv i

2 , ~3.13!

c0
2

m0
5(

i

ci
2

mi
, ~3.14!

and an identity valid for an arbitrary variablez,

(
n

c̄n
2

m̄im0~v̄ i
21z!

5v0
21z2

( ici
2/mi

( ici
2/mi~v i

21z!
. ~3.15!

For derivation of these relations, see Appendix C in Ref.
by Caldeira and Leggett, Ref. 60 by Garg, Onuchic, a
Ambegaokar, and Appendix B in Ref. 61 by Cao and Vo

In the context of electron transfer, the collective mo
alone gives rise to the classical activation energy and e
tron transfer rate constant.61 Therefore, it is reasonable t
view v0 as a characteristic frequency of the environment a
to include the rest of the bath only when the dissipation a
quantum effects are significant. Furthermore, it should
noted that the dissipation on the Brownian oscillator by
secondary bath is independent of the strength of the orig
friction kernel. Since the collective bath mode captures
major contribution to dissipation from the bath, the secon
ary dissipation is significantly weaker, and thereby the
duced Liouville equation in Eq.~2.13! becomes applicable.

IV. CONCLUSION

In this paper, we have formulated the Bloch–Redfie
theory in phase-space and removed the Markovian appr
mation used in the Bloch equation. The resulting opera
equations can be solved without tensor algebra and ca
reduced to the Bloch equation and the Fokker–Planck eq
tion in the proper limits. For an exponential decay corre
tion, the general formulation can be simplified to a pair
coupled Liouville equations. However, the second-order
mulant truncation sets the limitation of the theory to we
couplings or short correlations. In this paper, we emplo
proper partitioning of the system and bath Hamiltonia
which greatly extends the applicability of the phase-sp
Bloch–Redfield equation. As an example, the transforma
between a Gaussian bath and a Brownian oscillator is s
ied. In short, this composite theory represents a succes
attempt toward a phase-space relaxation theory which tr
classical and quantum dissipative dynamics on the sa
level of approximation.

For the rigor of the theory, we have to address seve
conceptual problems such as the positiveness of the de
matrix and high order correction. The root of possible ne
tivity of the Redfield theory is primarily the second-ord
cumulant truncation in deriving Eq.~2.13!. However, a
proper preparation of the initial bath-system configurat
can significantly reduce the negative values in the Redfi
theory ~without the secular approximation!.28,62 There is no
better way to eliminate the negative values than to inclu
higher order cumulant expansion terms. Though such
theory would be valid for arbitrary coupling strengths a
correlation times, it will be considerably more complicat
No. 8, 22 August 1997
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and demanding to evaluate the higher order corrections.31,63

In this sense, Bloch–Redfield theory can be viewed as
leading order in a hierarchy of coupled dissipative Liouvi
equations.

In a companion paper by Che and Cao,46 the energy
relaxation and dephasing processes of a Morse oscillator
der exponential decay dissipation are numerically stud
within this theory and compared with the classical gene
ized Langevin equation and the quantum master equa
Direct propagation of the reduced density matrices is car
out to solve the coupled phase-space Liouville equations
the same paper, the approximations implied in Eq.~2.13! and
the quantum properties of the exponential decay friction k
nel are further discussed.

The phase-space representation of Bloch–Redfi
theory provides a direct picture of the relaxation process
photoinduced coherent wave packet. More importantly
provides a theoretical framework for incorporating vario
classical and semiclassical dynamics. This is necessary
cause exact quantum simulations of complicated dissipa
systems is intractable and the classical picture becomes m
helpful. The details of mixed quantum-and-classical dissi
tive dynamics will be fully investigated in the future. Th
capability of studying large dissipative systems allows
more deterministic description of the dynamics. Applicatio
of this version of Bloch–Redfield theory to condensed-ph
spectroscopy, electron transfer, and quantum control of
sipative systems, will be interesting directions to explore
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