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It is shown that several existing quantum reaction rate theories can be unified around a single
mathematical framework. These theories include the high temperature parabolic barrier
approximation, the instanton approach, and the path integral quantum transition state theory. In
particular, it is shown that the quantum reactive flux can be approximated as a product of a simple
frequency factor times the imaginary part of the barrier partition function. The latter term arises
from the steepest descent solution to the partition function in the barrier region, while the prefactor
can be interpreted as the frequency of the stationary barrier trajectory. Importantly, the analysis
introduces the imaginary time Feynman path centroid variable into the expression for the quantum
activated rate constant in ana priori way. The present theoretical framework also allows for an
analytical treatment of the quantum activated rate problem in the vicinity of the crossover
temperature, and for a generalization of the saddle point analysis in an extended-dimensional
quantum mechanical space of the Fourier path modes. ©1996 American Institute of Physics.
@S0021-9606~96!51640-5#

I. INTRODUCTION

From both the analytical and numerical point of view,
quantum reaction rate theory has been one of the most active
and challenging areas of theoretical chemistry during the
past sixty years~for a review, see, e.g., Ref. 1!. At high
temperatures, chemical reactions are dominated by thermally
activated barrier crossings described by classical transition
state theory~TST! and its high temperature quantum me-
chanical corrections.2 At low temperatures, tunneling effects
can significantly enhance the reaction rate, and the WKB or
instanton theory gives a good estimate of quantum rate
constant.3–7Thus the quantum reaction rate in these two tem-
perature regimes is dominated by very different mechanisms,
so it is typically calculated using different theories. The goal
of this paper is to formally unify the theories in these two
regimes within a single mathematical framework.

At high temperatures, modifications of classical TST
theory are often introduced to account for quantum effects by
virtue of the parabolic barrier approximation and linear re-
sponse theory. For example, Wolynes2 derived the exact
quantum rate for the parabolic barrier coupled to a multidi-
mensional Gaussian bath by a direct calculation of the reac-
tive flux correlation correlation function in the path integral
formulation. The resulting quantum rate formula consists of
the classical Kramers–Grote–Hynes prefactor,8,9 a quantum
harmonic correction, and the classical Arrhenius exponential
factor. For a one-dimensional parabolic barrier, the analo-
gous expression can be obtained by evaluating the classical
TST rate expression with the Boltzmann distribution func-
tion replaced with the Wigner distribution function at the
transition state.3 This result can be interpreted as the quan-

tum transition state theory~QTST! rate constant for para-
bolic barriers. Along these lines, Pollak showed10 that a nor-
mal mode analysis of the Hamiltonian for a parabolic barrier
coupled to a Gaussian bath, in conjunction with the parabolic
quantum transition state theory~QTST!, leads to the exact
quantum mechanical reaction rate expression as derived by
Wolynes. Accordingly, for a real anharmonic barrier coupled
to a real condensed phase ‘‘bath,’’ a parabolic fit according
to the curvature at the barrier, along with the application of
the linear response approximation to describe the dissipation
from the bath, is often employed to yield the ‘‘high tempera-
ture’’ approximation to the quantum rate constant. The dif-
ficulty associated with this approximation is its divergence
below a certain temperature, called the ‘‘crossover’’ tem-
perature. This divergence is also often used as the criterion
for the temperature at which quantum tunneling effects be-
come dominant. In these instances~and perhaps in others!, a
simple harmonic QTST is inadequate for describing the
quantum activated rate process.

On the other hand, the low temperatures deep tunneling
regime can be described by the periodic orbit,3 or instanton,5

approach which results from a sequence of stationary-phase
approximations to a semiclassical rate expression. In this
theory, the quantum reactive flux at low temperatures is re-
lated to the so-called ‘‘bounce’’ trajectory on the inverted
potential energy surface. Various versions and derivations of
the instanton solution can be found in literature.3–6,11–17By
extending the instanton analysis to the dissipative quantum
regime, Caldeira and Leggett6,14 demonstrated an exponen-
tial decrease of the rate with increasing friction strength at
zero temperature. Grabert, Weiss, Ha¨nggi, and others15–17

generalized the theory for dissipative quantum tunneling to
finite temperatures and have shown that the rate exhibits an
exponential power law enhancement with temperature over
the zero temperature limit. Recently, the instanton analysis
has been extended by the present authors18 to self-
consistently include nonadiabatic transitions to other poten-
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tial surfaces in order to properly describe electron transfer
and similar multistate processes over the full range of cou-
pling strengths.

Over time, a clear theoretical challenge has been to
smoothly join the high temperature parabolic barrier approxi-
mation to the low temperature instanton solution in the cross-
over region withoutad hoc connection formulae. Along
these lines, a general theory of metastability was constructed
by Affleck12 for temperatures below and above the crossover
within a narrow transition region. Grabert and Weiss19 also
derived a dissipative crossover formula by means of a func-
tional integral analysis, while, through the use of Miller’s
semiclassical transition state theory,3,20 Hänggi and
Hontscha21 obtained a correction to the parabolic TST rate
valid below crossover. The semiclassical TST approach has
also recently been revisited in a compelling way.22,23 All of
these rate expressions give the same result, or nearly the
same result, at the crossover temperature, but they begin to
deviate from each other away from crossover. A more uni-
fied approach is therefore desirable, particularly one which is
suited for numerical implementation in complex many-
dimensional systems.

An important step in the direction of a unified theory of
quantum activated dynamics is path integral quantum transi-
tion state theory~PI-QTST!.24–27 In this theory, one intro-
duces the imaginary time Feynman path centroid constraint
into a formally exact quantum rate expression and then fac-
torizes that expression into the Feynman centroid density and
a velocity factor. After invoking an approximation for the
latter term, the quantum centroid density occupies a role in
the PI-QTST formula directly analogous to the classical
Boltzmann density in the classical TST expression.24–26The
PI-QTST expression recovers the exact parabolic QTST re-
sult at high temperatures while remaining accurate and non-
divergent at and below the crossover temperature. At very
low temperatures, however, the PI-QTST formula gives a
slightly different and somewhat less accurate result than the
instanton expression.24,26 Nevertheless, the intuitive concept
of the path centroid variable leads to a QTST which behaves
surprisingly well even at low temperatures and, most impor-
tantly, can be readily applied in simulations of very complex
systems~see, e.g., Refs. 28–30! A recent numerical study31

of quantum dissipative barrier crossing problems has found
very good agreement between PI-QTST rates and exact
quantum time correlation function results32 over a wide
range of parameters. The PI-QTST approach has also been
successfully applied to electron transfer processes for which
the centroid constraint is imposed on the discrete electronic
state variable.33–37 Moreover, improved variational
implementations25,38–41of PI-QTST have been developed to
treat general multidimensional systems, though a rigorous
bound on the PI-QTST rate constant does not exist as in the
classical theory.

A recent extensive theoretical study42–46 has revealed
that path centroid quantities are the quantum mechanical
analog to many classical quantities, both statistically and dy-
namically ~for a review, see Ref. 47!. Yet, the theoretical
reason for the central role of the the path centroid variable in

quantum activated rate theory is not immediately obvious.
Indeed, all previous derivations of the PI-QTST
formula24–26,38have introduced the centroid constraint with-
out much justification except the prior knowledge that the
PI-QTST formula recovers the well-known results in differ-
ent limits, and it bridges these limits, as mentioned previ-
ously. On the other hand, it has been shown24,48 that the
centroid variable naturally arises if one wishes to evaluate
the instanton rate constant. In the present paper, we signifi-
cantly expand on this point of view by also considering the
high temperature limit. This analysis provides ana priori
justification for the introduction of the centroid variable in
quantum activated dynamics, while also identifying a math-
ematical framework which unifies previous quantum acti-
vated rate expressions on a common footing.

The present paper is organized as follows: In Sec. II, the
unified mathematical framework for the quantum reactive
flux is presented. The relationship of this approach to PI-
QTST is next developed in Sec. III which explains the cen-
tral role of the path centroid variable in quantum activated
dynamics. Some analysis of the theory is then given in Sec.
IV along with some speculations for future research. Finally,
some numerical studies are presented in Sec. V and conclud-
ing remarks are given in Sec. VI.

II. MATHEMATICAL FRAMEWORK

In this section, we seek to develop a unified mathemati-
cal framework for quantum activated dynamics. To be spe-
cific, we will identify a single expression from which the
primary, but more specialized, descriptions of quantum acti-
vated dynamics in different temperature and analytical limits
can be derived. In order to accomplish this goal, the para-
bolic barrier model is analyzed in detail, while the low tem-
perature instanton theory is also visited to provide a key
supporting perspective. In the end, a ‘‘universal’’ expression
will be suggested, but one should always bear in mind that
truly exact results forgeneralsystems are rare, if not impos-
sible, and the present case is no exception. Accordingly, for
general problems the following theoretical analysis is not
exact, but in the end it does appear to be a reasonable can-
didate for a unified mathematical perspective in the field of
quantum activated dynamics.

It is well-known that real time quantum correlation func-
tions can be related to their imaginary~Euclidean! time
counterparts through an analytical continuation,t→t1i t ,
also known as the Wick rotation.49 Since barrier crossing is
essentially a real time dynamical process, any quantum rate
theory which seeks to determine the rate from the equilib-
rium distribution relies at some~perhaps unknown! level on
an analytic continuation. One such prescription is the reac-
tive flux correlation function, given in terms of the present
discussion by50

F5 lim
t→`

F~t1 i t !, ~2.1!

where the correlation functionF(t1 i t ) is defined as
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F~t1 i t !5Im
]

]t
Tr@e2bHhP~t1 i t !hP~0!#. ~2.2!

Here,hP~t! is the imaginary time reactant state population
operatorhP(t)5u[q(t)2qb], whereu is the step-function
andqb is the position of the dividing surface along the reac-
tion coordinateq, usually taken to be at or near the top of the
barrier.

At this point, the reactive flux can be formally factorized
as

F5Im lim
t→`

]

]t
^hP~t1 i t !hP~0!&bZb[Im~ f Zb!, ~2.3!

where^•••&b stands for an thermal average in the barrier re-
gion, andZb is the partition function in the barrier region
which will be discussed later. By decomposing the prefactor
f and barrier partition functionZb into their real and imagi-
nary parts, the reactive flux can be rewritten as

F5~Re f !~ Im Zb!1~ Im f !~ReZb!. ~2.4!

The prefactorf in the above equation cannot be evalu-
ated exactly for general systems. However, in the thermally
activated regime~i.e., above crossover, as defined by
\bvb,2p, wherevb is the magnitude of the unstable barrier
frequency!, the barrier region can be approximated by a para-
bolic potential

V~q!'V02
1
2mvb

2~q2qb!
2 ~2.5!

with V05V(qb), V
(1)(qb)50, andV(2)(qb)52mvb

2. The
prefactor in Eq.~2.3! can be evaluated exactly as outlined in
Appendix A to give

f5 lim
t→`

]

]t
^hP~t1 i t !hP~0!&b5

vb

2p
. ~2.6!

Interestingly, it is found in the parabolic barrier limit that
the prefactorf has no imaginary part. Below the crossover
temperature, it may not be possible to rigorously prove this,
but the instanton theory~as described later!, as well as physi-
cal considerations for thet→` limit of the imaginary part of
the time correlation function, suggest it is so. If Imf50, the
above considerations suggest that for quantum activated rate
processes the reactive flux is related to the imaginary part of
the barrier partition function, appropriately defined for the
temperature of the system, giving

F}Im Zb . ~2.7!

In the case of the parabolic barrier~i.e., above crossover!, the
proportionality constant is given byvb/2p. As will be shown
later, below crossover this constant is 1/\b.

These arguments strongly suggest that the quantum re-
active flux depends on the imaginary part of the barrier par-
tition function. But what exactly is this quantity in the most
general sense for a given temperature? The barrier partition
function Zb can be formally given in terms of a Feynman
path integral51–53by the expression

Zb5E •••E
b
Dq~t!exp$2S@q~t!#/\%, ~2.8!

where a single dimension is considered here for notational
simplicity andS[q(t)] is the usual Euclidean time action
functional, given by

S@q~t!#5E
0

\b

dt$ 1
2mq̇~t!21V@q~t!#%. ~2.9!

Note that the subscript ‘‘b’’ on the path integration in Eq.
~2.8! implies a special treatment for the barrier region which
we now elaborate. For the case of a parabolic barrier, the
barrier partition function,Zpb, is given by

Zpb5S m

2p\2b D 1/2 ~\bvb/2!

sin~\bvb/2!
exp~2bV0!

3E dq exp@bmvb
2~q2qb!

2/2#, ~2.10!

The above integral is divergent for an integration along the
real axis, but the coordinate rotationq→ iq yields a well-
defined value for the imaginary part ofZpb.

11We then obtain
from Eqs. ~2.7! and ~2.10! the well-known result for the
parabolic barrier reactive flux4

Fpb5
kBT

h

~\bvb/2!

sin~\bvb/2!
exp~2bV0!. ~2.11!

It is of particular interest to relate the above derivation and
discussion to the path centroid-based PI-QTST, which will
be done in later sections.

Below the crossover temperature, the analysis of the bar-
rier partition function becomes more difficult, or at least dif-
ferent, because the nonlinearity of the potential in the barrier
region becomes important and there is extensive quantum
tunneling. In the low temperature regime, the instanton
theory3,5 proves to be most useful for this analysis. Consider
a general many-dimensional system described by a single
barrier region and asymptotic reactant and product states.
The barrier partition function for a multidimensional system
is described by

Zb5E •••E
b
Dq~t!exp$2S@q~t!#/\%. ~2.12!

Application of the steepest descent approximation to Eq.
~2.12! leads to the Euler–Lagrangian equations of motion for
the coordinates on the inverted potential, i.e.,3,5

m–
d2q~t!

dt2
5

]V@q~t!#

]q~t!
, ~2.13!

wherem is the diagonal mass matrix and the periodic con-
dition on the instanton or ‘‘bounce’’ trajectory isq~\b!
5q~0!. For a regular barrier, satisfyingV(2)(qb)52mvb

2,0
andV(4)(qb)>0 along the barrier coordinate, Eq.~2.13! has
a trivial ~single point! solution at the transition state for
\bvb,2p and a bounce solution for\bvb.2p. This crite-
rion then defines the crossover temperature (T051/kBb0),
i.e.,54
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\b0vb52p ~2.14!

at which the bounce trajectory coalesces to the transition
state. For a divergent barrier, satisfyingV(2)(qb)5mvb

2,0
andV(4)(qb),0, there is always a bounce solution. Unless
specified otherwise, the present discussion will be for a regu-
lar barrier which is always bounded from below.

To proceed, the action is expanded around the bounce
trajectory, giving

S@q~t!#5Sinst1E dtE dt8
d2S

dq̃~t!dq̃~t8!
q̃~t!q̃~t8!,

~2.15!

where q̃(t)5q(t)2qinst~t! represents the quantum fluctua-
tion away from the instanton path. Then, the steepest descent
approximation formally leads to

Zb5N
1

Adet@d2S/dq̃~t!dq̃~t8!#
exp~2Sinst/\!,

~2.16!

whereN is a normalization factor to be specified and the
determinant is understood as the product of eigenvalues of
the linear operator in functional space. Though similar to the
Van Vleck prefactor, the prefactor in Eq.~2.16! is intrinsi-
cally divergent because the spectrum of the second order
functional derivative consists of an isolated negative eigen-
value and a zero eigenvalue.5 The zero eigenvalue can be
removed by explicitly integrating out the corresponding
eigenmode, whereas the negative mode is integrated by an
analytical continuation leading to the purely imaginary bar-
rier partition functionZb5 iZ inst. Thus the simple coordinate
rotation q→ iq performed on the above crossover reactive
mode has now been extended to the quantum fluctuation
mode corresponding to the negative eigenvalue~and it will
also be related to the path centroid mode in the next
section48!.

In order to complete the instanton analysis, a second
order functional derivative must be evaluated along the in-
stanton trajectory. This procedure is numerically best imple-
mented for a discretized path, i.e.,

d2S

dqidqj
5
m

e2
~2d i , j2d i , j112d i , j21!1d i , j

]2V@q~t!#

]qi]qj
,

~2.17!

where the indicesi and j denote two different discretized
imaginary time slices,qi and qj are the corresponding
nuclear coordinates along the instanton path, ande5\b/P,
with P being the number of discretizations. The dimension-
ality implicit in the above equations is such thatd2S/dqidqj
is a matrix of dimensionN3P. When diagonalizing this
matrix, there will be a negative eigenvalue giving rise to the
imaginary part of the barrier partition function, and a zero
eigenvalue corresponding to the translationally invariant
mode.5 The existence of a zero eigenvalue is an indication of
a true instanton solution. The removal of the zero eigenvalue
requires the proper normalization, which is explained in Ap-
pendix A of Ref. 18. After the removal of the zero eigen-
value, the rest of the normalized determinant is given by

D5 lim
P→`

1

P2 det8S e2m21
d2S

dqidqj
D , ~2.18!

where det8 stands for the value of the determinant with the
zero eigenvalue removed. The translationally invariant mode
is then integrated along the bounce trajectory, resulting in a
prefactor ofAW/2p\.

Putting all of the factors together from the above analy-
sis, we obtain the instanton approximationZinst for the imagi-
nary part of the barrier partition function, i.e.,

Im Zb.Zinst5A W

2p\D
exp~2Sinst/\!, ~2.19!

whereW and Sinst are the work and action of the bounce
trajectory, respectively, andD is a properly normalized de-
terminant as defined above. The quantum instanton reactive
flux is given by

F.
1

\b
Im Zb . ~2.20!

More discussions of the instanton solution can be found in
Appendix B. By comparison with Eq.~2.4!, the prefactor at
low temperature is clearly given by

f5Re f5 lim
t→`

Re
]

]t
^hP~t1 i t !hP~0!&b

.
1

\b
. ~2.21!

The ‘‘barrier partition function’’ perspective in semiclassical
activated dynamics has been further elaborated in Refs. 22
and 23.

It is also important to mention the case of a metastable
potential well. Langer and others11,38 have shown that for
such systems the barrier partition function is twice the imagi-
nary part of the well free energy. The imaginary part of the
well free energy can in turn be related to a thermal average
over the imaginary part of the well eigenvalues, i.e., the life-
times of the metastable states. Thus the imaginary part of the
well free energy can be related to the thermal decay rate, and
this is often taken as a ‘‘formal’’ basis for instanton theory.
Interestingly, the barrier partition function contains the same
information, and it can be understood from the perspective of
the asymptotic treatment of the overall partition function in
the barrier region. To quadratic order, this treatment is
equivalent to the steepest descent approximation with an
analytic continuationq→ iq of the appropriate integration
variable for the temperature at hand.11 In fact, the barrier
partition functionZb can only be comprehended in the as-
ymptotic sense. For example, there does not exist a well-
defined global partition function for a metastable potential
well or an unbounded barrier crossing problem such as an
Eckart barrier. Also, for a closed system such as a double-
well, the global system partition function is a positive-
definite real quantity. In this case, the barrier partition func-
tion is literally definedto be some asymptotic approximation
to the partition function around a saddle-point mode, i.e., a
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steepest descent approximation in the barrier region. The
imaginary part of the barrier partition function arises from
the mathematical rotation of the relevant integration variable
for the unstable mode to the imaginary axis.11 ~The exact
nature of that integration variable is of considerable signifi-
cance, as we shall see in the next section.48! In effect, the
imaginary part of the barrier partition function results from
the thermal fluctuations of the unstable mode in imaginary
space and the thermal fluctuations of the stable modes in real
space. It seems fairly remarkable that the result of an appar-
ent mathematical trick to evaluate a divergent integral could
be intimately related to the rate of a quantum activated pro-
cess, but it does indeed seem to be so.

Combining the results from the preceding analysis, we
find that the quantum reactive flux for a one-dimensional
system can be written in the following unified form:

F.n Im Zb , ~2.22!

wheren is a simple piecewise continuous frequency factor,
given by

n5
vb

2p
; \bvb,2p,

5
1

\b
; \bvb>2p, ~2.23!

and it is understood that the barrier partition functionZb is
treated in an appropriate asymptotic fashion, depending on
the temperature. The reactive flux expression in Eq.~2.22! is
valid at all temperatures and in the classical limit. The im-
portant result embodied in Eq.~2.22! might also have been
inferred by piecing together several known analytical results,
but the derivation in Appendix A, leading to Eq.~2.6!, pro-
vides a key formal link between the high and low tempera-
ture limits.

For many-dimensional systems, the above equations
should be modified to include the effects of the coupling to a
thermal bath. The basic form of the expression in Eq.~2.22!
is the same, but the barrier partition function is now defined
for the complete many-dimensional system and, by invoking
the linear response approximation,7 the expression for the
frequency factor is given by

n5
l0
‡

2p
; \b0

‡,2p,

5
1

\b
; \bl0

‡>2p, ~2.24!

wherel0
‡ is the Grote–Hynes frequency,9 given by

l0
‡5

vb
2

l0
‡1ĥ~l0

‡!/m
. ~2.25!

Here,m is the effective mass of the reaction coordinate and
ĥ(z) is the Laplace transform of the classical friction kernel
at the top of the barrier9 ~i.e., the frequency-dependent fric-

tion!. The crossover temperature in the many-dimensional
case is now defined by\b0l0

‡52p ~see, e.g., Ref. 1 for a
discussion!.

Before proceeding to the next section, it should be noted
that the present formulation of quantum activated dynamics
is not limited to adiabatic reactions. Indeed, in the case of
nonadiabatic transitions, Eq.~2.22! can be generalized to
read18

F.n Im Zm,n , ~2.26!

where

Zm,n5E dqE dq8u^m,quexp~2bH/2!un,q8&u2 ~2.27!

andq andq8 are understood to be in the region of the wells
of the diabatic reactant and product states, respectively. Note
that the notation ‘‘Im’’ was absorbed into the definition of
Zm,n in Ref. 18. The choice of the prefactorn in the nonadia-
batic case is less clear, but using Eq.~2.24! with a barrier
frequency determined from the lowestadiabaticpotential en-
ergy surface will give a result consistent with the known
analytical limits.

III. PATH INTEGRAL QUANTUM TRANSITION STATE
THEORY

The expression for the quantum reactive flux in Eq.
~2.22! allows us to rationalize, even provide ana priori ar-
gument for, the central role of the imaginary time path cen-
troid variable in quantum activated dynamics.24–27,47 Ele-
ments of this argument have already appeared else-
where,24,38,48,55but the final outcome in this section is some-
what different and more general.

As described many times in the literature, the definition
of the imaginary time path centroid density is given by52,56,57

rc~qc!5E •••E Dq~t!d~qc2q̃0!exp$2S@q~t!#/\%,

~3.1!

where a one-dimensional notation is again employed for sim-
plicity, and the centroid variableq̃0 is defined as the zero
frequency Fourier mode of the pathq~t!, i.e.,

q̃05
1

\b E
0

\b

dtq~t!. ~3.2!

The exact quantum partition function can be formally ex-
pressed as the centroid trace52,56,57

Z5E dqc exp@2bVc~qc!#, ~3.3!

where the effective centroid potential is given by

Vc~qc!52kBT ln@rc~qc!#. ~3.4!

At this point, the effective centroid potential can be used
to evaluate the barrier partition function within the steepest
descent approximation.48 To do so, the centroid potential is
expanded at its maximumq* in the barrier region, giving

Vc~qc!.Vc~q* !1 1
2Vc

~2!~q* !~qc2q* !2. ~3.5!
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Here, the maximum of the centroid potentialq* is deter-
mined by

^V~1!~q* !&c50, ~3.6!

and the curvature of the centroid potential is determined by

Vc
~2!~q* !5^V~2!~q* !&c2b@^V̄~1!~q* !V̄~1!~q* !&c

2^V~1!~q* !&c
2#, ~3.7!

where ^ f (q* )&c denotes a centroid-constrained average at
the transition state or, explicitly,

^ f ~q* !&c

5
*•••*Dq~t! f @q~0!#d~q*2q̃0!exp$2S@q~t!#/\%

*•••*Dq~t!d~q*2q̃0!exp$2S@q~t!#/\%
.

~3.8!

and V̄5*0
\bdtV[q(t)]/\b.

Now comes a crucial point. If the curvature of the cen-
troid potential is negative, then the centroid variable is the
ideal variable by which to evaluate the barrier partition func-
tion via a steepest descent approximation to Eq.~3.3! along
the imaginary axis~i.e., qc→ iqc!. That is,

Zb. irc~q* !E
2`

`

dqc exp@2buVc
~2!~q* !u~qc2q* !2/2#

5 i S 2p

buVc
~2!~q* !u D

1/2

rc~q* !. ~3.9!

After the steepest descent evaluation of the barrier par-
tition function using Eq.~3.9!, the expression for the quan-
tum reactive flux@Eq. ~2.22!# is then given by

F.nS 2p

buVc
~2!~q* !u D

1/2

rc~q* !, ~3.10!

whereuVc
(2)(q* )u is the absolute value of the curvature of the

effective centroid potential at its maximum. It should be
noted that the centroid-based expression given above for the
quantum activated rate constant is somewhat different from
the PI-QTST expression24–26 and from the low temperature
formula derived in Ref. 48. Simplifying further, the expres-
sion for the quantum rate constant is given by

k.n
~2p/buVc

~2!~q* !u!1/2

*2`
q* dqc e

2bVc~q!
e2bVc~q* !. ~3.11!

This formula, as with the PI-QTST formula, is readily evalu-
ated by numerical path integral techniques, and a simple pre-
scription has been given here for the prefactorn as well@i.e.,
Eq. ~2.24!#.

For higher temperatures, particularly above crossover,
the frequency factor is given byn5l0

‡/2p anduVc
(2)(q* )u can

be approximated bymvb
2. In this case, Eq.~3.11! reduces to

the well-known PI-QTST formula25 for many-dimensional
systems

kPI-QTST5
l0
‡

vb

~2pmb!21/2

*2`
q* dqc e

2bVc~q!
e2bVc~q* !. ~3.12!

The PI-QTST result has thus been recovered from the point
of view of the present analysis. Note, however, that Eq.
~3.11! is likely to be more accurate then the PI-QTST result
in Eq. ~3.12! over the entire temperature range. Also, for low
temperatures, the prefactorn in Eq. ~3.11! is given by 1/\b
and the equation becomes an approximation24,27,48to the in-
stanton result@Eq. ~2.20!#.

In light of the general expression for the quantum acti-
vated rate constant in Eq.~2.22!, the above steepest descent
approach provides a rationale as to why the centroid variable
and its equilibrium density at the transition state are so im-
portant in determining the value of the quantum thermal rate
constant. The centroid constraint arisesnaturally in this
analysis without being artificially introduced.24,38 Indeed, the
quantum reaction coordinateq is clearly defined to be the
coordinate which possesses the unstable centroid mode, and
the quantum transition state along the coordinate is specified
by the value ofq5q* which gives a maximum in the effec-
tive centroid potential in the barrier region24 ~and thismay
not be the same as the classical transition state24,39!.

While the above expressions have been given for a one-
dimensional reactive system, they are readily generalized to
many-dimensional systems in a transparent fashion. In the
latter scenario, the effective centroid potential in Eq.~3.4! is
replaced by thecentroid potential of mean force~CPMF!
along the reaction coordinateq, also to be denoted here by
Vc(qc). This quantity is defined as in Eqs.~3.3! and ~3.4!,
but it now depends on the reduced centroid density26

rc~qc!5E •••E Dq~t!d~qc2q̃0!exp$2S@q~t!#/\%.

~3.13!

As a convention, in the equations above and below the bold
fonts stand for vectors and matrices~in the present case, for
the coordinates of the many-dimensional system!. With the
concept of the CPMF in hand, Eqs.~3.7!–~3.12! are thus
applicable to many-dimensional systems.

It is also possible to generalize the centroid density treat-
ment of the barrier partition function to a rotated saddle point
in multidimensional space if the discussion is restricted to
linear transformations of the system coordinates. In particu-
lar, if the saddle point is defined in terms of the rotated
coordinate

z5(
i51

N

Uiqi , ~3.14!

with uUi u51 being a unit vector andz the reactive barrier
coordinate~i.e., the local reaction path!, then one can write
the reduced centroid density along this coordinate as25,26

rc~zc!5E •••E Dq~t!d~zc2 z̃0!exp$2S@q~t!#/\%,

~3.15!

wherez̃0 is the centroid of the reactive coordinate. The par-
tition function can be similarly defined as

Z5E dzc exp@2bVc~zc!#, ~3.16!
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where the centroid potential of mean force alongz is given
by

Vc~zc!52kBT ln@rc~zc!#. ~3.17!

In a manner similar to that outlined before, the CPMF
alongz can be used to evaluate the barrier partition function
within the steepest descent approximation by first expanding
it about the maximum as defined atz‡, giving

Vc~zc!.Vc~z
‡!1Vc

~1!(z‡)(zc2z‡)1 1
2Vc

~2!(z‡)(zc2z‡)2.
~3.18!

Note that the second term on the right-hand side of this equa-
tion is zero by definition. The derivatives above are given by
the rotated version of Eqs.~3.6! and ~3.7!, i.e.,

^`V~z‡!&c50, ~3.19!

and

Vc
~2!~z‡!5^`2V~z‡!&c2b@^`V̄~z‡!`V̄~z‡!&c

2^`V~z‡!&c
2#, ~3.20!

where the symbol̀ denotes the derivative along the reaction
path: `5(i51

N Ui­i . The rotated dividing surface is to be
chosen normal to the direction of the negative eigenvalue of
centroid-constrained force constant matrix, and the transition
state z‡ is defined to be the position of the centroid-
constrained free energy maximum along the rotated reactive
barrier coordinate. In Eqs.~3.19! and ~3.20!, the general
centroid-constrained averages are given by expressions simi-
lar to Eq.~3.8!, i.e.,

^ f ~z‡!&c

5
*•••*Dq~t! f @q~0!#d~z‡2 z̃0!exp$2S@q~t!#/\%

*•••*Dq~t!d~z‡2 z̃0!exp$2S@q~t!#/\%
.

~3.21!

With the rotated saddle point in hand, the centroid den-
sity in terms of the rotated coordinater can be approximated
by the saddle point expression

rc~zc!.rc~z
‡!exp@2bVc

~2!~z‡!~zc2z‡!2#. ~3.22!

If Vc
(2)(z‡),0, then the imaginary part of the barrier partition

function can be evaluated using the steepest descent ap-
proach as before, yielding the reactive flux from Eq.~2.22!
as

F.nS 2p

buVc
~2!~z‡!u D

1/2

rc~z
‡!. ~3.23!

The above prescription to determine the dividing surface
also applies to classical transition state theory where the
variational principle requires the transition state flux through
the dividing surface to be minimized.58–61For a coordinate-
dependent dividing surface, the flux through the surface is
proportional to the constrained partition function integrated
on the dividing surface weighted by a Jacobian factor. There-
fore, in the case of a planar dividing surface, minimizing the
flux is equivalent to finding the planar dividing surface ac-
cording to the criterion in Eq.~3.20!, at least to quadratic
order.26,39,40Following this argument, a self-consistent cen-

troid TST theory of quantum dissipative barrier crossing has
been formulated.62 On the other hand, a general variational
principle in PI-QTST will be difficult to rigorously justify
since, as shown in the present work, PI-QTST is based on a
steepest descent approximation to the barrier partition func-
tion and a high temperature approximation for the frequency
factor.

In this section, the main result of PI-QTST@Eq. ~3.12!#
has been related to Eq.~2.22! through the centroid-based
analysis of the barrier partition function@cf. Eq.~3.9!#. In the
process, a new expression for the quantum rate constant, Eq.
~3.11!, was derived which, in principle, is more accurate than
the PI-QTST expression over a broader temperature range.
These considerations also lead to some interesting analytical
and conceptual perspectives, which are described in the next
section. One of these perspectives pertains to the analytical
treatment of the crossover problem, while the other concerns
the form of the optimal low temperature analysis48 of the
basic rate constant expression, Eq.~2.22!, thereby generaliz-
ing upon the usual centroid activated rate perspective.24–26

IV. ANALYSIS

The central quantity in the expression for the quantum
rate constant@Eq. ~2.22!# is the imaginary part of the barrier
partition functionZb . As such, this situation compels us to
consider the implications of the steepest descent perspective
for this quantity. Indeed, one can imagine expressing the
barrier partition function in terms of an integration over a
finitenumber of Fourier path modesq̃n , given from the Fou-
rier decomposition of the paths by

q~t!5 (
n52`

`

q̃ne
iVnt, ~4.1!

whereVn52pn/\b. One is then free to express the barrier
partition function as an integration over an effective
extended-dimensional Fourier mode density,r(qc ,...,qm),

63

where

r~qc ,...,qm!5E •••E Dq~t!d~qc2q̃0!)
n51

m

d~qn2q̃n!

3exp$2S@q~t!#/\#% ~4.2!

and

Zb5E dqc•••E dqmr~qc ,...,qm!

[E dqc•••E dqm exp@2bVeff~qc ,...,qm!#. ~4.3!

Here, the integrations in the above equation are understood
to be in the barrier region, as required, andVeff(qc ,...,qm) is
an effective ‘‘potential of mean force’’ for the subset of Fou-
rier path modes (q̃c,...,q̃m), as defined above.

63 For simplic-
ity, them-dimensional expression in Eq.~4.2! has been de-
veloped for a problem having one physical dimension. For
multidimensional systems, the effective potential for the sub-
set of Fourier path modes is a potential-like function in an
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extendedm3N-dimensional space, which is larger than the
physical dimension of the systemN. This formulation of the
barrier partition function within the context of the quantum
rate constant expression@Eq. ~2.22!# leads to two interesting
perspectives which are now described.

A. Crossover

The expression in Eq.~2.11! for the reactive flux of the
parabolic barrier diverges at the crossover temperature. On
the other hand, the instanton expression in Eq.~2.20! is in-
appropriate above the crossover temperature since the
bounce solution to the barrier partition function shrinks to a
trivial solution. The path centroid-based expressions in Eqs.
~3.11! and ~3.12! are uniformly valid through the crossover
temperature, but they are essentially numerical in spirit~i.e.,
the key quantities are usually determined from numerical
path integral simulations for realistic systems!. In terms of
analytic theory, it is generally regarded as being unsatisfac-
tory to have two distinctive solutions which do not match
smoothly in the crossover regime. While a number of authors
have proposed solutions to this problem~for a review, see
Ref. 1!, it shall be examined here within the context of the
present theory@i.e., Eq.~2.22!# based on the steepest descent
solution to the barrier partition function. We will also draw
upon the Fourier path mode perspective introduced in Eqs.
~4.1!–~4.3!. The outcome of the derivation in this subsection
resembles the perturbative analysis of the transition between
thermal hopping and quantum tunneling of Grabert and
Weiss.19 However, since the emphasis is placed on an as-
ymptotic Fourier mode analysis of the imaginary part of the
barrier partition function, we obtain a somewhat different
result.

Given the parabolic potential in Eq.~2.5!, the imaginary
time action functional in Eq.~2.9! takes a simple quadratic
form. With the aid of a Fourier expansion of the paths, re-
written in this instance as

q~t!2qb5 (
n52`

`

q̃n exp~ iVnt!, ~4.4!

the action functional for the potential in Eq.~2.5! is diago-
nalized as

S@q~t!#/\5 1
2mb (

n52`

`

V̄n
2uq̃nu2, ~4.5!

where the eigenvalueV̄n is given by

V̄n
25Vn

22vb
2 ~4.6!

with Vn52pn/b\. The zeroth modeq̃0, i.e., the centroid,
has a negative eigenvalue which gives rise to the imaginary
part of the barrier partition function in the steepest descent
integration along the imaginary axis. The divergence of the
parabolic barrier reactive flux expression in Eq.~2.11! at
the crossover is due to the disappearance of the first eigen-
value V̄1. However, this divergence for real barriers can be
avoided by including higher-order nonquadratic corrections
in the q̃1 integration within the context of the rate expression
Eq. ~2.22! and the extended Fourier mode space representa-

tion of the barrier partition function, as formulated in Eq.
~4.3! ~in this case form51!. This analysis illustrates the
utility of the barrier partition function perspective in dealing
with the crossover problem, as well as the extended-space
Fourier mode picture.

For simplicity, the crossover analysis will be presented
for a one-dimensional barrier crossing problem and then ex-
tended to dissipative systems at the end. The barrier potential
is first expanded beyond quadratic order, giving

V~q!5V02
1

2!
mvb

2~q2qb!
21

1

3!
c~q2qb!

3

1
1

4!
g~q2qb!

4, ~4.7!

where V(qb)5V0 , V(1)(qb)50, V(2)(qb)52mvb
2,

V(3)(qb)5c, and V(4)(qb)5g. The sign ofg is assumed
positive as otherwise the instanton solution exists at all tem-
peratures. The higher moments of the potential are then ex-
pressed in terms of the Fourier path modes as

1

\b E
0

\b

dt@q~t!2qb#
3

5q̃ 0
3 16q̃0uq̃1u213~ q̃ 1

2 q̃ 2*1q̃ 1*
2q̃2!1••• ~4.8!

and

1

\b E
0

\b

dt@q~t!2qb#
4

5q̃ 0
4 112q̃0

2 uq̃1u2112q̃0~ q̃ 1
2 q̃ 2*1q̃ 1

2* q̃2!16uq̃1u4

1••• ~4.9!

whereq̃n* is the complex conjugate ofq̃n . It can become a
formidable task to deal with all of the lengthy expansions.
Fortunately, as in the WKB approximation to the real-time
Green function where an asymptotic analysis has been de-
vised to treat the divergence at the caustics,53 a similar pro-
cedure applies here. By considering the Taylor expansion
Eqs.~4.7!–~4.9! at the barrier top as an asymptotic expansion
of the imaginary time action, to lowest order it can be re-
duced to

S/\52 1
2mbvb

2S q̃02 c

vb
2

uq̃1u2D 2
1mbV̄2

2US q̃21 c

V̄2
2
q̃ 1

2D U2
1mbV̄1

2uq̃1u21b
A

2
uq̃1u41 (

n.2
mbV̄n

2uq̃nu2,

~4.10!

where

A5
g

2
1

c2

mvb
2
2

c2

2mV̄2
2
. ~4.11!
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The reduction of the Fourier mode expansion of the potential
into Eq. ~4.10! is approximate, but simplifies considerably
the subsequent analysis. For example, it can be shown from
Eq. ~4.10! that as the temperature approaches the crossover
from above the effective potential for theuq̃1u mode changes
from a simple harmonic well to a symmetric double well.
This symmetry breaking indicates a transition from a trivial
stationary point to an instanton solution.

At this point, all the higher-order Fourier mode integra-
tions except foruq̃1u

2 can be performed exactly as in the case
of the parabolic approximation. Similarly, the steepest de-
scent integration over the centroid variable can be per-
formed. The result of these operations is given by

Zb5E dqcE dq1 exp@2bVeff~qc ,q1!#5Zpb Corr~D!,

~4.12!

where the correction term Corr~D! arises from the integration
over y5uq1u

2 and is given by

Corr~D!5
*0

`dy exp~2bmV̄1
2y2bAy2/2!

*0
`dy exp~2bV̄1

2y!

5DA2p erf~2D!eD2/2. ~4.13!

This result has the same structure as the earlier result ob-
tained by Grabert and Weiss,19 except for the definition ofD.
Here, it is defined as

D5m~V1
22vb

2!Ab/A, ~4.14!

where ‘‘erf’’ is the error function

erf~D!5
1

A2p
E

2`

D

dx e2x2/2. ~4.15!

By virtue of the above result, Eq.~4.12!, as well as Eq.
~2.22!, the asymptotic expression for reactive flux around the
crossover temperature has the structure

F.Corr~D!Fpb, ~4.16!

where the parabolic barrier reactive flux is given by Eq.
~2.11!. The above ‘‘high temperature’’ asymptotic expres-
sion matches smoothly onto the parabolic expression Eq.
~2.11! and extends continuously below the crossover tem-
perature. It remains valid untilV̄2

2 becomes zero which then
makes it necessary to include the Fourier modeq̃2 in the
expression for the generalized Fourier mode barrier partition
function @Eq. ~4.3!# to generalize the analysis. Alternatively,
the instanton solution can be asymptotically treated in the
crossover region from below and smoothly bridged with the
high temperature asymptotic expression@Eq. ~4.16!#. This
approach is outlined in Appendix B.

The high temperature asymptotic approach can also be
readily generalized to quantum barrier crossings in dissipa-
tive systems, at least for a reaction coordinate linearly
coupled a Gaussian bath.64 As usual, in such cases the total
Hamiltonian for the system is given by

H5
pq
2

2m
1V~q!1(

i51

N F pi22mi
1
1

2
miv i

2S xi2 ci
miv i

2 qD 2G ,
(4.17)

where $xi ,pi% are the canonically conjugate bath variables
and $mi ,v i ,ci% are the corresponding masses, frequencies,
and coupling constants, respectively. Despite its apparent
simplicity, the above Hamiltonian provides a model for
many quantum processes in the dissipative condensed phase
environment so long as the linear response approximation is
valid. The path integration over the bath variables from the
above Hamiltonian leads to a path integral action functional
of the form

S@q~t!#5E
0

\b

dt$ 1
2mq̇~t!21V@q~t!#%

1\b (
n51

`

Vnĥ~Vn!uq̃nu2/m, ~4.18!

where ĥ(s) is the Laplace transform of the friction kernel,
defined in the discrete limit by

ĥ~s!5(
i51

N ci
2

miv i
2

s

s21v i
2 . ~4.19!

With the aid of the above expression, all of the results in
this section remain the same if the definition in Eq.~4.6! is
modified to be

V̄n
25Vn

22vb
21Vnĥ~Vn!/m. ~4.20!

Accordingly, the crossover temperature is defined where the
eigenvalue ofq̃1 vanishes,

54 namely,

V1
22vb

21V1ĥ~V1!/m50, ~4.21!

whereV152p/\b.

B. Low temperature generalization of the saddle point
analysis

The second perspective of this section—and perhaps the
most compelling one for future investigation—is concerned
with the steepest descent evaluation of the barrier partition
function through Eq.~4.3! in the low temperature limit.48

Undernormal circumstances~i.e., not too low temperatures
and not too asymmetric barriers!, the centroid variableq̃0 is
the natural variable about which to perform the steepest de-
scent integration along the imaginary axis as outlined in the
previous section and in Ref. 48. However, in some instances
at low enough temperatures the curvature of the centroid
potentialVc(qc) in Eq. ~3.4!, as specified by Eq.~3.7!, may
be positiveeverywherein the barrier region. Furthermore, for
highly asymmetric metastable barriers, there may also be
pathological low temperature behavior in the centroid-based
approach.48 In these cases, an intriguing point of view
emerges. Instead of a saddle point integration using just the
centroid variable as in Eq.~3.9!, the saddle point analysis
and the steepest descent integration can be generalized in
terms of a combination of the subset of path Fourier modes
$q̃m% in Eq. ~4.3!. In these pathological cases, it is actually
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necessaryto pursue such a generalization in order to have a
sensible evaluation of the imaginary part of the barrier par-
tition function.48 Thus in such cases the saddle point may not
involve the centroid mode alone, but instead the problem
maps onto a kind of classical-like transition state calculation
in the extended space of the effective Fourier mode potential
Veff(qc ,...,qm).

To explore this idea in more detail, the path integral
action functional can be Fourier decomposed in the follow-
ing general way:

S@q~t!#5m\b (
n51

`

Vnuq̃nu21E
0

\b

dtV@q~t!#. ~4.22!

The higher the value ofn, the higher the positive ‘‘fre-
quency’’ of that mode in the saddle point region of the ef-
fective Fourier mode potentialVeff(qc ,...,qm) as defined in
Eq. ~4.3!. As a consequence of this result, it is expected that
them51 mode should be the highest Fourier mode necessary
to include in Eq.~4.3! for most systems. To carry out the
generalized saddle point procedure, one must then find the
saddle point for the effective Fourier mode potential
Veff(qc ,q1), determine the linear combination~or ‘‘normal
mode’’! of the centroid modeqc and the first Fourier mode
q1 along the direction of steepest descent at the saddle point,
and then perform the integration over that mode in the com-
plex plane. At the same time, an integral is performed along
the real axis for the stable normal mode orthogonal to the
steepest descent mode~cf. Ref. 48!. This perspective for a
generalized quantum TST saddle point in the extended-
dimensional space of the Fourier modes is presently under
investigation in this group and elsewhere.65

V. NUMERICAL EXAMPLES

In this section, the theory described in the previous sec-
tions is illustrated by a study of a one-dimensional Eckart
barrier and an Eckart barrier coupled to a Gaussian bath. The
emphasis here is on the crossover behavior from the high
temperature thermally activated barrier crossing to low tem-
perature quantum tunneling.

The Eckart barrier potential is given by66

V~q!5V0 sech
2~q/a! ~5.1!

with the parameter value of 2pV0/\vb512 in the present
calculations. The transition state is located atqb50 with
V(qb)5V0 , and the barrier frequency is given by

mvb
252V0 /a

2. ~5.2!

Two dimensionless parameters can be introduced, given by
b5\bvb ~or m5b/2p! and z5bV0, such that all relevant
quantities are expressed in terms of these two parameters.

A quantum correction factorG can be defined as the ratio
of the quantum to classical reactive flux, which is written as

G5Fqm/Fcl . ~5.3!

In one-dimension, a simple estimate of this quantum correc-
tion is the high temperature parabolic correction, given by

Gpb5
~b/2!

sin~b/2!
, ~5.4!

which, as stated before, is invalid below the crossover tem-
perature, i.e., forb.b052p/\vb . We thus consider the
higher-order correction derived in Sec. IV, where the Taylor
expansion of the potential in Eq.~4.7! has coefficientsc50
andg516V0/a

4 in the Eckart barrier case, and the parameter
defined in Eq.~4.11! assumes the value ofA58V0/a

4. Sub-
stituting these expressions into Eqs.~4.13!–~4.16!, one ob-
tains the expression

GHT5GpbDA2p erf~2D!exp~D2/2! ~5.5!

with the variableD given explicitly as

D5~m2221!Az/2. ~5.6!

Below crossover, an analytic instanton solution can be
explicitly found for the Eckart barrier, giving

G inst5
A4pz

m
exp@z~121/m!2#, ~5.7!

which holds forb.b0. The uniform asymptotic instanton
solution Eq.~B3! reads

GLT5erf~2DLT!G inst ~5.8!

with the parameter

DLT5~m21/m!Az/2. ~5.9!

Finally, Affleck’s crossover formula can be written as

GAF5A4pz

m
erf~DAF!exp~DAF

2 /2! ~5.10!

with the parameter

DAF5~12m!A2n

m
. ~5.11!

The derivation of the above expressions can be found in
Appendix B.

For comparison, a quantum correction was also calcu-
lated from Eq.~3.10!, given by

GQ52pnS m

uVc
~2!~q* !u D

1/2 rc~q* !

rcl~q* !
, ~5.12!

where n is given by Eq. ~2.23!. The usual PI-QTST
correction,24,26 given by

GPI-QTST5rc~q* !/rcl~q* !, ~5.13!

was also calculated. In both cases, the quantum centroid den-
sity was numerically computed by a path integral Monte
Carlo calculation.

All of the values of the quantum correction factorG
calculated from the above expressions are tabulated in Table
I for the set of temperatures fromb53 to 12 along with the
exact data obtained from Ref. 67. Clearly, the parabolic ap-
proximation Eq.~5.5! diverges forb.b0. The uniform as-
ymptotic formulae, Eqs.~5.5! and ~5.8!, approaching the
crossover from above and below, respectively, agree with the
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exact results quite well beyond the crossover point. By con-
trast, the Affleck crossover expression Eq.~5.10! behaves
reasonably well around crossover, but it starts to deviate in
both the low and high temperature limits. As pointed out
earlier, the PI-QTST correction Eq.~5.13! is a stable ap-
proximation to the more accurate quantum rate formula@Eq.
~2.22!#, so it is no surprise that is incorporates the dominant
quantum tunneling effects even at low temperatures, which
of course has been discussed many times previously~see,
e.g., Ref. 24, 26, and 68! The new formula, Eq.~5.12!, is
seen to be even more accurate than the PI-QTST result over
the temperature range studied.

As an application to a multidimensional barrier crossing,
the Eckart barrier coupled to a Gaussian bath, as described
by Eq. ~4.17!, was studied. The bath degrees of freedom
were integrated out to yield an influence functional of the
form in Eq. ~4.18! with the friction kernel given in the
present case by

ĥ~s!5
f

s1vc
, ~5.14!

where the friction strengthf51.0 and the correlation time
1/vc51.0, both in dimensionless units scaled byb, vb , and
V0. The crossover temperature is determined from Eq.~4.20!
to be b051.325~2p/\vb!. It is clear from the one-
dimensional analysis that a good analytical estimation of the
reactive flux is the asymptotic form Eq.~4.16!. The multidi-
mensional generalization is rather straightforward and is de-
scribed in the previous section. The PI-QTST quantum esti-
mate of the reactive flux is given in the dissipative case from
Eq. ~3.12!, where the centroid density was evaluated at the
barrier top including the dissipative influence functional.

The results of calculations with and without dissipation
are shown in Fig. 1 in the form of log~F/Zbath! versusb,
whereZbath is the quantum partition function for the pure
Gaussian bath. The curves depict the asymptotic analytical
data @i.e., Eq. ~4.16! with ~4.20! above crossover and Eq.
~5.8! with the computational procedure outlined in Appendix
B below crossover# and the PI-QTST data@Eq. ~5.13!#. It is
seen that the dissipationless flux decreases, but tends to level
off at low temperatures because of the quantum tunneling
effect, whereas the dissipative flux decreases more signifi-
cantly at lower temperature because the friction reduces the
quantum tunneling. This tendency has been well investigated

in the study of metastable wells.1 It is also interesting to note
the agreement of the PI-QTST result with the asymptotic
analytical results, especially for the dissipative barrier cross-
ing.

VI. CONCLUDING REMARKS

The primary motivation of the present paper has been to
provide a general unified framework for quantum activated
dynamics. The outcome of this effort is Eq.~2.22!, a factor-
ization of the quantum reactive flux expression into the
imaginary part of the barrier partition function, defined in the
steepest descent limit of the imaginary time Feynman path
integral, and a well-defined simple prefactor which can be
interpreted as the frequency of the corresponding saddle-
point solution. Depending on the analytic character of the
steepest descent solution, the imaginary part of the barrier
partition function can be shown to be related to the high
temperature parabolic approximation or the low temperature
instanton solution, and thus it naturally introduces the cross-
over temperature which distinguishes the two regimes. While
the instanton result was already known, the high temperature

TABLE I. Quantum correction factorsa for the symmetric Eckart barrier.

b Gexact Gpb GHT GAF GLT GQ GPI-QTST

3 1.5 1.50 1.46 1.70 1.62 1.42
4 2.1 2.20 2.00 2.25 2.24 1.87
5 3.1 4.18 3.04 3.21 4.05 3.46 2.72
6 5.2 21.3 5.17 5.19 5.32 5.85 4.31
8 22.0 21.0 27.4 20.0 22.3 17.0
10 162.0 136.2 816.7 135.2 142.0 103.5
12 1970.0 2687.4 1613.2 1695.2 1242.7

aThe various quantum correction factors are defined as follows:Gexact is the exact data for the Eckart barrier obtained from Ref. 67;Gpb is the parabolic
approximation from Eq.~5.4!; GHT is the high temperature asymptotic expression from Eq.~5.5!; GAF is the Affleck crossover expression from Eq.~5.10!; GLT

is the low temperature asymptotic expression from Eq.~5.9!; GQ is the path integral result from Eq.~5.12!; andGPI-QTST is the PI-QTST result from Eq.~5.13!.

FIG. 1. A logarithmic plot of the reactive flux~actually F/Zbath! vs
b~5\bv! for the one-dimensional Eckart barrier~the upper curves! and for
the Eckart barrier coupled to a dissipative bath~the lower curves!. The
analytical curves are calculated from Eq.~4.16! above crossover and from
Eq. ~B3! below crossover. For comparison, the PI-QTST estimate of the rate
is also shown in both cases.
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analysis is new, hence providing the missing element re-
quired for a unified mathematical framework.

Importantly, the perspective based on the imaginary part
of the barrier partition function naturally introduces the
Feynman path centroid variable into the topic of quantum
activated dynamics.24–27,48A saddle-point approximation to
the main formula@Eq. ~2.22!# leads to a simplified formula
for the quantum activated rate constant@cf. Eq.~3.11!#. Upon
further analysis, this argument also provides a derivation of
the well-known PI-QTST rate constant expression24–26given
in Eq. ~3.12!. This perspective reveals the underlying reasons
for both the advantages and limitations48 of the PI-QTST
approach, both as an analytical formalism and as a numerical
technique, especially for quantum reactions in the condensed
phase where other approaches may become impractical.

Two interesting analytical perspectives also emerge from
the present theory which are based on a representation of the
barrier partition function in terms of an integration over a
limited set of Fourier path modes. In the first perspective, an
asymptotic expression is derived to smoothly extend the
parabolic barrier result for the quantum rate constant below
the crossover temperature. In the second perspective, the
saddle point analysis is generalized48 to include higher-order
Fourier path modes beyond the zero frequency mode~i.e.,
the centroid!, thus generalizing the PI-QTST result.

In Sec. V, a study of a nondissipative and a dissipative
Eckart barrier was presented to illustrate the various aspects
of the theoretical developments presented in the previous
sections. Emphasis was placed on the accuracy of the differ-
ent reactive flux expressions. The numerical evidence clearly
demonstrates the accuracy of the asymptotic analytical ap-
proach. It also shows that the centroid-based formula in Eq.
~3.11! is accurate over a wide temperature range. The con-
sistently good results of this theory, as well as the older
PI-QTST expression, support the assertion that the path cen-
troid variable occupies a central role in the computation of
quantum activated rate constants under most circumstances.

Finally, several extensions and applications are likely to
follow directly from the theoretical development in this pa-
per. First, the multidimensional steepest descent analysis
based on the centroid theory can help to rationalize various
flavors of variational theories,25,38–41perhaps resulting in a
systematic approach for computing the rate constant in com-
plex condensed phase systems beyond the usual PI-QTST
strategy. Second, a formulation based on the imaginary part
of the barrier partition function is likely to lead to improved
and efficient approaches for solving the multidimensional in-
stanton problem, especially for nonseparable, even nonadia-
batic, potentials.18 Success in the latter arena will rest on our
ability to find an efficient numerical procedure to compute
the imaginary part of the barrier partition function directly
and accurately. These and other issues will be explored in
future research.
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APPENDIX A: EVALUATION OF THE PARABOLIC
BARRIER PREFACTOR

In Sec. II, the quantum reactive flux in Eq.~2.22! was
formulated as the product of the prefactorn and the barrier
partition functionZb . Above crossover, the expression for
the prefactor@cf. Eq. ~2.3!# can be evaluated in the parabolic
barrier limit, Eq. ~2.5!, and thus be determined in closed
form. However, this derivation is not completely straightfor-
ward because of the divergent nature of certain integrals. To
begin, the imaginary time population correlation function is
written as

^hP~t!hP~0!&b

5
*0

`*0
`dx1 dx2 G~x1 ,x2 ,T2t!G~x2 ,x2 ,t!

*2`
` *2`

` dx1 dx2 G~x1 ,x2 ,T2t!G~x2 ,x2 ,t!
, ~A1!

whereT5\b and the imaginary time propagator for the para-
bolic barrier is given by

G~x1 ,x2 ,t!5A mvb

2p\ sin~vbt!
expH 2

mvb

2\ sin~vbt!

3@~x1
21x2

2!cos~vbt!22x1x2#J ~A2!

with x5q2qb . Both the numerator and denominator of Eq.
~A1! diverge as a result of the integration. Nevertheless, the
ratio of the two yields a finite analytical expression, i.e.,

^hP~t!hP~0!&b

5
1

2p
arctan

2 sin~vbT!

Asin~b1!/sin~b2!1Asin~b2!/sin~b1!
,

~A3!

with b15vb(T2t) andb25vbt. We then take the deriva-
tive with respect tot, make the replacementt5t1i t , and
take the limit t→`. For brevity, the lengthy derivation is
omitted here. Finally, making use of the identity

lim
t→`

sin@vb~T2t2 i t !#

sin@vb~t1 i t !#
5exp~ ip1 ivbT!, ~A4!

we arrive at

lim
t→`

]

]t
^hP~t1 i t !hP~0!&b5

vb

2p
, ~A5!

which is the prefactor given in Eq.~2.6!.
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APPENDIX B: UNIFORM ASYMPTOTIC CROSSOVER
ANALYSIS OF THE INSTANTON SOLUTION

As was demonstrated in Sec. II, an instanton solution in
the quantum tunneling regime is essentially a nontrivial
bounce stationary solution to the imaginary part of partition
function and exists only below the crossover temperature. In
the crossover regime, as the periodic trajectory shrinks, the
integration of the quantum fluctuations in the barrier parti-
tion function cannot be extended to infinity and the determi-
nant Eq.~2.16! from the functional integration is to be modi-
fied by an error function. Though in principle the asymptotic
analysis can be carried out in the context of functional inte-
gration of the barrier partition function, it is much more
straightforward to present a derivation based on an expan-
sion about the instanton energy. One begins with the WKB
transmission coefficient69 valid for tunneling energiesE be-
low the barrier potential maximumV0, giving

3

F5
1

2p\ ÈV0
dE e2bEe2W~E!/\, ~B1!

where 1/2p\ is the free particle flux density andW(E) is the
action integral along the tunneling trajectory, i.e.,

W~E!5 R dxA2m@V~x!2E#

5W~Einst!1W8~Einst!~E2Einst!

1 1
2W9~Einst!~E2Einst!

21••• . ~B2!

In the second line above, the action integral has been ex-
panded about the instanton energy. A steepest descent ap-
proximation on the energy variable in the integration Eq.
~B1! immediately leads to a low temperature asymptotic flux
expression, or a asymptotic instanton solution,

FLT5
1

\bA2Winstp\D
erfFb~V02Einst!A D\

Winst
G

3exp~2Sinst/\!, ~B3!

where ‘‘erf’’ is the error function defined in Eq.~4.15!. Here,
Sinst andEinst are the action and energy of the bounce trajec-
tory, respectively, and the corresponding work function is
Winst5W~Einst!. Also, a simple identity can be applied13

WuT8u5T2D, ~B4!

whereT5\b in the case of the instanton.3,5 The above ex-
pression also implies a numerical procedure to evaluate
uT8(E)u when an analytical form forT(E) is not available as
is the case for a dissipative system described by an influence
functional.

At temperatures significantly lower than the crossover
temperature, the error function reduces to unity and one re-
covers the conventional instanton solution in Eq.~2.20!, or in
the equivalent form

F inst5
1

A2p\uT8~Einst!u
exp~2Sinst/\!. ~B5!

The appearance of the error function in the low tempera-
ture expression Eq.~B3! and in the high temperature expres-
sion Eq.~4.13! is not a coincidence as the two share a com-
mon origin. When the temperature approaches the crossover
from below, the bounce trajectory shrinks and thus the full
quantum fluctuation is not allowed because of the confine-
ment of the volume enclosed by the bounce trajectory. As a
result, the Gaussian functional integral cannot be extended to
infinity and a truncation in the integral limit introduces the
error function. In fact, a comparison with the asymptotic ex-
pression in Eqs.~4.13!–~4.16! suggests

DLT5b~Einst2V0!A D\

Winst
~B6!

which can be shown to be the same as the definition of Eq.
~4.14! at the crossover temperature.

Though the existence of a bounce trajectory on the in-
verted potential surface imposes the requirement
T5\b.2p/vb , Eq. ~B3! is by no means limited to this
condition becauseSinst andEinst can be extrapolated above
the crossover if the analytical form of these quantities are
known. In other words, the flux above the crossover tempera-
ture is the analytic continuation of the low temperature in-
stanton solution as the bounce trajectory evolves into the
complex coordinate space. This argument can be further
clarified by Taylor expandingSinst andEinst around the cross-
over temperatureb0, giving

FAF5
1

Au2p\T08
erfF ~b2b0!A \

uT08u
G

3expF2bV01
1
2~b2b0!

2
\

uT08u
G ~B7!

which is a well-known result derived by Affleck.12 Clearly,
the asymptotic instanton expression Eq.~B3! bridges the
crossover expression Eq.~B7! smoothly to the instanton ex-
pression Eq.~B5!.

Again, the similarity of the two crossover expressions,
i.e., Eq.~B7! and Eq.~4.17! leads to the conviction that the
two are essentially equivalent in the crossover regime. In
fact, we can prove that the variables of the error function in
the two formulae are the same. Following the asymptotic
analysis leading to Eq.~4.10!, we can write the work func-
tion of the instanton trajectory as

W52
2

A
Tm2V1

2V̄1
2 ~B8!

which in turn yields

T852
T

dW/dE
52

TA

4m2vb
4 ~B9!

with T5\b. Substituting this expression into the variable of
the error function in Eq.~B7! gives

DAF5~b02b!A \

uT08u
5~b02b!

2vb
2m

AbA
~B10!
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which, in the limit ofT→2p/vb , becomes exactly the same
as the definition of Eq.~4.13!. Therefore, all three flux ex-
pressions above agree at the crossover temperature.

SinceW(E) in Eq. ~B2! is expanded about the instanton
energyEinst instead of the barrier topV0, the asymptotic
expression obtained as in Eq.~B3! smoothly bridges the low
temperature solution to the thermally activated regime. Thus,
Eq. ~4.16! and Eq.~B3! represent two uniform asymptotic
reactive flux expressions, one from the thermally activated
regime and one from the quantum tunneling regime, and the
two match exactly at the crossover temperature. Without the
uniform asymptotic expressions, the reactive flux is evalu-
ated in the three temperature regimes separately, with a
rather arbitrary procedure to match the three solutions. Fur-
thermore, the error functions in both Eq.~4.16! and Eq.~B3!
arise because of the modification in the integration space of
the barrier partition function at the crossover temperature.

Finally, we will address the multidimensional formula-
tion of the instanton solution. An obvious choice is to solve
for the bounce trajectory in the full multidimensional hyper-
space, which is a formidable numerical task as the dimen-
sionality increases. An alternative is to integrate out the bath
degrees of freedom, giving an influence functional, and to
then solve for the effective instanton trajectory in the re-
duced action space. For a general discussion, interested read-
ers are referred to a previous paper18 where we developed a
methodology to incorporate dissipative effects as well as
nonadiabaticity into instanton calculations. As described in
the main text, the most standard approach to include dissipa-
tive effects is the Gaussian bath model of Eq.~4.17! All of
the formulae in this section will be valid if the bounce tra-
jectory is solved with the influence functional.

Consider a barrier potential linearly coupled to a har-
monic bath as in Eq.~4.17! ~note that care must be taken to
account for the counter term in that Hamiltonian!. The path
integration over the bath modes introduces an influence func-
tional such that the imaginary time action reads

S@q~t!#5E
0

\b

dt$ 1
2mq̇~t!21V@q~t!#%

2
1

2\ E
0

\bE
0

\b

dt dt8q~t!c~ ut2t8u!q~t8!

~B11!

where the influence functional kernelc~ut2t8u! is related to
the spectral densityJ~v! implicit in Eq. ~4.19! by

c~ ut2t8u!5
\

p E
0

`

dv J~v!
cosh~\bv/22vut2t8u!

sinh~\bv/2!
~B12!

and

J~v!5
p

2 (
i51

N ci
2

miv i
d~v2v i !. ~B13!

The stationary instanton trajectory obeys the appropriate
Euler–Lagrangian equation

m
d2q~t!

dt2
5
dV@q~t!#

dq
2
1

\ E
0

\b

dt8 c~ ut2t8u!q~t8!

~B14!

with the periodicity conditionq(\b)5q(0). Next, the steep-
est descent approximation is applied to the barrier partition
function is in Eq. ~2.15!, and the second-order functional
derivative is explicitly given in the discretized limit of the
instanton trajectory as

d2S

dqidqj
5
m

e2
~2d i , j2d i , j112d i , j21!1d i , j

]2V~qi !

]qi
2

2eci j , ~B15!

where the discretized influence functional kernel is defined
by

ci j5c~ ut i2t j u! ~B16!

with e5\b/P, P being the discretization number. With Eq.
~B14! in place of Eq.~2.13! and Eq.~B16! in place of Eq.
~2.17!, the evaluation of the instanton barrier partition func-
tion is the same as for a one-dimensional barrier, with the
final result given by Eq.~2.19!.
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