A simple physical picture for quantum control of wave packet localization
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Based on weak field quantum control theory, a semiclassical approximation relates the characteristic
parameters of the tailored light field to corresponding classical dynamical quantities and thus reveals
the underlying physical basis of wave packet focusing. A coordinate-dependent two-level-system
approximation is employed to further analyze the molecular dynamics induced by short laser pulses,
thus leading to a simple interpretation of the observed correlation between the pulse chirp and
vibrational focusing and defocusing. Though our study is presented in the context of quantum
control, the conclusions are general, providing an intuitive picture of the quantum coherence of
light—matter interaction and a guideline for the design of tailored laser fields19€Y American
Institute of Physicg.S0021-960807)01329-9

I. INTRODUCTION s is shown to be correlated to the linear chirp rate through a
simple relation.

Progress in generating tailored light pulses has made it The paper is organized as follows. A derivation of quan-
possible to steer matter toward a specific goal, namely, ttum control theory is sketched in Sec. Il. A semiclassical
control its future'~® Theory~'* has been developed to pre- analysis is presented in Sec. Ill and a coordinate-dependent
dict an optimal laser field to drive a quantum wave packet tawo-level approximation in Secs. Ill. Using these tools, the
a desired functional form at a chosen time and this type ofelationship between the functional form of the light pulse,
quantum control has been experimentally realiz&® particularly in terms of chirp, and wave packet focusing and
Though various numerical algorithms of wave packet propadefocusing is derived in Sec. V. A discussion in Sec. VI
gation can be used to implement the equations of such quaencludes the paper.
tum control theory,’~23 the numerical predictions thus ob-
tained can be understood, as we discuss in this paper, by
simple physical arguments. We present here a unified phys|l. QUANTUM CONTROL THEORY

cal picture_ which is_ systematically deduced f.“’rT‘ the rigor- We briefly review the theoretical formalism of the opti-
ous equations and is capable of at least qualitatively Chara(fﬁal control field for driving a wave packet to a desired tar-

terizing the optimal fields without resorting to the full get. Though most results here have been given

quantum calculations. previously?131417-193 different line of derivation for the

Two distinct and supplementary approaches will be proy ey response results is adopted to emphasize the uniformity

posed, each with its own advantages and limitations. Th%f the strong and weak response solutions

first analysis is essentially a semiclassical approximatich Consider a molecule coupled to a time-dependent elec-
to the optimal field equation for a pure state in the weakyic field via a dipole interaction. For simplicity, the molecu-
response limit. The resulting field expression consists of subp,, system consists of two electronic stateg, and|e), de-
pulses each corresponding to a classical trajectory whichy. ipeq by two diabatic Hamiltoniangi, for the ground

after an expansion around its optimal stationary time, yieldgate and Ke+7iweg for the excited state. The electric field
a Gaussian pulse with parameters given by classical dynamjs treated classically as

cal quantities. The second analysis is based on a coordinate _ _

dependent two-level-system(TLS) approximatior?’~3° e(t)=E(t)e 'ed + E*(t)€'“ed, 1)
where the concept of an initial excited-state wave function isyjth weq being the transition frequency between the two
introduced to describe the quantum dynamical effects distates. Within the rotating wave approximation, the total
rectly induced by a short optical pulse. The linear relation of4amiltonian is given as

the chirp rate and the initial momentum distribution reflects - - -

the essence of coherent control of wave packet evolution. ~ H(D)=Hy+Hin, )

Several observations derived from the above two apynere the molecular term éM:ﬁg|g><g|+|i|e|e><e| and
proaches clearly demonstrate the underlying correspondentt:ﬁ-e interaction term iS|:|'m= — wE* ()| g)(e| — LE(D)]e)
. . . |
between classical and quantum dynamics and thus prove |r;2<g|, with « being the transition dipole moment. The den-

structive in understanding light-matter interaction from ag;y matrix of the coupled molecule-field system obeys the
classical or semiclassical point of view. We will illustrate the | ;] ville equation of motion

case of a molecule initially in the ground electronic state R
whose vibrational wave packet will be focused on an excited ~ dp(t)

o~ .
. . . ———=——[H(1),p(t)]=—iZ(t)p(t), 3
electronic state. The focusing and defocusing of wave packet  dt h [H(V,p(V)] (De(t) ©
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1442 J. Cao and K. R. Wilson: Quantum control of wave packet localization

where_ % is the Liouville operator. It follows that the density This procedure is particularly instructive when the right
matrix at timet; is formally given by hand side of the field equation is linearized in the weak re-
sponse limit. Let us assume that the initial density matrix is

p(t)), (4) defined on the ground §tatﬁg, and target operator is de-
fined on the excited staté,, then only the second term will
survive the linearization. Consequently, the field equation
Eq. (7) becomes

p(t)=exp,

t
—if Z(t"dt’
1§

where the subscriptimplies the time ordering of operators.
The evolution of the density matrix(t) as described by the
above equation contains all information about the system. t
In general, the target of quantum control can be specified AE(D)= ft_ M(t,t)E(t")dt, (10)

as an operatof with the realization of control measured by ' ) ) ) )
the expectation value of this target operator at timé* or where the material response function matvixis defined as
explicitl .

phcity M(tt')= % TH Age~Helti—t')/h

A(l)=Tr{Ap(ts)]. 5
Our goal is to find an external fiell(t) which maximizes X pe et /i p el eHelty =0/ (12)
the realization of such a target under certain constraints. T can pe easily seen that consecutive application of the linear
this end, we can construct a functional as operation to the initial guess for the field will filter out all
t components of the initial field except the eigenvector corre-
J(tf)zA(tf)—)\f |[E(t)|dt, (6) sponding to the maximum eigenvalue. Therefore, the itera-
t

tion procedure for the general case is reduced to an eigen-
where the Lagrange multipliex is introduced to constrain Vvalue solution in the weak response limit, with the
the total radiation energy. Rigorously, the optimization of theglgen\{aluibelng the yield and the eigenvector being the op-
field can be achieved by a variational differentiation of thetimal field.

functional J(t;) with respect to the field8J(t;)/ SE* (t) Before leaving this section, a yield functidris intro-
=0, resulting in duced as a measure of how we achieve our goal, defined by
i . A A . _ Aty) 12
NE(t)= 2 TITA(t) ulg)(elp(t) — p(t) u[g)(elA(D)]. TR
@) '

R which has the same value as the Lagrangian multiplier
Here, A(t) is the backward propagation of the target opera-when evaluated for the optimal field. The meaning of this
tor, defined as definition is self-evident: The expectation value of the target

per molecular per unit pulse energy. It then follows, in the
(8) weak response limit, that for a given molecular system and a
given target the optimal pulse computed from E@) or
(7) gives the maximum yield relative to any nonoptimized
pulses with the same pulse energy.

- -~ ts
A(t)=A(t;)exp; —iﬁ LAthHdt' |,

and p(t) is the forward propagation of the density matrix,
defined as Eq4). In deriving Eq.(7), the explicit expression
of SA(t;)/ SE*(t)=0 is written as

SA(ty)/ SE* (t)=Tr A exp;

tf
_ij %/(t’)dt’} lll. A SEMICLASSICAL FORMULATION
t

To facilitate a semiclassical analysis, we first introduce a
B N wave function versioh'’ of the quantum control theory for-
! ftié(t )dt\p(t) |, mulated in the last section. Assume that both the initial den-
' sity matrix and the final target consist of pure stafed;)
© —yuloxel and A(t)=asile)(el, (in which &*
in which the large bracket indicates a quantum commutatormeans Hermitianthen the field Eq(7) can be recast into
This leads directly to the introduction &f(t) in Eq. (8) and i
p(t) in Eq. (4). NE()= 2 [7" (gD 1] tre(t)) = ¥(thg(D)| 1l De(t)) ]-
The equation for the optimal field is the central result of (13)
guantum control theory, and the way as it is written in Eq.
(7) also suggests an iterative procedure to solve this fieldiere,#(t) is a forward propagation of the target wave func-
Starting with an initial guess for the field, the right hand sidetion

i
x5 |lal)(el.exp.

of Eq. (7) is evaluated for the field andis chosen such that t.

the total energy of the pulse is normalized to a given value.  ¥(t)=exp; —if H(t)dt' /7| s, (14
These two steps constitute a numerical loop and can be con- i

tinued until a convergence is reached. ¢(t) is a backward propagation of the target wave function
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(tia wherex; andp; are the position and momentum of the initial

Ift H(t')dt'/ﬁ}%- (15  wave packetg; is the Gaussian width, and similar defini-
tions hold for the target wave packet.

The subscriptg) and e denote the projections of the wave To proceed, the optimal field EL7) can be expressed

function on the ground-and excited states, respectively, ands

v is by definition independent of time and is given as

#(t)=exp;

) E(t)=(¢¢le e yy)*
7:<¢e(tf)|lﬂg(tf)):<¢f|e_ift‘fH(t,)dt//h|¢i>- (16) *

o :U XmJ dxy be(Xp) "G(Xq, X0 7) Yi(X1)|
In the weak response limit, only the second term of @&)
remains, giving (23

E(t)=(y;|eHeti= 0| 4, (17) Wwhere r=t;—t and G is the Green function propagating
from x,; to x, within time 7. Next, we introduce the semi-

where; is the initial ground state wave functiog is the  classical approximation for the Green funcfitif® given by
final excited state wave function, and the field can be nor-

malized by the constraint on the radiation energy. Since both C— ) . )
the target and initial wave functions are normalized, the yield GX1.X2;7) ; DO x5 m)exHiS(xe Xz 1)/A],
function defined in Eq(12) becomes (24

1 [t where the subscripgt stands for a summation over all pos-
y=732 Jt_ |E(t)]2dt, (18)  sible stationary paths. The stationary path is a classical tra-
: jectory satisfying the Newton’s equation of motion
which indicates that the overlap of the excited state and tar- oV
get wave functions determines the efficacy of reaching our  [Ag/Ax(t')]q=mX+ — =0, (25)

goal. X

A simpler way to obtain the above results is to Startsubject to the boundary condition$0)=x, andx(7)=x;.

directly_from the linear optimal field equations in Liquville S(7) is the corresponding classical action evaluated with the
space, i.e., Eq210) and(11). Now, under the assumption of LagrangianL[q(t')] along the stationary path
pure states, the linearized material response function

M(t,t") of Eq.(10) b 3 7 :

(1.t of Eq. (10 become sin = [ TLixan e ar
1
M(tt) = 5 (O o) (bl (1)), (19 .
zf {3x(t")ymx(t")— V[ x(t")]}dt’". (26)
in which the variables andt’ are separable. Then the opti- 0

mal field eigenequation of Eq10) has a trivial solution, Tpe prefactoD(7) in Eq. (24), termed Van Vleck determi-
which is given by Eq.(17). The expectation value of the 5nt is defined as

target can thus be cast explicitly as
i 0°S(Xq,%z;7)
D(r)= \/Zwﬁ X%y 27

A(ty) = J:fJ:fE(t)l\/I(t,t’)E(t’)dtdt’

) which can be expressed in terms of the Jacobi matrix and the
_ 1 f 24 Maslov index. Further discussion on the semiclassical ap-
72 [E(D[*dt] , (20) o :
f t; proximation can be found in several referentes.
To evaluate the integrals in E@R3), the action is ex-

which based on the definition in E(1L2) leads to the expres- panded as

sion for the yield in Eq(18).
The simple wave function expression for the optimal S(X1,X2;7)=S(X; X ,7) T+ Ps(7) (Xo— X)) — Pi(7) (X4
field, Eq.(17), now serves as the starting point of the semi-

2 2
classical analysis. We assume that both the initial and target — )+ 1 —5 (Xa=X¢)2+ —5 (X1 —X;)?
wave functions are of the Gaussian form 2 | ox; IXi
9*S
1 (Xx—%)%  pi(x—x;) + (X1 = X) (Xo—X¢) |+ -+ (28)
— _ +ij 1 i 2 f '

where we make use of classical relatiei® dx;=p;(7) and

and 95/ ax;=—py(7). Here, pi(r)=pi(x xi7) and p(7)
1 (X—X;)? Di(X—X;) =pi(x;,X;;7) are the final and initial momenta, respectively,
b= ex;{ - Yo i , (220  of a classical trajectory starting from and ending irx; at
V2 ag 2aq h

time 7. Note that for a given set of, andx; there may exist
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1444 J. Cao and K. R. Wilson: Quantum control of wave packet localization

more than one stationary path which satisfies the fixed (t—tg)? o (t—tg)?
boundary conditions. Then, the integrals in E2@) can be Ec(t)=Eq exp — T—lwo(t—to)—lc > |
completed to yield P 33)
E(t)=2 N(r)e IS/ whereEg, g, 1o, t,, andc are the amplitude, the carrier
st frequency, the temporal center, the temporal width, and the
linear chirp rate, respectively. The temporal parameters are
1
xexpl— [ Ap(7)]-II-[Ap(7)]}, (29 easily understood by writing the temporal evolution of the

where the prefactoN(7) is a function weakly dependent on field strength as

time except near caustics and the summation is carried over (t—tg)?

multiple classical traje(_:t_ories satisfying New_ton’s _equation P(t)=|E(t)|2:E(2) ex;{— _tor} (34)
and the boundary conditions. Here, the two-dimensional vec- p

tor and matrix are defined apAp(7)]=[p:(7) = P,Pi(7)  The frequency parameters are easily interpreted by taking the

—pi] and Fourier transformation of the field, giving the power spec-
1 trum as
M=— (I+iaS) la, 30
72 ( S) (30) - ﬁ{ (0—wo)%t5 (w— wg)?
w)=Pgexp————75—|=Po|l ————|:
Where 0 (1+th2) 0 1“2
(35
9°Slox? 7Sl ax;ox; here the bandwidth is defined
= , 31 where the bandwidth is defined as
= 9%Slaxiax;  9°Slax? S
1
a; 0 FZZCZtS-i‘ 2 (36)
a=| , (32 P
a
_ ! _ _ _ _ _ which is related to the full width half maximum of the power
and| is a two-dimensional identity matrix. spectrum byA wpwym=2TvIn [2. The Fourier transforma-

As there are generic difficulties associated with the nontion of the Gaussian pulse of E(B3) can be expressed as
uniform semiclassical approximatid@4), the field Eq.(29)
also suffers from root search problems and the divergence at mt, i (w—wg)?
caustics. Unlike an initial-value problem where the trajectory ~ =(@)=Eo'\/ Trice SR lete™ —52
follows a unique path in phase space, the boundary-value P
problem requires a search for solutions to E2f6) which —ic! (0—wg)?
satisfy both the initial and final conditions, giving rise to the 2
possibility of multiple solutions. Consequently, the numeri- . , , i ,
cal implementation of Eq(24) poses a formidable task in Wherec’ is the linear chirp rate in the frequency domain,
many-body systems. It also happens at certain times that tv\)Hh'Ch is related to the linear chirp rate in the time domain by
or more paths may coalesce at a focal point, resulting in the ct?
divergence of the prefact¢27). In this case one can resort to c'= Fg (38
more accurate uniform asymptotic approximations which as-

sume more complicated forrﬁ§.39th difficulties can ae The chirp describes the correlation between frequency and
avoided by making use of the initial-value formulatioi’ _time, which cannot be deduced from the intensity versus
Since a qualitative analysis will serve the purpose of thisime or the power spectrum. Instead, the electric field can be

paper, we do not intend to solve E@.15 numerically and  represented in the Wigner transformation féfm

shall not further discuss the complications involved in the

semiclassical approximatiqn. _ _ F(t,w)= fm dr e 1OTE* (t+ 7/2)E(t— 1/2), (39)
If one chooses an arbitrary target, an optimal field can —w

always be solved, but the yield as defined in ELy) may

not necessarily be high because of the mismatch of momen

in the exponential terms of E¢29). Therefore, to achieve a 9"

. . 2 .
reasonable yield, a target should be set near the correspontfsus time or temporal field strengtE(t)|* when inte-

ing classical trajectory in phase space for a given initial pO_grated over the frequency variable. Substituting the Gaussian
sition and momentum and the target time-t;, should be  field Ed.(33) into Eq.(39), we have

, (37

Which reduces to the power spectryi(w)|?> when inte-
ated over the time variable and reduces to the intensity

larger than the time needed for the initial phase point to (t—1to)2
reach the target phase point. Fo(t,w)=E3 exp[ - —tr—tg[w—(wo'i- ct—cto)]z},
Before proceeding to further discussions on the semi- P

: S o (40
classical approximation and its implications on wave packet
localization, we digress to introduce the Gaussian pulse, dewhich clearly shows that the center of the frequengy
fined as +c(t—tp) shifts at the rate of the linear chim Roughly
J. Chem. Phys., Vol. 107, No. 5, 1 August 1997
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speaking, on thé-(t,w) contour diagram, there is a center nored and if the widthw in Eq. (30) is small. Evidently, a

frequency at each time, these centers form a principal axis qulse of positive chirp is required for focusing a cannon

the contour plot, then the slope defined as the tangent formegince more energy is needed to complete the same classical

by the time axis and this principal axis, is determined by thetrajectory in shorter time; whereas, a pulse of negative chirp

linear chirp rate. is required for focusing a reflectron since a lower-energy
Now assume that the target lies right on the classicatrajectory can reach the target in shorter time by going

trajectory, withs, being the time for the classical trajectory through a lower turning point

to reach the target, thaw(7s) = p; andp;(7s) =p; . It fol- (e) The argument for reflectrons i) is not fully justi-

lows thatrg; must correspond to a peak of the pulse and thdied because on certain potential surfaces it may take longer

field equation Eq(29) can now be expanded around this to reach a lower turning point. Furthermore, if the target is

optimal stationary time, resulting in put exactly at the turning point, the semiclassical approxima-
5 tion is not valid, as the prefactor in E7) will diverge. To
S(r)=S(re) + ‘9_8 (71— 1)+ E I°S (7= 1g)%+ - this end, a different approach is presented in the next section,
U 07y U297 o ' which serves as the theoretical basis for further studies.
(41) All the expressions in this section can be easily general-
ey iz.ed to a_multidimensional space by adopting yectc_>r and ma-
pe(7)— Pr=5— (71— 740, (42)  trix notations. Since the semiclassical approximation is em-
st

ployed in order to understand quantum control using
and a similar expression fqr(7) — p; . Comparing with the ~classical dynamics, the conclusions presented above for a
standard definition of a Gaussian pulse in E2B), we can One-dimensional system will hold similarly for higher di-
readily identify the various terms in E€9) as the temporal Mmensionalities.

center to=t;—7g, the carrier frequency %wg
=—d9(1)/dt=E, the pulse durationor the temporal |\, A COORDINATE DEPENDENT TWO LEVEL
width tp) APPROXIMATION
A two-level-system(TLS) coupled to radiation has been
F:[ap(Tst)]'ReH'[ap(Tst)]' 43 used as the principal model for studying various forms of
P light-matter interactiori® Despite of its simplicity, the model
and the linear chirp rate reduces complicated molecular systems to an analytical solv-
7S able example while capturing the main features of many
c= ﬁﬂap( Tsp) ]- 1M IL-[ap( 7y ], (44)  physical processes. This model can be further improved by
st

introducing a coordinate dependence into the parameters of

where the two component vector is defined [@(7<,)] the TLS Hamiltonian, thus reflecting the spatial inhomoge-
=[p;/d7e;,dp; 1d7s]. The dynamical functions and their neity of realistic systems. The resulting _appr_oximz_;ltion is
partial derivatives in this section are defined with respect t¢®auivalent to the frozen nuclear assumption, implying that

fixed boundary conditions, meaning varyimguith fixed x;  the optical pulse is short enough that the nuclear motion can
andx . be ignored during the irradiation. Under this condition, the

The approximation of quantum dynamics by classicalinitial excited wave function after the pulse can be obtained

quantities gives an intuitive picture for understanding theln @ closed form and thus the effects of the optical pulse can
relation between the electric field and the quantum dynamicd€ directly investigated. The analytical nature of this ap-
To be specific, the following conclusions are discussed: ~ Proximation has been used earlier in studying the impulsive
(a) As argued earlier, the energy of the wave packet i€xcitation of coherent \7/|brat|0nal' Qynamlpfs, induced by in-
determined by the carrier frequendyw;=E, and only tar-  tense short pulse2§.‘3‘?'3 The explicit condition for the va-
gets located on the classical trajectory of enegin phase  lidity °f7 this approximation is established by Cao and
space can be realized with the highest yield. Wlls_on3 and the generallzatlon to nonstationary wave pack-
(b) Since each classical trajectory gives rise to a GaussetS IS presented in Sec. IV of the same reference.
ian pulse with a corresponding set of parameters given AsSsuming a weak field, the excited part of the wave
above, the optimal field can be approximated as the superpd¥nction at a later time can be expressed as
sition of Gaussian pulses. In other words, the subpulses in i [t _ ) )
the optimal field obtained by quantum dynamics calculations ~ e(t)= > f e Helt"DIE(r)e Moy d7, (45
can be interpreted as multiple classical solutions. ' o
(c) The Gaussian width given by E@43) is propor- wherezp'g is the stationary ground-state wave function and a
tional to[ dp¢( 7<) 12, Which in turn is related to the accelera- constant transition dipole moment is assumed, jues1. For
tion rate of the stationary trajectory. Therefore, to overcomaime t much larger than the terminal time of the pulse, the
the spreading, a narrow optimal pulse is preferred when thexcited-state wave function can be written as
Franck—Condon region is steep. M
(d) The linear chirp rate given by E¢44) can be sim- de()=e "y, (46)
plified asc=g%S/972,= — JE/ i, if the second term is ig- where the initial excited-state wave function is defined by
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N : . e
IJ/;:%J’ elHef/hE(T)elegr/hl//Ig dr. (47)

—co0

Exact
— = =TLS Approx.

The initial excited-state wave functiof, represents the im-

mediate result of the pulse, excluding any further vibrational _ °-® - .
propagation on the excited-state potential. z -

Next, invoking the short pulse assumption so that the 0.4 - -
kinetic-energy operator can be ignor€ahe initial excited- .
state wave function can be rewritten as 0.2 Population Distribution

! ! = i [+ I P R B SR L N R R ]
'ﬂle;(X):% f_mel WTE(7)dT Pg(X), (48 -7 6.5 -6 -55 -5 4.5 -4 -3.5 -3
(a) X
where the coordinate-dependent frequeiagi) is defined 0.002 ; |
= 0.0015? Exact :
fiw(X) =Ve(X) = Vy(X). (49) 0.001 7 — — -TLS Approx. | E
0.0005 2 4

—~

For comparison, time-dependent perturbation theory ex-
presses the first-order excitation wave function @s, T o0
=1h[” ., exdi(w,—omTIE(DdT ym» Whereyr, and i, are -0.0005 T

the eigenstates. Therefore, the change of variable from the 0001 - ]
eigenstate number to the spatial coordinate reflects the Momentum Distribution :
significant difference in the nature of the continuous wave “°-°°'51 ]
excitation and impulsive excitation. “0.002 —————trd ‘ e
-7 -6.5 -6 -5.5 «5 -4.5 -4 -3.5 -3

With this expression of the initial excited-state wave .
function in hand, one can readily study the coordinate and ®
momentum distributions on the excited state due to the optiriG. 1. A plot of the population distribution E¢52) and the momentum

cal excitation, defined, respectively, ﬁ.@() = | ‘/’L(X) |2 and distribution Eq.(53) of the initial excited-state wave function defined by Eq.
(51) for the displaced harmonic potential described in the text. The solid line
z/xi*(x)fnpi (X) is the ex_act _quantum (_:alculgtion by thg sp!itting operator method and the
(x)=Re e € (50) dashed line is the semiclassical approximation. Note that the two level sys-

| ,p'e(x) | 2 tem momentum distribution itb) diverges from the exact quantum result in

the less important tails of the population distribution showian
wherep is the momentum operator.

As an example, assume a Gaussian form in (88 for

the optical field. and substitute this Gaussian field into Eqcharacterizes the tailoring of the optical pulse, and is propor-
(48), we have tional to the momentum dispersion of the excited-state wave
function induced by the pulse.

(v — [ Usually, the Franck—Condon region is repulsive, so the
Ve(X) exp{ 2(1+ict§) }%(X)' ®) spatial derivative factor in Eq53) is negative. Assuming a
_ ) ) negative chirp, we then havp(x)>0 if w(X)>w, and
Wh_'Ch can be r_ewrltten ag(x)=a exp@@ with a and ¢ p(x)<0 if w(X)<wg. This result will be reversed for a
being the amplitude and phase, respectively. Consequentlynqitive chirp. Thus, the major effect of the chirp is to intro-

the population distribution, given as duce a linear distribution of initial momentum which proves
(0(X)— wg)?] to be significant in quantum control. In addition, according to

p(x)=a2=exp{— — Tz ng(x), (52 Eq. (53), given the linear chirp rate, the dispersion in the
initial momentum distribution increases as the pulse dura-
is independent of the sign of the chirp, a conclusion eas“);ion. This can be better understood from the uncertainty prin-
verified by an analysis in eigenstate space. Furthermore, tHéple as a narrow bandwidth excites a narrow wave packet in

momentum distribution is related to the linear chirp rate by coordinate space which in turn corresponds to a broad wave
packet in momentum space.

Equation(53) constitutes the central result of this section
and is now put to a numerical test. Take an example of a
_ _ o _displaced linear harmonic oscillator system definedHgs
whereV is the spatial derivative. Here, the pulse shape vari— p2/2+ (x+d)%/2 andH .= p2/2+x2/2, where the displace-
able, defined as ment isd=5 and unit values are assumed for mass, fre-
quency, and the Planck constaint The parameters in the

T = (54)  Gaussian pulse in E33) are given as,=1.0, »=12.5, and
(1+cty) T ¢=0.1. In Fig. 1, the initial wave function approximated by

(00— w0p)

f f
p(x)=aV@(x)=as(c,tp)Vw(x), (53
t t2
s(c,tp) = T %
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the coordinate-dependent two-level system is compared with ct?

the exact quantum calculation using the split operator P(E)= m(1+—22ﬂ4)
method. Clearly, both the population distributipfix) and P
momentum distributiorp(x) are recovered with reasonable Here, the coordinate dependence given in the last section is
accuracy by the TLS approximation. More importantly, otherequivalent to the energy dependence, itau(x)=E, be-
numerical resultgnot shown hereconfirm that the chirp of  cause the coordinate is now a classical turning point.

a single pulse does not effect the population distribution ofTherefore, the optimal field should induce a time delay to
the excited wave function but does induce an initial momenmatch the time delay due to the energy dispersion, giving
tum distribution. Though the above argument assumes a relgT(E) =dt, or explicitly

tively short pulse, the conclusion thus drawn is qualitatively
applicable in general.

Vo dE. (56)

s(c,tp)z—fﬁ=—eﬁ, (57)

V. CHIRP AND VIBRATIONAL LOCALIZATION where all the quantit'ies are evaluatgd at the cente.r of the
Franck—Condon region corresponding to the carrier fre-
There has been much recent interest in the design ajuency, the potential gradient in positi¥im is always nega-
laser fields for the generation of spatially squeezed or localtive, and the definition of the coefficientis self evident.
ized molecular wave packets3>38-%1|n this section, we Since the factors contained in the coefficierdre less sen-
will use the concepts developed in the previous sections teitive to anharmonicity, we simply state that under the con-
investigate the interesting correlation between the chirp andition of ct3>1 the linear chirp rate is proportional to the
vibrational localization. Recently it has been observed thahegative of energy dispersion.
the |, vibrational wave packet induced by an optical pulse  To demonstrate the validity of the relati¢s7), we em-
with a negative chirp exhibits more prominent peaks and @loy a quartic potential for the excited state
longer delocalization time than the wave packet induced by " 4
an optical pulse with a positive chirp. Ve=2X"+ 0(x)9x", (58)
~ Asimple explanation can be argued from the momentumy 4 5 displaced harmonic potential for the ground stde:
distribution of the initial excited-state wave function dis- _ 1/2(x+d)2 with d=5. Here, the Heaviside function is de-
cussed in the last section. It is known that the vibrationak;, . asé(x)=1 for x=0 and#(x)=0 for x<0, and again

period of b molecules on the excited surface increases With it yajyes are assumed for mass, frequency, and the Planck
vibrational energy. As shown in EGS3), a negative chirp  .,ngtant;. Both the initial and target wave functions are the
will introduce a positive initial momentum for a high-energy same minimum uncertainty wave packety;= ¢

1

component and a negative initial momentum for a IOW':(llﬁ)e‘(”d)z’Z, and the target time is set gt=10. Ac-

energy comlponent so that different energy componepts rec_ording to Eq.(57), the sign of the chirp is the same as the
main better in step and thus better localized at a later time. In. ] VN
sign of anharmonic coefficier in Eq. (58).

contrast, a positive chirp will increase the phase dispersion For all the examples given in this section, the quantum

resulting in a broader wave packet. This conclusion will be ropagation was performed by the split operator method with
reversed if it is the case where the vibrational period on thérorad P y pit op

excited-state surface decreases with vibrational energy. If) time step of 0.1 and a spatial grid of 128 points. In Fig. 2

. . . €r9Y- he contour plots of the Wigner transformation of the optimal
short, the sign of the chirp of the pulse which localizes Ofcald at t.=10 for the cases ofj= —0.003, g=0, and g
. . f— — U I — Y
focgses a wave packet is determined by the nature of the 0.01 are compared and clearly confirm our prediction that
excited-potential surface.

: . o the slope of the optimal field takes the same sign as that of
In order to investigate an example quantitatively, let us .
the anharmonicity.

consider a simple control problem: The target is set to be the To assess Eq57) quantitatively, we will investigate a

same as the initial ground-state wave packet. In other wordsgimple but intriguing scenario: The target is set up at the

the optimal pulse is designed such that different componentﬁ : . . . :
. L Classical turning point corresponding to the carrier frequency
of the wave packet can return to its original form near the

inner turning point at the same time. As already pointed out" the Franck—Condon region as in the last example, but the

; . . propagation timer=t;—t; is not limited, i.e., 8=7<<c. This
for a general anharmonic potential, different energy compo: o : .

. . oo . ; allows for an infinite number of subpulses if the excited-state
nents will have different vibrational periodq E) which re-

sult in a phase dispersiodT(E)=(dT/dE)dE, when the vibrational wave packet contains bound eigenstates. In Fig.

. ; , the optimal field calculated from E(L7) is plotted versus
wave packet returns to the turning point. On the other hand,” " _ . . .
the chirp of the optical pulse introduces a coordinate-"'. 7 (1;=0) for the quartic potential defined by E(8)

o S . with g=—0.003, which resembles a realistic molecular po-
dependent initial momentum distribution which amounts to . . )
. ) . . ential surface. The first few subpulsésunting from the

time delay for returning to the turning point

right) can be easily identified until the sixth peak, after which

p(E) subpulses become increasingly structured and smeared. This
dt= m T, (55 train of well-defined peaks corresponds to subsequent vibra-
tional oscillations of the nuclear wave packet. In fact, ex-
wherep(E) is given by Eq.(53) as tending this calculation to longer times, we have sésut
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(a) for the quartic potential of Eq(58 with g=—0.003, g=0, andg

=0.01, along with the plot of the quartic potential E§8) in (b).

shown herg recursions in the optimal field, indicating the

n=1 n=2
O OPH - s O 1 80 -
recurrences of vibrational motion in the same spirit as the | )

fractional revivals observed in molecular wave pacKéts.

Following the same argument which leads to Exy), it
is straightforward to show that the optimal subpulse isolated T T
from the global optimal field obeys the following relation:

T
Sn(C,tp)=—ne JE

where n is the number of vibrational cycles, namely, the
peak number of the optimal subpulse counted from the target 4o Lo

(59

012y —r N
0.10 i

0.08 | :

1201
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[ JL . B L L I A A,U;Lu
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Time

FIG. 3. The amplitude of the optimal field calculated from ELj) for the
quartic potential of Eq(58) with g=—0.003.

subpulses isolated from the global optimal field can be em-
ployed to test the accuracy of our theory which predicts
s,/s;=n. Indeed, this is exactly observed in Fig. 4 where
the Wigner transformation of the optimal subpulses ffior
=1-5 are compared. Furthermore, the sespfalculated
from its definition in Eq.(57) is listed in Table | and agrees
well with the prediction of a linear increase of the shape
variables with n.

It should be mentioned, however, that increasing shape
variable does not necessarily imply increasing chirp rate as
s(c,tp) also depends on the Gaussian time witjthTo this
end, the semiclassical formulation in Sec. Ill can be used to
discover the functional dependence of the chirp ratenon
From classical mechanics, one can show that the a&ion
and timer are linear functions ofi. For a narrow Gaussian
with small values ofe; or «;, the expression for the linear
chirp rate, Eq(44) can be expanded as

9°S
C%
J

+[op(7s)]- a-[9p(7sy ], (60)

2
Tst
which scales inversely witim, namely,cx1/n. To see the
consistency between this semiclassical argument and the lin-

10 T T T T 10 T T T T
54 - 50 |
. 4 51 J
1 ! 1 1 -10 1 1
9 8 7 6 5 4 -6 -5 14 13 12 -1

10 T T T T 10 T T T T
5k

o e

L -10 ! 1 1 1

1
time. In order words, to control a wave packet at the turning -2 22 21 20 -19 -18 %0 29 28 27 26 -2
point for a target time corresponding mooscillation periods

from the center of the pulse, the shape variable of the optirig. 4. contour plots of the Wigner transformation of the optimal subpulses
mal pulse should be multiplied times. Hence, the train of for n=1,2,3,4, counting the initial pulsen&1) from the right in Fig. 3.

T T
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TABLE |. Parameters for the best Gaussian fit to the optimal subpulses. 0.6 T e e e negative chirp
--------- positive chirp
n c t,” re 4 re 0.5
1 —-8.0 0.38 16 —0.071 1.0 0.4 L
2 —6.0 0.62 16 —-0.14 2.0 o
3 —4.5 0.80 15 —0.20 2.9 § 0.3
4 -3.2 0.92 10 —0.28 3.9 s°
5 -25 1.12 8.6 —0.36 5.1 I | I ’
H i
a: the linear chirp rate. :
B, the pulse duration. 01 4R L |
°I': the bandwidth, defined d&?=c?t2+ 112, . BURC

Us: the pulse shape variable, definedsascty/(1+c?ty). 0 ‘ 5 10 '
¢r: the ratio of the coherence variable of thth subpulse to the coherence (a)
variable of the first subpulse,,=s, /s;, which is predicted to be equal to

n.

negative chirp
positive chirp

ear relation(59), two limiting situations are considered as
follows. First, in the case oéty<1, in order to havect;
«n given ce<1/n, one must havef)ocn, indicating that the
pulse duration increases with time. Next, in the casetéf
>1, we haves~(1/c)xn, which agrees with the scaling
predicted by Eq(59). In conclusion, a longer pulsg.e., a
larger tp) with a smaller linear chirp ratéi.e., a smaller
|c|) is preferred for localizing a wave packet at a later time.
Table | lists the linear chirp rate and the time duration (b)
t, determined by a best Gaussian fit to the exact quantum

calculations. The data support our conclusions where arg/G: 5 The probability of finding the excited-state wave functior=ab as
b d - lifvi fi d icl ical h a function of time. The solid curve corresponds to an optimal pulse with a
asea on simp |fy|ng assumpuons and semiciassical mec alﬂégative chirp while the dashed curve corresponds to a similar pulse with

ics. In addition, in Table I, we show the frequency band-the opposite chirp as transformed from the optimal pulse according to Eq.
widths, defined asl“Z:l/tg—F cztg, for the first three sub- (61). (a) is the result of the first optimal subpulse= 1) and(b) is the result
pulses are similar. In fact, when the individual subpulsef the third optimal subpulsen(=3).

from the optimal pulse are examined, the spectral distribu-

tion (i.e., frequency spectraf all the subpulses are similar,
as can be seen in Fig. 4 by projecting the Wigner represe
tations on the frequency axige., examining the frequency
marginalg. This is suggested by the optimal condition that
the wave functions induced by different optimal subpulse
should all be similar to the target wave function at the targe

glroneectlrrzjr%r?c?rr atl(I)I ?gﬁ:ﬁﬁesﬁggﬂ;gwely* implying & similar matiq contrast is observed in Fig@ where the_same cal-
For demonstration, a pulse of the opposite chirp but oth-CL.Jlaltlon was repeate_d fqr the third sgbpulse |sola_1ted from
erwise with the same p;arameters as the optimal subpulse cFr|19' 3. This observgtlon Is expected since .the optimal sub-
be constructed as _ulse qf a largem mtrpduces a larger initial mpmgntum
dispersion and thus shifts the wave packet localization later
E(to—1)|* in time.
Ttd} E(to), (61) Our example based on a specific kind of quantum con-

trol is by no means just a limiting case or an exercise. This

wheret, is the center of the subpulse, which is set zero. The o reation between the control pulse and the time for wave
transformation defined by Eq61) will keep the temporal  h4ciet [ocalization is applicable in general. Studies on real-

shape of the pulse unchanged but flip the sign of the phasgic molecular systems in our group agree well with the

according top(t) = — ¢(—1t). When applied to the Gaussian analysis presented het&?

field Eq.(33), this transformation will change the sign of the

linear ch|rp ratec. Qompa_nson of e?<C|tat|on effects _mduced VI. CONCLUSION

by a pair of opposite chirps constitutes the most important

demonstration of the quantum coherence between light A simple physical picture of optical control of wave

pulses and matter wave pack&tg®42-44 packet localization emerges as the result of the two approxi-
Finally, the wave function of the quartic potential of Eq. mations proposed in this paper. In summary, we rephrase the

(58) with g= —0.003 induced by the first optimal subpulse major conclusions of our analysis presented in the previous

has been propagated. We then calculated0)|?, the prob-  sections:

Iy, (0)2

ability of finding the optically excited particle at=0 as a
Tunction of time, which is associated with the LIF signal
from a probe window ak=0. The clear contrast of the re-
sults computed from the negative and positive chirps shown
n Fig. 5@ demonstrates the central role of the chirp in
uantum coherence of wave packet localization. A more dra-

E'(t—to)=
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