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A recently proposed unified theoretical framework for quantum activated rate constants is further
developed and explored. The case of electronically nonadiabatic rate processes is considered, and
the weak coupling limit explicitly investigated by an expansion of the rate constant expression. By
virtue of this approach, a semiclassical Golden Rule expression is derived after a series of steepest
descent approximations. The semiclassical analysis in turn reveals a closed form path integral
expression for the quantum activated rate constant in the nonadi@Batden Rulg limit which is

free of harmonic and/or classical approximations for the many-dimensional nugibaonic)

modes. The latter expression is amenable to direct calculation in realistic systems through computer
simulation. © 1997 American Institute of Physids§0021-960807)52505-0

I. INTRODUCTION brella of a unified theoretical framework for quantum acti-
vated rate constants, as was developed in Ref. 26. The result-
The subject of electron transféET) rates and their cal- ing “nonadiabatic instanton” formulation is general and
culation has been the target of many analytical and numericaJapable of treating nonquadratic diabatic potential energy
studies>” Recent computational approaches for computingsurfaces and multiple electronic states. More importantly, it
ET rate constants range from those based on Fermi’s Goldeflso provides a computational method for bridging the adia-
Rule (see, e.g., Ref.)3o explicit quantum dynamical calcu- batic and nonadiabatic limits of electron transfer processes.
lations on simplified models of ET procesdsse, e.g., Refs. The theory was tested for the well-known spin-boson model
4-9. In addition, approaches derived from path integralas applied to ET reactiofd”?”?with a single (Marcus-
quantum transition state theol-QTST) (Refs. 10-1B  type) harmonic bath mode, obtaining excellent agreement
have been developed to calculate the ET rate based on th@th the analytical predictions in both the adiabatic and
centroid density of the electronic state variafe® Despite  ponadiabati¢Golden Rulg limits. In addition, it was shown
the many theoretical and computational studies of ET reaczat nonlinearity in the diabatic potentials can readily be in-
tions, a unified computational approach has not yet been dqyded in the calculations and may have a large effect on the
veloped which is capable of determining ET rate constantgate constant. What was not contained in the previous work,
for arbitrary values of the electronic coupling in systemspowever, was an analytical proof that the nonadiabatic in-
characterized by general nonlinear potentials and a signifistanton solution can be reduced to the usual Golden Rule
cant degree of nuclear mode tunneling. Even in the ”O”adiae'xpression in the weak coupling limit, nor was a numerical
batic or weak-coupling limit, the calculation of the ET raté gcheme presented to calculate the rates for the case of a
constant for arbitrary potentials is a challengflowever,  continyum of bath modes. It is therefore a goal of this paper
encouraging progress in the latter arena has been been kg analyze the weak coupling limit of the nonadiabatic in-
ported by Wolynes/ and we will make contact with and gtanton theory, both analytically and numerically.
qxtend this intriguing point of view from a different perspec- It is also a goal of the present paper to explore the con-
tive.) ) o sequences of the general statement that the quantum rate
In a recent paper, it was shown that significant progresggnstant is related to the imaginary part of the barrier parti-
toward the calculation of ET rate constants for general sysg, function which is defined asymptotically for an appro-

tems can be achieved by exploring the structure of instantopjate ynstable mode associated with the rate process. This
theory in systems influenced by nonadiabatic transitidns. 1o hematical formulation unifies classical activated rate

To briefly review this perspective, the approdtis based on theory, its quantum corrections at high temperature, and the

the t;nsta:jnton hexpressmr:j_ f‘;r qua(;‘tum _rate fcons‘%r%& instanton theory at low temperatures where the dynamics are
sz 'n§ wit 6;] nonadia at|g ynamics torma strongly influenced by tunneling. It also providesapriori
adapted to treat the imaginary time instanton trajectory Un:oiiqnaie for the introduction of the Feynman path centroid

dergoing nonadiabatic transitions. As will be discussed Iater\'/ariable into the quantum rate constant expression. As such,

this mathematical formalism is also contained within the um-, theory can be used both to further justify the PI-QTST

formulal®~*3and to derive an improved quantum rate con-
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1770 J. Cao and G. A. Voth: Quantum activated rate processes. Il

cesses which are of broad interest to the chemistry commuwherew is a simple prefactor, given by7i8 in the instanton
nity. limit,%® and Imz,, is the imaginary part of the barrier parti-
The nonadiabatiéweak coupling limit of the two-state  tion function. In the following discussion of two-state sys-
guantum activated rate formula will be explored in thetems, the latter function will first be analyzed in the instanton
present paper within the context of the framework presentetimit, and then in the nonadiabatiGolden Rulg limit. The
in Ref. 26. The focus will be on the weak couplit@olden central theme in both cases is the identification of a steepest
Rule) limit, so that the partition function can be expanded indescent integration mode that yields the imaginary part of the
terms of the nonadiabatic coupling constant. A sequence gfartition function. This mode is theénstable or reactive
steepest descent approximatiohwill be carried out to de- mode. It has a clear interpretation in the classical, or nearly-
rive a semiclassical formula of the Golden Rule rate constantlassical, limit as the reaction coordinate mode at the free
and to reveal the origin of the imaginary part of the barrierenergy saddle poirfi.e., transition stafe but in the various
partition function in the weak coupling regime. The result, quantum regimes it becomes more abstractly deffidkv-
when applied to the spin-boson model, is shown to recoveertheless, the perspective of an unstable saddle point mode
the familiar rate formula for the spin-boson model, but thegiving the imaginary part of the barrier partition function
semiclassical expression also holds for more general nonlirunifies many different results in quantum activated dynam-
ear diabatic potential surfaces. The imaginary part of thdécs. More importantly, it helps to justify new formulations
barrier partition function is again shown to be the key con-such as PI-QTST and the path integral Golden Rule rate
cept in the latter approach. This term, which naturally arisegxpression developed in Sec. Ill.
from a steepest descent evaluation of the appropriate inte-
gral, is then shown to lead to a formula for the nonadiabatiGs Nonadiabatic instanton formalism

(Golden Rulg rate constant which does not rely on assump- o ] _
tions for the vibronic modege.g., harmonic and/or classi- Within the context of Eq(2.1), we first consider the full

cal. In addition, the final expression can be readily evaluatedionadiabatic instanton solutidhwhich is applicable to sys-

in computer simulations of realistic systems using imaginanféms having arbitrarily large off-diagonal couplings between
time Feynman path integrals. The exponentiatrhenius- the diabatic states. The general electron transferlike Hamil-
type) term in the formula is the same as one proposed byenian for a many-body, multilevel system is given by
Wolynes;” so in the end it will have been derived from two 1=K (§)+V4(q), 2.2

complementary perspectives. Importantly, however, the . o ,
present approach also provides an expression for the prgxghereK(q) is the kinetic energy term for the the coll_ect|on
exponential factor so that actual nonadiabatic f&% con- of N nuclear degrees of freedom for the system of interest,

stants not only activation free energies, can now be calcy-and V4(q) is the potential defined on an electronic diabatic

lated in realistic path integral simulations, again being free of2SIS Set, el
any assumptions about the vibronic mode character.
The present paper is organized as follows: The overall Va(@) =2 [V (a)(ul+ 2> 2 Vu(Q)
theoretical framework for quantum activated rate constants is # S
presented in Sec. Il, with the general concepts outlined in X (|pu){v]+]v){u|). (2.3

Sec. Il A and the nonadiabatic instanton solution reviewed inl'he termsV(q) here are the diabatic potentials, and the
tShec. II'B.tr']I'he dnopa(?jlabatl(AAlleaK C(ﬁup“n% I|m|'I[| gf thz functionV ,,(q) is the coupling matrix element between the

eory 1S then derived semiclassically In Sec. 11 L and ap',uth andith diabatic surfaces. The latter function is assumed
plied to the spin-boson model in Sec. Il D. The implications

f the analysis for the broader context of the rat an Pe real
of the analysis for the broader context of the rate constant ., 4, earlier papers®26 we have argued that the the

.calgulanl? In fr?]T a path m'Feglr al form?llsm IS nex.t pSreserR;a ddesired guantum activated rate constiargan be written in
in Sec. Ill, while a numerical example is given in Sec. IV. . imaginary time quantities as
Concluding remarks are found in Sec. V.

1
k= m Im ZMV’ (2-4)
Il. THEORY . . .
B _ whereZ , is the partition function of the reactant state and
A. Unified framework for quantum activated rate Z,,, is the transitional, or “barrier,” contribution to the par-
constants tition function[cf. Eq. (2.1)], given by?®

The theory of quantum rate constants developed in Ref.
26 is centered around the concept of a “barrier partition Zw:f dqf dg’{u,qlexp(— BH/I2)|v,q")
function,” and in particular its imaginary part. This quantity
arises from an asymptotic treatment of the partition function X{v,q'|exp(— BH/2)|u,q). (2.5
in the barrier region, the exact nature of which depends on

. Here,q andq’ are understood to be confined to the region of
the temperature of the system. Generally speaking, the quaps. \vells of diabatic surfaceg) and|v), respectively
tum reactive flux can then be expressetf as ’ '

Provided the effective barrier height is significantly
F=vIm Z,, (2.9 larger than the thermal energy in the diabatic wells, the
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steepest descent method can be applied to evaluate tke-), is defined in Appendix A and is a functional of the
imaginary part ofZ,,,, which leads to the nonadiabatic in- nuclear pathg(7). Because of the time reversal property of
stanton approximation for Eq2.4). The details of the in- the amplituded,,, andT,,, the instanton trajectory is sym-
stanton solution in the adiabatic limit have been elaboratednetric with respect to the imaginary tinfg3/2. The same
by others'®-231-33|n Ref. 18, however, a computational property holds true for the wave function.
methodology was proposed to evaluate the instanton rate To complete the instanton analysis, the second order
constant in the most general case whicligesthe adiabatic  functional derivative must be evaluated along the instanton
and nonadiabatic limits. It should also be noted that the extrajectory?>?° The infinite set of eigenvalues of this func-
pression in Eq(2.5) is not actually required within the larger tional derivative matrix contains a zero eigenvalue corre-
context of Eq.(2.1), but it helps us in simplifying the nona- sponding to the translationally invariant mode and a negative
diabatic instanton formalism and in finding the instanton so-eigenvalue corresponding to the unstable mdd&>°In Ap-
lution. [Stated differently, to evaluate E¢R.1) one can al- pendix A, the appropriate treatment is summarized. One then
ways find the instanton solution to evaluateZy, including  arrives at the nonadiabatic instanton solution for the quantum
the nonadiabatic transitions. Equati¢h5) is simply written  activated rate constant, i.¥.,
so as to help isolate that solutign. 1 W\ 22

To proceed with the instanton solution of the rate con- g~ _——_ (_> exp(— St/ 1), (2.10
stant, the imaginary time propagator in E8.5) is separated Z,hB \2mhD
into the wave function propagation of the diabatic levels andvherew and S, are the work and the action, respectively,
the propagation arising from the kinetic energy téfmgiv-  along the instanton trajectory, artl is a properly normal-

ing rise to the path integral ized determinant of the second order derivative matrix, ex-
1 g 1 cluding the zero eigenvaluef. Appendix A. In Ref. 18, the
Z,,= f @q(r)ex;{ - f dr > q(7)-m-q(7) notation “Im” is understood to be contained in the definition
0 of Z,,, and the reader should note the misprint in E421)

of that paper in which the prefactdf8Z,) ! is missing
X TulhB A BI2.A(TIT,[AB2,04(], (2.6 from the rate constant expression. g
wherem is the mass matrix. The quantity,, is the overlap
between the initial diabatic statg) and the final diabatic
state|v). The Bloch equation can be introduced to describ
the evolution of the imaginary time electronic state propaga-  In the limit of weakly coupled diabatic surfaces, the full

eC. The weak coupling limit

tor, i.e., nonadiabatic instanton solution is not necessary. In fact, the
, imaginary barrier partition function concept embodied in Eq.
_ M Y / 2 (2.1 leads to more straightforward approach. The strategy is
da(nlu(r,7), 2.7 straight APpY _
JT to analyze the barrier partition function in the weak coupling

limit through the steepest descent approximation. Here, we
specialize to the two-state case with a coordinate-
T, 77 a(n)]=(v|u(r,7")|u), (2.9 independent off-diagonal coupling, but the analysis can be
readily generalized.

In the limit of smallV,,,, the partition function can in

so that

which is a functional of the system nuclear pafty). The
'maginary tlme interval in Eq2.6) S"?‘“Sf'.es gﬁhﬁ' general be expanded in terms of this parameter, resulting in
The stationary path of the Hamiltonian in Eg.2) con- :
. . . the expression
sists of the nuclear instanton trajectory and the self-
consistent electronic wave function propagation in imaginary _ —hya 1 (8 T R
time arising from the coupling of the two subsystems. Fol- Z=Trie 7T exp — & dr(e’o™A,,e ")

lowing Pechukad®?®who was the first to provide a station-

ary phase prescription for a self-consistent classical-like tra- _ 1 2 f h f 1
jectory and time-dependent wave function based on ; Z“+772 2 L dry 0 dr
Feynman’s path integral formulation of quantum dynamics,
we have developed a similar theory for the nonadiabatic
guantum instanton solution so as to provide a means for (2.11
calculating the electron transfer rate constant under general ~ ~ .

conditions® Along these lines, an application of the steepest''e"e A=V ([ (wl+ ) (u)), ho=2,lu)h,(ul with

Pr o O T H o
descent approximation to E¢R.6) leads to the equation of fﬂ tK(q)JerﬁEq)' tf?lzq,bsz Tre fe ”_'I_S tge ptartltlt(r)]n
motion for the nuclear instanton coordindfes unction of the uth diabatic surface, "1s" denotes the

coordinate-space trace, aimds the imaginary time-ordering
d2q(7) [aHqlq(7)] operator. Clearly, one of the first summation terms of Eq.
" T A2 :< aq(7) >d1 (2.9 (2.1 can be identified as the reactant partition functiop,
On the other hand, the second term of Efj11), which will
which is to be solved together with E(R.7) to obtain the be denoted by,, must somehow contain the contribution to
nonadiabatic instanton trajectory. Here, the quantum averagbe imaginary time transition element in the weak coupling

movEQ

XTrc[e_h#(ﬁﬂ_Tl)/ﬁe_hv(Tl_TZ)/h’e_ h,u,TZ /ﬁ] oo,
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limit if the theory outlined in Sec. Il A is to hold together. and
More specifically, the imaginary part @, if it exists, must 9S.(7)  95,(7)
be associated with the imaginary part of the “barrier parti- “ + 2=, (2.17)
tion function,” Z,,, in Eq.(2.1). Recall that by definition the eP leP)

imaginary part of the barrier partition function is defined _toi.e., the momentum is continuous at the surface switching
arise from the steepest descent treatment of some key intgmes. The above equation implies a closed path in the phase
gration variable or “saddle point mode;”whether it be the  gpace of(q,p) but a discontinuous path on the potential sur-
classmal reactive mode at high temperature, the Instantopyce pecause at positioms and g, the stationary classical
fluctuation mode at low temperature, or the path Cemro'qrajectory jumps from theuth surface to theth surface, or
mode in PI-QTST. Our purpose here is to discover the origifice versa.
of the quantum saddle point mode in the weak coupling |nterestingly enough, the above steepest descent analysis
limit. To be consistent then, a steepest descent treatment Wit the coordinate integrations has not yet defined an imagi-
be carried out for all possible integrations to see what th'?lary part for the ternZ, ,, in Eq. (2.12. Therefore, we now
_ v .(2.12. ,

perspective reveals. o explore the final integration variable—over the imaginary

Due to the periodicity of the trace implied in EQ.11,  time ~—from the steepest descent perspective. Ignoring the
the integrand ofZ, is invariant with respect to one of the rdependence of the prefactor in E@.14, one finds the

integral variablesy, or 7,, i.e., it depends only om=7,—7,.  gtationary condition for the imaginary time integration to be
Therefore,Z, can be rewritten as given by

1 (46 e _
Zau= BV, 7 JO dr Tr.(e- Mgty (2.12 1S,(h=7s)  IS7e) _ (218
(?'Tst 07-St

where 7 =#—7 and the subscripur has been added to \yhich in turn implies
Z,,, to denote the contribution from the coupling between ,
the uth andth diabatic surfaces. E (79 =E.(7s), (2.19
A steepest dgscer{i.e., s_emlc_lassma_l apprOX|m_at|on wherer), = i3 — 7. This condition insures that the trajec-
can now be applied for the imaginary time path mtegralstory segments have a continuous energy

involving the nuclear coordinate giving After imposing the above equality on the stationary con-

Trc(efhﬂf’/ﬁefhyﬂh) ditions Eqgs.(2.16) and(2.17), one finds
V,u(ql)zvv(ql)v (22@
_ ~h, 7' Ik —h,rlh
—f d‘hj dax(asle "= *az)(azle” """ |qy) and
1 V,u(d2)=V,(q2), (2.21
=5 d%f dd,V(97,8,)(95.S,) _ e _ 2 . . .
™ which describes a closed classical path in the upside down
xexp—[S,(7)+S,(1)/A}, (2.13  potential surface of duratiom; on potentialV, and 78—y

) : on potentialV,,. In the weak coupling limit, the instanton
where ﬁfzsfde(ﬁzs{ﬂql/ﬁz)- Here, S,(7')[=S.(41.92,7)]  trajectory is therefore recovered with a unique choiceof
is the classical action on the inverted potential surface okijnce the nonadiabatic instanton trajectory is now reduced to
V,.(q) for a trajectory to go frony=q, to q=q, in the time 3y adjabatic instanton trajectory on the cusped potential con-
interval 7', andS,(7)[=S,(d2,q;,7] is the classical action on  pecting the two diabatic surfaces at their intersection, the
the inverted potential surface ¥,(q) for a trajectory to go  gejf-consistency of the nuclear trajectory and the electronic
from q=q, to g=q, in the time intervalr. Next, the steepest \yave function is explicitly solved.

descent approximation is again employed to evaluate the in-  The stationary-phase evaluation of E§.12 can now

tegrals over the path endpoint variabtgsandd,, giving be completed to yield
Tro(e M he Mty ~p ex —S, ()], (2.14 ) /3( 27k )1’2 g
Zy,,~IPV, ~ | toaao| exp—9%h), 2.2
whereS,,(1)=S,(7')+S,(7) and the prefactoP is given 2 w1\ |d*s/d 7| K ) 22
by where S=S,,,(75). The purely imaginary character of this
92,8,02,S, quantity results from the fact that stationary variahlecor-
P \/62 S 723 ’L_az 7ZS (2.195 responds to the saddle point of the imaginary time integra-
115092250~ 912541021 tion and, as such, gives rise to the imaginary part of the

with #,S=det(#*S/dq,dq,) and similar definitions apply for partition function to lowest nonzero order in the nonadiabatic
the other determinants. Here, the acti®)s S,, andS,,, are coupling. This is the key insight which leads us to the more
evaluated at the stationary valueseqgfandq, which satisfy ~ computationally useful path integral formulation of Golden
, Rate rate constants presented in the next section.
9Su(7') + 9S,(7) -0 (2.16 To be consistent with the semiclassical treatment of the
el 0 barrier partition function, the reactant partition function can
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also be evaluated in a similar fashion. Assuming a singléd?S/d7%|(=[S(7g+ 8)+S(7— 8)—2S() /6%, one would
minimum in the reactant diabatic surface, the steepest deevaluate the rate constant from Eg.25. As it turns out, a

scent approximation yields a solution direct path integral approach seems more promising than the
semiclassical calculation just outlined, and this will be de-
Z2,=Po exp(— Vo), (223 scribed in the next sectic:n. Before doing that, however, a
whereV, is the potential minimuni=V(q,)] and the prefac- consideration of the well-known spin-boson model is in or-
tor P, is defined as der to insure that the standard expression for the nonadia-
batic rate constant in that case is recovered using the present
1 theoretical formalism.

Po= etz st B VK121 (229

o D. Analysis of the spin-boson model
Here,K =#V(qo)/dqdq is the mass-scaled force constant ma-

trix, expanded around the reactant minimggy The above ~ The spin-boson model serves as the primary model for
expression is exact in the harmonic limit and reasonably aclnvestigating nonadiabatic transitions because it is thought to
curate in the anharmonic limit. capture the main features of, e.g., electron transfer reactions,

The substitution of Eqg2.22—(2.23 into the definiton  While retaining a relative degree of simplicity. It is described
of the quantum activated rate in E@.1) leads to the semi- Py the Hamiltonian

classical expression N g N c \2
= Z ma? “maoll - !
V;w 2 omh 1/2 H_Ao'x"’;l 2 m;q; +i21 2 m; w; <Q| 0z miwiz) )
|d28/d7'2|st exd —S(7s)/fi+ BV, 2.27)

R
(229 whereo is the Pauli spin matrixA(=V,,) is one-half the

where it has been assumed that the prefadoesd P, are  tunnel splitting. Here, the set of coordinatgs} constitutes
weakly dependent on coordinates so in the region of interedfi€ nuclear coordinates, i.e., the boson modes, with frequen-
the two are approximately the same, iR=P,. This form  Cies{w;}, masse¢m;}, and coupling constants;}. It can be

of the quantum nonadiabatic rate constant results from a s€hown that the influence of the nuclear coordinates on the
quence of steepest descent approximations to the formula Blectronic dynamicsthe two-state spin variablean be de-

Eq. (2.0). It is therefore a semiclassical Golden Rule rateScribed by the spectral density, given in discrete forrf by
constant expression. Yet, the derivation is quite general, ob- s N2

tained without invoking the linear responéee., harmonig Jo)=% 2, — so—o)), (2.28

or classical bath approximations. Most importantly, in this 2 =1 o

derivation, suitable for the weak coupling nonadiabatic limit,which in the classical limit is related to an appropriate fric-
the critical unstable saddle point mode is in ih@ginary  tion kernel.

time integration This point will be revisited in Sec. Ill, how- Substitution of the above Hamiltonian into the expres-
ever, a few comments on the semiclassical Golden Rule eXion in Eq.(2.12) yields
pressionEg. (2.25)] are first in order.
It is well-known that nonadiabatic electron transfer rates Z,=A? E JhﬁdTeAp(T)m (2.29
for a classical nuclear system can be cast in terms of a fi Jo ’
Landau—Zener-type frequency factor and an Arrhenius exp
nential factor, i.e.,
J(w)

4
ky=fe PAF, (2.26 d(1)=— f do —
o w

whereAF is the free energy difference between the reactant (2.30

minimum and the barrier todi.e., at the cusp where \yith h=#g8w. For the spin-boson model the steps leading to
V(@)=Vp]. Clearly, in the rate expression in E@.25 the  Eqs. (2.29 and (2.30 involve no approximations since the
instanton action modifies the exponent, and all the nonexpasteepest descent analysis and the cancellation of the prefactor
nential factors correspond to the frequency fadtoSince  p jn Eq. (2.14 with P, in Eq. (2.23 are exact in this case.
S(7)/h<BVy, it can be concluded that the quantum rate in gecause of the spatial symmetry of the Hamiltor{igg.

Eq. (2.29 will be enhanced by quantum tunneling effects, as(2 27, the stationary phase point, is simply the middle
expected. point of the thermal path, i.er,=%p/2. Then, the applica-

The form of Eq.(2.25 also suggests a numerical semi- tjon of the rate formula in Eq2.25), or equivalently in this
classical scheme to calculate the quantum nonadiabatic raigse Eq(2.1), leads to

constant. First, one would construct the cusped adiabatic po-

K=~

Qwhere the imaginary time action factor reads

[ coth(b/2) — coth(b/2— wT) ]

tential by locating the intersection of the diabatic surfaces; | _ Azl 2 f d J(w) v

next, one would find the instanton trajectory with the corre- ho|ha? @ sinh(% Bw/2)

sponding 7, and S(7), then one would calculate a closed

trajectory on the discontinuous cusped potentialSrt,+ &) % ex;{ —Bfwdw J(w) tani(% Bwl/4) (2.31)
and S(74—9), respectively; and finally, with 0 To (fpwld) |
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which has been derived many times before and has beemhich becomesZ , if =0 andZ, if 7=ph. Also, a free
widely applied in theoretical and numerical studies of elec-energyF(7) can be introduced as a function of the imaginary

tron transfer processedsee, e.g., Ref.)3 time 7 according to
It should be noted that the imaginary time actidr)
can also be obtained by integrating out the harmonic coordi- Z(r)=exd —BF(7)]. 3.2

”"?“es ar_ld coupllng the spin yarlables at two dlfferent. UMerpe free energy is then expanded around its stationary point
slices with the influence functional. However, the semiclas-

. ) ; . X . i . Ter, QIVING
sical evaluation of the imaginary time action outlined in the
previous section and applied here holds for more general 1 d?F(7g)
) X - - _ )2

cases, regardless of the linearity of the nuclear system. It F(7)=F(rs)+ 5 —5=— (7= 79"+, (3.3
should also be noted that in Ref. 31 thdiabatic instanton
solution was solved for the spin-boson model on the cuspedhere the first derivativel F(7)/d 7 vanishes because of the
potential constructed in a similar way as in E8.25 (see stationarity condition. Then, the steepest descent approxima-
also Appendix B of Ref. 18 Though the imaginary time tion for the imaginary time integration i8, ,, in Eq. (2.12
action thus obtained is correct, the prefactor in the adiabatigives
solution does not reflect the nonadiabaticity of the rate pro- o
cess and hence leads to a very different result from the semi- 2 B 2m

- - Zow=WVo, 7\ arzeigz|  €XH—BF(7s].
classical prediction based on Eg.25. f \ B|d°F/d 7?4

(3.9

Here, the second derivative of the free energy is always
negative, which will be more obvious once its explicit ex-

pression is derived in the next paragraph. Consequently, Eq.
(3.4) can now be used in the universal rate expression in Eq.

As was demonstrated in the previous section and earlief2.1) to give
publicationst®?® the imaginary part of the partition function )
. s i X . \Vj 2a 1/2
directly gives rise to the rate constant if the dynamics can be | _ " #» ( ) exd — BF ()] 3.5
properly described as an activated rate process. Simply using 7%z, \ Bld°Fld7?|q S

this fact, the semiclassical nonadiabatic rate expression in, . .
Eq. (2.25 can be derived in closed form based on Ej1), which can be viewed as a general, closed-form Golden Rule

the expansion of the partition function in E@.11), and a rate formula. It should be noted that the application of Eq.

sequence of semiclassical approximations. Interestingly, i3'5) to t:leGs?clin—boRsoln He}[mlitonlaT |rf\ E?ﬁ'zj) redcolvgrsE
becomes clear from that analysis that the imaginary timézegexac olden Rule rate formulfa for that model In £g.
integration in Eq(2.12 gives the leading imaginary part of (2.3D.

the barrier partition function in the weak-coupling limit and, _Th_e rate expression in E@.5 is clearly_apphcable t(.) .
realistic computer simulations. To make this more explicit,

in turn, determines the nonadiabatic instanton trajectory, fition functior? b dinthe f K
That is, it is the steepest descent evaluation of the integréhe partition functiorZ(7) can be expressed in the framewor

over imaginary timer in Eq. (2.12 which results in the of imaginary time Feynman path integrals as
imaginary part of the partition function. In the weak coupling
limit, the imaginary timer can thus be identified as the un- Z(T):J f %q(s)exp[ —S.a(s)]/h
stable quantum “reactive mode” variable just as the classi-
cal reaction coordinate and the quantum instanton are the r
reactive modes in the adiabatic high and low temperature +f0dSAV[Q(S)]/ﬁ], (3.6
limits, respectively.
Since the imaginary time in the Golden Rule limit of  whereAV=h,—h, is the difference of the two diabatic en-
nonadiabatic electron transfer processes becomes the Ugrgy surfaces and is assumed to be a function of coordinates

stable reactive mode variable giving rise to the imaginaryonly. Then, the first and second derivatives of the free energy
part of the barrier partition function, it then follows that jn Eq. (3.3) can be explicitly evaluated, giving

Golden Rule rate constants can be computed directly from

Egs. (2.1) and (2.12 without semiclassical approximations dF

for the nuclear mode path integrals. Equati@i12, as it E:_ﬁ (AV(Q)-, 3.7
stands, represents a general form for the barrier partition
function in the weak-coupling limit and thereby can serve agnd
the starting point for a direct path integral evaluation of
Golden Rule rate constants in genefaé., nonquadratic
systems. To this end, adependent partition function is now
defined as

Ill. PATH INTEGRAL EVALUATION OF THE GOLDEN
RULE RATES

d’F 1 ) )
WZ—W[(AV(Q) )-—(AV(a))7], (3.9

where(f(q)), denotes a~dependent thermal average or, ex-
Z(7)=Trfe "E-hulhe=hlh] (3.0 plicitly,
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S J7a(s)f[a(r)]exp{ —S,[a(s))/fi+ [ oVIa(s)|ds/7i}

f(a)),= - - (3.9
O = Foas)expl— S,[a(s) VA + TovIa(s)]dsA]

|
Since the second derivative is always negative as indicated itv. A NUMERICAL EXAMPLE
Eq. (3.9), the stationary pointy; always corresponds to a
maximum on the free energy curf ), or equivalently, a In this section, numerical nonadiabatic instanton calcu-
minimum of the~dependent partition function. lations are presented for the spin-boson model to illustrate

: . ; ; : the theory developed in the present and previous papers. It
With the explicit expressions in Eq&.5—(3.9) in hand, . .
P b 08.5-39 has already been shown that the theory is exact in the weak-

a numerical procedure to evaluate Golden Rule rate con- ) 7 o )
coupling limit, so what remains is to explore the nonadia-

sta}nts_becomes possible. A path integral Monte Carlo SMBatic instanton solution over the full range of coupling
lation is employed to map out thedependent free energy strengths

surfaceF(7), the maximum is identified, the second deriva- 14 gyercome the numerical difficulties associated with
tive is computed, and the rate is thus determined in closedpe jnfinite dimensionality implicit in the spin-boson model,
form, including both the exponential and pre-exponentialy transformation can first be introduced from the spin-boson
factors. The simplicity of this numerical prescription makesHamiltonian to the two-level Brownian Hamiltonian. This
it applicable to a wide range of realistic procesgeg., elec-  derivation is found in Appendixes B and C. The transforma-
tron transfer without assumptions for the functional form of tion to the two-level Brownian oscillator Hamiltonian re-
the diabatic potentials or the classical vs quantum nature agduces the multidimensional spin-boson model to an essen-
the nuclear modes. In particular, the commonly employedially one-dimensional dissipative nonadiabatic instanton
practice of mapping the electron transfer system onto théalculation, thus reducing the computational effort dramati-
spin-boson(harmonic bathmodel is not necessary. cally. However, it should be noted that there is no fundamen-
The complementary perspective of WolyHesn this tgl prpblem 'a.ssoma'ted with the nonadlabatlp mstaqton solu-
subject must certainly be noted. By writing the Golden Rulelio" In multidimensional spacé. The Brownian oscillator
rate constant ake [*..dt’e*t") he argued that the integral transformation is simply designed to facilitate numerical ef-

would be dominated by a saddle point in purely imaginaryﬁCIenCy by making use of the Gaussian nature of the spin-
. o . . “boson bath modes.
time, giving rise to an expression for the quantum Arrhenius- The essential details of the numerical procedure for the

type exponential factor which is the same as the one derivefl, 4 diabatic instanton method and its convergence proper-

above. This observation, he further suggested, could be €Xus have been discussed in the previous p4¥b&he algo-
ploited numerically with path integral Monte Carlo methods rithm consists of the following steps:

to calculate the quantum activation free energy in nonadia-
batic systems. Wolynes'’ intuitive picture has now reappeareéll)
in the framework of the present paper and the unified rat

The transformation based on relations E&6)—(B8) is
carried out for a given bath spectral densit).

o . R ?2) An approximate instanton trajectory is used as an input.
expression in Eqi2.1) evaluated in the weak-coupling limit. An educated guess is the instanton solution for the adia-

The present work goes one step further, however, in that & e surface in the strong coupling region or the instan-
closed-form expression for the rate constgq. (3.9] has ton solution for the cusped barriéin the weak coupling
been derived. Furthermore, the weak coupling result is but a  regjon.

limiting case of the more general nonadiabatic instanton sof3) The Bloch equation in Eq2.7) is solved numerically for

lution in Eq. (2.4).18 the given nuclear instanton path. At each time step
It should also be noted that the centroid density of the  e=#g/P, the electroniddiabatig states at that imaginary
electronic state path variabtgr) was first shown to give the time is propagated for one time step. The initial state

correct activation energy for electron transfer by Gehlen and ~ and the final statp) are taken to be the right and the left

Chandlet® and was later investigated more extensively by  diabatic surfaces, respectively.

Song and StuchebrukhBuwithin the context of the spin- (4 The equation of motion in Eq2.9) is iterated to a con-

boson model. In their work, the concept of the electronic Vefg?d instanton trajectory for the given electronic wave
. . . . function. The rate of convergence depends on the dis-

centroid variable was introduced as a natural extension of L A :

PI-OTST(Refs. 10— 1Bfor electron t ¢ ithout full i cretization number and the initial input. Generally, it has

>I-QTST(Refs. 10-1Bfor electron transfer without full jus- been found that ¥3-10° iterations will yield conver-

tification. By deducing the weak coupling expression from gence

Eq. (2.1, it becomes apparent that the prefactdirAshould (5

) Steps(3) and (4) are repeated as a loop until self-
be adopted regardless of temperature in the weak coupling consistency is reached.

limit, and that the use of electronic centroid variable is most6) Once the instanton solution is found, the fluctuation ma-

appropriate for cases of small nonadiabatic coupling con- trix in Eq. (A1) is computed and diagonalized. A vanish-

stants. ingly small eigenvalue assures a satisfactory stationarity
J. Chem. Phys., Vol. 106, No. 5, 1 February 1997
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Nonadiabatic Instanton for Spin-Boson System systems described by an arbitrary nonadiabatic coupling
-8 ’ ; ’ . . strength. It should also be noted that numerically exact meth-
ods have been developed for studying the quantum dynamics
-10°F = = - Nonadiabatic Limit 1 of the spin-boson model for most values of the relevant
—— Nonadiabatic Instanton -9 . . .
12k — - Adiabatic Limit _ parameteré. The nonadiabatic instanton approach, how-

ever, does not rely on a harmonic bath assumption which is
key to the quantum dynamical methods.

log(k)

i V. CONCLUDING REMARKS

In the present paper, the weak-coupling nonadiabatic
limit of a newly proposetf unified expression for the quan-
tum activated rate constant has been explored. The latter ex-
pression is based on the imaginary part of the barrier parti-
tion function which, in turn, arises from a steepest descent
FIG. 1. A logarithmic plot of the rate constaktvs the nonadiabatic cou- integration over a generalized reactive mode in quantum sys-
pling constantA for the spin-boson Hamiltonian given in E(.27. For  tems. This mode is seen to change its character depending on
comparison, the Golden Rule prediction from Bg.31) is plotted as a the temperature and the system at hand. Indeed, in the nona-
dashed line, and the adiabatic instanton rate constant is plotted as a dot- L . . . .
dashed line. diabatic limit the saddle point mode appears in an imaginary
time integration. This perspective leads to a semiclassical
Golden Rule rate constant expression which is general and

condition[Eg. (2.9]] and a negative eigenvalue indicates independent of any approximations for the character of the

the metastability of the particular solutigie., the “bar- ~ nuclear modes. Even more importantly, the steepest descent
rier” partition functior). The prefactoD in Eq. (2.10  treatment of the nuclear modes can be avoided altogether,
can thus be calculated, and the acti®rand workw  thus retaining only the steepest descent evaluation of the

computed, hence vyielding the instanton rate constant ifnaginary time integral. This approach gives rise to a closed-
Eg. (2.10. form expression for the Golden Rule rate constant which is

. S ] also general and can be readily evaluated for realistic sys-

The spin-boson Hamiltonian is defined by EQ-27,  tems using imaginary time path integrals. By also using the
and the spectral density in the present study was taken to Bgaginary part of the barrier partition function concept, the

20 -15 -1.0 -05 0.0 0.5 1.0
log(A)

Ohmic with an exponential cutofb., giving nonadiabatic instanton approathvas shown to go beyond
mhK the weak coupling expression through a study of the multi-
J(w)=T we” /v, (4.1)  dimensional spin-boson problem. The application of these

ideas to realistic condensed phase systems is a priority for
whereK is the Kondo constant. The parameters were chosefuture research.

in the present case to lke=1.0, 3=3.0, w,=0.707,K=0.25.
The Ohmic spectral density can be substituted into Egs.
(B6)—(B8) t0 yield wi=20Z, N2=21K 3, and ACKNOWLEDGMENTS
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of the wavefunction and the nonadiabatic instanton trajectory
was always achieved in less than 100 iterations.
In Fig. 1, the spin-boson rate constant is plotted as PPENDIX A: EVALUATION OF THE NONADIABATIC
function of the coupling constart on a logarithmic scale. In INSTANTON PREFACTOR

the strong coupling region, the nonadiabatic instanton rate |n this appendix, the prefact@® in Eq. (2.10 is explic-
approaches the adiabatic rdtiot—dashed linebecause the jtly expressed as a normalized determinant of the second-

coupling is strong enough that the quantum transition takegrder functional derivative matrix along the instanton
place on the lower adiabatic surface. The rate in this regiofrajectory?®*3> This procedure is numerically best imple-

has an exponential dependence on the coupling constanhented for a discretized path, i.e.,
namely,kecexp(BA). In the weak coupling region, the nona-

d?abatic rate obviously becomes prqportionalm%) as pre- S — mz (26— 8 11— 6 1)

dicted by the Golden Rulédashed ling The rate in this 89;6q; € doT !

region can be described by the linearized semiclassical rate PH (7]

expression Eq2.31). Overall, the nonadiabatic instanton so- 5i’j<d—> +€Cy.ij » (A1)
lution bridges these two limits and is thus capable of treating 9999 d
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where the indices andj denote two different discretized where “det ” stands for the value of the determinant with
imaginary time slices,q; and g; are the corresponding the zero eigenvalue removed. The above equation is used in

nuclear coordinates along the instanton path, eadg/P,

the prefactor in Eq(2.10.

with P being the number of discretizations. Here, the quan-

tum fluctuation correlation matrix is given by

C. o= dHgla(7)] dHgla(7)]
i aq; aq; d

3 < ’9Hd[Q(T)]> <(9Hd[Q(T)]>
4 d aq; n

The quantum average over the diabatic basisr#efig/2 is
introduced here as

u Ti,Tj)

(A2)

APPENDIX B: THE TWO-LEVEL BROWNIAN
OSCILLATOR MODEL

The two-level Brownian oscillator model has been popu-
larized as an analytically solvable model to describe elec-
tronic absorption line shapes and various nonlinear optical
processes in condensed pha¥e$in this model, the system
and the bath are explicitly separatedths- H,+H,,, where
the system Hamiltonian is given by

1 1 A 2
_<V|U(h:8/217')f(7')u( 7,0)| i) He=Ao+ = mf+ = mwz( qg—— a'z) (B1)
TG uh B2, u(w 0 ) "3 277 270 ma
or, if 7=%pI2, then and the bath Hamiltonian is given by
N-1 2
(WU B DD U(7hBI2)| ) Ho= S |2 Sma?lx + = g } 82)
= uh B uCr B2 ) (A9 A 22 e

In Egs.(A3) and (A4), the denominators are independent of Here, q is the Brownian oscillator coordinate, with its bare
the variabler. The quantum averages are carried out by asiféquéncyw, and bare coupling constant and the set of
suming a particular nuclear pagftr) and are thus functionals Ccoordinategx,} constitutes the bath modes, with frequencies
of the nuclear paths. {w;}, massedm;}, and coupling constantg,}. To distin-
The dimensionality implicit in the above equations is gui'_sh fr_om the similar parameters in the spin-boson Hamil-
such that625/6qi5qj is a matrix of dimensioNx P, where to_man in Eq.(2.27), the bath parameters here are denoted
N is the number of physical degrees of freedom of the sysWith an overbar. _ _
tem. When diagonalizing this matrix, there will be a negative N the context of imaginary time path integrals, the bath
eigenvalue giving rise to the imaginary part of the partitionHam"ton'a” can be explicitly integrated out, resulting in the
function, and a zero eigenvalue corresponding to the transl&Ystem path integré
tionally invariant modé! The existence of a zero eigenvalue 1 (4B
is an indication of a true instanton solution. The removal of ~ S¢/hi= > f drHLa()]+BmY O 7(Q)[G0)2,
the zero eigenvalue requires the proper normalization. 0 n=0

For a free particle, the matrix describing the quantum _ (B3)
path fluctuations is given by where the last term is the influence functional. Heygis the

5 Fourier transform of the path(7), defined as
m
— (26 j= 6 j+1— 6 j-1)-

80i09, €
A normal-mode transformation leads to the eigensolutions of
the matrix in Eq.(A5), i.e.3® with Q,=2xn/A B, and 7(Q,) is the Laplace transforma-
tion of the mass-scaled friction kernel, defined b
N =2(m/€2)[ 1 cog 2ml/P)], (A6) y
N -2 Q
n

where the index ranges from—(P—1)/2 to (P—1)/2 for odd Q)= Z C?J_Z — .
values ofP, and it ranges from-(P—2)/2 to P/2 for even =1 mmoj Qi+ j
values ofP. The case of=0 gives a zero eigenvalue which Since the two models are equivalent, there exists a
corresponds to the transl_ational invgriance in the free particlgnique transformation between the spin-boson and the
Space. Rﬁemoval of this zero eigenvalue leads to thgrgwnian oscillator Hamiltonians. The derivation of this
conditior? transformation is presented in Appendix C. With the defini-
tion of the spectral density in E@2.28), we can rewrite the

(A5)

1 (n8 .
G=75 fo drq(7)e ', (B4)

(B5)

|1;[o N=(m/e?)P P2, (A7) relations given by Eq9C2), (C8), and(C10) as
which recovers the correct free particle density. wg:M, (B6)

Therefore, the instanton matrix in EgA1) is normalized Jdol(w)/w
to the free particle prefactor, giving 2m

227
o 1 - 5%S ) e \N= - f dowl(w), (B7)
= lim — det| €’m ,
b P? 60 69 and
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. fdowwd(w) 5 5 A general coordinate transformation can be carried out
Qnn(Qn)= Tdwwd(@) (0?10 —w5—Q5. (B8  py making use of the identity

Thereby, all the parameters of the Brownian oscillator can b N N N 2.2, 2.2
determined from the spectral density of the spin-bosorjj jdq& q_Zzl gig; | ex _:3241 5 (0igi+ Q%))
model J(w).

An important consequence of this transformation can be N-1 1
easily noted. Without the inclusion of the influence func- = jdxj exg — 3 Veﬁ+592q2
tional, the system Hamiltonian in E¢B1) gives an activa- 1=

tion energy N-1 4
T 022
a_meg w PP B9

where () is a real variable to be specified aM}y is the
which recovers exactly the classical activation energy of theffective potential given in the right-hand side of EG.3).
spin-boson Hamiltonian. When substituting into the single-Completing the Gaussian integration, we H4v#&

mode rate expression, one obtains

N-1 52 N-1 o2
A% [z sinh(b/2) tanh(b/4) W(Q)=wl+02- > —1o+> —% (C5)
kZW mex _BEaW , (BlO) j=1 lx)j+Q =1 w;j

with b=7%pBw,. This expression approximates the Goldenand
Rule rate constant and recovers the exact classical limit. In N—1

view of Eg. (B10), it might be reasonable to use, as a H (02+0Q2)=W(Q) H (@2+0?) (C6)
characteristic frequency of the nuclear system and to include =1 = j=1 '

the friction kernel only when both dissipati@nd quantum ) . . )

effects are significant. It should also be noted that the frictiorfh€reW is an auxiliary function defined as

kernel Eq.(B8) is determined by the functional form of the

N 2
; L . 1 of
spectral density but is independent of its strength. S = C
W(Q) .Zl w?+ 02 €7
APPENDIX C: TRANSFORMATION BETWEEN THE The identity Eq.(C6) has been derived before and has been
SPIN-BOSON AND BROWNIAN OSCILLATOR widely used in the Hamiltonian formulation of transition

In this appendix, we will derive the transformation from  With these identities in hand, the frequency of the col-
the spin-boson Hamiltonian to the two-level Brownian oscil- €Ctive modeq is found to be
lator Hamiltonian(see also Refs. 31 and B%First, we re- N 2\ -1
writ_e the_ rele_vant potential terms of the spin-boson Hamil- w(%:W(O):(_ %2) ) (C8)
tonian given in Eq(2.27) as i=1

N which can be interpreted as the average collective frequency

Zl 0,Ci0i=0ZA0, (€D of the nuclear system.
Now with the expression fap, and\ explicitly given by
whereq=={,g,q;, g;=ci/\, and Egs. (C2) and (C8), the system HamiltoniariB1) is well-
N defined, but the bath Hamiltonian E@?2) is yet to be de-
A2=D c2. (C2) termined. However, the full parameterization is not neces-
=1

sary because the effect of the bath is to introduce dissipation

For simplicity, a unit mass is assumed in this appendix. Obinto the system. This effect is fully captured in the path in-
viously, the new variablg is the collective coordinate which tegral framework by the friction kernel, given as

couples directly to the spin variable. Our goal is to find an N-152 =2

. . N 2 2 . _ N . .
eﬁectlve potential for thg terrﬁizlwi qi/2 ;uch thgt it con Q0= E j_ j _ (C9)
sists of a set of harmonic oscillator coordinafgg linearly =1 w? (w,-§+ Q2

coupled toq, that is

Noq

- An application of the identity in Eq(C5) leads to
1 1

Z 020%== w2g? — @t

21 2 W ql 2 qu + jgl 2 w]

g\ )
xj+wq{q) =Ve. Q07 Q) =W(2) ~W(0)~ 0]
(3

1 1
In another words, we want to find a linear transformation =N T T 3. N o —Qﬁ,
from the coordinate s} to the collective coordinatey 20/ (it Q) 2iagi/ o
and its orthogonal seix;}. (C10
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The three relations Eq$C2), (C8), and(C10) can be recast

in a continuous form as given in Eqd6)—(B8).
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