A novel method for simulating quantum dissipative systems
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An effective and flexible numerical scheme is proposed to simulate the dissipative quantum
dynamics of a linearized system—bath Hamiltonian. Based on the observation that the Feynman path
integrals for a Gaussian bath have a quadratic functional form, the bath average can be performed
by directly sampling paths of the discretized harmonic modes and then propagating the system under
the influence of quantum Gaussian force. The algorithm is amenable to all known quantum
propagation methods and can thus be flexibly applied to study quantum dissipation in the condensed
phase. Nontrivial numerical examples based on the spin-boson and damped quantum oscillator
models are presented to demonstrate the application of the new algorithb®9® American
Institute of Physicg.S0021-960806)51011-4

I. INTRODUCTION from the classical equations of motion for the above potential
] ) ] Gyields the generalized Langevin equati@LE),
One of the most challenging problems in physics an
chemistry is the dynamical simulation of quantum dissipative " i b e
systems.~’ Quantum dissipation arises from the coupling of mact) + dq Veda(]+ odt 7(t=1)a(t) =F(v),
a quantum system to a “bath” which consists of an infinite 1.2

number of degrees of freedom. This results in a time irre- . . .
. . whereF(t) is the random force anth is the effective mass
versible dynamics of the system. Most accurate methods for . . - .
. . . . of the coordinatey. The dynamical friction kernely(t) is

guantum simulation such as basis set expansions have bet Qan identified as
limited to a few degrees of freedom and/or short time dy-

namics, thus being incapable of treating dissipation. On the N |2 2 = dw
other hand, the recently developedntroid molecular dy- 77(t)=21 mcoiwit):; jo -, J(w)cogwt),
1= i@

namics(CMD) method allows one to simulate the dynamics 1.3
of a general quantum many-body system approximé&tefy. '
Although the latter approach is a significant step forward, anvhere J(w) is the spectral density, defined in the discrete
accurate and general numerical algorithm éoactlysimu-  bath limit by

lating quantum dynamics in condensed phases is not yet N2

available now nor is one expected in the near future due to  j(4,)= T > —— S(w—w). (1.4)

the fundamental numerical complexity of the problem. By 2 31 Mo

necessity thereforéand often with some justification!the  rpq andom force can be explicitly expressed in terms of the

focus often turns to the linearized quantum dissipationyitia| conditions of the bath variables. Therefore, under the
model, sometimes termed t@aussian bath modésee, €.9., 555 mption that the initial bath distribution in phase space is

Refs. ,17_20) The Iat.ter has .become the subject of manyin thermal equilibrium in the presence of the system, one can

analytical and numerical studies, as well as a model for sev-_ . 4:
; readily show that

eralreal condensed phase dynamical processes such as acti-

vated dynamics, electron and proton transfer, vibrational en-  7(t)=B(F(t)F(0))patn, (1.9

ergy relaxation, diffusion, etc. Within the context of this

important model, it is the focus of the present paper to pro

pose a simple and powerful algorithm to simulate the dynam; ass from a discrete set of modes to a continuum spectrum,

ics of quantum_systems linearly co_upled to a Gaussian bat nd hence to represent an arbitrary time dependent friction
The Gaussian bath model consists of one or more system

: >"="p(t). The relation in Eq.(1.5 holds for a Gaussian bath
deg_rees of freedong Cpupled toN Ilnear. bath harmonic regardless of the form of the potential of mean force. It is for
oscillators{x;} as described by the potential

this reason that the Gaussian bath is an attractive analytical

) model to study the solvent frictional effects on, e.g., vibra-

Ci ) (1.1) tional relaxation and activated reaction dynamics.

miwi2 ’ ' The Gaussian bath can, in principle, be easily quantized
to represent quantum dissipation and thereby can serve as a

whereV((q) is the potential of mean force alomg x; is the  prototype for formulating quantum Brownian motion, dissi-

ith Gaussian bath normal modey; is the massw; is the  pative tunneling, solvent-induced electron transfer and other

harmonic frequency, and, is the coupling strength. It was quantum processes in the condensed phase. Note that the

shown by Zwanzif that the elimination of the bath modes system variableg can represent a single- or multidimen-

where the equilibrium conditiokiF )p.+=0 is implied. The
introduction of the spectral densiffw) makes it possible to

N
1
v:veq(q)Jr;l > miw?(xi_
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4190 Cao, Ungar, and Voth: Quantum dissipative systems

sional vector or a discretized variable such as a complete satgorithm which appears to be more flexible and general. The
of eigenstates, though it is written as a scalar in @QQ). new algorithm is described in Sec. Il and some examples are
Integration over the bath modes in the path integral formudemonstrated in Sec. I, including the spin-boson model and
lation leads to an influence functional which couples differ-the dissipative quantum oscillator. The latter study also pro-
ent time slices of the Feynman paths of the systenvides a comparison with CMD. Concluding remarks are
variable!?! Coalso??® and Mak and co-workef$2"have  given in Sec. IV.
presented a series of studies of the spin-boson nfSds,
real time Monte Carlo methods. Makri and co-workers have
also developed the quasiadiabatic propagator path integrél DIRECT SAMPLING OF THE GAUSSIAN FORCE
methods(QUAPI) which propagate a one-dimensional sys- ] S )
tem adiabatically while the influence functional is incorpo- ~ 1° P€gin, the Hamiltonian is written as
rated by coupling a finite number of neighboring time H=H,(q)+Hy(X)+V(x,q), (2.2

. 59a3 . : . ) . q
slices: By virtue of this algorithm and discrete variable
representationDVR) quadrature, they recently presented,WhereH
for example, a detailed numerical study of quantum activated N ( pi2

1
rates for a double well coupled to a harmonic bath in orderto  Hp= 21 om + > miwizxiz) , (2.2
1= I

p(X) is the “bath” Hamiltonian given by

compare with the results of several approximate thedfies.
However, both approaches are based on the influence funéty(q) is the “system” part of the Hamiltonian, and,(x,q)
tional formulation which, while very intuitive and powerful, is the coupling potential. In principl&/.(x,q) can take any
may not be the optimal choice for wavefunction propagatiorform, but for the method described in this paper, numerical
or semiclassical approximations. difficulties increase with the nonlinearity in the coupling po-

In this paper, we will develop a simple algorithm to tential. If the quantity of interest, is a function of the
sample the Gaussian force directly without making use of thesystem variables only, then one can express this quantity at
influence functional formalism, thus presenting an alternativeéime t in terms of a bath path average, defined as

Jax fdxafdxgf @xi(t") [ Dxp(t") f DX (T)F[X(t"),Xp(t"),X(7) Jexp(— Siti)
Jdxg fdxaf dxaf xi(t') f Ixo(t') [ Ix g T)exp( — Si)

<F[Xf(t,)lxb(t,)!xﬁ(T)])bath , (23)

where x;(t") is the real time forward path satisfying the where operatord andB are evaluated at the final timeand
boundary conditions;(0)=x; andx;(t)=Xs, X,(t") is the the initial time 0, respectively. In the above equation,
backward real time path satisfying the boundary conditiondH(t")=H(q) +V [x(t'),q] is the time-dependent system
Xp(0)=X, and x,(t) =x3, andxg(7) is the imaginary time  Hamiltonian evolving under the influence of the Gaussian
path satisfying the boundary conditions;(0)=X; and path, the Tr symbol denotes a trace over the system vari-
Xg(hB) =Xz, so that a closed trace path is formed for thegples, and the exponentiated operators are understood as be-
thermal averaged real time_propagation for0 tot' =t at ing time-ordered products.
temperaturgB=1/kgT. Here,S is the summation of real and Our approach is based on a simple idea. Since the bath
imaginary time action functionaig” for the pure bathifly),  actions are quadratic and thus the functional integrand of Eq.
evaluated along the closed path. It is explicitly given by (3 3) in the discretized form is a multidimensional complex
S= SalXa( 7)1~ iS[X¢(t)]+iS[Xp(t))], (2.4) gaussian function, the t_)ath average can be performed by
irect Monte Carlo sampling. Given a bath path generated by
where S[x(t')] is the real time action functionaffor the  the Gaussians, the system can be propagated under the influ-
forward path,S[x,(t")] is the real time action functional for ence of the time-dependent fluctuating bath force through
the backward path, an8s[x(7)] is the imaginary time ac- any method of choice, such as matrix or tensor
tion functional®* With the introduction of the bath average, multiplication3134split operator propagatiofi,wave packet
the formal expression of a physical quantity of the systendynamics® semiclassical propagatd?f/ 28 CMD, 21! etc.
can be S|mpI|f|ed For example, a time correlation function iSAveraging the time-dependent System quantities over the

expressed as bath variables yields the desired physical quantities of the

(A(1)B(0)) overall qu_antum system—bath Hamiltonian_. _T_his procedure
clearly points to a very large array of possibilities for com-

<-|-r[eifﬁ,dt'H(t’)lﬁAe—iIBdt’H<t’>/hBe—fg"drH(r)/thath puting the quantum dynamical evolution of such systems.

The present Gaussian force method is to be contrasted with a
method developed by CoalsSrwherein the harmonic bath
(2.5 evolution is calculated under the time dependent influence of

1 ; ’ s t ’ ’ _ /Bﬁ !
(Tr{ /odt" H ) hg=ifgdt'H(t)hg=To drH(DIAYy
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Cao, Ungar, and Voth: Quantum dissipative systems 4191

guantum spin system paths, assuming the coupling is lineaingularities between the initial and final surfaces. The com-
in the bath coordinates. plex Gaussian exXp-S/t) is easily shown to be finite for all
The first step towards our goal is to sample the thregeal x, all real », and in between. The exponent ¥{(t)
terminal points on the trace loop described by the quadraticannot then cause singularities if the coupling is linear in the
action bath coordinates—but under other conditions the validity of
S(Xy Xp Xa) /i the transformation. must be establi;hed. _ . _
172,73 The next step is to sample the intermediate time slices of

=[Sg(X1, X2, 8) —1St(X1,X3,1) +1Sp(Xp,X5,1) |/ 72 the discretized Feynman paths. Given the two end points
andxg of the bath paths as specified by the boundary condi-
Mw 2,2 tions of the bath path integration, one has the real time
= ————— [(X{+X5)cosh{A —2X1X '
24 sinh(A Bw) [(xi+>xp)costifi fw) e propagator in the discretized fotm
Mw P/2
—i =——— [(X3+x3)coq ot) — 2X;X3] “iHpt |y \ — Mo
2h sin( wt) <Xt|e b |XO> 2mifh sin(wt)
ML [(X2+x2)cog wt) — 2X,X3] P Mo
2% sin(wt) X2 X080l = 2 | LI
sin(wt) ><n];[1 dxaexp i > s
1
=5 Xl (gh)x, (2.6 P

X 2 [0+ X7)co8 €)= 2Xn 1Xn]
wherex=(x,X,,X3) is a three-dimensional vector afff is "
a 3x3 matrix. Hereafter in this section, a single Gaussian (2.11
bath mpde notgtlon IS adqpted for S|mpI|9|ty unless SIOecnc"e%vhere the subscripts denote the discretized time slice of in-
otherwise. It is shown in the Appendix that the three- . . .
. ) . ; . cremente=t/P andXxp=X;. Introducing the classical trajec-
dimensional complex matri&/4 can be diagonalized by a , . . .
X i tory xg(t') and the discretized Fourier modes, one can

transformation matriX such that .

then Fourier decompose the path as

exp(—Sh)=ex —(Ayi+hay3+Aay3)2l, (2.7 b1
wherey is the transformed terminal coordinates, determined  x,=Xg(t,) + E a, sin(ln/P), (2.12
by y=U"x, and{\} are the elements of the diagonalized =1
matrix S/7i. Expressions for both) and{\} are given in the \yhere the classical solution connecting the two end points is
Appendix. given by

It should be noted that both the transformation maittix
and the resultanf\} are complex functions. In order to per- o Xt sin(wt’)+Xg sifw(t—t")]
form the Monte Carlo sampling with a complex Gaussian Xa(t')= sin( wt) (213
function e‘“’z’z, one introduces a coordinate rotation, given ) . ) . .
by and the Fourier modes diagonalize the quadratic action func-

_ tional. Consequently, the real time action functional assumes

n=y expiof2), (2.8 the form
where the rotation anglé is determined from the relation S _ t
A=pe'’, so that the rotated Gaussian function reads ([Xn]) = St(Xo. X:1)

—\Y32)=expl — p?l2). 2, o mt P2 _

XA~ Ay /2)=exp(— pn/2) 2.9 +3 —{2[1-cogmlIP)] = a?fafl2.
Then, any average value of a functionyotan be expressed (=1 2f t
as (2.19

(F(y)), = /L J“ dyf(y)e*"yz’z Here, because of the use of the exact quadratic propagator,

A 27 | _w the parameters and w are the rescaled time and frequency,
defined by
[p [~ —i02y e pr?
=V3- fﬁwdnf(ne 1012y @=pn°12, (2.10 = sin(R)
= =

This procedure thus removes the sign problem of any qua- (2.15
dratic actions in the Monte Carlo sampling. Similar coordi- 1 ’

nate rotations to enable real time Gaussian sampling have ®@=® CosR2)’
been employed by Dokt al3® and by Chang and Millel

The overall transformation from an average over peal with R=wt/P. Again, the coordinate rotation for the Fourier
to an average over reaj requires a rotation of the integra- modes{a,} is employed to treat the complex Gaussian func-
tion region that is valid if the averaged function contains notions, with the same condition of lack of singularities in the
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4192 Cao, Ungar, and Voth: Quantum dissipative systems

rotation that was discussed previously. A similar procedure
can be applied to the backward real time paths and, in imagi-
nary time, to the thermal paths.

With the above two steps in hand, one can simulate the 05 _
dynamics of the quantum subsystem interacting with the
Gaussian bath. The procedure is described as follows:

1.0 * Exact Result
: Simulation

P(t)

0.0 g
(@ Choose a finite set of linear harmonic oscillators to
represent the Gaussian bath. Care must be taken to
avoid nonergodicity of the bath for the time period of
interest(i.e., a large enough set of bath oscillators must
be chosen to adequately represent the continuum spec- -1.0 : . ' .
tral density functioras it affects the system dynanics
(b) For each bath mode, sample the three terminal points
according to the distribution in E§2.7) and generate a FIG. 1. A plot of P(t) for a spin system coupled to a single bath mode as
realization of the forward, backward, and imaginary desqribed in the texp The exact rgsdltepresented by solid circlesvere
time bath paths according to the distribution based orf *@ined from a basis-set calculation.
the Fourier path moddgf. Eq. (2.14)]. If the coupling

IS ]lnear, the quantum fluctuating force is the SUPErPOyqgen 5o that its spectral density, given in discrete form by
sition of the contributions from all the modes and can

. : . . : ; Eq. (1.4), reproduces an appropriate friction kernel in the
be obtained in the time domain using fast Fourier trans

9 ‘classical limit.
form methods’

_ ) ) The physical quantity for this study is a population dis-
(c)  The quantum system, defined for the coordif&\t®, is i, ,tion function, P(t), which is the population difference

t:en_ %ropagatefd Ey v_vhat((ajver m(;:zans IS delswable und‘E)retween the up-spin state and the down-spin state, assuming
the influence of the time-dependent complex quantumy, ;. the yp-spin state is occupied initially. In terms of cor-

force, and the quantity of interest is compufefl Eqs. o |ation functionsP(t) can be explicitly expresseds
(2.3) and(2.5)]. Because of the force, the effective sys- PO PlCy exp

051 ]

time

tem Hamiltonian is time dependent and may be non- | f= (oup(0) (1) o(0)) (3.2

Hermitian. ()= (Tup) ’ '
(d) Steps(b) and(c) are then repeated for many indepen- . :

dent bath configurations. The bath-averaged dynamicavl\/herecrLjp projects out the up-spin state,

quantity represents the dynamical evolution of the (10

quantum system under the influence of the dissipative “u™ |0 0/ 3.3

environment. L : . .
Because of the simplicity of the spin matrix, the spin system

can be propagated by diagonalizing the short-time propaga-

tor. Therefore, the nondissipative spin dynamics is accurate
IIl. REPRESENTATIVE APPLICATIONS and the dissipative spin dynamics is accurate to o@tér
with a proper operator splittintf. In all the simulations, be-
tween 10 and 16 independent Gaussian bath configurations

Although the formulation of the previous section is gen-were sampled to achieve a statistically converged bath aver-

eral, we will carry out calculations for the spin-boson modelage.
in order to test the accuracy and feasibility of the proposed To test the new algorithm, the case of a single mode bath
algorithm. In spite of its apparent simplicity, the spin-bosonwas first considered. That is, the Gaussian bath consisted of
Hamiltonian serves as the primary model for investigatingonly one harmonic oscillator withwv=1.0 andc=0.2. In
nonadiabatic transitions because of its physical richfess,  Fig. 1 the population differencB(t) is shown as a function
e.g., Ref. 28 To specialize the method to treat the spin-of time and is compared with the exact results obtained from
boson modelq now represents a discrete spin operator andy basis set calculation.
the coupling potentiaV/ in Eq. (2.1) becomes bilinear. The The calculations next focused on the case of a continu-
resulting Hamiltonian for the spin-boson model is thus givenous bath. To represent the continuous limit of the spectral
as density in Eq.(1.4), the spectrum was discretized evenly up

A. Spin-boson model

N 1 c. 2 to a chosen cutoff frequency. The coupling coefficientior
H=Ao,+ >, > mx2+ > miwiZ(Xi_ m_'2 Uz) ’ the discrete bath were chosen according to the formula
i=1 | Wi
2
(3.9) =2 mwJ(w)Aw, (3.4

2-—
where o is the Pauli spin matrixA is one-half the bare ™
tunnel splitting, and the modds} constitute the Gaussian where Aw is the discretized frequency increment. Twenty
bath. The parameters are chosen in the present case to mdes were used, which is sufficient to avoid the effects of

£=1.0, A=0.8, m=1.0. The parameters of the bath were bath nonergodicity over the duration of the simulations. In
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FIG. 2. A comparison of the real part of the force—force correlation function
for an Ohmic Gaussian bath g=0.3 andg=10.0. FIG. 4. A plot of P(t) for the spin-boson modé¢Eq. (3.1)] at 8=0.3 for
several Kondo constants ranging frd¢+0.3 toK=2.0.

the present application, the spectral density was taken to be

Ohmic with an exponential cutoth., given by becomes an exponential decay instead of damped oscilla-
tions. Since the purpose of using the model here is to dem-

mhK onstrate an application of the new algorithm, we will not
J(w)= o we™ v, (3.5 discuss further the physical implications and theoretical pre-

dictions of the spin-boson mod&.

whereK is the Kondo constarff To demonstrate the tem-
perature dependence of the bath forces, the real part of tH& Dissipative quantum oscillator
force—force correlation function for the Ohmic bath with In this section, the new algorithm will be used to study a
w.=1.0 andK=1.0 is plotted in Fig. 2, where the solid curve type of system—bath Hamiltonian which models the vibra-
corresponds t@=10.0 and the dashed curve corresponds Qoo relaxation of a solute oscillator in the condensed
B=0.3. It is obvious that the effect of dissipation at high h,aqe je., the dissipative nonlinear quantum oscillator. This
temperature is much stronger than that at low temperature.study is also intended to test the accuracy of the CMD
The spin dynamics was simulated for different friction o048~ For undamped one-dimensional nonlinear oscil-
strengths as specified by the Kondo constant, and the popysiqrs at very low temperature, the CMD time correlation
lation differenceP(t) is plotted as a function of time for g,,ction may under certain conditions dephase somewhat
p=10.0inFig. 3 and fop=0.3 in Fig. 4. At low friction, thé  agter than the exact quantum result. This behavior arises
quantum coherence is preserved, though the dissipation rggcayse the CMD initial conditions are sampled from a con-
duces the amplitude of the oscillations. As the strength ofi., ,ous Boltzmann-type centroid momentum distribution,
friction is increased, the spin dynamics exhibits a transition,hareas the exact quantum dynamics involves only the two
from coherent to mcqherent behavior, which in some SeNsgyvest-lying states at low temperature. Essentially, any qua-
resembles the transition from the underdamped t0 OVergic|assical dynamical approximation is susceptible to diffi-
dampe_zd behavior of a dissipative harmqnlc oscnlator._Th%umeS in describing such “perfect” low temperature quan-
transition happens at abokit=0.5, after which the dynamics {,m coherence accurately, though CMD appears to capture
the major quantum effects. It is important to note, however,
that since mosteal quantum systems of interest are coupled
U to a surrounding medium, their dynamics is dissipative. In
i Ny |---k=or| the condensed phase, this coupling usually dominates the
05t o == SE] g dephasing and damping behavior. Under this circumstance,
Y the ability of CMD to accurately describe the dynamics of
] § many-body systems should be significantly enhanced. Here
0.0 4 \ i | we investigate the damped quantum dynamics of a dissipa-
4 i tive nonlinear quantum oscillator in order to demonstrate the
H ‘a, / . implementation of the new algorithm and to better justify the
‘5“ P w_s/ use of CMD for many-body systems, such as liquid
o Wor ' hydrogent? proton transport? liquid water'* etc.
i In the CMD method ! it is argued that the quantum
position or velocity correlation function can be related to a
classical-like time correlation function for the centroid vari-
FIG. 3. A plot of P(t) for the spin-boson moddEq. (3.1] at g=10.0 for ~ a@ble, where the centroid trajectories are generated by the
several Kondo constants ranging frd=0.0 toK=0.3. classical-like equations of motion

1.0 T Kl

P(t)

time
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4194 Cao, Ungar, and Voth: Quantum dissipative systems

m.(t)=F(qc). (3.6)  potential for the centroid variable, and a one-dimensional

notation has been adopted for simplicity. Explicitly, the

Here, the centroid force on the right-hand side of &) is  quantum mechanical centroid potential of mean force is
defined from the temperature-dependent quantum effectivgiven by

S J2q(7)8(q.—do)V'[a(0) Jexp{ — S[q(7))/A}

F = — l 3'
() T T 20(1) 800 do)expl— SLa(n) A} &7
|
where §[q(7)] is the imaginary time action functional, and ] m.
the centroid variable is defined as Sa(n)]= fo dT[ 7 a(n)"+Vla(n)]
1 (e o
g |, ora: 38 HhBMS, Qi Qn)lan? (3.12
The resulting centroid position correlation function is definedwhereQ,=2n/% 8 and 7(s) is defined by
b
' 7 % o > 3.1
C* (1) =(qe()A:(0)), (39 M= 2 ol Fral (313

where the notatio---), denotes an averaging over initial ;Ei?_é?}ttsér?:a?;?g is the Laplace transform of the dynamical
icti .

condltlgns Wltfl the_ phase space ce_ntr0|d density. It can be The system—bath Hamiltonian employed in the study de-
showrt® that C*(t) is an approximation to the Kubo trans- . N, S
scribed in this subsection is given by

formed position correlation function. In turn, this relates to

the position correlation function through the Fourier trans- p2 N pi2 1 , c 2
form relationship H= ﬁJrV(QHiZl 2—mi+ > Miof| Xi— ma? ,
C(w)=(h Bwl2)[ coth( Bwl2) + 1]C* (w), (3.10 (3.14)

~ ~ where the system potenti¥l(q) is given by
where C(w) and C*(w) are the Fourier transforms of the

quantum position and centroid position correlation functions,  V(q)= 3 mw?qg®+ 3 mgd. (3.15

respectively. Because of its simplicity and stability, CMD has _ _
a wide appeal for large-scale simulations of many-body sys! '€ Parameters were chosen torbe-1.0, =1.0,9=1.0,

tems. Yet, since the method is approximate it is importanf'd 8=10.0. The spectral density of the bath was taken to

that CMD continues to be rigorously examined through a1ave the form of Ohm_iclf(r)iction, defined by EG@.5), with a

comparison with exact numerical or experimental results foPUtoff frequency ofo, : _ _
nontrivial systems as they become available. Indeed, the al-, YSINg @ harmonic basis set, one can find the eigenstates
gorithm developed in this paper makes it possible to carr)Pf the system. Since only a few states are populated at low

out such a comparison for systems described by Gaussiggmperature, a finite basis set which diagonalizes the system
baths Hamiltonian can be used to propagate the system under the

In accord with the CMD formulation, the centroid equa- influence of the bath. As such, the Hamiltonian becomes

tions of motion for the system—bath Hamiltonidy. (3.14)] n
can be reduced to a generalized Langevin equa@ar) for H=, | )€, (|
the system centroid trajectony(t), namely, n=1

N 2 2
t LT SV B
M)~ Flau0]+ | dtnit—t)at)=Fo), *2 m 2 m""‘(x' miw?q) -G8

(3.1)  where the operataq is represented in the system basis as

whereF(t) is the random force on the system centroid from a2 R

the bath andz(t) is the dynamical friction kernel for the q= 2 Z | )l @lv)(v|. (3.1
centroid motion defined in a similar fashion to Ed..3). potved

Here, the centroid forcE.(q,) is defined as in Eq3.7), but  The cutoff of the system basis was chosen tmbet in the

it involves an additional term in the imaginary time action simulations. The dynamical quantity of interest in this case is
resulting from the bath path integration, i.e., the position—position correlation function of the system
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evolving under the influence of the bath. This time correla-

tion function exhibits the dissipative effects arising from the _ ExMaf;
vibrational relaxation of the system. The Ohmic bath was 04 A A g & & s a
represented by twenty discretized harmonic oscillators with 03 E A A
frequencies ranging from;=Aw t0 wy=10.0w,, and 10 0.2
independent bath configurations were generated to Gaussian o1 f -
average the propagation of the system. e | ' i
The calculation of the centroid force in the CMD simu- s 00
lation of the dissipative quantum oscillator was carried out “ 01 q
approximately using the optimized quadratic reference po- 021 Foye Y
tential which can be derived from a variational théBf# or 03 f , TR A R
a diagrammatic analysfS.For the Hamiltonian in Eq(3.14), 04 - VLM
the latter analysis leads to an expression for the system 0 5 10 15 20 25 30 35 40
centroid-dependent effective harmonic frequency, given by time
mw§= (V'(9e+0))e FIG. 5. A plot of the real time position correlation function@10 for the

quartic potential described by E(B.15. The solid line is the CMD result,
1 while the solid circles are the numerically exact results obtained through the

= \/m J dav(ge+g)exp —§%2a;),  (3.18 Gaussian averaging method.
C

where the Gaussian width is given by

5 = 1 relatively long time, at which point it starts to decay because
=m_ﬂ 21 Tl 00y (3.19 of the unphysical dgph_asn_wg introduced by the quasiclassical
n nt %c n?7\%%n CMD momentum distribution. However, when the quantum

The same treatment has been used previously to help formgystem is coupled to the bath, the dissipation damps the
late a variational theofl for the prefactor in path integral dquantum coherence and the position correlation function de-
quantum transition state thed¥/*® The self-consistent solu- cays much faster than the nondissipative correlation func-
tion to the above transcendental equation yields an optimizeton, depending of course on the strength of the dissipation.
harmonic reference potential with frequeney and Gauss- It can easily be seen from Figs. 6 and 7 that CMD then
ian width «.. Consequently, the centroid force under thepredicts the dissipative vibrational dephasing quite accu-

Ac

optimized quadratic approximation is given by rately in comparison with the exact results. It is also clear
- from these results that the physical vibrational dephasing
Fe(de)=(F(det0))a comes into effect well before the unphysical long-time

1 dephasing inherent in the CMD approximation. This result

=— f daVv'(g.+§)exp —§%2a,). therefore supports the argument that CMD is an algorithm

V2mag which can be reliably used for quantum systems in most

(3.20 condensed phase systems. For example, CMD has recently

been found to give remarkably accurate agreement with ex-

For the present application, the centroid force in this aPperiment for the self-diffusion of liquid para-hydrog&t®
proximation was calculated for %Opoints on a one-

dimensional grid and stored in an array. In order to make a

rigorous comparison with the exact quantum calculation

through the Gaussian force method, the bath friction kernel 0.4 . . .
was represented by the same discrete set of harmonic oscil-
lators. Therefore, any discrepancy between the CMD result
and the exact result arises from the approximate nature of
CMD. The CMD equations of motion were integrated with a
time step of 0.1, and farajectories were averaged to yield
the centroid position correlation function, which was then
converted to the real part of the quantum position correlation
function via the Fourier relation in Eq3.10.

The real part of the position correlation function is :
shown forK=0 in Fig. 5,K=0.1 in Fig. 6, andK=0.2 in 04 s s .
Fig. 7. The CMD resultgsolid curve$ are compared in each 0 5 10 15 20
figure with the exact results computed by the method intro- time
duced in this paper. For this low temperature system, the
frictionless vibrational motion is completely coherent since’'®: 8- A plot of the real time position correlation function/at 10 for the

. . . quartic potential described by E@.15 coupled to an Ohmic Gaussian bath
only the two lowest-lying states are involved in the dynam-y;ith k =0.1. The solid line is the CMD result, while the solid circles are the
ics. The CMD result in Fig. 5 exhibits coherence until anumerically exact results obtained through the Gaussian averaging method.

Re[C(1)]
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the “bath” (e.g., electron—hole pairs in a meta excited by

04 A the laser pulse and rapidly “equilibrates” to an effectively
03 higher temperature Boltzmann distribution. The time-
0.2 dependent relaxation of the bath temperature is then gov-

01 erned by a phenomenological heat transport equation. To

g 00 | carry out a simulation of a quantum “systené.g., an ad-

] sorbate vibration in such an environment, the imaginary
0.1 F time bath paths4(7) are treated differently from the forward
-02 and backward real time paths. The two terminal poijtand
03 X, can be generated directly according to the instantaneous
04 , , , bath distribution function by Monte Carlo methods; the third

0 5 10 15 20 terminal pointx; is next sampled from an imaginary Gauss-

ian matrix which connects to the poirts andx,; the for-

ward and backward real time paths are then given according
FIG. 7. A plot of the real ime position correlation functionat10 for the  t0 Ed.(2.14), but the imaginary time bath paths are sampled
quartic potential described by E.15 coupled to an Ohmic Gaussian bath from the imaginary time equivalent to E(R.14), again for

with K;O.Z. The solid line is th_e CMD result, while the'solid circlgs are the the time-dependent bath temperature. In general, as long as
numerically exact results obtained through the Gaussian averaging methoﬂ,]e real time dynamics is adequately described by the linear-
ized system—bath Hamiltonian, the present method is appli-
cable to nonequilibrium situations, as the statistical distribu-
tion can be sampled directly by Monte Carlo methods.

In this paper, a simple and flexible method has been As a final point, we note that a given spectral density has
developed to sample the quantum fluctuating force in sysbeen assumed throughout this paper. For a realistic system, it
tems described by a Gaussian bath. It was shown by theemains an interesting question how best to obtain a spectral
examples presented in the last section that this algorithm idensity which describes the linear response ajuantum
both accurate and efficient for such problems. This methodbath to the motion of the system. The standard procedure is
also provides an alternative to numerical approaches based calculate theclassical force—force correlation function
on the influence functiondlThe numerical implementation projected along the system coordinate, from which the clas-
of the influence functional approach introduces a cutoff insical friction kernel (t) can be determined through the
the number of discretized time slices, whereas the diredliuctuation-dissipation relation in E¢L.5). In turn, the spec-
sampling of the Gaussian force introduces a cutoff in theral density for the effective classical Gaussian bath can be
number of discretized bath frequencies. Consequently, thextracted by an inverse cosine transfdch Egs.(1.3) and
former approach is preferable if the correlation time of the(1.4)]. It is then assumedhat the spectral density for the
influence functional is short, while the latter approach is ad-quantum effective Gaussian bathtie sameas for the clas-
vantageous if the width of the bath spectral density is narrovgical limit. While this approach is certainly correct for a rig-
or relatively localized around certain frequencies. For sysorously harmonic bath, it is hard to know whether it is valid
tems where the two approaches are equally effective, thefor real systems. An alternative pictd?dased on variational
the present algorithm seems to be more straightforward antheory’® has been recently developed by the present authors.
flexible to implement. For example, since the quantum sysThe basic approach is to determine the best effective har-
tem evolves according to the Skiinger equation under the monic representation of the bath Hamiltonian according to
influence of a time dependent Gaussian force, our algorithrthe optimized quadratic approximatié®@QA).>° This speci-
can be combined with any exact or approximate numericalies a set of optimal normal mod€scorresponding to the
scheme for quantum propagation such as basis set methodkfferent inherent structures of the bath. A phenomenological
wave packet dynamics, semiclassical dynamics, path integralecay function is next introduced to describe the average
tion, or curve crossing methods. Some of these methods dwansition rate between the different sets of optimized normal
not seem as compatible with the influence functional apmodes, thus leading to the concept of the damped normal
proach because of its convolution of the time integrationmode(DNM).*° The damping constant can be chosen so cer-
With the present methodology and other developments, wiin known properties of the bath are exactly reproduced
should be able to study a wide range of “system—bath”(e.g., the self-diffusion constant for a pure liquiBy virtue
guantum dynamical processes such as two- and multistatef this approach, it was found that a classical dynamical
electron transfer, quantum tunneling, photoexcitation andriction along a solute bond can be predicted which agrees
photodissociation, vibrational relaxation, quantum activatedemarkably well with exact MD simulation. Since the DNM
dynamics, etc. theory is readily generalized to quantum systems, this theory

Another appealing feature of the present method is that iprovides a direct route to specify the spectral density of an
can be readily generalized to simulate the influence of a batbffective Gaussian quantum bath. Obviously, for such sys-
having an arbitrary time-dependent Gaussian distribution intems the exact quantum dynamical calculation of the force—
stead of the equilibrium Boltzmann distribution. Such situa-force correlation function is not feasible, so the DNM
tions arise, for example, in ultrafast laser experiments wherenethod may in fact be the method of choice. This issue, as

time

IV. CONCLUDING REMARKS
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well as applications of the theory presented in the presenthe above results can be verified by calculating various cor-

paper, will be the topic of future research.
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