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The Zewail-Bersohn mod€lBer. Bunsenges. Phys. Cher®2, 373 (1988] of pump—probe
experiments is generalized to nonstationary wave packets and more realistic forms of probe pulses.
The analysis illustrates the important role of probe linear chirp rate, as pointed out by Sterling,
Zadoyan, and Apkarial). Chem. Physl04, 6497(1996)], in detecting the motion of wave packets

and the physical reason for the existence of optimal probe pulses to yield the best probe signal. Since
the pump—probe process can be viewed as delayed two-photon resonant absorption, the probe signal
can be readily optimized within the framework of quantum control theory, as discussed Hy.Yan
Chem. Phys100 1094(1994]. Numerical calculations based on quantum control theory are used

to confirm our theoretical predictions. We point out that the same analysis can be extended to other
impulsive nonlinear optical processes, such as multiphoton pump—probe absorption and stimulated
Raman scattering. €1997 American Institute of Physids$s0021-96067)01504-3

I. INTRODUCTION a systematic and rigorous fashion and justify this effect
within the semiclassical framework.

Femtosecond chemistry offers experimentalists the op- A one-dimensional wave packet picture of pump—probe
portunity to study elementary chemical processes on the mapectroscopy is shown schematically in Fig. 1, where the
lecular level and to directly monitor the dynamical evolution three electronic states involved in the process are sketched:
from reactants to productstemtosecond scale time resolu- the ground, the first excitegpump, and the second excited
tion proves crucial in understanding the basic concepts gowstate (probe. Assuming the molecule is initially in the
erning the molecular dynamics of chemical reactions, howground state, the pump pulse promotes the wave function
they take place, and how to govern them. The key experionto an excited state, where the excited state wave packet
mental technique in femtochemical spectroscopy is theropagates with time. Then, the probe pulse, after a certain
pump—probe scheme. Many theoretical models have beeelay time with respect to the pump pulse, promotes the
developed to describe the pump—probe process, includingvolving wave packet to the second excited state, where the
the classical model of Bersohn and Zewhathe classical wave packet either dissociates to products or decays to
theory by Walkupet al,’ the generalized linear response lower-lying states. Three types of experimental resittd
theory by Lin and co-worker$,the analysis by Pollard are thus accessiblél) detection of the fragments an@)
et al,” the extensive work on nonlinear spectroscopy by Yanaser-induced fluorescendklF), which are both integrated
and Mukamef.” and others. A review on this subject can be pump—probe signaléPP), as a function of the probe carrier
found in Led and the references cited therein. In this paperfrequency and the delay time. The third type of the measure-
we will present a theoretical analysis of pump—probe specment is(3) the dynamic dispersed absorption spectra of the
troscopy, in particular the probe process, within the classicabrobe pulse after passing through the sample, also termed the
and semiclassical framework, along with a treatment frondispersed pump—probe signddPP), as a function of the
the point of view of optimal quantum control thedty'* delay time. In this paper we will deal only with the fi$PP)

Using transient probe absorption to detect wave packetkind of signal.
has been discussed in different contexts, including the opti- Femtosecond pump—probe spectroscopy, viewed as a
mal control of molecular dynamic¢$.More recently, Ster- nonlinear two-photon process, is describéy the third-
ling, Zadoyan, and Apkaridf investigated the effect of lin- order polarizatiorP®, a function of the pump—probe delay
ear chirped pulses in condensed phase pump-proldene. In Sec. Il it is shown that when the pump and probe
experiments by classical simulations for the model system opulses are well separated, the pump—probe process is a two-
I, isolated in a Kr matrix, and predicted that chirped probestep sequential excitation consisting of one stationary ab-
pulses can be employed to characterize the momentum of aorption and one nonstationary absorption. Of conceptual
evolving molecular wave packet. They transformed themportance is the introduction of the initial wave function
frequency-time profile of the probe pulse to coordinate-timewhich is the net result of a laser excitation without any fur-
space and noted that the observable signal is a function of thteer spreading. In Appendix A, the IPP signals are expressed
relative group velocities of the traveling wave packet and thén terms of their initial wave function induced by the probe
traveling window function. In fact, the prediction agrees pulse.
qualitatively with preliminary experiments op &nd Nal in The primary feature of femtospectroscopy is the ex-
our lab. In our paper, we analyze the pump—probe process imemely short time duration of laser pulses such that the
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been made toward single field quantum control, mainly the
pump process. For example, thedxperiment reported by
Kohler et al?"?8 js designed to focus the molecular wave
packet to a designated minimum uncertainty wave packet for
the pump state wave functidfi, with the probe process

= treated as a detection deviteTo generalize the single field
> =l } v, theory, we formulate optimal control theory for an arbitrary
A sequential multiphoton process in Appendix E and to pump-—
E.(1) v probe processes in Sec. V, extending previous work by
T - Rice?® Tannor? and Yan*! More pertinent to this paper, we
/’—— restrict the optimization procedure to the probe process for a
x given pump state wave function in Sec. V where optimiza-

tion of the pump—probe signal is used to maximize the spa-
FIG. 1. An illustration of pump—probe processes. Assuming the molecule igial resolution of the probe pulse. Numerical examples of the
initiaI‘Iy in the ground_stateLO), the pump puIseEl_, promotes the wave optimization of the probe process based on an idealized
function onto an excited statd), where the excited state wave packet . . . . .
propagates with time. Then, the probe pule, after a certain delay time Mm0del confirm the linear relation between the optimal linear
with respect to the pump pulse, promotes the evolving wave packet to £hirp rate and the constant velocity of the wave packet.
second excited staté?), where the wave packet either dissociates to prod- In summary, the probe process in pump—probe experi-
ucts or decays to lower-lying states. ments is studied in the framework of the Bersohn—Zewail
classical model, semiclassical nonstationary analysis, and
optimal control theory. The validity of the assumptions and
nuclear wave packet can often be assumed frozen duringPProximations used are rigorously established and numeri-
excitation’~2% Under this assumption, the excited state orcal examples are presented to verify the theoretical predic-
probe state wave function can be obtained in a closed forr#ion. Finally, a discussion in Sec. VI concludes the paper.
and thus effects of the optical pulse can easily be investi-
gated. As an example, the analytical nature of this approxi-
mation has been recently used in Studying the relationShiH_ WAVE PACKET MODEL OF THE SEQUENT'AL
between the linear chirp rate of the pump field and the vibrapypmp—_PROBE PROCESS
tional localization of the wave packet motion induced by the
pump pulsé! In Sec. Ill and Appendix B, the validity and The molecular system consists of three electronic states,
implications of the frozen wave packet assumption are card0), |1), and|2), described by three diabatic Hamiltoniakt,
fully analyzed. The application of this approximation to the for the ground stat¢0), H,+#%wq for the intermediate ex-
probe process leads to the Bersohn—Zewail classical rhodetited (pump state|1), andH,+7%iw,;+fiw,, for the final ex-
discussed in Sec. lll. It is suggested within this model that, ircited (probe state|2). Here, w;y=w;—wy and wy=w,— w,
order to abstract information about the pump wave packeare the electronic transition frequencies between the corre-
from the signal, the probe pulse should be short enough th&ponding states. This three-level molecule then couples via a
the motion of the wave packet does not smear the signal andipole interaction to time-dependent electric fields which are
at same time be long enough to have sufficient spectral resd¢reated classically as
lution. i %o i
In Sec. IV, we relax the frozen wave packet assumption en()=Ey()e 10+ E] ()e'rd @
to incorporate the constant motion of the molecular waveor the pump pulse, and
packet and thus generalize the Bersohn—Zewail classical _ _
model to a more realistic theory. To do this, the kinetic en-  €2(t)=Ea()e "2l +EJ (t)e'“t @)
ergy operator is applied twice to a Gaussian wave packet gy the probe pulse. Within the rotating wave approximation,
described in Appendlx. C, the formula for IPP signals iSihe total Hamiltonian is expressed as
evaluated for a Gaussian laser pulse, and consequently an R R R
explicit expression for the spatial resolution of the probe  H(t)=Hy+Hpy,+Hp,, 3
pulse is obtained. As a result of this nonstationary semiclas- . N
sical analysis, an optimal pulse duration for transform Iim_where the molecular term is the three-level Hamiltonian
ited laser pulses is derived and a linear relation between the 1y — 1.10)(0|+ H,|1)(1]+ H,|2)(2], (4)
chirp of the optimal probe pulse and the motion of the pump
wave packet is predicted.The classical analysis in Sec. Ill the interaction term for the pump pulse is
and the semiclassical analysis in Sec. IV can be extended to - _ %
other multiphoton processes, such as off-resonant two- Hpu() =~ 11 BT (D]0)(1] — 11 E1(D]1)(0], ®)
photon absorption, studied in Appendix D. with wu, being the transition dipole moment between states
Theory?>~?® has been developed to predict an optimal|0) and|1), the interaction term for the probe pulse is
laser field to drive a quantum wave packet to a desired func- .
tional form at a chosen time. However, most efforts have ~ Hpr(t)= = #2E3 (1)[1)(2] — uoEa(1)[2)(1], (6)

J. Chem. Phys., Vol. 106, No. 12, 22 March 1997

Downloaded-27-Mar-2001-t0-18.60.2.110.-Redistribution-subject-to-AlP-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



5064 J. Cao and K. R. Wilson: Wave packet motion in pump—probe experiments

with u, being the transition dipole moment between statesunction?! i, and i(7), refers to the immediate result of a
|1) and|2), and the dipole transition between std¥sand|2) laser pulse, excluding any further vibrational propagation on
is assumed to be prohibited. the excited state potential surface, and thus contains all the

Since there are two laser fields which play a role, thenecessary information about the electronic excitation.
leading term in the final probe state wave function is givento It is shown in Appendix A that all the integrated signals
second order in the dipole interaction by are related to the population on the probe state,

N(7)=(ho(te)|ha(te)) = (o T)|ha( 7)), (13

where the detection timg is set after the probe pulse has
et et terminated and Eq(9) is used to help obtain the second
Xe MM (Hy +Hp e MR y(t), (7). equality. Therefore, the initial wave function on the probe
wherey(t;) andy(t;) are the wave functions at the final time State potential surface as a function of the delay tinfielly
t, and the initial timet, , respectively. To be more specific to d€términes the time evolution of the integrated pump-—probe
the pump—probe scenario, the molecule, initially in itsSIgnals. o o _
ground state)(t;) = ¢,|0), is excited by the pump fiel,(t) A careful ex_a_mlnatlon of the |n|t|al_ pump wave function
to excited statdl), and then by the probe fielf,(t) to zpz(r) anq the initial probe wave functiog, reveals the es-
excited statel?). It is assumed that the pump and probeSeéntial difference between the pump and probe procegges:
pulses do not overlap in time and that the centers of the twd Ed- (12) is stationary under the operation idf, (an eigen-
pulses are separated by a delay timén other words, the State 0fHo) whereas/y(7) in Eq. (10) is nonstationary under
pump pulse is centered &0, the probe pulse is centered at the operation oH,. In this sense, the probe process can be
t=7, and the time durations of the two pulses are assumed tg€wed from the point of nonstationary absorption spectros-
be substantially smaller than the delay timeTaking these ~COPY I contrast to the stationary ex_mtatlon from the ground
factors into consideration, the probe state wave function ipt@te induced by the pump pulse. Since the pump and probe

2 0, . . ) )
Y(ty) = %> Jt. dtth_z dtle"HM<tf*I2)/ﬁ(Hpu+ Ao

Eq. (7) can be simplified as processes can be treated separately and the injpulsi_ve_ excita-
_ tion from the ground state has been well studied within the
t)= I 2 tf_Tdt’ té-f—-rdt it~ th— )l classical and semiclassical approximations, the focus of this
Yalty) = h) Ji-- 2 t 1€ paper is to investigate the probe process given an excited

. . state wave packet moving on the pump state potential sur-
X u EX(th)e it r=tlh o (t)e Moty face, that is, the evaluation af(7) for a given pump state
®) wave functionyy(7).

where the time variablg, is shifted according tt), = t, — 7 lIl. BERSOHN—ZEWAIL CLASSICAL MODEL: THE
and the probe field is redefined&§(t;) = E,(t;, + 7). Fur- STATIONARY ASSUMPTION
thermore, because the two pulses are well-separated in time

and the detection timé is much larger than the terminal The duration of the probe laser pulse used to detect the
time of the probe pulse, we are allowed to extend the integralV@ve packet is usually sufficiently small that the nuclear
limits of t, andt} to infinity. The resulting expression can be configuration is approximately frozen during the probe exci-

cast in a revealing format, tation. This observation constitutes the core assumption un-
A derlying the well-known Bersohn—Zewail classical motlel,
Po(te)=e =Dy, (7), (99 which amounts to a coordinate-dependent two-level-system
_ approximation by ignoring the kinetic energy operator’
I oo o~ o~ . . . . .
_ eiMat,, e—iHit E,(t)dt, 10 The stationary assumption is valid only dk, _the dlsplage— _
D=5 Lw 2 Y(nEAY) (0 ent of the center of the wave packet during excitation, is
" substantially smaller than, the width of the wave packet at
Yi(m)=e M7y | (11)  the time of excitation, that is
e o SX(tp) <N\, (14)
=— et y,em Moty Eq (1) dt, 12 . . : .
Y1 fi f_oc #a YoEa(t (12 where dx is a function oft,, the time duration of the probe

h for the simplicity of . h o pulse. Since the wave function on the pump state potential
where, for the simplicity of notation, the superseripn £z g tace s a moving wave packet, the displacement consists

IS droppeql,_ and bottp andt, are replaced with. . of two parts: the contribution from the initial velocity,
By writing Egs. (9)—(12), the pump—probe process is before the excitation, given by

treated as a sequential two-photon process described by a ’
wave packet pictur31with y; representing the initial pump tov <N\, (15
wave packet orfl) created by the pump puldgi(t), ¥2(7)  and the contribution from the acceleration during the excita-
the propagating wave packet (i) at the delay timer, () tion, given by

the initial probe wave packet of2) created by the probe ’
pulseE,(t), andyx(t;) the final probe wave packet ¢2) at f_c 2 (16)
the detection timet;. The concept of the initial wave m?P
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wheref is the force due to the potential difference in the o (x)=wy+g(X—Xg)+ -, (24)
Franck—Condon region. The condition in E4.5) is self- . _ .
evident whereas the condition in E¢L6) is confirmed in whereay is the carrer frequency of the probe pulzgjs_the
Appendix B by making use of the displaced harmonic Oscil_Franck—_Condo_n point C(()jrre.sprc])ntlj.mg to t?f(_a _carrufarhfre—
lator model. Both conditions are satisfied if the motion of thequelncy, "e'WO._W(X]?)’ andg s the linear coef |C|en|t.o.t ;
wave packet is slow and the coordinate dependence of thEY or expansion olw(x) at Xo. For a transform limite
potential difference is weak. Gaussian pulse, i.ec=0, Eq.(20) becomes

Under the frozen wave packet assumption, the kinetic Po )
energy operator is ignored in EELO), resulting in the initial N(7)=72 (da(gt)|[gmx(x)]
probe state wave function as

- x exf] — g’t5(x—xXo)2]|ra( 7)), (25
Yo(7)= 7 Jiwe'“(x)tquz(t)dtt//l(r), (17 which defines the spatial resolution as
where the coordinate-dependent frequefiayx), or U(x), a= i (26)
is the potential difference between excited stat@snd|2), 9ty
U(X) =% o(X) = V,(X) — V1(X). (18) In order to abstract valuable information about the spa-

tial distribution of the wave packet from the pump—probe
With the Fourier transformation of the electric field definedsignal, the spatial resolution of the signal must be smaller

as than the characteristic width of the molecular wave packet,
- o _ that is,
E(w):f_ E(t)e'“'dt, (19 w<\ 27)

the expression for the integrated pump—probe signal, EP'
(13), becomes 1
t,> g_)\’ (28

1 _
(7) h? (DIl FIEL 00O a(m). - (20) implying that a pulse of long time duration is preferred. On

which represents the central result of the Bersohn—Zewaf® Other hand, Eqd15) and (16) require the pulse to be
classical modek:28 short enough that the displacement of the wave packet during

For illustration, we take the example of a chirped Gaussthe excitation is substantially smaller than the Wi(_jth of the
ian pulse defined as wave packe_t. C_onsequently, there ex_|sts an optimal pulse
duration which gives the best compromise between these two
(t—to)? _ (t—tp)? opposing factors. In next section, this optimal pulse duration
Es()=Eo ex;{ B T_'wO(t_tO)_'C 2 } will be determined by a rigorous analysis.

P The above formulation parallels the analysis of the pump
rocess in the classical approximatfdnsince the moving
ave packet is treated as frozen just as in the case of the

excitation from the ground state. To reflect the special fea-

tures of the probe process, one must take into account the
crucial difference that the wave function on the excited state
potential surface is in motion whereas the wave function on
the ground state potential surface is at rest. This consider-
, (22) ation leads to the nonstationary analysis of the next section.

(21
where five parameters are employed to characterize the lig
pulse: an amplitud&,, a carrier frequencyy,, a temporal
centerty, a temporal widtht,, and a linear chirp rate,
respectively. From Eq19), the corresponding power spec-
trum reads

(w—wo)2
1‘*2

P(w)=|Eg(w)|?=Py exp[—

where the magnitude i§0:27rtpE%/F and the bandwidth is

defined as
IV. GENERALIZED BERSOHN-ZEWAIL MODEL:
1 NONSTATIONARY ANALYSIS
r?=cp+ ., (23)
p To investigate the effects of the initial motion of the

which is related to the full width half maximum of the power delayed pump wave packet on the probe signal, we will lift
spectrum by wpyiy = 2+/In 2. the stationary assumption imposed by the frozen wave
It can be seen from Eq€20) and (22) that the probe pagk(_at approximat?on. To begin, the quantum propagator is
pulse opens a window on the pump state potential surfacgPlit into the kinetic energy and potential energy parts by
and transfers the population within the window into theMaking use of an operator identity
pump—probe sigpal. To de’Fermine the size of this win.dow, e‘ﬁt:e‘(k“}”:e‘k”z exp[i\7t+0(t3)]e‘k‘/2 29)
namely the spatial resolution, we expand the coordinate- ’
dependent frequenay(x) to linear order inx, giving which is accurate to the third order in time. Then, the initial
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probe state wave function in E¢LO) can be rewritten as W(rt)= eil%t/ZeigxtefiIZt/Z(/ll(T)
ol )%i_ - eiKt2aiUtg—iKU2E (t)dty(7) (30) 1 (X—x)? .
2775 ). 2 7 ST R T Tz TP X)
vcgt2

+igxt+i

(33

whereU=V,—V, is the potential difference, the transition
dipole moment is taken as a constant 1, andf is omitted ) )
for simplicity of presentation. If the potential energy operator 1 he last term in Eq(33) reflects the coupling between the
U and the kinetic energy operatét are allowed to com- huclear motion and the potential differeride Consequently,
< the expression for the signal, E@.3), can be expressed as

2

mute, the two free particle operatoe&! ande 'Kt in Eq.
(30) cancel each other and the classical result in @) is . ,
recovered. Therefore, Eq30) represents a more accurate N(T):f dtf dt’f dxe“oE(DE* (1)
and general description of impulsive excitation and detection
processes than the classical treatment discussed above. X (rt)W*(r,t"), (34)

In the probe process, the constant velocity motion of theyhich, after the integration over the spatial coordinate, be-
wave packet is usually the dominant factor in comparison tqomes
the net acceleration, implying that E@L5) is a more strin-
gent constraint on the pulse duration than @8d). Since Eq.
(30) takes into account the constant motion of the wave
packet, the constrain of Egl5) can be removed while the
condition in Eq.(16) remains imposed. To satisfy E(L6),
assumptions are made in writing EQO) that (i) the probe  with 2s=t—t’ andAwy=U(X,). Here, bothx, andv. are
pulse is relatively short an@i) the wave packet is located in implicit functions of the delay time. To be consistent with
a relatively flat region on both the pump and probe statehe analytical nature of this analysis, various functional
potential surfaces such that the centroid velocity of the wavéorms of the probe field, such as a Lorentzian spectral inten-

N(T)ZJdtf dt’E(t)E*(t")exp{—(\gs)?

+igs(2xetvct+uvct’' —2%g)}, (35

packet remains constant during excitation. sity, an exponential-decay field, and a Gaussian pulse, can be
In Eq. (30), the first free particle operater 'K!2 propa-  used for the evaluation of E¢35). _
gates the de|ayed wave funCti(ml(T) forwa[d for timet/2, For illustration, the Gaussian form of the I|ght pulse de-

fined in Eqg.(221) is substituted into Eq(35) and the double

whereas the second free particle opera®t’? propagates . - S
; time integrals are completed, resulting in

backward for timet/2 along with the phase factaz'V!.
Therefore, if it were not for the phase factor, the two kinetic 5
energy propagators would cancel, giving rise to the classical N(7)* 7 &XF ~ 12 (Xc=Xo)

approximation. To perform these operations explicitly, let us

consider the simple case of a Gaussian wave packet defind€re A measures the spatial dependence of the probe sig-
as nal, given by

: (36)

c 2
Uc— 5) . (37)

1
_ 1 (X_Xc)2  Pe(X=Xc) A?=N\2+ Tf+t2
lﬂl(T)—mmeXF{— oz = (D oty P

A? characterizes the decay of the probe signal as the center
of the wave packet moves out of the probe window, or
%quivalently, the sensitivity of the probe signal with respect
"o the change in its carrier frequency.

By comparison with the functional form of the Gaussian

wherex., v, andp. are the position, velocity, and momen-
tum of the center of the molecular wave packet in phas
space, respectively. Here, the position, velocity, and mome
tum are measured at the delay timand are thus functions

of rdi_mplicitfh%. }t is ;?ovxn ifn Appen_dilx C that, ur_1der tfhe wave packet in Eq(21), the first term in Eq(37) is recog-
condition of 2t/m<\%, the free particle propagation of & ;o a5 the width of the wave packet being detected and the

Gaussian wave packet retains the Gaussian functional forr;rést of the terms in Eq37) define the spatial resolution of
and can be expressed by classical dynamical quantities. lt'P]e signal ‘

addition, we adopt the linear expansion of the potential dif-
ference as in Eq(24). After substituting Eqs(24) and (30)
into Eqg. (31) and applying the free particle propagation in
Eq. (C7) twice, we have

1
a2=W+tg(vc—C/g)z, (38)

p
which, as stated earlier, determines the size of the probe
[ R window. The smallerx is, the more accurate is the one-to-
¢2(T):% f_we CE()¥(7,1)dt, (32) one correspondence between the carrier frequency of the
probe pulse and the centroid position of the wave packet
being probed, and consequently the more prominent are the
where peaks of the probe signal. Therefore, the optimization of the
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pump—probe signal is equivalent to the minimization of theexcitation. As pointed out earlier, the physical quantity of
spatial resolutiong. We now explicitly consider transform- interest is the population on the probe st&tér) in Eq. (13),

limited and chirped laser pulses. which defines the target operator to be the identity operator
(1) For a transform-limited laser pulse=0, the spatial A=, defined on the probe state potential surface. The mol-
resolution in Eq.(38) becomes ecule is assumed to be initially in a pure stage:| )| on
1 the ground electronic state manifold. Applying Ef.11) in
a2=2—2+t2v2. (39)  Appendix E to the pump—probe process as described above,
t p~c - . . .
p we have the optimization equation for the probe field,
By minimizing «, we find an optimal pulse duration t;
1 J dtx(4(t2)[ Gy (t—t2) Gty —to) [ (t2))Ea(ts)
2 to
tp:gT' (40)
’ = 72Ea(to), 43

which has been argued in the previous section within th
classical model.

(2) As seen from Eq(38), the primary condition for P1(tp)=Gy(t—t1):Go(ty— 1)) o, (44)
minimizing the spatial resolution of a chirped probe pulse i

c=v.0, (41

tf ! ’ !
meaning that the shift of the carrier frequency with time shallfti dty(Golta —ti) Yo Aa(ty,t1)| Golts —t) o) Ea(ty)
follow the motion of the wave packet as predicted by Ster-

Svhere the pump state wave functigh(t,) is

Sand the optimization equation for the pump field,

ling et al*® With the chirp rate given as above, the spatial = 71E1(t1), (45
resolution becomes where the target for the pump field is
LI 42 At =G (t,—11):G5 (t— 1) Galti— t2):Ga(ty—ty).
9 (46)

which is minimized by increasing the pulse duration. On theThe colon in the above equation represents an electric exci-
other hand, the constraint in EL6) still applies, which tation as defined in EqE4). Notice that the eigenequation
together with Eq.(42) again leads to an optimal value of for the probe fieldE;(t) depends implicitly on the pump
pulse duration. field E,(t), and vice versa. Hence, Eggl3) and (45) are

Hence, the nonstationary semiclassical analysis not onlgolved independently for a given input; the resulting optimal
confirms the argument of the classical model quantitativelyfields are then used as the input for the next iteration, and
but also provides new insights unavailable in the strictlythis procedure is repeated until convergence is reached.
classical framework. The semiclassical analysis presented iBimilar optimization procedures have been proposed before
this section and the classical analysis discussed in last seby Yan!!
tion can also be applied to a wide range of nonlinear impul-  To be relevant to the theme of this paper, we will further
sive processes, such as multiphoton pump—probe absorptidimit the optimization to the probe process. To this end, we
and stimulated Raman scattering. In Appendix D, we analyzenake use of the concept of the initial wave function intro-
off-resonant two-photon absorption with the help of the clas-duced in Sec. Il and rewrite E43) as
sical model and find that under the frozen wave packet as- 4
sumption the two-photon process can be approximately M(t,t")E(t")dt" = 9,E(t), (47
treated as a single photon process with an effective excitation /i
laser pulse with double the carrier frequency, double the linyhere the material response matrix reads
ear chirp rate, and the square of the field amplitude.

To verify the analysis in this section, a numerical proce- M(t,t") = (g1(7)G1(1) Go(ty —1)[ Go(ty—t")
dqre is requ.ired to op.timize the _pr_obe. resolution under cer- X Gy ()¢ (7), (48)
tain constraints, that is, the optimization of the probe pro-
cess. Therefore, the optimization formulation in next sectiofVith the initial wave function on the excited state at the delay
and in Appendix E serves not only the goal of the optimaltime 7. #(7), defined by Eq(12). As argued in Sec. IV, for a
quantum control of matter wave packets by tailored lasegiven wave packet moving on the pump state surface, the
pulses but also as a means to test our theory for detectir@Ptimization of the pump—probe signal is equivalent to the

investigate the relation between the linear chirp rate of the

optimal probe pulse and the centroid velocity of the molecu-
lar wave packet®

As described in Sec. lll, the general optimization proce-  To simplify the analysis, the pump state potential is
dure for a sequential multiphoton process can be formulatethken as a constan¥,;=0, the probe state potential is taken
with the help of optimal quantum control theory. We now as a linear harmonic oscillatov,= mw?x/2. The probe state
focus on the pump—probe process, a sequential two-photamave function then takes the Gaussian form,

V. OPTIMIZATION OF PUMP—-PROBE SIGNALS
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FIG. 2. Contours plots of the Wigner transformation of the optimal probe fields for the wave pacletdandv =0 in (a), for x;=1 andv.=1 in (b), for
X.=0 andv.=2 in (c), and forx,=6 andv.=—2 in (d), respectively.

T (mAT oz ol)=Fo Trice ¥R Tz
CPe(X—Xc—vct/2) —Whn)?
i %} 49) Lo @ . 0) } (50

wherec’ is the linear chirp rate in the frequency domain,
which is related the linear chirp rate in the time domaifby
which is shown to satisfy the Schiimger equation in Ap-
pendix C. Here, all nonessential parametersw, A, and?, _-r
assume the unit value. The initial position of the wave packet rs
X, has been adjusted according to its initial veloaityso  the chirp of a laser pulse describes the correlation between
that the probe window is approximately seb@t=2 corre-  frequency and time, which cannot be deduced from the tem-
sponding to a carrier frequency ef,=2. The probe state poral envelope or the power spectrum. The electric field can
propagatoiG, in Eq. (48) can be obtained in a closed from pe represented in the Wigner transformation fdfm,
for the harmonic oscillator potential and the coordinate inte- .
gration of the response function in E48) can be performed F(t,w)= f dre 'TE* (t+ 7/2) E(t— 7/2), (52)
analytically. The time range for the probe pulse;is0 and -
t{=3, and the response matrix is evaluated on a time grid ofyhich reduces to the power spectruf(w)|? when inte-
dt=0.03. Then the discretized material response matrix igrated over the time variable and reduces to the temporal
diagonalized and the optimal electric field thus obtained. field Strength|E(t)|2 when integrated over the frequency
The Fourier transformation of the Gaussian pulse of Eqvariable. Substituting the Gaussian field E81) into Eq.
(21) can be expressed as (52), we have

ct?
‘=7 (51)
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(t—to)z APPENDIX A: INTEGRATED PUMP—-PROBE SIGNALS
Fo(t,w)=Ej exp — —t2[(w— wg) —C(t—t0)1?},
G 0 t2 p 0 0 . . C . . .
p The derivation and definitions in this appendix follow

(53 closely the review papBby Lee on this subject. In pump—
which clearly shows that the center of the frequencyprobe experiments, the fluorescence signal or the yield of
wo+c(t—ty) shifts at the rate of the linear chigp Generally — photofragments from the second excitqutobg state are
speaking, on thé(t,w) contour diagram, there is a center measured as a function of the pump—probe delay time,
frequency at each time, these centers form a principal axis ofheoretically, all integrated pump—prolff>P) signals can
the contour plot as a function of time, and the slope definedhe described by two kinds of quantities: the total energy loss
as the tangent formed by this principal axis and the time axiper unit area by the probe pulse, also known as the integrated

is equal to the time domain linear chirp rate. pump—probe energfPPe signal, defined by

The contours of the Wigner transform of the optimal 1 (e
fields are ;hovyn for various molecular_ wave packetss 2 I(7)=— f | pr(@,7)dw, (A1)
andv.=0 in Fig. 2a), x,=1 andv.=1 in Fig. 2b), x,=0 2T )

andv =2 in Fig. 2c), andx.=6 andv.=~2in Fig. Ad). As %nd the total photon loss per unit area by the probe pulse,

can be seen from the slopes of the contours in these figure . i
the optimal probe pulse for a stationary wave packet is nzoggﬁr\:\/er:jasythe integrated pump—probe photBRp sig-

transform limited pulse, the optimal probe pulse for a mo-
lecular wave packet moving to the right has a positive linear 1 (= lplw,7)

chirp rate, and the optimal probe pulse for a molecular wave ~ N(7)=5— f T he do. (A2)
packet moving to the left has a negative linear chirp rate, as

expected from our analysis. In fact, the linear chirp rates argiere, | ,,(w,7) is the change in spectral intensity given by
c=0 in Fig. 2a), c=2 in Fig. Ab), c=4 in Fig. Ac), and
c=—4in Fig. 2d), which agree exactly with the prediction
in Eq. (42).

V4 ~

|pr(w,7)=3%’) IM[wE3 () Ps(w, 7], (A3)
wherez, py, andng are the length, number density, and index
of refraction of the sample being measuréd,is the third-

The Bersohn—-Zewail classical model in Sec. lll is gen-order polarization, ané,(w) is the Fourier transformation of
eralized to a nonstationary analysis in Sec. IV, and this ighe probe field.
used to theoretically verify the correlation between the chirp ~ The molecule, initially in the ground state, is first excited
of the optimal probe pulse and the motion of the moleculatto the intermediate excited state by the pump pusgt),
wave packet being probed, as discussed by Sterlingand after a delay time is excited to the probe state by the
Zadoyan, and Apkarial? With Eq. (41), information can be  probe pulseE,(t). As in Sec. Il, we assume that there is no
learned from a generalization of pump—probe experimentgverlap between the two pulses and all dephasing and relax-
with the coordinate of the molecule being measured by th@tion is ignored. Then the third-order polarization can be
carrier frequency and the velocity corresponding to the moexplicitly written as
lecular coordinate measured by the linear chirp rate of the

X L 1 [t - ,
optimal laser _pulse. ansequgntly, by tailoring the probe la- Pa(t,7)= = f dt'Ep(t!) (i (t' + 7)|eHat=th
ser pulse to yield the highest signal peak, the trajectory of the —o0
molecular wave packet can be mapped out in phase space. (=t
Such experimental techniques may be useful in studying mo- X €2 pala(t+ 7)), (Ad)
I_ecular dynamics during cher_nicgl reactions as well as vibrag hare the pump state wave functigq(t+ 1) is defined as
tional relaxation and dephasing in condensed phases.

_T0 test the validity of our semiclassical pred_iction of the dy(t+7)= ei|:|1(t+r)/ﬁ W= eil:|1t/ﬁ (7, (A5)
optimal probe pulse, we apply quantum optimal control
theory and find excellent agreement. The general multiphowith ¢;(7) given by Eq.(11) and ¢, given by Eq.(12). Sub-
ton quantum control formulation given in Appendix E is not stitution of Eqs.(A4) and (A3) into Eq. (A2) leads to
limited to a single photon process. For example, the two-
pulse formulation for the pump—probe process can be used {Q(7) = ZPo Im f

VI. CONCLUSION

E}(0)P3(w,7)dw

maximize the yield of product at a target time in the context Nofi 6 -
of quantum control. It will be interesting to compare the . "
result obtained from the two-pulse optimization and the re- _ “Po Im f 5 (1)P5(t)dt
sult from a single-pulse optimization. 3nef -
Zpo ” t = '
ACKNOWLEDGMENT :Tohz Re B dt B dt'E5 (D) Ex(t")
We thank Dr. Chris Bardeen for his help with respect to A
the latest experimental developments on this subject. Xy (t+ 7)| o2 ol (1 + 7). (AB)
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Then, by writing the real part in EGA6) as the sum of the dw’t?\? -

integrand and its complex conjugate and making use of the S(t)=— o2 (y— T) —iy do“t+i + wyet,
definition ir_l Eq.(10), we arrive at the explicit expression for (B7)
the IPPp signal,

202t

with y=x+d and the transition dipole momenpt being a

_ Zpg constant. To be consistent with the quadratic form of the
N(7)= 6N (D[ ga()), (A7) harmonic oscillator propagator, the electric field takes the
functional form of a Gaussian,

which is exactly Eq.(13), except for a constant prefactor.

. . . 2
Finally, under the assumption thét; commutes withu,, CE et -
Eqg. (A1) for the IPPe signal can be reduced to E(t)=Eee ex 2t‘23 +ec. (B8)
Zpg -~ A wheret,, is the time duration of pulse and c.c. denotes the
1(m)= e_no (2(7)[(Ho=Hy)[¢h2o(7)). (A8) complex conjugate. After substituting the Gaussian field of
Eg. (B8) into Eqg. (B6) and performing the time integration,
APPENDIX B: VALIDITY OF THE FROZEN WAVE we have
PACKET APPROXIMATION , [{ (Rw?2—y dw?d)? 2 }
1=exg — 2 2y 2y N2
As explained in Sec. lll, the displacement of the molecu- 2(1k,—y dw/\%) 2\

from the initial velocity, Eq.(15), and a contribution from ~ T2 232
the net acceleration, E¢L6). Here, the initial wave function
of a displaced harmonic oscillator is solved to demonstratgyhere I'=1/t, and U is the potential difference. The last
the validity of the frozen wave packet approximation for theequality in Eq.(B9) gives rise to the classical result and is
excitation of the ground state by a pump pulse. justified if

To begin, the system is initially in the ground state of a
displaced harmonic oscillator,

1 r{— (x+d)?

Vo= O T T

lar wave packet during excitation consists of a contribution ;{ Uz y2 }
~ex , (B9)

1 w?yd

—> ~ w?d\, (B10)
th A

: (B1)  wherey is in the order of the Gaussian widi With the

introduction off .= mwd as the force arising from the poten-
where\ is the Gaussian width defined a%=%/mw, with tial difference of the ground and excited states in the
being the frequency of the oscillator, adds the displace- Franck—Condon region, EqB10) becomes exactly the same
ment between the ground and excited state harmonic oscillas Eq.(16), which sets the condition for the validity of the
tors. The quantum propagator of this system can be exfrozen wave packet approximation: the displacement during
pressed in a closed form as the excitation is considerablely smaller than the characteris-
tic width of the molecular wave packet.

i (X=X)? ipe(X=X)
iH,t — —
et ‘ﬂo—(w)\z)m eXF{ 2)\2 + i +I7t ’

(B2) APPENDIX C: FREE PARTICLE PROPAGATION OF A
where GAUSSIAN WAVE PACKET
pi=—wd sin(wt), (B3) To examine the free particle propagator, we assume that
x=—d cog wt), (B4) the wave packet at zero time takes the form of a Gaussian
function
and 2
P X . PcXc
w2d? $(0)=.71"expg — W‘FI T , (Cy
Vi= sin(2wt) + (w19t w/2)t, (B5)
4 o .
where the normalization factor is
with w4, being the transition frequency between the excited 1
and ground states. For simplicity, the masand the Planck N = W' (C2)
’7T

constantz are not explicitly included in the above expres-

sions. . , ikt .
Applying the free particle propagata,*!, to Eq.(C1) gives
According to Eq.(12), the initial excited state wave PPINg R P propag a.C g
function is expressed as (1) =e"Vy(0)
, 1 f“ [\ (x—iN2p./h)2  N2p2
=ip ——m | eSVE(t)dt, B6 = )\ —— exd — ) 2 le
Y=l (DT | (1) (B6) I X0 ex 200 > (C3
where the exponential part is with the time-dependent Gaussian width
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ifit 2 1

N()2=N2+ —. (CH </f~C(F)E0f exp —| = +ic|t?
mA ty

After rearrangement of the exponential part, we have Fi( w1+ wy— 200t | (t)dt
= A \? 2 =4\ ai (07 + wo)t

P(t)y=1 Vh(t) P SNt (ma)z] |~ X v =C(F)fE(t)e ety (t)dt, (D3)

X\2p p2 fit whereC(TI') is the result of thes integration, explicitly given
+ 2i 7 _i)\zt ﬁ—i_l E 7\2X2 (CS) by

2
To proceed, the imaginary part M(t) can be ignored if the CI)= T ex;{ N W) (D4)

following inequality is satisfied, o i i ,
which is a function of the bandwidth only. More importantly,

At as can be seen from E@3), an off-resonant two-photon
—<\?, (C6) process can be viewed just as a single photon process with
m the laser field defined by

2
where the left hand side represents the spreading of the wave E_(t) — ES ex;{ _ t_z_ ict2— 2wqt (D5)

packet due to quantum dispersion, which is not significant if p

the time is short. Under this condition, we can rewrite thewhich, in comparison to the original form of the Gaussian

wave packet as pulse in Eq.(21), has double the carrier frequency, double
the chirp rate, and the square of the field.

P(t)=e"y(0)
v F{ (X_Uct)z ich_(Uct/Z) APPENDIX E: OPTIMIZATION OF A SEQUENTIAL
=) exX .

onZ T 7 (C7)  MULTIPULSE PROCESS

We begin by considering a sequential multiphoton pro-

cess consisting dll nonoverlapping laser pulses given as
APPENDIX D: OFF-RESONANT TWO-PHOTON

ABSORPTION N _ _
e(t)= 2, [En(hye "'+ Ex ()e“n], (ED)
In contrast to the pump—probe process, two-photon ab- n=1
sorption is a coherent multiphoton process, which means th@here the electric fieldg(t) are localized in time with the
step-wise treatment used in Sec. Il is not applicable here. Tgubscriptn denoting the sequence of time. Here, the light
gain a simple understanding of the process, we generalize thgilses are designed in such a way thatcorresponds to an
classical model in Sec. Ill to analyze this coherent two-electronic transition frequency from stdtg_,) to state|l ,)
photon process. To begin, we write the excited part of theand so that, under the rotating wave approximation the mol-
wave function after the excitation as ecule, starts from the ground stdd, goes through interme-
diate excited statgs$,), and reaches the final statg). As a
T (2 it ot result of the excitation, the molecule on the final electronic
y= mejfxe e 22E (1) E(ty) ¢(ty)dty dtp, (D) state|ly) can be described by a density matrix given by

Pn(ty) =Gn(ti—Ty) Gty —t1):Go(ty — 1))
wheret w,=V,—V,; andfiw,;=V;—V,. With the introduc- . . .
tion of new integral variables2=t,—t, and 2=t,+t; and X poGo (11~ 1i):Gy (tp—ty) -~ Gy (tr—ty),
the assumption of a Gaussian pulse as in(Ed). with t,=0, (E2)
Eq. (D1) becomes

Y= f:dtfldsEé ex;{— tl

7+iC
p

whereG,(t,,1—t,) is the propagator on thig,) electronic
potential surface

(s*+1%) Gt 1—to) =exi —iH; (thys—t)/A], (E3)

with I:||n being the corresponding Hamiltonian. Here, the co-
#(t+s).  (D2)  |on represents an electronic excitation defined by
Gn(tn+1_tn):Gn—l(tn_tn—l)
The intermediate statd) is assumed to be off resonance, 1

: : ) : t
implying d=t(w;—w,)>1. Then the integration of can be =— f fGn(thrl_tn)ﬂnanl(tn_tnfl)E(tn)v (E4)
completed, resulting in iy

+ti(wtwy—2wg)t+i(w1— w,)S
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with w, being the transition dipole moment between states Recently Cao and Yan have formulated two-photon op-

[l,_1) and|l,)). The notation introduced above simplifies the timal control as an eigenvalue problem such that the two

analysis for the optimization of the multiphoton process.  optimal fields satisfy a rigorous time-reversal relationsRip.
In general, the target of quantum control can be specifiedhis result is significant for optimizing the pump—dump con-

as an operatoh and the degree of control is measured by thero] schem@ as a method to efficiently transfer population to

fal)(pectation value of this target operator at tipeor explic- g highly excited vibrational eigenstate.

iy,

Alt) =T Ap(t))], (E5)

where the target is defined on the final electronic state mani-
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