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An effective and flexible numerical scheme is proposed to simulate the dissipative quantum
dynamics of a linearized system–bath Hamiltonian. Based on the observation that the Feynman path
integrals for a Gaussian bath have a quadratic functional form, the bath average can be performed
by directly sampling paths of the discretized harmonic modes and then propagating the system under
the influence of quantum Gaussian force. The algorithm is amenable to all known quantum
propagation methods and can thus be flexibly applied to study quantum dissipation in the condensed
phase. Nontrivial numerical examples based on the spin-boson and damped quantum oscillator
models are presented to demonstrate the application of the new algorithm. ©1996 American
Institute of Physics.@S0021-9606~96!51011-4#

I. INTRODUCTION

One of the most challenging problems in physics and
chemistry is the dynamical simulation of quantum dissipative
systems.1–7 Quantum dissipation arises from the coupling of
a quantum system to a ‘‘bath’’ which consists of an infinite
number of degrees of freedom. This results in a time irre-
versible dynamics of the system. Most accurate methods for
quantum simulation such as basis set expansions have been
limited to a few degrees of freedom and/or short time dy-
namics, thus being incapable of treating dissipation. On the
other hand, the recently developedcentroid molecular dy-
namics~CMD! method allows one to simulate the dynamics
of a general quantum many-body system approximately.8–16

Although the latter approach is a significant step forward, an
accurate and general numerical algorithm forexactlysimu-
lating quantum dynamics in condensed phases is not yet
available now nor is one expected in the near future due to
the fundamental numerical complexity of the problem. By
necessity therefore~and often with some justification!!, the
focus often turns to the linearized quantum dissipation
model, sometimes termed theGaussian bath model~see, e.g.,
Refs. 17–20!. The latter has become the subject of many
analytical and numerical studies, as well as a model for sev-
eral real condensed phase dynamical processes such as acti-
vated dynamics, electron and proton transfer, vibrational en-
ergy relaxation, diffusion, etc. Within the context of this
important model, it is the focus of the present paper to pro-
pose a simple and powerful algorithm to simulate the dynam-
ics of quantum systems linearly coupled to a Gaussian bath.

The Gaussian bath model consists of one or more system
degrees of freedomq coupled toN linear bath harmonic
oscillators$xi% as described by the potential

V5Veq~q!1(
i51

N
1

2
miv i

2S xi2 ci
miv i

2 qD 2, ~1.1!

whereVeq(q) is the potential of mean force alongq, xi is the
i th Gaussian bath normal mode,mi is the mass,vi is the
harmonic frequency, andci is the coupling strength. It was
shown by Zwanzig17 that the elimination of the bath modes

from the classical equations of motion for the above potential
yields the generalized Langevin equation~GLE!,

mq̈~ t !1
d

dq
Veq@q~ t !#1E

0

t

dt8h~ t2t8!q̇~ t8!5F~ t !,

~1.2!

whereF(t) is the random force andm is the effective mass
of the coordinateq. The dynamical friction kernelh(t) is
then identified as

h~ t !5(
i51
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where J~v! is the spectral density, defined in the discrete
bath limit by

J~v!5
p

2 (
i51

N ci
2

miv i
d~v2v i !. ~1.4!

The random force can be explicitly expressed in terms of the
initial conditions of the bath variables. Therefore, under the
assumption that the initial bath distribution in phase space is
in thermal equilibrium in the presence of the system, one can
readily show that

h~ t !5b^F~ t !F~0!&bath, ~1.5!

where the equilibrium condition̂F&bath50 is implied. The
introduction of the spectral densityJ~v! makes it possible to
pass from a discrete set of modes to a continuum spectrum,
and hence to represent an arbitrary time dependent friction
h(t). The relation in Eq.~1.5! holds for a Gaussian bath
regardless of the form of the potential of mean force. It is for
this reason that the Gaussian bath is an attractive analytical
model to study the solvent frictional effects on, e.g., vibra-
tional relaxation and activated reaction dynamics.

The Gaussian bath can, in principle, be easily quantized
to represent quantum dissipation and thereby can serve as a
prototype for formulating quantum Brownian motion, dissi-
pative tunneling, solvent-induced electron transfer and other
quantum processes in the condensed phase. Note that the
system variableq can represent a single- or multidimen-
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sional vector or a discretized variable such as a complete set
of eigenstates, though it is written as a scalar in Eq.~1.2!.
Integration over the bath modes in the path integral formu-
lation leads to an influence functional which couples differ-
ent time slices of the Feynman paths of the system
variable.1,21 Coalson22,23 and Mak and co-workers24–27 have
presented a series of studies of the spin-boson model,28 by
real time Monte Carlo methods. Makri and co-workers have
also developed the quasiadiabatic propagator path integral
methods~QUAPI! which propagate a one-dimensional sys-
tem adiabatically while the influence functional is incorpo-
rated by coupling a finite number of neighboring time
slices.29–33 By virtue of this algorithm and discrete variable
representation~DVR! quadrature, they recently presented,
for example, a detailed numerical study of quantum activated
rates for a double well coupled to a harmonic bath in order to
compare with the results of several approximate theories.31

However, both approaches are based on the influence func-
tional formulation which, while very intuitive and powerful,
may not be the optimal choice for wavefunction propagation
or semiclassical approximations.

In this paper, we will develop a simple algorithm to
sample the Gaussian force directly without making use of the
influence functional formalism, thus presenting an alternative

algorithm which appears to be more flexible and general. The
new algorithm is described in Sec. II and some examples are
demonstrated in Sec. III, including the spin-boson model and
the dissipative quantum oscillator. The latter study also pro-
vides a comparison with CMD. Concluding remarks are
given in Sec. IV.

II. DIRECT SAMPLING OF THE GAUSSIAN FORCE

To begin, the Hamiltonian is written as

H5Hq~q!1Hb~x!1Vc~x,q!, ~2.1!

whereHb(x) is the ‘‘bath’’ Hamiltonian given by

Hb5(
i51
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Hq(q) is the ‘‘system’’ part of the Hamiltonian, andVc(x,q)
is the coupling potential. In principle,Vc(x,q) can take any
form, but for the method described in this paper, numerical
difficulties increase with the nonlinearity in the coupling po-
tential. If the quantity of interest,F, is a function of the
system variables only, then one can express this quantity at
time t in terms of a bath path average, defined as

^F@xf~ t8!,xb~ t8!,xb~t!#&bath
*dx1*dx2*dx3*Dxf~ t8!*Dxb~ t8!*Dxb~t!F@xf~ t8!,xb~ t8!,x~t!#exp~2S̄/\!

*dx1*dx2*dx3*Dxf~ t8!*Dxb~ t8!*Dxb~t!exp~2S̄/\!
, ~2.3!

where xf(t8) is the real time forward path satisfying the
boundary conditionsxf(0)5x1 andxf(t)5x3 , xb(t8) is the
backward real time path satisfying the boundary conditions
xb(0)5x2 and xb(t)5x3 , and xb~t! is the imaginary time
path satisfying the boundary conditionsxb(0)5x1 and
xb(\b)5x2 , so that a closed trace path is formed for the
thermal averaged real time propagation fort850 to t85t at
temperatureb51/kBT. Here,S̄ is the summation of real and
imaginary time action functionals1,21 for the pure bath (Hb),
evaluated along the closed path. It is explicitly given by

S̄5Sb@xb~t!#2 iS@xf~ t8!#1 iS@xb~ t8!#, ~2.4!

whereS[xf(t8)] is the real time action functional1 for the
forward path,S[xb(t8)] is the real time action functional for
the backward path, andSb[x(t)] is the imaginary time ac-
tion functional.21 With the introduction of the bath average,
the formal expression of a physical quantity of the system
can be simplified. For example, a time correlation function is
expressed as

^A~ t !B~0!&

5
^Tr@ei*0

t dt8H~ t8!/\Ae2 i*0
t dt8H~ t8!/\Be2*0

b\dtH~t!/\#&bath

^Tr@ei*0
t dt8H~ t8!/\e2 i*0

t dt8H~ t8!/\e2*0
b\dtH~t!/\#&bath

,

~2.5!

where operatorsA andB are evaluated at the final timet and
the initial time 0, respectively. In the above equation,
H(t8)5Hq(q)1Vc[x(t8),q] is the time-dependent system
Hamiltonian evolving under the influence of the Gaussian
bath, the Tr symbol denotes a trace over the system vari-
ables, and the exponentiated operators are understood as be-
ing time-ordered products.

Our approach is based on a simple idea. Since the bath
actions are quadratic and thus the functional integrand of Eq.
~2.3! in the discretized form is a multidimensional complex
Gaussian function, the bath average can be performed by
direct Monte Carlo sampling. Given a bath path generated by
the Gaussians, the system can be propagated under the influ-
ence of the time-dependent fluctuating bath force through
any method of choice, such as matrix or tensor
multiplication,31,34 split operator propagation,35 wave packet
dynamics,36 semiclassical propagator,3,37,38 CMD,8–11 etc.
Averaging the time-dependent system quantities over the
bath variables yields the desired physical quantities of the
overall quantum system–bath Hamiltonian. This procedure
clearly points to a very large array of possibilities for com-
puting the quantum dynamical evolution of such systems.
The present Gaussian force method is to be contrasted with a
method developed by Coalson22 wherein the harmonic bath
evolution is calculated under the time dependent influence of
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quantum spin system paths, assuming the coupling is linear
in the bath coordinates.

The first step towards our goal is to sample the three
terminal points on the trace loop described by the quadratic
action

S~x1 ,x2 ,x3!/\

5@Sb~x1 ,x2 ,\b!2 iSf~x1 ,x3 ,t !1 iSb~x2 ,x3 ,t !#/\

5
mv

2\ sinh~\bv!
@~x1

21x2
2!cosh~\bv!22x1x2#

2 i
mv

2\ sin~vt !
@~x1

21x3
2!cos~vt !22x1x3#

1 i
mv

2\ sin~vt !
@~x2

21x3
2!cos~vt !22x2x3#

5
1

2
x†~S/\!x, ~2.6!

wherex5(x1 ,x2 ,x3) is a three-dimensional vector andS/\ is
a 333 matrix. Hereafter in this section, a single Gaussian
bath mode notation is adopted for simplicity unless specified
otherwise. It is shown in the Appendix that the three-
dimensional complex matrixS/\ can be diagonalized by a
transformation matrixU such that

exp~2S/\!5exp@2~l1y1
21l2y2

21l3y3
2!/2#, ~2.7!

wherey is the transformed terminal coordinates, determined
by y5U21x, and $l% are the elements of the diagonalized
matrix S/\. Expressions for bothU and $l% are given in the
Appendix.

It should be noted that both the transformation matrixU
and the resultant$l% are complex functions. In order to per-
form the Monte Carlo sampling with a complex Gaussian
functione2ly2/2, one introduces a coordinate rotation, given
by

h5y exp~ iu/2!, ~2.8!

where the rotation angleu is determined from the relation
l5reiu, so that the rotated Gaussian function reads

exp~2ly2/2!5exp~2rh2/2!. ~2.9!

Then, any average value of a function ofy can be expressed
as

^ f ~y!&l5A l

2p E
2`

`

dy f~y!e2ly2/2

5A r

2p E
2`

`

dh f ~he2 iu/2!e2rh2/2. ~2.10!

This procedure thus removes the sign problem of any qua-
dratic actions in the Monte Carlo sampling. Similar coordi-
nate rotations to enable real time Gaussian sampling have
been employed by Dollet al.39 and by Chang and Miller.40

The overall transformation from an average over realx
to an average over realh requires a rotation of the integra-
tion region that is valid if the averaged function contains no

singularities between the initial and final surfaces. The com-
plex Gaussian exp~2S/\! is easily shown to be finite for all
real x, all real h, and in between. The exponent ofVc(t)
cannot then cause singularities if the coupling is linear in the
bath coordinates—but under other conditions the validity of
the transformation must be established.

The next step is to sample the intermediate time slices of
the discretized Feynman paths. Given the two end pointsxt
andx0 of the bath paths as specified by the boundary condi-
tions of the bath path integration, one has the real time
propagator in the discretized form1

^xtue2 iHbt/\ux0&5F mv

2p i\ sin~vt !GP/2
3 )

n51

P E dxnexpH i mv

2\ sin~ve!

3 (
n51

P

@~xn21
2 1xn

2!cos~ve!22xn21xn#J ,
~2.11!

where the subscripts denote the discretized time slice of in-
cremente5t/P andxP5xt . Introducing the classical trajec-
tory xcl~t8! and the discretized Fourier modesal , one can
then Fourier decompose the path as

xn5xcl~ tn!1 (
l51

P21

al sin~ lpn/P!, ~2.12!

where the classical solution connecting the two end points is
given by

xcl~ t8!5
xt sin~vt8!1x0 sin@v~ t2t8!#

sin~vt !
~2.13!

and the Fourier modes diagonalize the quadratic action func-
tional. Consequently, the real time action functional assumes
the form

S~@xn# !5Sf~x0 ,xt ;t !

1 (
l51

P21
mt̄

2\
H 2@12cos~p l /P!#

P2

t̄2
2v̄2J al2/2.

~2.14!

Here, because of the use of the exact quadratic propagator,
the parameterst̄ and v̄ are the rescaled time and frequency,
defined by

t̄5t
sin~R!

R
,

~2.15!

v̄5v
1

cos~R/2!
,

with R5vt/P. Again, the coordinate rotation for the Fourier
modes$an% is employed to treat the complex Gaussian func-
tions, with the same condition of lack of singularities in the
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rotation that was discussed previously. A similar procedure
can be applied to the backward real time paths and, in imagi-
nary time, to the thermal paths.

With the above two steps in hand, one can simulate the
dynamics of the quantum subsystem interacting with the
Gaussian bath. The procedure is described as follows:

~a! Choose a finite set of linear harmonic oscillators to
represent the Gaussian bath. Care must be taken to
avoid nonergodicity of the bath for the time period of
interest~i.e., a large enough set of bath oscillators must
be chosen to adequately represent the continuum spec-
tral density functionas it affects the system dynamics!.

~b! For each bath mode, sample the three terminal points
according to the distribution in Eq.~2.7! and generate a
realization of the forward, backward, and imaginary
time bath paths according to the distribution based on
the Fourier path modes@cf. Eq. ~2.14!#. If the coupling
is linear, the quantum fluctuating force is the superpo-
sition of the contributions from all the modes and can
be obtained in the time domain using fast Fourier trans-
form methods.39

~c! The quantum system, defined for the coordinate~s! q, is
then propagated by whatever means is desirable under
the influence of the time-dependent complex quantum
force, and the quantity of interest is computed@cf. Eqs.
~2.3! and~2.5!#. Because of the force, the effective sys-
tem Hamiltonian is time dependent and may be non-
Hermitian.

~d! Steps~b! and ~c! are then repeated for many indepen-
dent bath configurations. The bath-averaged dynamical
quantity represents the dynamical evolution of the
quantum system under the influence of the dissipative
environment.

III. REPRESENTATIVE APPLICATIONS

A. Spin-boson model

Although the formulation of the previous section is gen-
eral, we will carry out calculations for the spin-boson model
in order to test the accuracy and feasibility of the proposed
algorithm. In spite of its apparent simplicity, the spin-boson
Hamiltonian serves as the primary model for investigating
nonadiabatic transitions because of its physical richness~see,
e.g., Ref. 28!. To specialize the method to treat the spin-
boson model,q now represents a discrete spin operator and
the coupling potentialVc in Eq. ~2.1! becomes bilinear. The
resulting Hamiltonian for the spin-boson model is thus given
as

H5Dsx1(
i51

N F12 miẋi
21

1

2
miv i

2S xi2 ci
miv i

2 szD 2G ,
~3.1!

where s is the Pauli spin matrix,D is one-half the bare
tunnel splitting, and the modes$x% constitute the Gaussian
bath. The parameters are chosen in the present case to be
\51.0, D50.8, m51.0. The parameters of the bath were

chosen so that its spectral density, given in discrete form by
Eq. ~1.4!, reproduces an appropriate friction kernel in the
classical limit.

The physical quantity for this study is a population dis-
tribution function,P(t), which is the population difference
between the up-spin state and the down-spin state, assuming
only the up-spin state is occupied initially. In terms of cor-
relation functions,P(t) can be explicitly expressed as41

P~ t !5
^sup~0!sz~ t !sup~0!&

^sup&
, ~3.2!

wheresup projects out the up-spin state,

sup5S 1 0
0 0D . ~3.3!

Because of the simplicity of the spin matrix, the spin system
can be propagated by diagonalizing the short-time propaga-
tor. Therefore, the nondissipative spin dynamics is accurate
and the dissipative spin dynamics is accurate to orderdt3

with a proper operator splitting.42 In all the simulations, be-
tween 104 and 105 independent Gaussian bath configurations
were sampled to achieve a statistically converged bath aver-
age.

To test the new algorithm, the case of a single mode bath
was first considered. That is, the Gaussian bath consisted of
only one harmonic oscillator withv51.0 and c50.2. In
Fig. 1 the population differenceP(t) is shown as a function
of time and is compared with the exact results obtained from
a basis set calculation.

The calculations next focused on the case of a continu-
ous bath. To represent the continuous limit of the spectral
density in Eq.~1.4!, the spectrum was discretized evenly up
to a chosen cutoff frequency. The coupling coefficientsci for
the discrete bath were chosen according to the formula

ci
25

2

p
mv iJ~v i !Dv, ~3.4!

where Dv is the discretized frequency increment. Twenty
modes were used, which is sufficient to avoid the effects of
bath nonergodicity over the duration of the simulations. In

FIG. 1. A plot ofP(t) for a spin system coupled to a single bath mode as
described in the text. The exact results~represented by solid circles! were
obtained from a basis-set calculation.
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the present application, the spectral density was taken to be
Ohmic with an exponential cutoffvc , given by

J~v!5
p\K

2
ve2v/vc, ~3.5!

whereK is the Kondo constant.28 To demonstrate the tem-
perature dependence of the bath forces, the real part of the
force–force correlation function for the Ohmic bath with
vc51.0 andK51.0 is plotted in Fig. 2, where the solid curve
corresponds tob510.0 and the dashed curve corresponds to
b50.3. It is obvious that the effect of dissipation at high
temperature is much stronger than that at low temperature.

The spin dynamics was simulated for different friction
strengths as specified by the Kondo constant, and the popu-
lation differenceP(t) is plotted as a function of time for
b510.0 in Fig. 3 and forb50.3 in Fig. 4. At low friction, the
quantum coherence is preserved, though the dissipation re-
duces the amplitude of the oscillations. As the strength of
friction is increased, the spin dynamics exhibits a transition
from coherent to incoherent behavior, which in some sense
resembles the transition from the underdamped to over-
damped behavior of a dissipative harmonic oscillator. This
transition happens at aboutK50.5, after which the dynamics

becomes an exponential decay instead of damped oscilla-
tions. Since the purpose of using the model here is to dem-
onstrate an application of the new algorithm, we will not
discuss further the physical implications and theoretical pre-
dictions of the spin-boson model.28

B. Dissipative quantum oscillator

In this section, the new algorithm will be used to study a
type of system–bath Hamiltonian which models the vibra-
tional relaxation of a solute oscillator in the condensed
phase, i.e., the dissipative nonlinear quantum oscillator. This
study is also intended to test the accuracy of the CMD
method.8–11 For undamped one-dimensional nonlinear oscil-
lators at very low temperature, the CMD time correlation
function may under certain conditions dephase somewhat
faster than the exact quantum result. This behavior arises
because the CMD initial conditions are sampled from a con-
tinuous Boltzmann-type centroid momentum distribution,
whereas the exact quantum dynamics involves only the two
lowest-lying states at low temperature. Essentially, any qua-
siclassical dynamical approximation is susceptible to diffi-
culties in describing such ‘‘perfect’’ low temperature quan-
tum coherence accurately, though CMD appears to capture
the major quantum effects. It is important to note, however,
that since mostreal quantum systems of interest are coupled
to a surrounding medium, their dynamics is dissipative. In
the condensed phase, this coupling usually dominates the
dephasing and damping behavior. Under this circumstance,
the ability of CMD to accurately describe the dynamics of
many-body systems should be significantly enhanced. Here
we investigate the damped quantum dynamics of a dissipa-
tive nonlinear quantum oscillator in order to demonstrate the
implementation of the new algorithm and to better justify the
use of CMD for many-body systems, such as liquid
hydrogen,12 proton transport,13 liquid water,14 etc.

In the CMD method,8–11 it is argued that the quantum
position or velocity correlation function can be related to a
classical-like time correlation function for the centroid vari-
able, where the centroid trajectories are generated by the
classical-like equations of motion

FIG. 2. A comparison of the real part of the force–force correlation function
for an Ohmic Gaussian bath atb50.3 andb510.0.

FIG. 3. A plot ofP(t) for the spin-boson model@Eq. ~3.1!# at b510.0 for
several Kondo constants ranging fromK50.0 toK50.3.

FIG. 4. A plot of P(t) for the spin-boson model@Eq. ~3.1!# at b50.3 for
several Kondo constants ranging fromK50.3 toK52.0.
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mq̈c~ t !5Fc~qc!. ~3.6!

Here, the centroid force on the right-hand side of Eq.~3.6! is
defined from the temperature-dependent quantum effective

potential for the centroid variable, and a one-dimensional
notation has been adopted for simplicity. Explicitly, the
quantum mechanical centroid potential of mean force is
given by

Fc~qc!52
*•••*Dq~t!d~qc2q0!V8@q~0!#exp$2S@q~t!#/\%

*•••*Dq~t!d~qc2q0!exp$2S@q~t!#/\%
, ~3.7!

whereS[q(t)] is the imaginary time action functional, and
the centroid variable is defined as

q05
1

\b E
0

\b

dt q~t!. ~3.8!

The resulting centroid position correlation function is defined
by

C* ~ t !5^qc~ t !qc~0!&rc
, ~3.9!

where the notation̂•••&rc
denotes an averaging over initial

conditions with the phase space centroid density. It can be
shown10 thatC* (t) is an approximation to the Kubo trans-
formed position correlation function. In turn, this relates to
the position correlation function through the Fourier trans-
form relationship

C̃~v!5~\bv/2!@coth~\bv/2!11#C̃* ~v!, ~3.10!

where C̃~v! and C̃* ~v! are the Fourier transforms of the
quantum position and centroid position correlation functions,
respectively. Because of its simplicity and stability, CMD has
a wide appeal for large-scale simulations of many-body sys-
tems. Yet, since the method is approximate it is important
that CMD continues to be rigorously examined through a
comparison with exact numerical or experimental results for
nontrivial systems as they become available. Indeed, the al-
gorithm developed in this paper makes it possible to carry
out such a comparison for systems described by Gaussian
baths.

In accord with the CMD formulation, the centroid equa-
tions of motion for the system–bath Hamiltonian@Eq. ~3.14!#
can be reduced to a generalized Langevin equation~GLE! for
the system centroid trajectoryqc(t), namely,

mq̈c~ t !2Fc@qc~ t !#1E
0

t

dt8h~ t2t8!q̇c~ t8!5F~ t !,

~3.11!

whereF(t) is the random force on the system centroid from
the bath andh(t) is the dynamical friction kernel for the
centroid motion defined in a similar fashion to Eq.~1.3!.
Here, the centroid forceFc(qc) is defined as in Eq.~3.7!, but
it involves an additional term in the imaginary time action
resulting from the bath path integration, i.e.,

S@q~t!#5E
0

\b

dtH m2 q̇~t!21V@q~t!#J
1\bm(

n51

`

Vnĥ~Vn!uanu2, ~3.12!

whereVn52pn/\b and ĥ(s) is defined by

ĥ~s!5(
i51

N ci
2

miv i
2

s

s21v i
2 . ~3.13!

The latter quantity is the Laplace transform of the dynamical
friction kernelh(t).

The system–bath Hamiltonian employed in the study de-
scribed in this subsection is given by

H5
p2

2m
1V~q!1(

i51

N F pi22mi
1
1

2
miv i

2S xi2 ci
miv i

2 qD 2G ,
(3.14)

where the system potentialV(q) is given by

V~q!5 1
2 mv2q21 1

4 mgq4. ~3.15!

The parameters were chosen to bem51.0, v51.0, g51.0,
andb510.0. The spectral density of the bath was taken to
have the form of Ohmic friction, defined by Eq.~3.5!, with a
cutoff frequency ofvc51.0.

Using a harmonic basis set, one can find the eigenstates
of the system. Since only a few states are populated at low
temperature, a finite basis set which diagonalizes the system
Hamiltonian can be used to propagate the system under the
influence of the bath. As such, the Hamiltonian becomes

H5 (
m51

n

um&em^mu

1(
i51

N pi
2

2mi
1
1

2
miv i

2S xi2 ci
miv i

2 q̂D 2, ~3.16!

where the operatorq̂ is represented in the system basis as

q̂5 (
m51

n

(
n51

n

um&^muq̂un&^nu. ~3.17!

The cutoff of the system basis was chosen to ben54 in the
simulations. The dynamical quantity of interest in this case is
the position–position correlation function of the system
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evolving under the influence of the bath. This time correla-
tion function exhibits the dissipative effects arising from the
vibrational relaxation of the system. The Ohmic bath was
represented by twenty discretized harmonic oscillators with
frequencies ranging fromv15Dv to vN510.0vc , and 105

independent bath configurations were generated to Gaussian
average the propagation of the system.

The calculation of the centroid force in the CMD simu-
lation of the dissipative quantum oscillator was carried out
approximately using the optimized quadratic reference po-
tential which can be derived from a variational theory43,44or
a diagrammatic analysis.45 For the Hamiltonian in Eq.~3.14!,
the latter analysis leads to an expression for the system
centroid-dependent effective harmonic frequency, given by

mvc
25^V9~qc1q̃!&a

5
1

A2pac
E dq̃V~qc1q̃!exp~2q̃2/2ac!, ~3.18!

where the Gaussian width is given by

ac5
2

mb (
n51

`
1

Vn
21vc

21Vnĥ~Vn!
. ~3.19!

The same treatment has been used previously to help formu-
late a variational theory46 for the prefactor in path integral
quantum transition state theory.47,48The self-consistent solu-
tion to the above transcendental equation yields an optimized
harmonic reference potential with frequencyvc and Gauss-
ian width ac . Consequently, the centroid force under the
optimized quadratic approximation is given by

Fc~qc!5^F~qc1q̃!&a

52
1

A2pac
E dq̃V8~qc1q̃!exp~2q̃2/2ac!.

~3.20!

For the present application, the centroid force in this ap-
proximation was calculated for 103 points on a one-
dimensional grid and stored in an array. In order to make a
rigorous comparison with the exact quantum calculation
through the Gaussian force method, the bath friction kernel
was represented by the same discrete set of harmonic oscil-
lators. Therefore, any discrepancy between the CMD result
and the exact result arises from the approximate nature of
CMD. The CMD equations of motion were integrated with a
time step of 0.1, and 105 trajectories were averaged to yield
the centroid position correlation function, which was then
converted to the real part of the quantum position correlation
function via the Fourier relation in Eq.~3.10!.

The real part of the position correlation function is
shown forK50 in Fig. 5,K50.1 in Fig. 6, andK50.2 in
Fig. 7. The CMD results~solid curves! are compared in each
figure with the exact results computed by the method intro-
duced in this paper. For this low temperature system, the
frictionless vibrational motion is completely coherent since
only the two lowest-lying states are involved in the dynam-
ics. The CMD result in Fig. 5 exhibits coherence until a

relatively long time, at which point it starts to decay because
of the unphysical dephasing introduced by the quasiclassical
CMD momentum distribution. However, when the quantum
system is coupled to the bath, the dissipation damps the
quantum coherence and the position correlation function de-
cays much faster than the nondissipative correlation func-
tion, depending of course on the strength of the dissipation.
It can easily be seen from Figs. 6 and 7 that CMD then
predicts the dissipative vibrational dephasing quite accu-
rately in comparison with the exact results. It is also clear
from these results that the physical vibrational dephasing
comes into effect well before the unphysical long-time
dephasing inherent in the CMD approximation. This result
therefore supports the argument that CMD is an algorithm
which can be reliably used for quantum systems in most
condensed phase systems. For example, CMD has recently
been found to give remarkably accurate agreement with ex-
periment for the self-diffusion of liquid para-hydrogen.12,15

FIG. 5. A plot of the real time position correlation function atb510 for the
quartic potential described by Eq.~3.15!. The solid line is the CMD result,
while the solid circles are the numerically exact results obtained through the
Gaussian averaging method.

FIG. 6. A plot of the real time position correlation function atb510 for the
quartic potential described by Eq.~3.15! coupled to an Ohmic Gaussian bath
with K50.1. The solid line is the CMD result, while the solid circles are the
numerically exact results obtained through the Gaussian averaging method.

4195Cao, Ungar, and Voth: Quantum dissipative systems

J. Chem. Phys., Vol. 104, No. 11, 15 March 1996

Downloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



IV. CONCLUDING REMARKS

In this paper, a simple and flexible method has been
developed to sample the quantum fluctuating force in sys-
tems described by a Gaussian bath. It was shown by the
examples presented in the last section that this algorithm is
both accurate and efficient for such problems. This method
also provides an alternative to numerical approaches based
on the influence functional.1 The numerical implementation
of the influence functional approach introduces a cutoff in
the number of discretized time slices, whereas the direct
sampling of the Gaussian force introduces a cutoff in the
number of discretized bath frequencies. Consequently, the
former approach is preferable if the correlation time of the
influence functional is short, while the latter approach is ad-
vantageous if the width of the bath spectral density is narrow
or relatively localized around certain frequencies. For sys-
tems where the two approaches are equally effective, then
the present algorithm seems to be more straightforward and
flexible to implement. For example, since the quantum sys-
tem evolves according to the Shro¨dinger equation under the
influence of a time dependent Gaussian force, our algorithm
can be combined with any exact or approximate numerical
scheme for quantum propagation such as basis set methods,
wave packet dynamics, semiclassical dynamics, path integra-
tion, or curve crossing methods. Some of these methods do
not seem as compatible with the influence functional ap-
proach because of its convolution of the time integration.
With the present methodology and other developments, we
should be able to study a wide range of ‘‘system–bath’’
quantum dynamical processes such as two- and multistate
electron transfer, quantum tunneling, photoexcitation and
photodissociation, vibrational relaxation, quantum activated
dynamics, etc.

Another appealing feature of the present method is that it
can be readily generalized to simulate the influence of a bath
having an arbitrary time-dependent Gaussian distribution in-
stead of the equilibrium Boltzmann distribution. Such situa-
tions arise, for example, in ultrafast laser experiments where

the ‘‘bath’’ ~e.g., electron–hole pairs in a metal! is excited by
the laser pulse and rapidly ‘‘equilibrates’’ to an effectively
higher temperature Boltzmann distribution. The time-
dependent relaxation of the bath temperature is then gov-
erned by a phenomenological heat transport equation. To
carry out a simulation of a quantum ‘‘system’’~e.g., an ad-
sorbate vibration! in such an environment, the imaginary
time bath pathsxb~t! are treated differently from the forward
and backward real time paths. The two terminal pointsx1 and
x2 can be generated directly according to the instantaneous
bath distribution function by Monte Carlo methods; the third
terminal pointx3 is next sampled from an imaginary Gauss-
ian matrix which connects to the pointsx1 andx2; the for-
ward and backward real time paths are then given according
to Eq. ~2.14!, but the imaginary time bath paths are sampled
from the imaginary time equivalent to Eq.~2.14!, again for
the time-dependent bath temperature. In general, as long as
the real time dynamics is adequately described by the linear-
ized system–bath Hamiltonian, the present method is appli-
cable to nonequilibrium situations, as the statistical distribu-
tion can be sampled directly by Monte Carlo methods.

As a final point, we note that a given spectral density has
been assumed throughout this paper. For a realistic system, it
remains an interesting question how best to obtain a spectral
density which describes the linear response of aquantum
bath to the motion of the system. The standard procedure is
to calculate theclassical force–force correlation function
projected along the system coordinate, from which the clas-
sical friction kernelh(t) can be determined through the
fluctuation-dissipation relation in Eq.~1.5!. In turn, the spec-
tral density for the effective classical Gaussian bath can be
extracted by an inverse cosine transform@cf. Eqs.~1.3! and
~1.4!#. It is then assumedthat the spectral density for the
quantum effective Gaussian bath isthe sameas for the clas-
sical limit. While this approach is certainly correct for a rig-
orously harmonic bath, it is hard to know whether it is valid
for real systems. An alternative picture49 based on variational
theory50 has been recently developed by the present authors.
The basic approach is to determine the best effective har-
monic representation of the bath Hamiltonian according to
the optimized quadratic approximation~OQA!.50 This speci-
fies a set of optimal normal modes49 corresponding to the
different inherent structures of the bath. A phenomenological
decay function is next introduced to describe the average
transition rate between the different sets of optimized normal
modes, thus leading to the concept of the damped normal
mode~DNM!.49 The damping constant can be chosen so cer-
tain known properties of the bath are exactly reproduced
~e.g., the self-diffusion constant for a pure liquid!. By virtue
of this approach, it was found that a classical dynamical
friction along a solute bond can be predicted which agrees
remarkably well with exact MD simulation. Since the DNM
theory is readily generalized to quantum systems, this theory
provides a direct route to specify the spectral density of an
effective Gaussian quantum bath. Obviously, for such sys-
tems the exact quantum dynamical calculation of the force–
force correlation function is not feasible, so the DNM
method may in fact be the method of choice. This issue, as

FIG. 7. A plot of the real time position correlation function atb510 for the
quartic potential described by Eq.~3.15! coupled to an Ohmic Gaussian bath
with K50.2. The solid line is the CMD result, while the solid circles are the
numerically exact results obtained through the Gaussian averaging method.
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well as applications of the theory presented in the present
paper, will be the topic of future research.
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APPENDIX: DIAGONALIZATION OF THE S MATRIX

Given the action in Eq.~2.6!, one can express the matrix
S/\ as

S/\5S A2 iC
2B
iD

2B
A1 iC
2 iD

iD
2 iD
0

D , ~A1!

where the elements of the matrix have the following values:
A5mv/\ tanh~\bv!, B5mv/\ sinh~\bv!, C5mv/
\ tan(vt), andD5mv/\ sin(vt). The secular solution of a
three dimensional matrix results in a cubic equation which
can be solved analytically. However, since the third diagonal
element in Eq.~A1! is zero, one can first diagonalize the two
dimensional submatrix formed by the first two columns and
rows, and then eliminate the bilinear terms on the third col-
umn and row by completing the squares.

This procedure yields for the diagonal elements of$l%,

l15A1D, ~A2!

l25A2D, ~A3!

and

l35
2D2~A2B!

A22D2 , ~A4!

whereD5AB22C2. Substituting the values of the param-
eters, we find a rather simple expression forl3, that is

l352~A2B!5
2mv

\
tanh~\vb/2!. ~A5!

The transformation matrixU is given by ~again by using
A22D25D2!,

U5S AD2 iC

A2D

AD1 iC

A2D

1

D
@C2 i ~A2B!#

2
AD1 iC

A2D

AD2 iC

A2D

1

D
@C1 i ~A2B!#

0 0 1

D . ~A6!

The above results can be verified by calculating various cor-
relation functions of the linear harmonic oscillator.
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