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Based on weak field quantum control theory, a semiclassical approximation relates the characteristic
parameters of the tailored light field to corresponding classical dynamical quantities and thus reveals
the underlying physical basis of wave packet focusing. A coordinate-dependent two-level-system
approximation is employed to further analyze the molecular dynamics induced by short laser pulses,
thus leading to a simple interpretation of the observed correlation between the pulse chirp and
vibrational focusing and defocusing. Though our study is presented in the context of quantum
control, the conclusions are general, providing an intuitive picture of the quantum coherence of
light–matter interaction and a guideline for the design of tailored laser fields. ©1997 American
Institute of Physics.@S0021-9606~97!01329-9#
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I. INTRODUCTION

Progress in generating tailored light pulses has mad
possible to steer matter toward a specific goal, namely
control its future.1–8 Theory9–14 has been developed to pre
dict an optimal laser field to drive a quantum wave packe
a desired functional form at a chosen time and this type
quantum control has been experimentally realized.7,8,15,16

Though various numerical algorithms of wave packet pro
gation can be used to implement the equations of such q
tum control theory,17–23 the numerical predictions thus ob
tained can be understood, as we discuss in this paper
simple physical arguments. We present here a unified ph
cal picture which is systematically deduced from the rig
ous equations and is capable of at least qualitatively cha
terizing the optimal fields without resorting to the fu
quantum calculations.

Two distinct and supplementary approaches will be p
posed, each with its own advantages and limitations.
first analysis is essentially a semiclassical approximation24–26

to the optimal field equation for a pure state in the we
response limit. The resulting field expression consists of s
pulses each corresponding to a classical trajectory wh
after an expansion around its optimal stationary time, yie
a Gaussian pulse with parameters given by classical dyn
cal quantities. The second analysis is based on a coord
dependent two-level-system~TLS! approximation,27–30

where the concept of an initial excited-state wave function
introduced to describe the quantum dynamical effects
rectly induced by a short optical pulse. The linear relation
the chirp rate and the initial momentum distribution refle
the essence of coherent control of wave packet evolution

Several observations derived from the above two
proaches clearly demonstrate the underlying correspond
between classical and quantum dynamics and thus prov
structive in understanding light–matter interaction from
classical or semiclassical point of view. We will illustrate th
case of a molecule initially in the ground electronic sta
whose vibrational wave packet will be focused on an exci
electronic state. The focusing and defocusing of wave pa
J. Chem. Phys. 107 (5), 1 August 1997 0021-9606/97/107(5)/14
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s is shown to be correlated to the linear chirp rate throug
simple relation.

The paper is organized as follows. A derivation of qua
tum control theory is sketched in Sec. II. A semiclassi
analysis is presented in Sec. III and a coordinate-depen
two-level approximation in Secs. III. Using these tools, t
relationship between the functional form of the light puls
particularly in terms of chirp, and wave packet focusing a
defocusing is derived in Sec. V. A discussion in Sec.
concludes the paper.

II. QUANTUM CONTROL THEORY

We briefly review the theoretical formalism of the opt
mal control field for driving a wave packet to a desired ta
get. Though most results here have been giv
previously,9,13,14,17–19a different line of derivation for the
weak response results is adopted to emphasize the unifor
of the strong and weak response solutions.

Consider a molecule coupled to a time-dependent e
tric field via a dipole interaction. For simplicity, the molecu
lar system consists of two electronic states,ug& and ue&, de-
scribed by two diabatic Hamiltonians,Hg for the ground
state and (He1\veg) for the excited state. The electric fiel
is treated classically as

e~ t !5E~ t !e2 ivegt1E* ~ t !eivegt, ~1!

with veg being the transition frequency between the tw
states. Within the rotating wave approximation, the to
Hamiltonian is given as

Ĥ~ t !5ĤM1Ĥ int , ~2!

where the molecular term isĤM5Ĥgug&^gu1Ĥeue&^eu and
the interaction term isĤ int52mE* (t)ug&^eu2mE(t)ue&
3^gu, with m being the transition dipole moment. The de
sity matrix of the coupled molecule-field system obeys
Liouville equation of motion

dr̂~ t !

dt
52

i

\
@Ĥ~ t !,r̂~ t !#52 iL~ t !r̂~ t !, ~3!
144141/10/$10.00 © 1997 American Institute of Physics
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1442 J. Cao and K. R. Wilson: Quantum control of wave packet localization
whereL is the Liouville operator. It follows that the densit
matrix at timet f is formally given by

r̂~ t !5exp1F2 i E
t i

t

L~ t8!dt8G r̂~ t i !, ~4!

where the subscript1implies the time ordering of operators
The evolution of the density matrixr̂(t) as described by the
above equation contains all information about the system

In general, the target of quantum control can be speci
as an operatorÂ with the realization of control measured b
the expectation value of this target operator at timel f ,

14 or
explicitly

A~ l f !5Tr@Âr̂~ t f !#. ~5!

Our goal is to find an external fieldE(t) which maximizes
the realization of such a target under certain constraints
this end, we can construct a functional as

J~ t f !5A~ t f !2lE
t i

t f
uE~ t !u2dt, ~6!

where the Lagrange multiplierl is introduced to constrain
the total radiation energy. Rigorously, the optimization of t
field can be achieved by a variational differentiation of t
functional J(t f) with respect to the field,dJ(t f)/dE* (t)
50, resulting in

lE~ t !5
i

\
Tr@Â~ t !mug&^eur̂~ t !2 r̂~ t !mug&^euÂ~ t !#.

~7!

Here,Â(t) is the backward propagation of the target ope
tor, defined as

Â~ t !5Â~ t f !exp1F2 i E
t

t f
L~ t8!dt8G , ~8!

and r̂(t) is the forward propagation of the density matri
defined as Eq.~4!. In deriving Eq.~7!, the explicit expression
of dA(t f)/dE* (t)50 is written as

dA~ t f !/dE* ~ t !5Tr Â exp1F2 i E
t

t f
L~ t8!dt8G

3
i

\ F ugu&^eu,exp1F2 i E
t i

t

L~ t8!dt8G r̂~ t i !G ,
~9!

in which the large bracket indicates a quantum commuta
This leads directly to the introduction ofÂ(t) in Eq. ~8! and
r̂(t) in Eq. ~4!.

The equation for the optimal field is the central result
quantum control theory, and the way as it is written in E
~7! also suggests an iterative procedure to solve this fi
Starting with an initial guess for the field, the right hand si
of Eq. ~7! is evaluated for the field andl is chosen such tha
the total energy of the pulse is normalized to a given val
These two steps constitute a numerical loop and can be
tinued until a convergence is reached.
J. Chem. Phys., Vol. 107

Downloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subjec
d

o

-

r.

f
.
d.

.
n-

This procedure is particularly instructive when the rig
hand side of the field equation is linearized in the weak
sponse limit. Let us assume that the initial density matrix
defined on the ground state,r̂g , and target operator is de
fined on the excited state,Âe , then only the second term wil
survive the linearization. Consequently, the field equat
Eq. ~7! becomes

lE~ t !5E
t i

t f
M ~ t,t8!E~ t8!dt8, ~10!

where the material response function matrixM is defined as

M ~ t,t8!5
1

\2 Tr@Âee
2 iHe~ t f2t8!/\

3me2 iHgt8/\r̂ge
iHgt/\meiHe~ t f2t !/\#. ~11!

It can be easily seen that consecutive application of the lin
operation to the initial guess for the field will filter out a
components of the initial field except the eigenvector cor
sponding to the maximum eigenvalue. Therefore, the ite
tion procedure for the general case is reduced to an eig
value solution in the weak response limit, with th
eigenvalue being the yield and the eigenvector being the
timal field.14

Before leaving this section, a yield function14 is intro-
duced as a measure of how we achieve our goal, define

y5
A~ t f !

* t i
t f uE~ t !u2dt

, ~12!

which has the same value as the Lagrangian multipliel
when evaluated for the optimal field. The meaning of th
definition is self-evident: The expectation value of the tar
per molecular per unit pulse energy. It then follows, in t
weak response limit, that for a given molecular system an
given target the optimal pulse computed from Eqs.~10! or
~7! gives the maximum yield relative to any nonoptimize
pulses with the same pulse energy.

III. A SEMICLASSICAL FORMULATION

To facilitate a semiclassical analysis, we first introduc
wave function version2,17 of the quantum control theory for
mulated in the last section. Assume that both the initial d
sity matrix and the final target consist of pure states:r̂(t i)
5c ic i

1ug&^gu and Â(t f)5f ff f
1ue&^eu, ~in which f1

means Hermitian! then the field Eq.~7! can be recast into

lE~ t !5
i

\
@g* ^fg~ t !umuce~ t !&2g^cg~ t !umufe~ t !&#.

~13!

Here,c(t) is a forward propagation of the target wave fun
tion

c~ t !5exp1F2 i E
t i

t

Ĥ~ t8!dt8/\Gc i , ~14!

f(t) is a backward propagation of the target wave functi
, No. 5, 1 August 1997
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1443J. Cao and K. R. Wilson: Quantum control of wave packet localization
f~ t !5exp1F i E
t

t f
Ĥ~ t8!dt8/\Gf f . ~15!

The subscriptsg and e denote the projections of the wav
function on the ground-and excited states, respectively,
g is by definition independent of time and is given as

g5^fe~ t f !ucg~ t f !&5^f f ue2 i*
t i

t f Ĥ~ t8!dt8/\uc i&. ~16!

In the weak response limit, only the second term of Eq.~13!
remains, giving

E~ t !5^c i ueiHe~ t f2t !/\uf f&, ~17!

wherec i is the initial ground state wave function,f f is the
final excited state wave function, and the field can be n
malized by the constraint on the radiation energy. Since b
the target and initial wave functions are normalized, the yi
function defined in Eq.~12! becomes

y5
1

\2 E
t i

t f
uE~ t !u2dt, ~18!

which indicates that the overlap of the excited state and
get wave functions determines the efficacy of reaching
goal.

A simpler way to obtain the above results is to st
directly from the linear optimal field equations in Liouvill
space, i.e., Eqs.~10! and~11!. Now, under the assumption o
pure states, the linearized material response func
M (t,t8) of Eq. ~10! becomes31

M ~ t,t8!5
1

\2 ^c~ t !uf f&^f f uc~ t8!&, ~19!

in which the variablest and t8 are separable. Then the opt
mal field eigenequation of Eq.~10! has a trivial solution,
which is given by Eq.~17!. The expectation value of th
target can thus be cast explicitly as

A~ t f !5E
t i

t fE
t i

t f
E~ t !M ~ t,t8!E~ t8!dtdt8

5
1

\2 S E
t i

t f
uE~ t !u2dtD 2, ~20!

which based on the definition in Eq.~12! leads to the expres
sion for the yield in Eq.~18!.

The simple wave function expression for the optim
field, Eq. ~17!, now serves as the starting point of the sem
classical analysis. We assume that both the initial and ta
wave functions are of the Gaussian form

c i5
1

A2pa i

expF2
~x2xi !

2

2a i
1 i

pi~x2xi !

\ G ~21!

and

f f5
1

A2pa f

expF2
~x2xf !

2

2a f
1 i

pf~x2xf !

\ G , ~22!
J. Chem. Phys., Vol. 107
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wherexi andpi are the position and momentum of the initi
wave packet,a i is the Gaussian width, and similar defin
tions hold for the target wave packet.

To proceed, the optimal field Eq.~17! can be expressed
as

E~ t !5^f f ue2 iHetuc i&*

5U E dx1E dx2 f f~x2!
1G~x1 ,x2 ;t!c i~x1!U* ,

~23!

where t5t f2t and G is the Green function propagatin
from x1 to x2 within time t. Next, we introduce the semi
classical approximation for the Green function24–26given by

G~x1 ,x2 ;t!5(
st

D~x1 ,x2 ;t!exp@ iS~x1 ,x2 ;t!/\#,

~24!

where the subscriptst stands for a summation over all po
sible stationary paths. The stationary path is a classical
jectory satisfying the Newton’s equation of motion

@DS/Dx~ t8!#st5mẍ1
]V

]x
50, ~25!

subject to the boundary conditionsx(0)5xi and x(t)5xf .
S(t) is the corresponding classical action evaluated with
LagrangianL@q(t8)# along the stationary path

S~t!5E
0

t

L@x~ t8!,ẋ~ t8!#dt8

5E
0

t

$ 1
2ẋ~ t8!mẋ~ t8!2V@x~ t8!#%dt8. ~26!

The prefactorD(t) in Eq. ~24!, termed Van Vleck determi-
nant, is defined as

D~t!5A i

2p\

]2S~x1 ,x2 ;t!

]x1]x2
, ~27!

which can be expressed in terms of the Jacobi matrix and
Maslov index. Further discussion on the semiclassical
proximation can be found in several references.32

To evaluate the integrals in Eq.~23!, the action is ex-
panded as

S~x1 ,x2 ;t!5S~xi ,xf ,t!1pf~t!~x22xf !2pi~t!~x1

2xi !1
1

2 F]2S

]xf
2 ~x22xf !

21
]2S

]xi
2 ~x12xi !

2

1
]2S

]x1]xf
~x12xi !~x22xf !G1••• , ~28!

where we make use of classical relations]S/]xi5pi(t) and
]S/]xf52pf(t). Here, pf(t)5pf(xi ,xf ;t) and pi(t)
5pi(xi ,xf ;t) are the final and initial momenta, respective
of a classical trajectory starting fromxi and ending inxf at
time t. Note that for a given set ofxi andxf there may exist
, No. 5, 1 August 1997
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1444 J. Cao and K. R. Wilson: Quantum control of wave packet localization
more than one stationary path which satisfies the fi
boundary conditions. Then, the integrals in Eq.~23! can be
completed to yield

E~ t !5(
st

N~t!e2 iS~t!/\

3exp$2 1
2@Dp~t!#•P•@Dp~t!#%, ~29!

where the prefactorN(t) is a function weakly dependent o
time except near caustics and the summation is carried
multiple classical trajectories satisfying Newton’s equat
and the boundary conditions. Here, the two-dimensional v
tor and matrix are defined as:@Dp(t)#5@pf(t)2pf ,pi(t)
2pi # and

P5
1

\2 ~ l1 iaS2!
21a, ~30!

where

S25F ]2S/]xf
2 ]2S/]xf]xi

]2S/]xf]xi ]2S/]xi
2 G , ~31!

a5Fa f 0

0 a i
G , ~32!

and I is a two-dimensional identity matrix.
As there are generic difficulties associated with the n

uniform semiclassical approximation~24!, the field Eq.~29!
also suffers from root search problems and the divergenc
caustics. Unlike an initial-value problem where the trajecto
follows a unique path in phase space, the boundary-va
problem requires a search for solutions to Eq.~25! which
satisfy both the initial and final conditions, giving rise to th
possibility of multiple solutions. Consequently, the nume
cal implementation of Eq.~24! poses a formidable task i
many-body systems. It also happens at certain times that
or more paths may coalesce at a focal point, resulting in
divergence of the prefactor~27!. In this case one can resort t
more accurate uniform asymptotic approximations which
sume more complicated forms.25 Both difficulties can be
avoided by making use of the initial-value formulation.33,34

Since a qualitative analysis will serve the purpose of t
paper, we do not intend to solve Eq.~2.15! numerically and
shall not further discuss the complications involved in t
semiclassical approximation.

If one chooses an arbitrary target, an optimal field c
always be solved, but the yield as defined in Eq.~17! may
not necessarily be high because of the mismatch of mom
in the exponential terms of Eq.~29!. Therefore, to achieve a
reasonable yield, a target should be set near the corresp
ing classical trajectory in phase space for a given initial
sition and momentum and the target time,t f2t i , should be
larger than the time needed for the initial phase point
reach the target phase point.

Before proceeding to further discussions on the se
classical approximation and its implications on wave pac
localization, we digress to introduce the Gaussian pulse,
fined as
J. Chem. Phys., Vol. 107
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EG~ t !5E0 expF2
~ t2t0!

2

2tp
2 2 iv0~ t2t0!2 ic

~ t2t0!
2

2 G ,
~33!

whereE0 , v0 , t0 , tp , andc are the amplitude, the carrie
frequency, the temporal center, the temporal width, and
linear chirp rate, respectively. The temporal parameters
easily understood by writing the temporal evolution of t
field strength as

P~ t !5uE~ t !u25E0
2 expF2

~ t2t0!
2

tp
2 G . ~34!

The frequency parameters are easily interpreted by taking
Fourier transformation of the field, giving the power spe
trum as

P~v!5P0 expF2
~v2v0!

2tp
2

~11tp
4c2! G5P0F2

~v2v0!
2

G2 G ,
~35!

where the bandwidth is defined as

G25c2tp
21

1

tp
2 , ~36!

which is related to the full width half maximum of the powe
spectrum byDvFWHM52GAln u2. The Fourier transforma
tion of the Gaussian pulse of Eq.~33! can be expressed as

E~v!5E0A ptp
2

11 ictp
2 expF ivt02 ~v2v0!

2

2G2

2 ic8
~v2v0!

2

2 G , ~37!

wherec8 is the linear chirp rate in the frequency domai
which is related to the linear chirp rate in the time domain

c85
ctp

2

G2 . ~38!

The chirp describes the correlation between frequency
time, which cannot be deduced from the intensity vers
time or the power spectrum. Instead, the electric field can
represented in the Wigner transformation form14

F~ t,v!5E
2`

`

dt e2 ivtE* ~ t1t/2!E~ t2t/2!, ~39!

which reduces to the power spectrumuE(v)u2 when inte-
grated over the time variable and reduces to the inten
versus time or temporal field strengthuE(t)u2 when inte-
grated over the frequency variable. Substituting the Gaus
field Eq. ~33! into Eq. ~39!, we have

FG~ t,v!5E0
2 expH 2

~ t2t0!
2

tp
2 2tp

2@v2~v01ct2ct0!#
2J ,
~40!

which clearly shows that the center of the frequencyv0

1c(t2t0) shifts at the rate of the linear chirpc. Roughly
, No. 5, 1 August 1997
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1445J. Cao and K. R. Wilson: Quantum control of wave packet localization
speaking, on theF(t,v) contour diagram, there is a cent
frequency at each time, these centers form a principal axi
the contour plot, then the slope defined as the tangent for
by the time axis and this principal axis, is determined by
linear chirp rate.

Now assume that the target lies right on the class
trajectory, withtst being the time for the classical trajecto
to reach the target, thenpf(tst)5pf andpi(tst)5pi . It fol-
lows thattst must correspond to a peak of the pulse and
field equation Eq.~29! can now be expanded around th
optimal stationary time, resulting in

S~t!5S~tst!1
]S

]tst
~t2tst!1

1

2

]2S

]tst
2 ~t2tst!

21••• ,

~41!

pf~t!2pf5
]pf
]tst

~t2tst!, ~42!

and a similar expression forpi(t)2pi . Comparing with the
standard definition of a Gaussian pulse in Eq.~33!, we can
readily identify the various terms in Eq.~29! as the tempora
center t05t f2tst , the carrier frequency \v0

52]S(t)/]tst5E, the pulse duration~or the temporal
width tp!

1

tp
2 5@]p~tst!#•ReP•@]p~tst!#, ~43!

and the linear chirp rate

c5
]2S

]tst
2 1@]p~tst!#•Im P•@]p~tst!#, ~44!

where the two component vector is defined as@]p(tst)#
5@]pf /]tst ,]pi /]tst#. The dynamical functions and the
partial derivatives in this section are defined with respec
fixed boundary conditions, meaning varyingt with fixed xi
andxf .

The approximation of quantum dynamics by classi
quantities gives an intuitive picture for understanding
relation between the electric field and the quantum dynam
To be specific, the following conclusions are discussed:

~a! As argued earlier, the energy of the wave packe
determined by the carrier frequency,\v i5E, and only tar-
gets located on the classical trajectory of energyE in phase
space can be realized with the highest yield.

~b! Since each classical trajectory gives rise to a Gau
ian pulse with a corresponding set of parameters gi
above, the optimal field can be approximated as the supe
sition of Gaussian pulses. In other words, the subpulse
the optimal field obtained by quantum dynamics calculatio
can be interpreted as multiple classical solutions.

~c! The Gaussian width given by Eq.~43! is propor-
tional to @]pf(tst)#

2, which in turn is related to the accelera
tion rate of the stationary trajectory. Therefore, to overco
the spreading, a narrow optimal pulse is preferred when
Franck–Condon region is steep.

~d! The linear chirp rate given by Eq.~44! can be sim-
plified asc5]2S/]tst

2 52]E/]tst if the second term is ig-
J. Chem. Phys., Vol. 107
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nored and if the widtha in Eq. ~30! is small. Evidently, a
pulse of positive chirp is required for focusing a cann
since more energy is needed to complete the same clas
trajectory in shorter time; whereas, a pulse of negative ch
is required for focusing a reflectron since a lower-ene
trajectory can reach the target in shorter time by go
through a lower turning point.35

~e! The argument for reflectrons in~d! is not fully justi-
fied because on certain potential surfaces it may take lon
to reach a lower turning point. Furthermore, if the target
put exactly at the turning point, the semiclassical approxim
tion is not valid, as the prefactor in Eq.~27! will diverge. To
this end, a different approach is presented in the next sec
which serves as the theoretical basis for further studies.

All the expressions in this section can be easily gene
ized to a multidimensional space by adopting vector and m
trix notations. Since the semiclassical approximation is e
ployed in order to understand quantum control us
classical dynamics, the conclusions presented above f
one-dimensional system will hold similarly for higher d
mensionalities.

IV. A COORDINATE DEPENDENT TWO LEVEL
APPROXIMATION

A two-level-system~TLS! coupled to radiation has bee
used as the principal model for studying various forms
light-matter interaction.36 Despite of its simplicity, the mode
reduces complicated molecular systems to an analytical s
able example while capturing the main features of ma
physical processes. This model can be further improved
introducing a coordinate dependence into the parameter
the TLS Hamiltonian, thus reflecting the spatial inhomog
neity of realistic systems. The resulting approximation
equivalent to the frozen nuclear assumption, implying t
the optical pulse is short enough that the nuclear motion
be ignored during the irradiation. Under this condition, t
initial excited wave function after the pulse can be obtain
in a closed form and thus the effects of the optical pulse
be directly investigated. The analytical nature of this a
proximation has been used earlier in studying the impuls
excitation of coherent vibrational dynamics induced by
tense short pulses.27–30,37The explicit condition for the va-
lidity of this approximation is established by Cao an
Wilson37 and the generalization to nonstationary wave pa
ets is presented in Sec. IV of the same reference.

Assuming a weak field, the excited part of the wa
function at a later timet can be expressed as

ce~ t !5
i

\ E
2`

t

e2 iHe~ t2t!/\E~t!e2 iHgt/\cg
i dt, ~45!

wherecg
i is the stationary ground-state wave function and

constant transition dipole moment is assumed, i.e.,m51. For
time t much larger than the terminal time of the pulse, t
excited-state wave function can be written as

ce~ t !5e2 iHet/\ce
i , ~46!

where the initial excited-state wave function is defined by
, No. 5, 1 August 1997

t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



-
na

th

e

t

v

ve
n
p

Eq

nt

si
, t
by

ar

or-
ave

the

o-
es
to
he
ra-
rin-
t in
ave

n
f a

-
re-

y

q.
line
the
sys-
in

1446 J. Cao and K. R. Wilson: Quantum control of wave packet localization
ce
i 5

i

\ E
2`

`

eiHet/\E~t!e2 iHgt/\cg
i dt. ~47!

The initial excited-state wave functionce
i represents the im

mediate result of the pulse, excluding any further vibratio
propagation on the excited-state potential.

Next, invoking the short pulse assumption so that
kinetic-energy operator can be ignored,37 the initial excited-
state wave function can be rewritten as

ce
i ~x!5

1

\ E
2`

`

eiv~x!tE~t!dt cg
i ~x!, ~48!

where the coordinate-dependent frequencyv(x) is defined
as

\v~x!5Ve~x!2Vg~x!. ~49!

For comparison, time-dependent perturbation theory
presses the first-order excitation wave function asce,n

51/\*2`
` exp@i(vn2vm)t#E(t)dt cg,m, wherecn andcm are

the eigenstates. Therefore, the change of variable from
eigenstate numbern to the spatial coordinatex reflects the
significant difference in the nature of the continuous wa
excitation and impulsive excitation.

With this expression of the initial excited-state wa
function in hand, one can readily study the coordinate a
momentum distributions on the excited state due to the o
cal excitation, defined, respectively, asr(x)5uce

i (x)u2 and

p~x!5Re
ce
i* ~x! p̂ce

i ~x!

uce
i ~x!u2

, ~50!

wherep̂ is the momentum operator.
As an example, assume a Gaussian form in Eq.~33! for

the optical field. and substitute this Gaussian field into
~48!, we have

ce
i ~x!5expF2

~v~x!2v0!
2tp
2

2~11 ictp
2! Gcg

i ~x!, ~51!

which can be rewritten asc(x)5a exp(if) with a and f
being the amplitude and phase, respectively. Conseque
the population distribution, given as

r~x!5a25expF2
~v~x!2v0!

2

G2 Gcg
i ~x!, ~52!

is independent of the sign of the chirp, a conclusion ea
verified by an analysis in eigenstate space. Furthermore
momentum distribution is related to the linear chirp rate

p~x!5
\

m
¹F~x!5

\

m
s~c,tp!¹v~x!, ~53!

where¹ is the spatial derivative. Here, the pulse shape v
able, defined as

s~c,tp!5
ctp

4

~11c2tp
4!

5
ctp

2

G2 , ~54!
J. Chem. Phys., Vol. 107
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characterizes the tailoring of the optical pulse, and is prop
tional to the momentum dispersion of the excited-state w
function induced by the pulse.

Usually, the Franck–Condon region is repulsive, so
spatial derivative factor in Eq.~53! is negative. Assuming a
negative chirp, we then havep(x).0 if v(x).v0 and
p(x),0 if v(x),v0 . This result will be reversed for a
positive chirp. Thus, the major effect of the chirp is to intr
duce a linear distribution of initial momentum which prov
to be significant in quantum control. In addition, according
Eq. ~53!, given the linear chirp rate, the dispersion in t
initial momentum distribution increases as the pulse du
tion. This can be better understood from the uncertainty p
ciple as a narrow bandwidth excites a narrow wave packe
coordinate space which in turn corresponds to a broad w
packet in momentum space.

Equation~53! constitutes the central result of this sectio
and is now put to a numerical test. Take an example o
displaced linear harmonic oscillator system defined asHg

5p2/21(x1d)2/2 andHe5p2/21x2/2, where the displace
ment is d55 and unit values are assumed for mass, f
quency, and the Planck constant\. The parameters in the
Gaussian pulse in Eq.~33! are given astp51.0,v512.5, and
c50.1. In Fig. 1, the initial wave function approximated b

FIG. 1. A plot of the population distribution Eq.~52! and the momentum
distribution Eq.~53! of the initial excited-state wave function defined by E
~51! for the displaced harmonic potential described in the text. The solid
is the exact quantum calculation by the splitting operator method and
dashed line is the semiclassical approximation. Note that the two level
tem momentum distribution in~b! diverges from the exact quantum result
the less important tails of the population distribution shown in~a!.
, No. 5, 1 August 1997
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1447J. Cao and K. R. Wilson: Quantum control of wave packet localization
the coordinate-dependent two-level system is compared
the exact quantum calculation using the split opera
method. Clearly, both the population distributionr(x) and
momentum distributionr(x) are recovered with reasonab
accuracy by the TLS approximation. More importantly, oth
numerical results~not shown here! confirm that the chirp of
a single pulse does not effect the population distribution
the excited wave function but does induce an initial mom
tum distribution. Though the above argument assumes a
tively short pulse, the conclusion thus drawn is qualitativ
applicable in general.

V. CHIRP AND VIBRATIONAL LOCALIZATION

There has been much recent interest in the design
laser fields for the generation of spatially squeezed or lo
ized molecular wave packets.31,35,38–41 In this section, we
will use the concepts developed in the previous section
investigate the interesting correlation between the chirp
vibrational localization. Recently it has been observed t
the I2 vibrational wave packet induced by an optical pu
with a negative chirp exhibits more prominent peaks an
longer delocalization time than the wave packet induced
an optical pulse with a positive chirp.

A simple explanation can be argued from the moment
distribution of the initial excited-state wave function di
cussed in the last section. It is known that the vibratio
period of I2 molecules on the excited surface increases w
vibrational energy. As shown in Eq.~53!, a negative chirp
will introduce a positive initial momentum for a high-energ
component and a negative initial momentum for a lo
energy component so that different energy components
main better in step and thus better localized at a later time
contrast, a positive chirp will increase the phase dispers
resulting in a broader wave packet. This conclusion will
reversed if it is the case where the vibrational period on
excited-state surface decreases with vibrational energy
short, the sign of the chirp of the pulse which localizes
focuses a wave packet is determined by the nature of
excited-potential surface.

In order to investigate an example quantitatively, let
consider a simple control problem: The target is set to be
same as the initial ground-state wave packet. In other wo
the optimal pulse is designed such that different compon
of the wave packet can return to its original form near
inner turning point at the same time. As already pointed o
for a general anharmonic potential, different energy com
nents will have different vibrational periodsT(E) which re-
sult in a phase dispersion,dT(E)5(dT/dE)dE, when the
wave packet returns to the turning point. On the other ha
the chirp of the optical pulse introduces a coordina
dependent initial momentum distribution which amounts t
time delay for returning to the turning point

dt5
p~E!

A2mE
T, ~55!

wherep(E) is given by Eq.~53! as
J. Chem. Phys., Vol. 107
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p~E!5
ctp

4

m~11c2tp
4!

¹v dE. ~56!

Here, the coordinate dependence given in the last sectio
equivalent to the energy dependence, i.e.,\v(x)5E, be-
cause the coordinatex is now a classical turning point
Therefore, the optimal field should induce a time delay
match the time delay due to the energy dispersion, giv
dT(E)5dt, or explicitly

s~c,tp!52
mA2mEu¹vu

T

dT

dE
[2e

dT

dE
, ~57!

where all the quantities are evaluated at the center of
Franck–Condon region corresponding to the carrier f
quency, the potential gradient in position¹v is always nega-
tive, and the definition of the coefficiente is self evident.
Since the factors contained in the coefficiente are less sen-
sitive to anharmonicity, we simply state that under the co
dition of ctp

4@1 the linear chirp rate is proportional to th
negative of energy dispersion.

To demonstrate the validity of the relation~57!, we em-
ploy a quartic potential for the excited state

Ve5
1
2x

21u~x!gx4, ~58!

and a displaced harmonic potential for the ground state:Vg

51/2(x1d)2 with d55. Here, the Heaviside function is de
fined asu(x)51 for x>0 andu(x)50 for x,0, and again
unit values are assumed for mass, frequency, and the Pl
constant\. Both the initial and target wave functions are th
same minimum uncertainty wave packet,c i5f f

5(1/Ap)e2(x1d)2/2, and the target time is set att f510. Ac-
cording to Eq.~57!, the sign of the chirp is the same as th
sign of anharmonic coefficientg in Eq. ~58!.

For all the examples given in this section, the quant
propagation was performed by the split operator method w
a time step of 0.1 and a spatial grid of 128 points. In Fig
the contour plots of the Wigner transformation of the optim
field at t f510 for the cases ofg520.003, g50, and g
50.01 are compared and clearly confirm our prediction t
the slope of the optimal field takes the same sign as tha
the anharmonicity.

To assess Eq.~57! quantitatively, we will investigate a
simple but intriguing scenario: The target is set up at
classical turning point corresponding to the carrier freque
in the Franck–Condon region as in the last example, but
propagation timet5t f2t i is not limited, i.e., 0<t,`. This
allows for an infinite number of subpulses if the excited-st
vibrational wave packet contains bound eigenstates. In
3, the optimal field calculated from Eq.~17! is plotted versus
t i52t (t f50) for the quartic potential defined by Eq.~58!
with g520.003, which resembles a realistic molecular p
tential surface. The first few subpulses~counting from the
right! can be easily identified until the sixth peak, after whi
subpulses become increasingly structured and smeared.
train of well-defined peaks corresponds to subsequent vi
tional oscillations of the nuclear wave packet. In fact, e
tending this calculation to longer times, we have seen~not
, No. 5, 1 August 1997
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1448 J. Cao and K. R. Wilson: Quantum control of wave packet localization
shown here! recursions in the optimal field, indicating the
recurrences of vibrational motion in the same spirit as th
fractional revivals observed in molecular wave packets.41

Following the same argument which leads to Eq.~57!, it
is straightforward to show that the optimal subpulse isolate
from the global optimal field obeys the following relation:

sn~c,tp!52ne
dT

dE
, ~59!

where n is the number of vibrational cycles, namely, the
peak number of the optimal subpulse counted from the targ
time. In order words, to control a wave packet at the turnin
point for a target time corresponding ton oscillation periods
from the center of the pulse, the shape variable of the op
mal pulse should be multipliedn times. Hence, the train of

FIG. 2. Contour plots of the Wigner transformation of the optimal fields in
~a! for the quartic potential of Eq.~58! with g520.003, g50, and g
50.01, along with the plot of the quartic potential Eq.~58! in ~b!.
J. Chem. Phys., Vol. 107
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subpulses isolated from the global optimal field can be e
ployed to test the accuracy of our theory which predi
sn /s15n. Indeed, this is exactly observed in Fig. 4 whe
the Wigner transformation of the optimal subpulses forn
51–5 are compared. Furthermore, the set ofsn calculated
from its definition in Eq.~57! is listed in Table I and agree
well with the prediction of a linear increase of the sha
variables with n.

It should be mentioned, however, that increasing sh
variable does not necessarily imply increasing chirp rate
s(c,tp) also depends on the Gaussian time widthtp . To this
end, the semiclassical formulation in Sec. III can be used
discover the functional dependence of the chirp rate onn.
From classical mechanics, one can show that the actioS
and timet are linear functions ofn. For a narrow Gaussian
with small values ofa f or a i , the expression for the linea
chirp rate, Eq.~44! can be expanded as

c'
]2S

]tst
2 1@]p~tst!#•a•@]p~tst!#, ~60!

which scales inversely withn, namely,c}1/n. To see the
consistency between this semiclassical argument and the

FIG. 4. Contour plots of the Wigner transformation of the optimal subpul
for n51,2,3,4, counting the initial pulse (n51) from the right in Fig. 3.

FIG. 3. The amplitude of the optimal field calculated from Eq.~17! for the
quartic potential of Eq.~58! with g520.003.
, No. 5, 1 August 1997
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1449J. Cao and K. R. Wilson: Quantum control of wave packet localization
ear relation~59!, two limiting situations are considered a
follows. First, in the case ofctp

4!1, in order to havectp
4

}n given c}1/n, one must havetp
2}n, indicating that the

pulse duration increases with time. Next, in the case ofctp
4

@1, we haves'(1/c)}n, which agrees with the scalin
predicted by Eq.~59!. In conclusion, a longer pulse~i.e., a
larger tp! with a smaller linear chirp rate~i.e., a smaller
ucu! is preferred for localizing a wave packet at a later tim

Table I lists the linear chirp ratec and the time duration
tp determined by a best Gaussian fit to the exact quan
calculations. The data support our conclusions where
based on simplifying assumptions and semiclassical mec
ics. In addition, in Table I, we show the frequency ban
widths, defined asG251/tp

21c2tp
2, for the first three sub-

pulses are similar. In fact, when the individual subpuls
from the optimal pulse are examined, the spectral distri
tion ~i.e., frequency spectra! of all the subpulses are simila
as can be seen in Fig. 4 by projecting the Wigner repres
tations on the frequency axis~i.e., examining the frequenc
marginals!. This is suggested by the optimal condition th
the wave functions induced by different optimal subpuls
should all be similar to the target wave function at the tar
time in order to interfere constructively, implying a simila
spectrum for all optimal subpulses.

For demonstration, a pulse of the opposite chirp but o
erwise with the same parameters as the optimal subpulse
be constructed as

E8~ t2t0!5FE~ t02t !

E~ t0!
G*E~ t0!, ~61!

wheret0 is the center of the subpulse, which is set zero. T
transformation defined by Eq.~61! will keep the temporal
shape of the pulse unchanged but flip the sign of the ph
according tof(t)52f(2t). When applied to the Gaussia
field Eq.~33!, this transformation will change the sign of th
linear chirp ratec. Comparison of excitation effects induce
by a pair of opposite chirps constitutes the most import
demonstration of the quantum coherence between l
pulses and matter wave packets.31,38,42–44

Finally, the wave function of the quartic potential of E
~58! with g520.003 induced by the first optimal subpuls
has been propagated. We then calculateduce(0)u2, the prob-

TABLE I. Parameters for the best Gaussian fit to the optimal subpulse

n ca tp
b Gc sd r e

1 28.0 0.38 16 20.071 1.0
2 26.0 0.62 16 20.14 2.0
3 24.5 0.80 15 20.20 2.9
4 23.2 0.92 10 20.28 3.9
5 22.5 1.12 8.6 20.36 5.1

ac: the linear chirp rate.
btp : the pulse duration.
cG: the bandwidth, defined asG25c2tp

211/tp
2.

ds: the pulse shape variable, defined ass5ctp
4/(11c2tp

4).
er : the ratio of the coherence variable of thenth subpulse to the coherenc
variable of the first subpulse,r n5sn /s1 , which is predicted to be equal to
n.
J. Chem. Phys., Vol. 107
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ability of finding the optically excited particle atx50 as a
function of time, which is associated with the LIF sign
from a probe window atx50. The clear contrast of the re
sults computed from the negative and positive chirps sho
in Fig. 5~a! demonstrates the central role of the chirp
quantum coherence of wave packet localization. A more d
matic contrast is observed in Fig. 5~b! where the same cal
culation was repeated for the third subpulse isolated fr
Fig. 3. This observation is expected since the optimal s
pulse of a largern introduces a larger initial momentum
dispersion and thus shifts the wave packet localization la
in time.

Our example based on a specific kind of quantum c
trol is by no means just a limiting case or an exercise. T
correlation between the control pulse and the time for wa
packet localization is applicable in general. Studies on re
istic molecular systems in our group agree well with t
analysis presented here.16,45

VI. CONCLUSION

A simple physical picture of optical control of wav
packet localization emerges as the result of the two appr
mations proposed in this paper. In summary, we rephrase
major conclusions of our analysis presented in the previ
sections:

FIG. 5. The probability of finding the excited-state wave function atx50 as
a function of time. The solid curve corresponds to an optimal pulse wit
negative chirp while the dashed curve corresponds to a similar pulse
the opposite chirp as transformed from the optimal pulse according to
~61!. ~a! is the result of the first optimal subpulse (n51) and~b! is the result
of the third optimal subpulse (n53).
, No. 5, 1 August 1997
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1450 J. Cao and K. R. Wilson: Quantum control of wave packet localization
~a! A short laser pulse pumps a wave packet on
excited-state potential energy surface with zero total ini
momentum and a spatial spreading of position propab
proportional to the pulse bandwidthG. To understand this
nonintuitive conclusion, consider an extremely short pu
such as a delta pulse which induces a replica of the gro
state wave function but cannot further suppress the width
the initial excited wave packet. In contrast, a short pulse
finite duration can not only induce all the frequency comp
nents but can also make use of the phase coherence o
components as to produce a narrower initial excited w
packet. This coherent modulation of the ground state w
function is described by the prefactor in Eq.~52! which cap-
tures the essence of the short pulse approximation.

~b! The initial momentum distribution induced by a
optical pulse is determined by the shape variabless
5cG2tp

2, where the linear chip ratec is the slope on the
contour plot of the Wigner transformation of the optic
pulse andtp is the temporal width of the pulse.

~c! The sign of the chirp is essential in wave pack
localization. For a control time shorter than one vibration
period, the linear chirp rate can be calculated from Eq.~44!;
whereas for a control time longer than one vibrational
riod, the linear chirp rate is determined by Eq.~57!.

~d! A relatively long pulse~a large time durationtp!
with a small absolute value of chirp is preferred when a wa
packet is to be focused on a target to be reached after se
vibrational periods.

The analysis is formulated for optimal control of a pu
state in the weak response limit and some assumptions
made to simplify the derivation. Nevertheless, the results
not limited to these conditions and should hold qualitativ
under more general situations. In a broader sense, the cl
cal correspondence of quantum coherence of light–ma
interaction provides an intuitive guideline for the design
laser pulses to fulfill a desired goal. In addition, the fact t
our arguments based on semiclassical dynamics agree
with exact quantum calculations demonstrates the validity
semiclassical and classical approximations in the contex
quantum control, thus helps explain the success of nume
quantum control simulations with classical or semiclass
algorithms.14,20,21
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