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It is shown that several existing quantum reaction rate theories can be unified around a single
mathematical framework. These theories include the high temperature parabolic barrier
approximation, the instanton approach, and the path integral quantum transition state theory. In
particular, it is shown that the quantum reactive flux can be approximated as a product of a simple
frequency factor times the imaginary part of the barrier partition function. The latter term arises
from the steepest descent solution to the partition function in the barrier region, while the prefactor
can be interpreted as the frequency of the stationary barrier trajectory. Importantly, the analysis
introduces the imaginary time Feynman path centroid variable into the expression for the quantum
activated rate constant in anpriori way. The present theoretical framework also allows for an
analytical treatment of the quantum activated rate problem in the vicinity of the crossover
temperature, and for a generalization of the saddle point analysis in an extended-dimensional
quantum mechanical space of the Fourier path modes19@6 American Institute of Physics.
[S0021-960626)51640-3

I. INTRODUCTION tum transition state theoryQTST) rate constant for para-
bolic barriers. Along these lines, Pollak shoWthat a nor-

From both the analytical and numerical point of view, mal mode analysis of the Hamiltonian for a parabolic barrier
quantum reaction rate theory has been one of the most activ@upled to a Gaussian bath, in conjunction with the parabolic
and challenging areas of theoretical chemistry during thguantum transition state theof@TST), leads to the exact
past sixty yeardfor a review, see, e.g., Ref).1At high  quantum mechanical reaction rate expression as derived by
temperatures, chemical reactions are dominated by thermallyolynes. Accordingly, for a real anharmonic barrier coupled
activated barrier crossings described by classical transitioto a real condensed phase “bath,” a parabolic fit according
state theory(TST) and its high temperature quantum me- to the curvature at the barrier, along with the application of
chanical correction$ At low temperatures, tunneling effects the linear response approximation to describe the dissipation
can significantly enhance the reaction rate, and the WKB ofrom the bath, is often employed to yield the “high tempera-
instanton theory gives a good estimate of quantum ratéure” approximation to the quantum rate constant. The dif-
constant~’ Thus the quantum reaction rate in these two tem{iculty associated with this approximation is its divergence
perature regimes is dominated by very different mechanismdyelow a certain temperature, called the ‘“crossover” tem-
so it is typically calculated using different theories. The goalperature. This divergence is also often used as the criterion
of this paper is to formally unify the theories in these two for the temperature at which quantum tunneling effects be-
regimes within a single mathematical framework. come dominant. In these instandesd perhaps in othersa

At high temperatures, modifications of classical TSTsimple harmonic QTST is inadequate for describing the
theory are often introduced to account for quantum effects bguantum activated rate process.
virtue of the parabolic barrier approximation and linear re-  On the other hand, the low temperatures deep tunneling
sponse theory. For example, WolyAederived the exact regime can be described by the periodic oflmit, instantorr,
quantum rate for the parabolic barrier coupled to a multidi-approach which results from a sequence of stationary-phase
mensional Gaussian bath by a direct calculation of the reac@pproximations to a semiclassical rate expression. In this
tive flux correlation correlation function in the path integral theory, the quantum reactive flux at low temperatures is re-
formulation. The resulting quantum rate formula consists ofated to the so-called “bounce” trajectory on the inverted
the classical Kramers—Grote—Hynes prefaétbg quantum  Potential energy surface. Various versions and derivations of
harmonic correction, and the classical Arthenius exponentidhe instanton solution can be found in literatdré*'By
factor. For a one-dimensional parabolic barrier, the analo€Xtending the instanton analysis to the dissipative quantum
gous expression can be obtained by evaluating the classic&gime, Caldeira and Legglf demonstrated an exponen-
TST rate expression with the Boltzmann distribution func-tial decrease of the rate with increasing friction strength at
tion replaced with the Wigner distribution function at the Z€ro temperature. Grabert, Weiss,riggi, and others™

transition staté. This result can be interpreted as the quan-9eneralized the theory for dissipative quantum tunneling to
finite temperatures and have shown that the rate exhibits an

Y " . - exponential power law enhancement with temperature over
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tial surfaces in order to properly describe electron transfeguantum activated rate theory is not immediately obvious.
and similar multistate processes over the full range of couindeed, all previous derivations of the PI-QTST
pling strengths. formula®*~2%38have introduced the centroid constraint with-
Over time, a clear theoretical challenge has been t@ut much justification except the prior knowledge that the
smoothly join the high temperature parabolic barrier approxiPI-QTST formula recovers the well-known results in differ-
mation to the low temperature instanton solution in the crossent limits, and it bridges these limits, as mentioned previ-
over region withoutad hoc connection formulae. Along ously. On the other hand, it has been sh&/fi that the
these lines, a general theory of metastability was constructegentroid variable naturally arises if one wishes to evaluate
by Affleck!? for temperatures below and above the crossovethe instanton rate constant. In the present paper, we signifi-
within a narrow transition region. Grabert and Wéisalso ~ cantly expand on this point of view by also considering the
derived a dissipative crossover formula by means of a funchigh temperature limit. This analysis provides arpriori
tional integral analysis, while, through the use of Miller’s justification for the introduction of the centroid variable in
semiclassical transition state thedr’f, Hanggi and quantum activated dynamics, while also identifying a math-
Hontsch&® obtained a correction to the parabolic TST rateematical framework which unifies previous quantum acti-
valid below crossover. The semiclassical TST approach ha¢ated rate expressions on a common footing.
also recently been revisited in a compelling Wag® All of The present paper is organized as follows: In Sec. I, the
these rate expressions give the same result, or nearly tnmified mathematical framework for the quantum reactive
same result, at the crossover temperature, but they begin fx is presented. The relationship of this approach to PI-
deviate from each other away from crossover. A more uniQTST is next developed in Sec. Ill which explains the cen-
fied approach is therefore desirable, particularly one which igral role of the path centroid variable in quantum activated
suited for numerical implementation in complex many-dynamics. Some analysis of the theory is then given in Sec.
dimensional systems. IV along with some speculations for future research. Finally,
An important step in the direction of a unified theory of Some numerical studies are presented in Sec. V and conclud-
quantum activated dynamics is path integral quantum transing remarks are given in Sec. VI.
tion state theory(PI-QTST).24~?7 In this theory, one intro-
duces the imaginary time Feynman path centroid constraint
into a formally exact quantum rate expression and then facy MATHEMATICAL FRAMEWORK
torizes that expression into the Feynman centroid density and
a velocity factor. After invoking an approximation for the In this section, we seek to develop a unified mathemati-
latter term, the quantum centroid density occupies a role ircal framework for quantum activated dynamics. To be spe-
the PI-QTST formula directly analogous to the classicalcific, we will identify a single expression from which the
Boltzmann density in the classical TST expresitit® The  primary, but more specialized, descriptions of quantum acti-
PI-QTST expression recovers the exact parabolic QTST revated dynamics in different temperature and analytical limits
sult at high temperatures while remaining accurate and norcan be derived. In order to accomplish this goal, the para-
divergent at and below the crossover temperature. At veryolic barrier model is analyzed in detail, while the low tem-
low temperatures, however, the PI-QTST formula gives gerature instanton theory is also visited to provide a key
slightly different and somewhat less accurate result than theupporting perspective. In the end, a “universal” expression
instanton expressiotf:?® Nevertheless, the intuitive concept will be suggested, but one should always bear in mind that
of the path centroid variable leads to a QTST which behavesuly exact results fogeneralsystems are rare, if not impos-
surprisingly well even at low temperatures and, most imporsible, and the present case is no exception. Accordingly, for
tantly, can be readily applied in simulations of very complexgeneral problems the following theoretical analysis is not
systems(see, e.g., Refs. 28—B@ recent numerical study  exact, but in the end it does appear to be a reasonable can-
of quantum dissipative barrier crossing problems has foundidate for a unified mathematical perspective in the field of
very good agreement between PI-QTST rates and exaguantum activated dynamics.
quantum time correlation function resiftsover a wide It is well-known that real time quantum correlation func-
range of parameters. The PI-QTST approach has also be¢ions can be related to their imaginafeuclidean time
successfully applied to electron transfer processes for whichounterparts through an analytical continuatian, 7+it,
the centroid constraint is imposed on the discrete electronialso known as the Wick rotatidl.Since barrier crossing is
state variablé®>=%” Moreover, improved variational essentially a real time dynamical process, any quantum rate
implementation®3~*!of PI-QTST have been developed to theory which seeks to determine the rate from the equilib-
treat general multidimensional systems, though a rigorousium distribution relies at som@erhaps unknowrlevel on
bound on the PI-QTST rate constant does not exist as in then analytic continuation. One such prescription is the reac-
classical theory. tive flux correlation function, given in terms of the present
A recent extensive theoretical stfdy*® has revealed discussion by’
that path centroid quantities are the quantum mechanical
analog to many classical quantities, both statistically and dy-
namically (for a review, see Ref. 47 Yet, the theoretical
reason for the central role of the the path centroid variable invhere the correlation functioR(7+it) is defined as

F=lim F(7+it), 2.9

t—oo
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F(T+it):|m%Tr[eiﬁth(T‘Fit)hp(O)]. (2.2 Zb:f '“fb,@q(f)exp{—S[q(T)]/ﬁ}, (2.9

Here, hp(7) is the imaginary time reactant state populationwhere a single dimension is considered here for notational
operatorhp(7) = 6[q(7) —qp], Where 6 is the step-function simplicity and S[q(7)] is the usual Euclidean time action
andq,, is the position of the dividing surface along the reac-functional, given by
tion coordinatey, usually taken to be at or near the top of the 1p
barier. Sta(m)1= [ arimor+ Via(n)) 2.9

At this point, the reactive flux can be formally factorized 0
as Note that the subscriptt” on the path integration in Eq.

J (2.8) implies a special treatment for the barrier region which
F=Im lim — (hp(7+it)hp(0))pZ,=IM(fZy), (2.3 we now elaborate. For the case of a parabolic barrier, the
toe 0T barrier partition functionZy,, is given by

where(---), stands for an thermal average in the barrier re- [ m Y2 (B Bwyl2) v

gion, andZ, is the partition function in the barrier region P\ 2702B)  sin(A Bwy/2) exp(— Vo)

which will be discussed later. By decomposing the prefactor

f and barrier partition functio,, into their real and imagi- XJ da exd Bme2(d—aw)2/2 21

nary parts, the reactive flux can be rewritten as a extl fmawi(q—dp)*/2], 219
F=(Ref )(Im Z,)+(Im f )(Re Z,). (2.4) The above integral is divergent for an integration along the

real axis, but the coordinate rotatian—iq yields a well-
The prefactorf in the above equation cannot be evalu- defined value for the imaginary part Bf,."* We then obtain
ated exactly for general systems. However, in the thermalljrom Egs. (2.7) and (2.10 the well-known result for the
activated regime(i.e., above crossover, as defined by parabolic barrier reactive fldx
fBwy, <2, wherewy, is the magnitude of the unstable barrier kT (%
: - : B Bwyl2)
frequency, the barrier region can be approximated by a para- Fob="1— =7 a5 X — BVo). (2.11)
bolic potential h sin(fBwy/2)
It is of particular interest to relate the above derivation and
V(@)= Vo~ zmwp(d—ap)* (29 giscussion to the path centroid-based PI-QTST, which will

with VOZV(qb)v V(l)(qb)ZO, and V(Z)(qb): _mwg. The be done in later sections.

prefactor in Eq(2.3) can be evaluated exactly as outlined in _ B€low the crossover temperature, the analysis of the bar-
Appendix A to give rier partition function becomes more difficult, or at least dif-

ferent, because the nonlinearity of the potential in the barrier

.4 ) wy, region becomes important and there is extensive quantum
im —— (he(T+it)hp(0))p=5_. (26 tunneling. In the low temperature regime, the instanton
- theory*® proves to be most useful for this analysis. Consider

Interestingly, it is found in the parabolic barrier limit that @ general many-dimensional system described by a single
the prefactorf has no imaginary partBelow the crossover barrier region and asymptotic reactant and product states.
temperature, it may not be possible to rigorously prove thisThe barrier partition function for a multidimensional system
but the instanton theorgas described latgras well as physi- IS described by
cal considerations for thie— limit of the imaginary part of
the time correlation function, suggest it is so. If frx0, the Zb=J f gq(ryexp —9q(7)]/h}. (2.12
above considerations suggest that for quantum activated rate b
processes the reactive flux is related to the imaginary part okpplication of the steepest descent approximation to Eq.
the barrier partition function, appropriately defined for the(2.12) leads to the Euler—Lagrangian equations of motion for

f=1
t

temperature of the system, giving the coordinates on the inverted potential, {:2.,
Folm Z,,. (2.7) d’q(m)  aV[q(7)]
m- dr®  ogq(7) ' (213

In the case of the parabolic barrige., above crossovgerthe
proportionality constant is given ly,/27. As will be shown  wherem is the diagonal mass matrix and the periodic con-
later, below crossover this constant ig 2/ dition on the instanton or “bounce” trajectory ig(%3)

These arguments strongly suggest that the quantum re=q(0). For a regular barrier, satisfying®(q,) = — mw2<0
active flux depends on the imaginary part of the barrier parandV(¥(q,)=0 along the barrier coordinate, EQ.13 has
tition function. But what exactly is this quantity in the most a trivial (single poin} solution at the transition state for
general sense for a given temperature? The barrier partitiohBw,<27 and a bounce solution fdgtBw,>2. This crite-
function Z,, can be formally given in terms of a Feynman rion then defines the crossover temperatufg={1/kgS,),
path integral'->3by the expression e
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fi Bowy =2 21 1
Bowy=2m (219 D=Iimadel'(62ml 2.18

at which the bounce trajectory coalesces to the transition P
state. For a divergent barrier, satisfyit”(qy) =mw; <0 where det stands for the value of the determinant with the

and V(*)(q,) <0, there is always a bounce solution. Unless . : . .
o . . . . zero eigenvalue removed. The translationally invariant mode
specified otherwise, the present discussion will be for a regu-

lar barrier which is always bounded from below. Is then integrated along the bounce trajectory, resulting in a

%refactor ofVW/2nh.

.TO proc_ee_d, the action is expanded around the bounc Putting all of the factors together from the above analy-
trajectory, giving . ) . . . ;
sis, we obtain the instanton approximatiog, for the imagi-

B f 4 f e’ 5°S - -, nary part of the barrier partition function, i.e.,
Sq(7)]=Spett | d7 | d7 WQ(TM(T )

W
(2.19 IM Zp=Zjns= \/ 5D &P~ Snst/f), (2.19

whereq(7)=q(7) — Qins{(7) represents the quantum fluctua- .
tion away from the instanton path. Then, the steepest descehere W and Sy, are the work and action of the bounce

5°S )
59;6q;)’

approximation formally leads to trajectory, respectively, anD is a properly normalized de-
terminant as defined above. The quantum instanton reactive
. 1 flux is given by
Zy=) — exp(— /%),
o JdeteS e o 1
(2.1 F= B Im Z,,. (2.20

where./" is a normalization factor to be specified and the . _ _ ) )
determinant is understood as the product of eigenvalues d\(lore discussions of the instanton solution can be found in

the linear operator in functional space. Though similar to the\PPendix B. By comparison with Eq2.4), the prefactor at
Van Vleck prefactor, the prefactor in E.16 is intrinsi-  [OW témperature is clearly given by

cally divergent because the spectrum of the second order 9

functional derivative consists of an isolated negative eigen- f=Ref=lim Re—— (hp(7+it)hp(0))p

value and a zero eigenvaldelhe zero eigenvalue can be toe

removed by explicitly integrating out the corresponding 1

eigenmode, whereas the negative mode is integrated by an z%. (2.21
analytical continuation leading to the purely imaginary bar-

rier partition functionZ,=iZ;,s;. Thus the simple coordinate The “barrier partition function” perspective in semiclassical
rotation g—iq performed on the above crossover reactiveactivated dynamics has been further elaborated in Refs. 22
mode has now been extended to the quantum fluctuatioand 23.

mode corresponding to the negative eigenvdkud it will It is also important to mention the case of a metastable
also be related to the path centroid mode in the nexpotential well. Langer and othéfs® have shown that for
sectiort®). such systems the barrier partition function is twice the imagi-

In order to complete the instanton analysis, a seconehary part of the well free energy. The imaginary part of the
order functional derivative must be evaluated along the inwell free energy can in turn be related to a thermal average
stanton trajectory. This procedure is numerically best impleover the imaginary part of the well eigenvalues, i.e., the life-
mented for a discretized path, i.e., times of the metastable states. Thus the imaginary part of the

525 2 well free energy can be related to the thermal decay rate, and

m a“V[q(7)] S . Y . .

= (28— 8 j+1— 8 )T S this is often taken as a “formal” basis for instanton theory.
60i6q; € 9099 Interestingly, the barrier partition function contains the same
(2.1 information, and it can be understood from the perspective of
where the indices andj denote two different discretized the asymptotic treatment of the overall partition function in
imaginary time slices,q; and g; are the corresponding the barrier region. To quadratic order, this treatment is
nuclear coordinates along the instanton path, andg/P, equivalent to the steepest descent approximation with an
with P being the number of discretizations. The dimension-analytic continuationgq—iq of the appropriate integration
ality implicit in the above equations is such thﬁShSqiéqj variable for the temperature at halidin fact, the barrier
is a matrix of dimensiolNXP. When diagonalizing this partition functionZ, can only be comprehended in the as-
matrix, there will be a negative eigenvalue giving rise to theymptotic sense. For example, there does not exist a well-
imaginary part of the barrier partition function, and a zerodefined global partition function for a metastable potential
eigenvalue corresponding to the translationally invariantvell or an unbounded barrier crossing problem such as an
mode® The existence of a zero eigenvalue is an indication ofEckart barrier. Also, for a closed system such as a double-
a true instanton solution. The removal of the zero eigenvalugvell, the global system partition function is a positive-
requires the proper normalization, which is explained in Ap-definite real quantity. In this case, the barrier partition func-
pendix A of Ref. 18. After the removal of the zero eigen- tion is literally definedto be some asymptotic approximation
value, the rest of the normalized determinant is given by to the partition function around a saddle-point mode, i.e., a
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steepest descent approximation in the barrier region. Thgon). The crossover temperature in the many-dimensional
imaginary part of the barrier partition function arises fromcase is now defined bﬁﬁo)\é:ZTr (see, e.g., Ref. 1 for a
the mathematical rotation of the relevant integration variableliscussion
for the unstable mode to the imaginary akisThe exact Before proceeding to the next section, it should be noted
nature of that integration variable is of considerable signifi-that the present formulation of quantum activated dynamics
cance, as we shall see in the next sectfdrin effect, the is not limited to adiabatic reactions. Indeed, in the case of
imaginary part of the barrier partition function results from nonadiabatic transitions, Eq2.22 can be generalized to
the thermal fluctuations of the unstable mode in imaginaryead?®
space and the thermal fluctuations of the stable modes in real =

. =yImZ, ,,
space. It seems fairly remarkable that the result of an appar- mov
ent mathematical trick to evaluate a divergent integral couldwhere
be intimately related to the rate of a quantum activated pro-
cess, but it does indeed seem to be so. ZM,V=J’ dqf dq’[{w.qlexp(— BH/2)|v,q")|?  (2.27)

Combining the results from the preceding analysis, we

find that the quantum reactive flux for a one-dimensionalandq andq’ are understood to be in the region of the wells

(2.2

system can be written in the following unified form: of the diabatic reactant and product states, respectively. Note
that the notation “Im” was absorbed into the definition of
F=vImZ,, (22 z,,in Ref. 18. The choice of the prefactein the nonadia-

batic case is less clear, but using Eg.24) with a barrier
frequency determined from the lowestiabaticpotential en-
ergy surface will give a result consistent with the known
analytical limits.

where v is a simple piecewise continuous frequency factor
given by

w
v=-—; hBopy<2m,

2m Ill. PATH INTEGRAL QUANTUM TRANSITION STATE
THEORY
:ﬁ; hBwp=21, (2.23 The expression for the quantum reactive flux in Eq.

(2.22 allows us to rationalize, even provide arpriori ar-
and it is understood that the barrier partition functignis  gument for, the central role of the imaginary time path cen-
treated in an appropriate asymptotic fashion, depending otroid variable in quantum activated dynamfés?’4’ Ele-
the temperature. The reactive flux expression inE®2 is  ments of this argument have already appeared else-
valid at all temperatures and in the classical limit. The im-where?438485t the final outcome in this section is some-
portant result embodied in E¢2.22 might also have been what different and more general.
inferred by piecing together several known analytical results, As described many times in the literature, the definition
but the derivation in Appendix A, leading to E€2.6), pro-  of the imaginary time path centroid density is givertdiy+>’
vides a key formal link between the high and low tempera-
ture limits. o= f f 0(7) 8(de—To)exp{ — SLa(7) 1A},

For many-dimensional systems, the above equations 3.0
should be modified to include the effects of the coupling to a '
thermal bath. The basic form of the expression in €2 where a one-dimensional notation is again employed for sim-
is the same, but the barrier partition function is now definedplicity, and the centroid variablgy is defined as the zero
for the complete many-dimensional system and, by invokindrequency Fourier mode of the patfi), i.e.,
the linear response approximatibrihe expression for the 1 (%

B
frequency factor is given by ﬁozﬁ drq(7). (3.2
0
t
b= h_ hpt<2m The exact quantum partition function can be formally ex-
27’ 0 ’ pressed as the centroid trage®>’
:%; npNE=2, (2.24) Z:J dqe exgd —BVe(ac) ], (3.3

_ _ where the effective centroid potential is given by
Where)\é is the Grote—Hynes frequenéygiven by

, Ve(qc)=—kgT In[pc(qc)]- (3.4
A= A“’b (2.25 At this point, the effective centroid potential can be used
0 )\Oi+ n()\of)/m' ' to evaluate the barrier partition function within the steepest

] ) ) ) descent approximatidlf. To do so, the centroid potential is
Here,m is the effective mass of the reaction coordinate ancypanded at its maximum* in the barrier region, giving

7(2) is the Laplace transform of the classical friction kernel o 12k s
at the top of the barriér(i.e., the frequency-dependent fric- ~ Ve(de)=Vc(q™) + 3V (0% ) (de—q™)*. (3.9
J. Chem. Phys., Vol. 105, No. 16, 22 October 1996
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Here, the maximum of the centroid potentigl is deter- The PI-QTST result has thus been recovered from the point
mined by of view of the present analysis. Note, however, that Eq.
(V(l)(q*)) —o (3.6 (3.1)) is likely to be more accurate then the PI-QTST result
c = ' in Eqg. (3.12 over the entire temperature range. Also, for low
and the curvature of the centroid potential is determined bytemperatures, the prefactorin Eq. (3.11) is given by 148
@)1k A2k Ve T I and the equation becomes an approximafiéh*®to the in-
V(@) =(V9(a*))c— BIV(@*)V(A™)) e stanton resulfEq. (2.20].
—(V(l)(q*)>§], (3.7) In light of the general expression for the quantum acti-
vated rate constant in ER.22), the above steepest descent
where (f(q*)). denotes a centroid-constrained average atpproach provides a rationale as to why the centroid variable
the transition state or, explicitly, and its equilibrium density at the transition state are so im-
portant in determining the value of the quantum thermal rate

*
(@) constant. The centroid constraint ariseaturally in this
f--f7q(n)f[q(0)]8(q* —To)exp{— S[q() ]/%} analysis without being artificially introducéd>8Indeed, the
= T J7q9(n) 8(q* =g exp—Sa(nlkE guantum reaction coordinatg is clearly defined to be the

(3.9  coordinate which possesses the unstable centroid mode, and
vl T the quantum transition state along the coordinate is specified
andV=Jo"drV[a(n)l/hB. by the value ofy=q* which gives a maximum in the effec-
~Now comes a crucial point. If the curvature of the cen-jye centroid potential in the barrier regfdnand thismay
troid potential is negative, then the centroid variable is thenot be the same as the classical transition &fafe
ideal variable by which to evaluate the barrier partition func- While the above expressions have been given for a one-
tion via a steepest descent approximation to B along  yimensional reactive system, they are readily generalized to
the imaginary axigi.e., q.—iqc). That is, many-dimensional systems in a transparent fashion. In the
e latter scenario, the effective centroid potential in E34) is
szipc(Q*)f dage exd — BV (a*)[(q.—a*)?/2] replaced by thecentroid potential of mean forc€CPMF)
o along the reaction coordinatg also to be denoted here by

. 27 12 V(q.). This quantity is defined as in Eq63.3) and (3.4),
=1 (W) pe(d*). (3.9  put it now depends on the reduced centroid defity
N After the ste_epest descent evaluation_ of the barrier par- pC(qC):f f (1) 8(qe—To)exp{ — S[q() 114}
tition function using Eq(3.9), the expression for the quan-
tum reactive flu{Eq. (2.22] is then given by (3.13
o 112 As a convention, in the equations above and below the bold
=~ V(T) pe(g*), (3.10 fonts stand for vectors and matricés the present case, for
BIVS (a¥)] the coordinates of the many-dimensional systevidith the

where|V®)(g*)| is the absolute value of the curvature of the concept of the CPMF in hand, Eqe3.7)—(3.12 are thus
effective centroid potential at its maximum. It should beapplicable to many-dimensional systems. _

noted that the centroid-based expression given above for the !tiS also possible to generalize the centroid density treat-
quantum activated rate constant is somewhat different frorf"€nt of the barrier partition function to a rotated saddle point
the PI-QTST expressiéfi2®and from the low temperature 1N Multidimensional space if the discussion is restricted to

formula derived in Ref. 48. Simplifying further, the expres- linear transformations of the system coordinates. In particu-
sion for the quantum rate constant is given by lar, if the saddle point is defined in terms of the rotated
2 112 coordinate
7BV (g*)]) .
k=vp *:8| ¢ \q | e—BVC(q ). (31])
fq—oodqc e*BVc(Q)

This formula, as with the PI-QTST formula, is readily evalu-
ated by numerical path integral techniques, and a simple pr
scription has been given here for the prefactas well[i.e.,

N
Z:Zl uiai, (3.14

Qith |U;j|=1 being a unit vector and the reactive barrier
coordinate(i.e., the local reaction paththen one can write

Eq. (2.24)]. the reduced centroid density along this coordinaté&s
For higher temperatures, particularly above crossover, ] _

the frequency factor is given by=\{/27 and|V{?(g*)| can Pc(Zc)=J f (1) 8(2.—Zp)exp{ — S a( 7))/ A},

be approximated bynw?. In this case, Eq(3.11) reduces to (3.15

the well-known PI-QTST formuf& for many-dimensional

systems wherez, is the centroid of the reactive coordinate. The par-
tition function can be similarly defined as

)\g (277'm,[5')_1/2 .
k - 7ﬁvc(q ) 1
PRI (o T g o AV e 3.12

Z=J dz; exd —BVc(zo) ], (3.16
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where the centroid potential of mean force alang given  troid TST theory of quantum dissipative barrier crossing has
by been formulate® On the other hand, a general variational
__ principle in PI-QTST will be difficult to rigorously justify
Ve(ze) KeT In[po(Zc) ] 3.17 since, as shown in the present work, PI-QTST is based on a
In a manner similar to that outlined before, the CPMFsteepest descent approximation to the barrier partition func-
alongz can be used to evaluate the barrier partition functiontion and a high temperature approximation for the frequency
within the steepest descent approximation by first expandin¢actor.
it about the maximum as defined &, giving In this section, the main result of PI-QTSEg. (3.12]
has been related to E2.22 through the centroid-based
~ t DAY (7 — 74 1 R4 (5 _ 42
Ve(2e) =Vo(Z) + V(2 (2.~ 2) + 3V (2) (2 (; 1)8). analysis of the barrier partition functidof. Eq.(3.9)]. In the

) ) X rocess, a new expression for the quantum rate constant, Eq.
Note that the second term on the right-hand side of this equ 3.11), was derived which, in principle, is more accurate than

tion is zero by definition. The derivatives above are given bythe PI-QTST expression over a broader temperature range.

the rotated version of Eq¢3.6) and(3.7), i.e., These considerations also lead to some interesting analytical
(goV(z*))C=O, (3.19 and conceptual perspectives, which are described in the next
section. One of these perspectives pertains to the analytical

and L treatment of the crossover problem, while the other concerns
V(cz)(Zi):<502V(Z¢)>c—ﬁ[(PV(Zi)WV(Zi)% the form of the optimal low temperature analy8isf the
basic rate constant expression, E&22), thereby generaliz-
—(pV(Z%)el, (320 ing upon the usual centroid activated rate perspeéfivé.

where the symbap denotes the derivative along the reaction

path: p=3N,U,;d,. The rotated dividing surface is to be |y ANALYSIS

chosen normal to the direction of the negative eigenvalue of

centroid-constrained force constant matrix, and the transition ~ The central quantity in the expression for the quantum
state z* is defined to be the position of the centroid- rate constantEq. (2.22] is the imaginary part of the barrier
constrained free energy maximum along the rotated reactivBartition functionZ, . As such, this situation compels us to
barrier coordinate. In Egs3.19 and (3.20, the general consider the implications of the steepest descent perspective
centroid-constrained averages are given by expressions sim@r this quantity. Indeed, one can imagine expressing the

lar to Eq.(3.9), i.e., barrier partition function in terms of an integration over a
" finite number of Fourier path modeg,, given from the Fou-
(F(2%))c rier decomposition of the paths by
o 7a(n)f[a(0)]8(2F —Zo)exp{ — S[a(7) 1/#i} S
[ Jaq(n 8 -Zp)exg{—Sa(r) 1A} q('r)=n_2w ane"™ "7, 4.9
(3.2) -

whereQ ,=2mn/AB. One is then free to express the barrier
partition function as an integration over an effective
extended-dimensional Fourier mode densiifq ,...,0).&
where

With the rotated saddle point in hand, the centroid den
sity in terms of the rotated coordingtecan be approximated
by the saddle point expression

po(zo)=p(zH exd — BV (2% (2.~ 2%)?]. (3.22

m
If V{3)(z*) <0, then the imaginary part of the barrier partition p(qc,---,qm)ZJ f @"Q(T)fs(qc—ao)ﬂ 8(dn—0pn)
function can be evaluated using the steepest descent ap- =t

proach as before, yielding the reactive flux from E222) xexp{—Sq(7)]/h]} 4.2
as
. " and
F=1v| —m =7 z"). 3.2
e R A L

The above prescription to determine the dividing surface
also applies to classical transition state theory where the Ef dqc.--f day, exd — BVei(des---.0m) 1. (4.3
variational principle requires the transition state flux through
the dividing surface to be minimized-%!For a coordinate- Here, the integrations in the above equation are understood
dependent dividing surface, the flux through the surface iso be in the barrier region, as required, ahg(qc,...,dm) IS
proportional to the constrained partition function integratedan effective “potential of mean force” for the subset of Fou-
on the dividing surface weighted by a Jacobian factor. Thererier path modesd_,....g,,), as defined aboV&.For simplic-
fore, in the case of a planar dividing surface, minimizing theity, the m-dimensional expression in E®.2) has been de-
flux is equivalent to finding the planar dividing surface ac-veloped for a problem having one physical dimension. For
cording to the criterion in Eq(3.20), at least to quadratic multidimensional systems, the effective potential for the sub-
order?6240Fgllowing this argument, a self-consistent cen-set of Fourier path modes is a potential-like function in an
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extendedmx N-dimensional space, which is larger than thetion of the barrier partition function, as formulated in Eqg.
physical dimension of the systel This formulation of the (4.3) (in this case form=1). This analysis illustrates the
barrier partition function within the context of the quantum utility of the barrier partition function perspective in dealing
rate constant expressi¢kq. (2.22)] leads to two interesting with the crossover problem, as well as the extended-space
perspectives which are now described. Fourier mode picture.

For simplicity, the crossover analysis will be presented
for a one-dimensional barrier crossing problem and then ex-

The expression in Eq2.1]) for the reactive flux of the tended to dissipative systems at the end. The barrier potential
parabolic barrier diverges at the crossover temperature. OB first expanded beyond quadratic order, giving
the other hand, the instanton expression in 0 is in-
appropriate above the crossover temperature since the
bounce solution to the barrier partition function shrinks to a
trivial solution. The path centroid-based expressions in Egs. 1
(3.17) and(3.12 are uniformly valid through the crossover +—g(q—0gy)* 4.7
temperature, but they are essentially numerical in sigt, 4!
the k_ey quanti.ties are usually d_etgrmined from numericalyhere  V(q,)=V,, V(qp)=0, V@(qy)=—mw?
path mtegral S|mu_lat|ons for realistic systemBj terms qf V@ (g, =c, and V(*(q,)=g. The sign ofg is assumed
analytic theory, it is generally regarded as being unsatisfagyositive as otherwise the instanton solution exists at all tem-

tory to have two distinctive solutions which do not match peratures. The higher moments of the potential are then ex-
smoothly in the crossover regime. While a number of aUthor%ressed in terms of the Fourier path modes as

have proposed solutions to this probléfor a review, see

Ref. 1), it shall be examined here within the context of thei hB
present theoryi.e., Eq.(2.22] based on the steepest descenti 8 Jo
solution to the barrier partition function. We will also draw

upon the Fourier path mode perspective introduced in Eqs. =0 g +600[G1/>+3(G 2G5 +G $ 20+ - (4.8
(4.1)—(4.3). The outcome of the derivation in this subsection

resembles the perturbative analysis of the transition between

thermal hopping and quantum tunneling of Grabert and1 [#s

Weiss!® However, since the emphasis is placed on an asz g . dr{a(7)—gp]*

ymptotic Fourier mode analysis of the imaginary part of the

A. Crossover

1 2 , 1 3
V(g)=Vo— o1 Mwp(d—0p) *3r c(q—0dp)

dr{q(7)—qp]®

barrilrir partition function, we obtain a somewhat different  =§ 8 + 1262 (q,|2+129,(9 G 5 +q #*T,) +6/q,|*
result.
Given the parabolic potential in ER.5), the imaginary e (4.9

time act!on funct.ional in Eq(_2.9) takes a simple quadratic whereG* is the complex conjugate &, . It can become a
form. Wit the aid of a Fourier expansion of the paths, re<t,migaple task to deal with all of the lengthy expansions.
written in this instance as Fortunately, as in the WKB approximation to the real-time
* Green function where an asymptotic analysis has been de-
a(7)—q,= E O, expiQ,7), (4.9 vised to treat the divergence at the caustica,similar pro-
n=-e cedure applies here. By considering the Taylor expansion
the action functional for the potential in E€.5) is diago-  Eds.(4.7)—(4.9) at the barrier top as an asymptotic expansion
nalized as of the imaginary time action, to lowest order it can be re-
duced to

Sa(mi=imp 3 Offa, 45

2
_ c
Sifi=—3mBw} qO_E|QI|2)

where the eigenvaluﬁ_n is given by

02— 02 2 — | _
Qn_Qn_wb (4.6) +m,8()§ 0o+

with Q,=2mn/ph. The zeroth mode,, i.e., the centroid,
has a negative eigenvalue which gives rise to the imaginary _ A _
part of the barrier partition function in the steepest descent +mBO2[Gy 2+ B — [Gu]*+ 2, mBOT,/2,
integration along the imaginary axis. The divergence of the 2 n>2

parabolic barrier reactive flux expression in Hg.11) at (4.10
the crossover is due to the disappearance of the first eigen-

value ). However, this divergence for real barriers can beVhere

avoidgd by including higher-order nonquadratic corrections c2 c?

in theq, integration within the context of the rate expression A==+ — = (4.11
Eqg. (2.22 and the extended Fourier mode space representa- 2 Mo, 2me);
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N 2

The reduction of the Fourier mode expansion of the potential : , c 2

2

into Eq. (4.10 is approximate, but simplifies considerably H= ﬁ+V(q)+2
the subsequent analysis. For example, it can be shown from =1
Eq. (4.10 that as the temperature approaches the crossover (4.17)
from above the effective potential for thg| mode changes where{x;,p;} are the canonically conjugate bath variables
from a simple harmonic well to a symmetric double well. and {m; ,w;,c;} are the corresponding masses, frequencies,
This symmetry breaking indicates a transition from a trivialand coupling constants, respectively. Despite its apparent
stationary point to an instanton solution. simplicity, the above Hamiltonian provides a model for

At this point, all the higher-order Fourier mode integra- many quantum processes in the dissipative condensed phase
tions except fofg,|? can be performed exactly as in the caseenvironment so long as the linear response approximation is
of the parabolic approximation. Similarly, the steepest dewvalid. The path integration over the bath variables from the
scent integration over the centroid variable can be perabove Hamiltonian leads to a path integral action functional

formed. The result of these operations is given by of the form
iB .
zb=f dqcf da; ex — BVei(de,G1)]=Zp, COM(A), S[q(r)]=f0 dr{zmq(r)*+V[a(7)]}
(4.12 )
where the correction term Caty) arises from the integration +hpB 21 Qn7(Q) [T/ m, (4.18
n:

overy=|q,|? and is given by
where 7(s) is the Laplace transform of the friction kernel,

Cor(A)= [5dy expt — BmOiy— BAY’12) defined in the discrete limit by
Joovet” P O S (4.19
V S =z 2 .
=AV2m erf(—A)ed’2. (4.13 <1 mo! S+ o]

With the aid of the above expression, all of the results in
section remain the same if the definition in E4.6) is
modified to be

Q=02 w2+ Q,9(Qn)/m. (4.20

This result has the same structure as the earlier result O?ﬁis
tained by Grabert and Weid8except for the definition oA.
Here, it is defined as

A=m(Q%—wd)VBIA, (4.14
Accordingly, the crossover temperature is defined where the
where “erf” is the error function eigenvalue ofy; vanishes? namely,
1 (A 2 0f = wp+ Q1 7(Q1)/m=0, (4.21
erf(A):—_ZW ﬁmdx € . (4.15 whereQ, =2/ .

By virtue of the above result, Eq4.12, as well as Eq. B. Low temperature generalization of the saddle point
(2.22, the asymptotic expression for reactive flux around theanalysis

crossover temperature has the structure The second perspective of this section—and perhaps the

F=Cor(A)Fp, (4.16 m_ost compelling one for future inv_estigation—is _concerr_1_ed
with the steepest descent evaluation of the barrier partition

where the parabolic barrier reactive flux is given by Eq.function through Eq(4.3 in the low temperature limit®
(2.12). The above “high temperature” asymptotic expres- Undernormal circumstancesi.e., not too low temperatures
sion matches smoothly onto the parabolic expression Ecand not too asymmetric barrigrghe centroid variable, is
(2.17) and extends continuously below the crossover temthe natural variable about which to perform the steepest de-
perature. It remains valid untf3 becomes zero which then scent integration along the imaginary axis as outlined in the
makes it necessary to include the Fourier magein the  previous section and in Ref. 48. However, in some instances
expression for the generalized Fourier mode barrier partitiomt low enough temperatures the curvature of the centroid
function[Eq. (4.3)] to generalize the analysis. Alternatively, potentialV.(q.) in Eq. (3.4), as specified by E(3.7), may
the instanton solution can be asymptotically treated in thde positiveeverywheren the barrier region. Furthermore, for
crossover region from below and smoothly bridged with thehighly asymmetric metastable barriers, there may also be
high temperature asymptotic expressidfqg. (4.16]. This  pathological low temperature behavior in the centroid-based
approach is outlined in Appendix B. approach® In these cases, an intriguing point of view

The high temperature asymptotic approach can also bemerges. Instead of a saddle point integration using just the
readily generalized to quantum barrier crossings in dissipagentroid variable as in Eq3.9), the saddle point analysis
tive systems, at least for a reaction coordinate linearlyand the steepest descent integration can be generalized in
coupled a Gaussian bathAs usual, in such cases the total terms of a combination of the subset of path Fourier modes
Hamiltonian for the system is given by {9} in Eq. (4.9. In these pathological cases, it is actually
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necessaryo pursue such a generalization in order to have a (b/2)

sensible evaluation of the imaginary part of the barrier par- przm, (5.9
tition function® Thus in such cases the saddle point may not

involve the centroid mode alone, but instead the problemyvhich, as stated before, is invalid below the crossover tem-
maps onto a kind of classical-like transition state calculatiorPerature, i.e., for>pg,=2mnlfw,. We thus consider the

in the extended space of the effective Fourier mode potentidligher-order correction derived in Sec. IV, where the Taylor
Veir(Qc -0 - expansion of the potential in E4.7) has coefficient€=0

To explore this idea in more detail, the path integraland_9=1_6\/0/a4 in the Eckart barrier case, and theAparameter
action functional can be Fourier decomposed in the follow-defined in Eq(4.11) assumes the value &=8V,/a”. Sub-

ing general way: stituting these expressions into Eq4.13—(4.16, one ob-
" tains the expression
~ 1, [
S[Ol(r)]=mfiﬁn§l Q[ Q| +fo drviq(n)]. (422 Thr=T A V27 erf(— A)exp(A2/2) (5.5

The higher the value of, the higher the positive “fre- with the variablea given explicitly as

quency” of that mode in the saddle point region of the ef- A= (u 2-1)\//2. (5.9
fective Fourier mode potenti¢#(dc,-...dm) as defined in

Eqg. (4.3. As a consequence of this result, it is expected that
them=1 mode should be the highest Fourier mode necessar?/x

Below crossover, an analytic instanton solution can be
plicitly found for the Eckart barrier, giving

to include in Eq.(4.3) for most systems. To carry out the NIY )
generalized saddle point procedure, one must then find the Finst=T exgd {(1—1/u)], 5.7

saddle point for the effective Fourier mode potential _ o
Vei(Qe,9,), determine the linear combinatigier “normal Whlch holds for 8>p3,. The uniform asymptotic instanton
mode”) of the centroid mode. and the first Fourier mode solution Eq.(B3) reads
g, along the direction pf steepest descent at the ;addle point, Tr=erf(— A )i (5.9
and then perform the integration over that mode in the com-
plex plane. At the same time, an integral is performed alondVith the parameter
the real axis for the stable normal mode orthogonal to the

: 4 Ar=(pn—Lu)JLr2. 5.9
steepest descent modef. Ref. 48. This perspective for a = (pm Ve 6.9
generalized quantum TST saddle point in the extendedFinally, Affleck’s crossover formula can be written as

dimensional space of the Fourier modes is presently under Al
investigation in this group and elsewhépe. T pr= \ [——> erf(AAF)eXF(AiF 12) (5.10
72
with the parameter
V. NUMERICAL EXAMPLES 5
In this section, the theory described in the previous sec- Anr=(1=n) V 7 (511

tions is illustrated by a study of a one-dimensional EckarLI_
barrier and an Eckart barrier coupled to a Gaussian bath. Th dix B
emphasis here is on the crossover behavior from the hig PPENCIX B.

temperature thermally activated barrier crossing to low temi i (lj:cf)r corgpa(\:r)’lsloo?, a quatr:tum correction was aiso calcu-
perature quantum tunneling. ated from £q.(s.10), given by

he derivation of the above expressions can be found in

The Eckart barrier potential is given ¥y m Y2 5e(g*)
FQ:2’7TV (2); ~% *\ ! (512
V(q)=V, secl(g/a) (5.2 Ve (a*)])  pa(d*)
with the parameter value of 2V,/%w,=12 in the present where v is given by Eq.(2.23. The usual PI-QTST
calculations. The transition state is locatedogt=0 with  correction?*?® given by
\% =V, and the barrier f is gi b
(gp) =Vy, and the barrier frequency is given by Tprorsr=pe(0* ) pa(a*), (5.13

Mw;=2Vo/a%, (52 was also calculated. In both cases, the quantum centroid den-
Two dimensionless parameters can be introduced, given bsity was numerically computed by a path integral Monte
b=%Bw, (or u=b/27) and {=pV,, such that all relevant Carlo calculation.
guantities are expressed in terms of these two parameters.  All of the values of the quantum correction factbr

A quantum correction factdr can be defined as the ratio calculated from the above expressions are tabulated in Table
of the quantum to classical reactive flux, which is written asl for the set of temperatures frobm=3 to 12 along with the

r—F. JF (5.3 exact daFa obtained frpm Ref. 67. Clearly, the parabollc ap-

am? el ' proximation Eq.(5.5 diverges forB>g,. The uniform as-
In one-dimension, a simple estimate of this quantum correcymptotic formulae, Eqs(5.5 and (5.8), approaching the
tion is the high temperature parabolic correction, given by crossover from above and below, respectively, agree with the
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TABLE I. Quantum correction factotdor the symmetric Eckart barrier.

b Pexact Loy Lyt Lar Lt I'q Dpigrst

3 15 1.50 1.46 1.70 1.62 1.42
4 2.1 2.20 2.00 2.25 2.24 1.87
5 3.1 4.18 3.04 3.21 4.05 3.46 2.72
6 5.2 21.3 5.17 5.19 5.32 5.85 4.31
8 22.0 21.0 27.4 20.0 22.3 17.0
10 162.0 136.2 816.7 135.2 142.0 103.5
12 1970.0 2687.4 1613.2 1695.2 1242.7

®The various quantum correction factors are defined as folldg,, is the exact data for the Eckart barrier obtained from Ref.Ig;is the parabolic
approximation from Eq(5.4); 'y is the high temperature asymptotic expression from(Ed); I' s is the Affleck crossover expression from E§.10; I' ¢
is the low temperature asymptotic expression from&d); I'q is the path integral result from E¢.12; andl'p .grsris the PI-QTST result from Ed5.13.

exact results quite well beyond the crossover point. By conin the study of metastable weltdt is also interesting to note
trast, the Affleck crossover expression H{.10 behaves the agreement of the PI-QTST result with the asymptotic
reasonably well around crossover, but it starts to deviate imnalytical results, especially for the dissipative barrier cross-
both the low and high temperature limits. As pointed outing.

earlier, the PI-QTST correction E@5.13 is a stable ap-

proximation to the more accurate quantum rate fornilE@ . CONCLUDING REMARKS

(2.22)], so it is no surprise that is incorporates the dominant

quantum tunneling effects even at low temperatures, which T_he primary moti\_/e_ltion of the present paper has b_een to
of course has been discussed many times previoisslg provide a general unified framework for quantum activated

e.g., Ref. 24, 26, and 68The new formula, Eq(5.12, is dynamics. The outcome of this effort is EQ.22), a factor-

seen to be even more accurate than the PI-QTST result ovation of the quantum reactive flux expression into the
the temperature range studied. imaginary part of the barrier partition function, defined in the

As an application to a multidimensional barrier crossing,St€epPest descent limit of the imaginary time Feynman path
the Eckart barrier coupled to a Gaussian bath, as describé@i€dral, and a well-defined simple prefactor which can be
by Eq. (4.17), was studied. The bath degrees of freedommt_erpreted_ as the frequency of the cor_respondlng saddle-
were integrated out to yield an influence functional of thePOiNt solution. Depending on the analytic character of the

form in Eq. (4.18 with the friction kernel given in the steepest descent solution, the imaginary part of the barrier
present case by partition function can be shown to be related to the high

temperature parabolic approximation or the low temperature
instanton solution, and thus it naturally introduces the cross-
over temperature which distinguishes the two regimes. While
the instanton result was already known, the high temperature

7(s)= (5.14

st w.’
where the friction strengtli=1.0 and the correlation time
1/w,=1.0, both in dimensionless units scaled Byw, , and
V,. The crossover temperature is determined from(E®0
to be By,=1.3282n/fiwy). It is clear from the one- -2 ' ' — PI' T ! — L
dimensional analysis that a good analytical estimation of the .- A,;ﬁyﬁcal(‘(‘ﬁgn;ilg;j;ig
reactive flux is the asymptotic form E.16. The multidi- --m-- PI-QTST (dissipative)
mensional generalization is rather straightforward and is de- —*- Analytical (dissipative)
scribed in the previous section. The PI-QTST quantum esti-

mate of the reactive flux is given in the dissipative case from
Eq. (3.12, where the centroid density was evaluated at the
barrier top including the dissipative influence functional.

log(F/Z, )

The results of calculations with and without dissipation
are shown in Fig. 1 in the form of 1¢§/Z,,,) versusb, Iy ‘1\_ )
where Z,., is the quantum partition function for the pure ‘ﬁ:‘\
Gaussian bath. The curves depict the asymptotic analytical 14 . ) , , . L,
data[i.e., Eq.(4.16 with (4.20 above crossover and Eq. 5 4 6 3 0 12 14 16
(5.8) with the computational procedure outlined in Appendix b

B below crossovdrand the PI-QTST datgEq. (5.13)]. It is
seen that the dissipationless flux decreases, but tends to levat. 1. A logarithmic plot of the reactive fluxactually F/Z,.) Vs
off at low temperatures because of the quantum tunneling§(=#%8w) for the one-dimensional Eckart barrighe upper curvgsand for
effect, whereas the dissipative flux decreases more signiff-e Eckart barier coupled to a dissipative bathe lower curve The

L analytical curves are calculated from Eg.16) above crossover and from
cantly at lower temperature because the friction reduces thl?q. (B3) below crossover. For comparison, the PI-QTST estimate of the rate

guantum tunneling. This tendency has been well investigated also shown in both cases.
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analysis is new, hence providing the missing element retional Science Foundation Presidential Young Investigator
quired for a unified mathematical framework. Award, a David and Lucile Packard Fellowship in Science
Importantly, the perspective based on the imaginary parand Engineering, an Alfred P. Sloan Foundation Fellowship,
of the barrier partition function naturally introduces the and a Camille and Henry Dreyfus Teacher—Scholar Award.
Feynman path centroid variable into the topic of quantumThe authors are indebted to Rigoberto Hernandez for his
activated dynamic&*-2"*8 A saddle-point approximation to critical reading of the manuscript and for helpful discussions
the main formuld Eq. (2.22)] leads to a simplified formula on the subject. We are also indebted to August Calhoun for
for the quantum activated rate constgeft Eq.(3.11)]. Upon  assistance in the preparation of the figures.
further analysis, this argument also provides a derivation of
the well-known PI-QTST rate constant expreséfoff given
;grEg(')(tﬁ'lt?e' Taho'hs/;ri?pecwe rev e.als.g%e underlying reasons, oo pix A: EVALUATION OF THE PARABOLIC
ges ar_1d I|m|tat|_ of the PI-QTST _ BARRIER PREFACTOR
approach, both as an analytical formalism and as a humerical
technique, especially for quantum reactions in the condensed In Sec. II, the quantum reactive flux in E(.22 was
phase where other approaches may become impractical. formulated as the product of the prefactoand the barrier
Two interesting analytical perspectives also emerge fronpartition functionZ,. Above crossover, the expression for
the present theory which are based on a representation of thiee prefactofcf. Eq. (2.3)] can be evaluated in the parabolic
barrier partition function in terms of an integration over abarrier limit, Eq. (2.5), and thus be determined in closed
limited set of Fourier path modes. In the first perspective, arfiorm. However, this derivation is not completely straightfor-
asymptotic expression is derived to smoothly extend thevard because of the divergent nature of certain integrals. To
parabolic barrier result for the quantum rate constant belovbegin, the imaginary time population correlation function is
the crossover temperature. In the second perspective, theitten as
saddle point analysis is generaliZ&tb include higher-order
Fourier path modes beyond the zero frequency made, (he(7)hp(0))p
the centroid, thus generalizing the PI-QTST result. % (oo _
In Sec. V, a study of a nondissipative and a dissipative = O{szdxl dx; GOy %o, T~ )Gz Xz, 7) . (A
Eckart barrier was presented to illustrate the various aspects 4 —=f —=0dX1 A%z G(X1,X2, T—7)G(Xz,X2,7)
of the theoreticalldevelopments presented in the preV.iouvﬁ/hereTzhﬂ and the imaginary time propagator for the para-
sectlons.' Emphasis Was.placed on the accuracy of the diffesq)ic barrier is given by
ent reactive flux expressions. The numerical evidence clearly
demonstrates the accuracy of the asymptotic analytical ap- Moy, Moy,
proach. It also shows that the centroid-based formula in Eq.  G(X1:X2,7)=\/ 27h sin(wp7) exp{ " 2% sif(wpr)
(3.1 is accurate over a wide temperature range. The con-
sistently good results of this theory, as well as the older
PI-QTST expression, support the assertion that the path cen-
troid variable occupies a central role in the computation of . .
guantum activated rate constants under most circumstance ith X=9~Qp. Both the numergtor anq denominator of Eq.
Finally, several extensions and applications are likely to AD diverge as a result qf .the mtegrauon. Neve_rthel_e ss, the
follow directly from the theoretical development in this pa- ratio of the two yields a finite analytical expression, i.e.,
per. First, the multidimensional steepest descent analyskmp(q-)hp(o»b
based on the centroid theory can help to rationalize various

><[(x§+ x%)cos(wa)—2x1x2]) (A2)

flavors of variational theories;*8~*! perhaps resulting in a 1 2 sinw,T)
systematic approach for computing the rate constant in com- =5~ arctan—— . - - )
plex condensed phase systems beyond the usual PI-QTST Vsin(by)/sin(bz) + ysin(b,)/sin(by) A3)

strategy. Second, a formulation based on the imaginary part
of the barrier partition function is likely to lead to improved With b;=w,(T—7) andb,=w,7. We then take the deriva-
and efficient approaches for solving the multidimensional indive with respect tor, make the replacement=7+it, and
stanton problem, especially for nonseparable, even nonadiake the limitt—oc. For brevity, the lengthy derivation is
batic, potentiald® Success in the latter arena will rest on our omitted here. Finally, making use of the identity
ability to find an efficient numerical procedure to compute . .

) . . . . . o SiMwp(T—7—1it)] ] )
the imaginary part of the barrier partition function directly lim - _ =expim+iw,T), (A4)
and accurately. These and other issues will be explored in  t—e siffwp(7+it)]
future research.

we arrive at

J w
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APPENDIX B: UNIFORM ASYMPTOTIC CROSSOVER The appearance of the error function in the low tempera-

ANALYSIS OF THE INSTANTON SOLUTION ture expression EqB3) and in the high temperature expres-

sion Eq.(4.13 is not a coincidence as the two share a com-
on origin. When the temperature approaches the crossover

Lhe quan;[utr_n tunnelllngt1_ re?'":ﬁ IS es_senually ta fnont{_';('alfrom below, the bounce trajectory shrinks and thus the full
ounce stationary solution fo the imaginary part ot parti Ianuantum fluctuation is not allowed because of the confine-

function and exist_s only below thg crossover tempergture. IIF\went of the volume enclosed by the bounce trajectory. As a
Fhe CroSSover regime, as the peno@c trgjectory sh_rlnks, t_hPesuIt, the Gaussian functional integral cannot be extended to
|_r1tegrat|or1 of the quantum ﬂuctuaﬂgn; n the barrier part','infinity and a truncation in the integral limit introduces the
tion function cannot be extended to infinity and the determi
nant Eq.(2.16 from the functional integration is to be modi-
fied by an error function. Though in principle the asymptotic
analysis can be carried out in the context of functional inte- D%
gration of the barrier partition function, it is much more  Aur=A(Eins—Vo) \ iy

straightforward to present a derivation based on an expan-
sion about the instanton energy. One begins with the WKB~Vhich can be shown to be the same as the definition of Eq.

transmission coefficieft valid for tunneling energieg be-  (4.14 at the crossover temperature.

As was demonstrated in Sec. I, an instanton solution i

“error function. In fact, a comparison with the asymptotic ex-
pression in Eqs(4.13—(4.16 suggests

(B6)

inst

low the barrier potential maximuid,, giving® Though the existence of a bounce trajectory on the in-
verted potential surface imposes the requirement
F= 1 jVOdE o BEa—W(E)/A (B1) T=hB>27lw,, Eq. (B3) is by no means limited to this
27h Jo ' condition becausé&,,; and E,s; can be extrapolated above

the crossover if the analytical form of these quantities are
known. In other words, the flux above the crossover tempera-
ture is the analytic continuation of the low temperature in-

where 1/2h is the free particle flux density an(E) is the
action integral along the tunneling trajectory, i.e.,

stanton solution as the bounce trajectory evolves into the
W(E)= 3€de2m[V(x)—E] complex coordinate space. This argument can be further
clarified by Taylor expandin&;,s; andE;,; around the cross-
=W(Eiss) + W' (Ejnst) (E—~ Ejnsy) over temperaturg,, giving

+%W”(Einst)(E_Einst)2+ U (82)

In the second line above, the action integral has been ex- Far VI27hTy e”{(ﬂ Bo) |T6|}
panded about the instanton energy. A steepest descent ap-

proximation on the energy variable in the integration Eq.
(B1) immediately leads to a low temperature asymptotic flux
expression, or a asymptotic instanton solution,

h
XeXF{ —BVo+ 1B Bo)? m} (B7)

which is a well-known result derived by Affleck.Clearly,

D#% the asymptotic instanton expression E&3) bridges the
IB(VO_Einst) N

1
Fir=—m————— eri{ crossover expression EB7) smoothly to the instanton ex-
W’ D W, p y
hBN2Wingh D s pression Eq(B5).

X exp(— Sipst/f), (B3) Again, the similarity of the two crossover expressions,
s ) : . i.e., Eq.(B7) and Eq.(4.17) leads to the conviction that the
where “erf” is the error function defined in Eq4.15. Here, 5 are essentially equivalent in the crossover regime. In
Sinst and i are the action and energy of the bounce trajeCyact, e can prove that the variables of the error function in
tory, respectively, and the corresponding work function isine two formulae are the same. Following the asymptotic
Winsi=W(Eins)- Als0, a simple identity can be applied analysis leading to Eq4.10, we can write the work func-
W|T'|=T2D, (B4) tion of the instanton trajectory as

— . . _ 2 _

whereT=13 in the case of the mstant&r?.The above ex W=— = Tn?0202 (B8)
pression also implies a numerical procedure to evaluate A
|T'(E)| when an analytical form fof (E) is not available as I .
. A . . which in turn yields
is the case for a dissipative system described by an influence
functional. T TA

At temperatures significantly lower than the crossover  T'=~ GW/dE™ ~ am?a? (B9)
temperature, the error function reduces to unity and one re- b
covers the conventional instanton solution in Efj20), orin ~ with T=#. Substituting this expression into the variable of

the equivalent form the error function in Eq(B7) gives
SIS S————— (B5) Ape=(Bo=B) () 22 (B10)
S kT (B Sinst Ar=(Bo— B Tl Bo— B A
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which, in the limit of T— 27/ @, , becomes exactly the same d’q(7) dV[q(7r)] 1 (%8
as the definition of Eq(4.13. Therefore, all three flux ex- M2 =~ dg 7o dr’ c(|7—7"|a(r")
pressions above agree at the crossover temperature. (B14)

SinceW(E) in Eq. (B2) is expanded about the instanton o N
energy E;. instead of the barrier toy/,, the asymptotic ~With the periodicity conditiom(# 8) =q(0). Next, the steep-
expression obtained as in E@®3) smoothly bridges the low €St d_escgnt_ approximation is applied to the barrier pgrtltlon
temperature solution to the thermally activated regime. Thugunction is in Eq.(2.19, and the second-order functional
reactive flux expressions, one from the thermally activatednStanton trajectory as
regime and one from the quantum tunneling regimg, andthe 29 m a2V (d;)
two match exactly at the crossover temperature. Without the 5q.00, € (26j=6ij+1= i j-1) T bi T
uniform asymptotic expressions, the reactive flux is evalu- e :
ated in the three temperature regimes separately, with a —€Cjj (B15)
rather arbitrary procedure to match the three solutions. Fur- . _ . . . ,
thermore, the error functions in both Bd.16 and Eq.(B3) where the discretized influence functional kernel is defined
arise because of the modification in the integration space cﬁy
the barrier partition function at the crossover temperature. cij=c(|7— 7)) (B16)

Finally, we will address the multidimensional formula- with e=/P, P being the discretization number. With Eq.

o e 1 SOM(@14) n piace of £q(2.13 and 4810 n plce o £
J y yp (2.17), the evaluation of the instanton barrier partition func-

space, W.h'Ch is a formidable num_enca_\l task as the dlmen'Eion is the same as for a one-dimensional barrier, with the
sionality increases. An alternative is to integrate out the bat?

degrees of freedom, giving an influence functional, and tomaI result given by Eq(2.19.
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