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Efficient numerical algorithms are developed for use with two finite temperature semiclassical
approximations to quantum dynamics both of which require trajectories generated on potentials of
mean force derived from the path integral expression for the density matrix. The numerical
algorithms are formed from the combination of a classical adiabatic relation similar to that used in
the Car—Parrinello method and an efficient path integral molecular dynamics scheme. Results on
model, an anharmonic oscillator and a realistic, flygdra-hydrogen, problem indicate that
semiclassical dynamics can be obtained for virtually the same computational cost as structure and
thermodynamics. ©1996 American Institute of Physids$s0021-960626)50203-1]

I. INTRODUCTION A. Centroid and Wigner dynamics

Despite the fact that the thermodynamic and structural | C€ntroid semiclassical dynamics is based on the use
properties of quantum many body systems can now, rouc_)f the path |_ntegral centroid density as a semiclassical phase
tinely be determined using path integral Monte Carlo or mo-SPace function
lecular dynamics methods? it is not, yet, possible to effi- W.(v.xc: B)=K expl — BIVEN(x.) + T (p)])
ciently calculate the corresponding quantum dynamical ene ¢ e
properties. It is, therefore, worthwhile to investigate semi-
classical alternatives that can yield approximate quantum dy-
namics, at the same computational cost as structure and ther-
modynamics. N, p(xe:B)=exd — BV(x.)],

A semiclassical, finite temperature, quantum dynamics ¢
scheme based on the use of classical time correlation func- P B
tions generated on the potential of mean force of the path p(xc;ﬂ)zf dx,...dxe] [ p(Xi ,xi+1;—)
integral centroid has been developed.The method has =1 P
been shown to give the exact quantum position and velocity 1 P
autocorrelation functions of quadratic actions, contain the X8| X~ 5 > xi),
classical limit and when used as statistical theory give the =1
cor.rect rfa.te constant for_a parabolic barrier. A similar_ theorywherepo:xl. Time correlation function calculated using
which utilizes the potential of mean force on a path integral

bead h 156 b developBa ical hod bl centroid phase space function, can be related to the real part
ead has also been develo umerical methods capable ¢ o tre quantum resul(;&‘i“a”‘), by*~8

of generating these semiclassical dynamics schemes, without
the exhaustive enumeration of the necessary potentials of .
mean force, are presented. The algorithms are based on the Cit (@)~
coupling of an efficient path integral molecular dynamics .
(PIMD) schem@ to a Car—Parrinello-liké"*? classical adia- whereC(w) signifies the Fourier transform @(t) as cen-
batic principle. Tests of the methods on model, an anhartroid MD generate an approximation to the Kubo trans-
monic oscillator and realistic problems, flyidra-hydrogen, formed time correlation function. The expression is exact for
indicate that semiclassical dynamics can be generated fayuadratic potentials. Another relationship gives the imagi-
virtually the same computational cost as thermodynamic#iary part of the time correction function in terms of the
and structure. Other useful numerical methods for centroidkubo-transformed variarft.
dynamics have been presented elsewfigte. In analogy with the centroid method, path integral sepa-
rable second moment Wigner semiclassical dynamics is
based on the separable second moment Wigner semiclassical
phase space densify*3-1¢

pm ve

1/2 2
— ex;{—ﬁr; }zK exd — BT (v,)],

(2.0

C(centroid(w)’ (22)

XcXe

(Bhwl2)
tanh Bh w/2)

Il. THEORY . . .
Wssw(v,X;:8) =P, (v; B)P«(X; B)
In this section, two semiclassical quantum dynamics =K exq — BHM(v,x; 8)],
methods, path integral centroid dynamics and path integral
Wigner dynamics are briefly described. P«(X;8)=N,p(x,x; 8)=exd — BV"(x; B)], 2.3
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p
M) = 5o

do not lend themselves to a straightforward application of an
adiabatic dynamics methddee below. In one dimension, it
is straight forward to enumerata®®(x;3), and apply an
adiabatic dynamics method. However, in a realistic system
such as a quantum liquid, the position dependent effective
mass is a tensor that must be generated on the fly. Efficient

where T is the average kinetic energy. The semiclassicaNUmerical methods capable of handling this situation are cur-
Hamiltonian, H®(u,x: 8), can be used to generate semi- "€ntly being developed.

classical correlation functions which are exact for quadratic

problems. Note, in many body systems, the effective massefl]. NUMERICAL METHODS

m©™(B), must be introduced in an appropriate set of normal
modest® This is problematic in a quantum liquid where a

be shown to fail.

A higher order approximation, path integral nonsepa
rable Wigner semiclassical dynamics is based on a nonsep

rable Wigner semiclassical phase space detfsity

m*M (X B)v?
2

|

Whw(v.X; 8) =K exp( -B +VEN (K B)

ex — BV (x; 8)]=N,(x)p(x,%; B),

m2 —-1/2
N 2mnz g gy @9
2
[m<e“)(x,ﬁ)]’l=ﬁﬁ TI9(x; B),
h? Pp(x.x';B)  _*p(x.x';B)
(loc) /- _
B = 8mp(x,X;B) { x> X Ix’
*p(x.X"; B)
' a(X,)Z } lim x=x’,
T(Ioc)(xl’ﬁ):deZ"'deP[HiP(XiaXi+1;ﬂlp)]T(esb(Xaﬁ) ,
Jdxo - Jdxp[TTip(X;,X; 4 1, 8/P)]
o 1828 S 2(k=1)]% %%
T D(X”B):ﬁJr&mPgl[ P Xk
n2p]i & 2(k—1)]% V(x|
~8m {5 gg [1_ P IX '

wherexp,1=X;. It is more difficult to use than the sepa-
rable second moment approximation because the associated wp=

equations of motion

T W) |
2.
_ﬁmuﬁl(mmuﬁwjqummuﬁﬂ =
VT TN B) 2meEn( g) dx '
where
ot gy | T (X, B)) 12

The different semiclassical dynamics methods described

r'f\bove, centroid and Wigner, require the motion of a variable

on a true quantum mechanical potential of mean force. The
adiabatic path integral centroid and path integsaparable

Vigner molecular dynamics method&CPIMD and ASW-

IMD) capable for generating this dynamics are formed by
the combination of an efficient path integral molecular dy-
namics methodPIMD)* and a classical adiabatic principle.
The basic PIMD method, the adiabatic principle and their
combination which defines ACPIMD and ASWPIMD are de-
scribed below.

A. PIMD

In order to derive a path integral molecular dynamics
algorithm, the discrete path integral expression for the ca-
nonical partition functionQ,’~?%is written in the form of a
fictitious phase space integral by introducifiy momenta

with arbitrary massm, ,*"?! conjugate to the coordinates

Q=f(m,mc,,8,P)jdx1...dxpf dp;...dpp

P 2
pi mP 2
Xexp( —,321 [Z_mCJrTZ,BZ (Xi—Xi+1)

1
+5V(Xi) ) (3.1
where f(m,m,,B,P) represents the overall normalization.
The effective classical Hamiltonian associated with this par-
tition function,

1
+ 5 Mop(X—X11)2+ P V(xi) |,
(3.2

Bh’
can be used to define a molecular dynamics sampling tool.
Path integrals are notoriously difficult to evaluate using
molecular dynamicsMD) methods: The stiff harmonic
terms or bonds present in the classical Hamiltonian, Eq.
(3.2), give rise to a nonergodic dynamics, a MD time step
that decreases as the square root of the number discretiza-
tions, PY2, and a slow sampling of the available phase space
due to the wide range of normal mode frequengessoci-
ated with the bonds These problems can be overcome
through the combination of several meth8d$-2*The mas-
sive Nose-Hoover chain canonical dynamics method gives

J. Chem. Phys., Vol. 104, No. 5, 1 February 1996

Downloaded-27-Mar-2001-t0-18.60.2.110.-Redistribution-subject-to-AlP-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



2030 J. Cao and G. J. Martyna: Adiabatic path integral molecular dynamics. Il

an ergodic canonical dynamics, multiple time step integra- pﬁ_ P 1P
tion eliminates theP?2 dependence of the time step and a H=> 2ml +> > Myw3UZ+ 5 > V(xi(u)),
noncanonical transformation of variables places the normal i=1 i k=2 =1

modes on the same frequency scale. The coupling of the K (3.9
massive  NoseHoover chain canonical dynamics mem(—),
method???3 (one NoseHoover chain per degree of free- k=1
dom) to multiple time integratioff is discussed, in detail, where the masselmn, = m/(ZB'F),mu = y?m,}, are again,
elsewherd. The appropriate variable changes are revieweq.posen to give all tﬁe modes the nge frequency. For sim-
below. , _ _ plicity u; will be referred to as “the” staging bead and the
There are two variables transformations of interest hereotheruk as the staging modes. More general staging trans-
The first transformation, usefulzén centroid dynamics, is t0t5 mations and the method of applicatiéthe analog of the
the set of normal mode even Appendiy are presented elsewhét@he forward and back-
P ) ward staging transformations are very fast because of their
=3 a F{ZWI(n_ 1) (k- 1)} (3.3 simple recursive nature. Note, the staging Hamiltonian is in-
e ok P ' variant to a cyclic relabeling of the Cartesian positions,
X;—Xj; Wherei+L=i+L—P if i+1>P, although the
where a;=Re(@;), api2),=Re@pi2)2), ap—ki2 = ay transform alters the specific values of ilis. This relabeling
and operation is referred to as a mass rotafloA third
transformatiof’

Up=2ai, Up=3aq(p+2)2, 5

P

34 s sl

mz,z Up, Sin| 5

) (3.9

Xg=Uy+
Usk—2=ReEay); Ux—1=Im(ay) ot
which can, also, be applied using FFTs is not as computa-
tional efficient as the staging method.

The transformations defined above give rise to the same

define theP independent variables® The associated classi-
cal Hamiltonian is

P 2 expression for the force on the centroid coordinate as for the
H=> EJF 1 Mo\ u+ 1 V(x;(u)) force on the staging bead,
i=1 2mui 2 PRI P : ' p
1
Fi== > ViV(x). (3.10
N=0; Ap=4P, (3.5 e T
2m(k—1) If the potential is quadratic the; = — mw?x, Wherex is,
_ _ _ R in fact, the centroid coordinate.
)\zkfl—)\zkfz 4P| 1 COE{ ) ) .

B. Adiabatic dynamics

(This is only equivalent to Fourier path integrals in e o A general treatment of adiabatic dynamics has been pre-
limit.”®) The transformation is noncanonical because thesented elsewherg.Some of the arguments have been re-
masses, then, are chosen to bgn, = m,m, = MA2\,} S0 peated here for completeness. Consider two set of degrees of
that all the modes have the same frequency. Fast Fouriéreedom,{v, ,x} and{v, y}, undergoing NoseHoover chain
transforms(FFT9 can be used to switch back and forth be-canonical dynamics
tween the Cartesian and normal mode coordinates as well as

to generate the forces on the normal modes from the forces x=v,, )"ZVy, {/X:w_ Vil pix.1) »
on the Cartesian variabldsee the Appendjx One is not My
necessarily restricted t®=2" as modern FFT packages Fy(X,Y)
will, in general, contain efficienP =2"3"5' radix methods. vy = y2m VYU, y 1) Ma=Ugal)
The second transformation, useful in path integral sepa- y
rable second moment Wigner dynamics, is to the staging . 1 ) (3.17
coordinateg;* UnenTQ, Zk MoV, ~ NeKTo | =V 0,V pias2)»

(K=D)Xgs1+Xq

Up=X1, W=Xe—XE, Xp= K (3.6 i)n(a,m:m [Q a1 5 (ak—1)~ KTal
The inverse transformation is T Un(a, U plak+1)
k=1 1 o= [ Qe 101~ KT.],
Xp=Up, XS Ut == Xt o Xa (3.7 7l M) Q(am) 7eM=D"y(aM=1) “
wherea is summed over botk andy andM is the number
Here, the associated classical Hamiltonian is of thermostatg7,'s) in the two Nose-Hoover chains. Note,
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different temperatureq,,/T, , have been associated with the thex subsystem with potential energy(x,y), at fixedy’ and
xly degrees of freedom. The Liouville operator for this dy-initial condition, {x’ vX,v } Similarly, the functions la-

namics is beled, superscripfref), refer to the action of the reference
(L il il +iL (NHC) i) (NHC) Liouville operator,iL ™" on they subsystem. If the time
X Y X y ’ averages in the integrals are taken to the phase space aver-
) F.(X,y) ages thaii.e., the(adb dynamics is “ergodic” on this time
ILX:VX'VX+ W'va_vn(xyl)vx'vvx, Scalq
X
X — (ref)
Ly=vy-Vy+ 2(my) Vo, " UnyVy Vo, (312 A=y [y(O)'Vy(O)
y
v d LI 0 0);At
iL(aNHC): 2 vn(a A 2:8me y Og[QX(ﬁX -Y( ))]’V”y( )l ’
k ' dn(a,k) (314)
d vy(A1) =v{"®" y(0),v,(0)

+G(Va vNa vTa 1Q(a,1)) d—

Un(a,1)
M d V log[ Qx(Bx.¥(0))1.v,, (0); At}
+k22 G(Un(a,kfl)!lvTan(a,k)) m leAt
M-1 d +—Vy IOg[Qx(ﬁx-y(At))].

2 Bxmy,

whereQ,(By,Y) is the canonical partition function of the

N degrees of freedom at temperatukd,,=1/8, at fixedy.
> mkvk-vk—NkT}. Furthermore, in the limiAt goes to zero With the condition
= that the the mass of thedegrees of freedom is taken to zero

In the limit that thex variables are moving fast compared to 'ast €nough that the time averages may be replaced by phase

they variables, the evolution operator for the dynamics carSPace averages, the evolution operator for reduced dynamics
be written as (i.e., they subsysterncan be written as,

- 1% 1% ]
kzl (e, k)Y n(a,k+1) dv (k)

G(V,N,T,Q)=%

AtF(y) — F(y)
At
exr[iLAt]=ex;{(iL—iL”ef))?exp{iL<’9f)At] eXP( 2m, 'Vuy) P( iL— m, Vo,

At AtF(y) —

Xexr{(iL—iL(re”)f, exr{ 2m, -VUy =exp(iLAt), (3.1
here
Fy(X, w
iL“eﬂ=iLy+iL§,NHC)—%- oy B )
Y iL=vyVy=v, V-V, +—=V, +il{uc,

The solution to the equations of motion for thesubsystem y
determined from this approximate evolution operator is, F_(y)= _v \7(y'BX) (3.16

Y(AD=YI[y(0),vy(At/2),v,, (0);AL],

— 1
V(y; Bx)=— 5 log[ Qu(Bx.,Y)].

Vy(AD =V*[y(0),v,(At/2),v,, (0); At] Px
The analysis presented above demonstrates that under
1 [At2 . ..
+ = f dt' F {X(adb) appropriate conditions, the slow subsystem, yheat tem-
m Y perature,T,, can be made to move on the potential of mean

o, force generated by the fast subsystem,xhat temperature,
X[X(At2),v(At/2), v, (AU2);t |y(AD)], T, (i.e., V(y;8,). The traditional Car—Parrinello methidd
(3.13  corresponds tdl, small so thatV(y;3,) is at a minimum
L s with respect to thex. The methods of this paper require
t/2 S i : P
_ il , (adb T,=Ty. The third limit, T <T,, the parametric minimiza-
Wy(At/2)=%(0) fo dt’ Fyix tion of the potential of mean fora@e. V(y;B,) is minimized

. with respect toy), is, also, of use in some applications.
X[x(0),v4(0),v,, (0);t"],y(0)}.

VOV oyit] and Va9 C. Adiabatic centroid and Wigner PIMD
X

X[X' v,V ;y;t] denote the positions and velocities at  Centroid/separable Wigner semiclassical dynamics re-
time, t, obtained from the NoseHoover chain dynamics of quires the centroid/staging degree of freedom to move on the

The functions x(@®]x’ v
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IV. RESULTS

In this section, the semiclassical dynamics methods,
adiabatic separable second momentum Wigner and adiabatic
centroid path integral molecular dynamigs&SWPIMD and
ACPIMD) are tested on both model and realistic problems.

A. Anharmonic oscillator

The ability of ASWPIMD and ACPIMD to efficiently

produce the time correlation functions of the model

Hamiltonian®8

Cxx(t)
S S
Povv g by

o
@

h? d?>  me®x?

S et 4
. —_— — H Zmd—xg‘l' 2 +gX, (41)

where m=1, w=1, g=0.1, m*®M=0.325, at temperature,
Bhw=5, is examined. The path integral was discretized into
P=128 beads or imaginary time slices. In both methods, a
time step of 0.08,/ow where y, is the adiabaticity control
parameter, was employed. Six hundred runs of length 16
harmonic periods were performed for each valueypfand
used to generate the time correlation functions. In the cen-
0 2 4 6 8 troid method, the velocity of the centroid coordindtaly)
(b) vr was resampled at the beginning of each run while in the

Wigner method the velocity resampling of the staging bead
FIG. 1. (@ The real part of the position—position correlation function,
C,4(t) for the model Hamiltonian, Eq4.1) calculated usingcPivp. The
time scale ratios, 1:1, the solid line, 4:1, the short dotted line, and 16:1, the
long dashed lined are showfb) The real part of the position—position
correlation function calculated usirgwpivp. The time scale ratios, 1:1, the 1
solid line, 4:1, the short dotted line, and 16:1, the long dashed lined are
shown.

-
Lerid

Cxx(t)

[ A |

o
LA B B L L L |

PR TS Y N T R S |

LANNLEN N R B S S B B B e |

= 05

&
potential of mean force formed by the other modes in the
problem. The coordinate systems defined in SdcA ), con- 0 |
veniently isolate the centroid/staging coordinates. It is, there- T T
fore, only necessary to adjust the parameger, present in 0 200 400 600 800 1000

the masses of the normal/staging modes so that the massive (@) vps

Nose-Hoover canonical dynamics of these subsidiary de-
grees of freedom is fast compared to the motion of desired 1
the centroid/staging coordinate. No other programming or
algorithmic changes are required.

It is not possible to straightforwardly apply an adiabatic

LA L S L R I B NN B I R |

TN S S S SR |

= 05
dynamics method to generate, the nonseparable Wigner E
semiclassical dynamics because equations of motion
) ) R N
. FEPosBmx;8)  %* d loglm " (x; 8)]
= — - | IS RTINS RIS ST BT I
[ m(eﬁ) ( ﬂ) ] 2 2 dx 0 200 400 600 800 1000
(3.19 (b) t/ps

. . (eff)/ . (eff)/y, . e .
Cont?'m terms. “ke(F . (X”B)><m . (X’B»' This Sltua.tlon IG. 2. (a) The velocity autocorrelation function of the molecular center of
requires the introduction of two independent path integraf .5 in fluid parahydrogen at the state poinfT=25 K, V=31.7
polymer chains and is quite a challenging numerical probem? mol=3, calculated usingcpiMp. The time scale ratios, 1:1, the solid
lem. However, in one dimensional systems, the effectiveine, 4:1, the short dotted line and 16:1 the long dashed line are skbywn.

e velocity autocorrelation function of the molecular center of mass in

mass can be independently enumerated and the adlabaﬁlglld para-hydrogen at the state poir{ff =25 K, V=317 cri mol ). cal-

dynamics method directly applietsee Results section of ¢yjated usingasweivb. The time scale ratios, 1:1, the solid line, 4:1, the
Paper ]. short dotted line and 16:1 the long dashed line are shown.
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500

400

[

300

RP(L)/A%

200

100

g(r)

(a)

LA

| RS BRI BT B

0 2 4 6
r/A

T FIG. 4. The molecule center of mass pair distribution function for fluid
0 200 400 600 800 1000 parahydrogen at T=25 K treated quantum_mechanicalliv=31.7
(b) s cn® mol™Y), the solid line, and treated classically=20.2 cn? mol™), the
dotted line. In both the classical and quantum calculations, the average
pressure is approximately zero.
FIG. 3. (a) The Kubo transformed mean square displacement of the molecu-
lar center of mass in fluigpara-hydrogen at the state poiff=25 K,

— -1 ; i i id i . . .
V=31.7 cnmimol 1, calculated using centroid dynamics, the solid line, namics and the centroid dynamlcs, should be noted. The ex-

Wigner staging dynamics, the dotted line, and classical dynakies31.7 . . . ..
cn® mol™Y), the long dashed lingb) The velocity autocorrelation function act correlation function has little decay on this time scafe.

of the molecular center of mass in fluhra-hydrogen at the state point The nonseparable Wigner dynamics gives similar regalts
{T=25 K, V=317 cnfmol%}, calculated using centroid dynamics, the enumerated position dependent effective mass is employed.
solid line, Wigner staging dynamics, the dotted line and classical dynamics ]

(V=31.7 cnimol™?), the long dashed line. B. Fluid para-hydrogen

The semiclassical dynamics methods, ACPIMD and
ASWPIMD were tested on a realistic manybody problem,
coordinate was supplemented by a mass rotatim® Sec. fluid para-hydrogen at the state poinfT=25 K, V=31.7
I1). Thermostats were coupled to each of the normal/stagingm® mol™%} (approximately zero average presstfé’ The
modes but not to the centroid/staging bead. para-hydrogen molecules were treated as spherical particles
The efficiency of the two numerical techniques, ASW-and a pair potential used to describe their interacttén¥
PIMD and ACPIMD, is directly related to the “separability” The minimum of the intermoleculgrara-hydrogen pair po-
of the forces in the two coordinate systems, staging andential occurs at 3.44 A and the well depth is 36 K. The mass
normal modes, respectively. In Sec. lll, it was shown that theof the particles aran=3672 a.u. The system size studied
preaveraged expressions for the force on the staging beadas{N=180,P= 16} whereN is the number of particles and
and the centroid coordinate are the samé&g,. P is the number of discretizations of the path integral. The
=(1/P)=F_,F,(x;). For a harmonic oscillator, the centroid effective mass used in the separable second moment Wigner
force is completely decoupled from the other centroid vari-dynamics calculation wam®=2250 a.u. A time steps of
ables,F,.=—wwx;, while the staging modes are strongly 7.5y, fs was employed in all calculations. All runs were of
coupled. Therefore, ASWPIMD may require a larger adia-length 75 ps. It should be noted that the ASWPIMD method
batic separatiorismaller y,) than ACPIMD. In Fig. 4, the can be expected to fail here as a straightforward scaling of
convergence of the two methods with increasing adiabatithe frequencies of all the modes is clearly too naive. The
separation(decreasingy,) is shown for the anharmonic os- application of the higher level nonseparable Wigner dynam-
cillator. Unsurprisingly, the centroid method converges withics to this problem is quite challenging and beyond the scope
almost no separation while the Wigner method requires af this paper.
time dilation factor of at least 4An N:1 calculation re- First, the convergence of the two methods, ACPIMD and
quires a time of step of 0.08w), i.e., y,=1/N.) Thus ASWPIMD, with the degree of adiabatic separation is shown
ACPIMD is about a factor of 4 times more efficient then (Fig. 1). In Fig. 2, the Kubo transformed mean square dis-
ASWPIMD for this simple example. Finally, the surprising placement of the molecular center of mass are plotted for
similarity between the correlation functions produced by thevarious separations in time scalg,). Centroid dynamics
two types methods, separable second moment Wigner dyonverges with little or no adiabatic separation. Wigner dy-
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TABLE |. Energetics ofpara-hydrogen,Pe,~0. Qcal is the quantum path  cm?® mol ™1} (again, approximately zero average pres&if®
|ntegra_1l calculated value, Exp is the exper}mental value_, Ccal is the correzow that the centroid method is in agreement with experi-
sponding value from the classical mechanics calculaffois, the tempera- . ) .

ture, (E) is the total energy(V) is the potential energyKE) is the kinetic ~ Ment while the Wigner bas_ed method _has 'n(?urred about
energy andVol) is the molar volume. 40% error. At 14 K, the classical system is a solid. As stated
above, the separable second moment Wigner method is likely
in error because simply scaling frequencies by a constant

Label T (K) (E)(K) (V) (K) (KE)(K) (Voly (cm®mol™?)

Qcal 25 —47 —109 62 31.7 factor is a rather poor approximation. Application of the
Ceal 25 —-150  -187 38 20.2 higher level nonseparable Wigner semiclassical dynamics to
Exp 25 —50 31.2 this system awaits further methodological development.

Qcal 14 -73  -135 62 25.6

Ccal 14  -222  -243 21 16.6

Exp 14 -75 26.2

V. CONCLUSIONS

Numerical algorithms are developed for use with cen-
) ] ] o ] troid dynamics and the separable second moment Wigner
namics requires a time dilation factor of approximately 4. qynamics. The algorithms were found to be stable and effi-
Next, the results of centroid dynamics and separable Segjent on both model and realistic problems. The centroid
ond moment Wigner dynamics are compared both to eachethod, in particular, seems to give good results with little or
other and classical mechanics. In Fig. 3, the Kubo transpg gyerhead. The overhead of the Wigner based method is
formed mean square displacement of the molgcular center %i(pproximately a factor of four. The two methods give re-
mass and the molecular center of mass velocity autocorrelanakaply similar results for the one dimensional model prob-
tion function, calculated using the centroid method, the sepggm phyt behave differently in the nontrivial calculation of the
rable second moment Wigner method, as well as simple clags gperties of fluidpara-hydrogen as expected. The centroid
sical dynamics are presented. In the classical calculations, @ethod seems to be give good agreement with experiment
(class _ -1 . . )
molar volume of V'®***=20.2 cnf mol ™, was used so that Therefore, the structure and to a reasonable approximation to
the average pressure of the classical system is approximatelynamics can be efficiently obtained in quantum mechanical
zero:” The quantum and classical molecular center of masg,anyhody systems within the centroid framework. It will be
pair distribution functiongstructurg are compared in Fig. 4 ¢ interest to see if the nonseparable Wigner theory is ca-

and the thermodynamic data is presented in TaBfe. _ pable of correcting the results of the more basic second mo-
The classical structure, dynamics and thermodynamicg,ant variant.

of para-hydrogen are completely different from their corre-
sponding quantum mechanical counterpgsee Figs. 3 and
4 and in Table ). For example, the first peaks in the radial ACKNOWLEDGMENTS

distribution and the zero pressure molar volumes differ by ] ]
factors of 1.5 and diffusion coefficients by a factor ot°8? This work was supported by startup funds provided by
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The centroid and separable second moment Wigner
method, also, give different results for the dynamical prop-
erties examined here. The centroid seems to be in goo

—131 H . . . .
while the Here, is the series of logical steps necessary to imple-

PPENDIX

agreement with experimenD=1.6 A?ps

separable second moment Wigner method is off by approXiment the centroid PIMD algorithm.

mately 40%. Additional calculations 4T=14 K, V=25.6 ]
To get the forces on the normal modes:

(1) Set the real part of a complex vector equal to the Carte-

TABLE |I. Diffusion Coefficients ofpara-hydrogen,P,~0. Qcaly is the sian force(l=1, P).

value obtained from Wigner dynamics, Qgab the value obtained from (2) Set the imaginary part of the complex vector equa| to
centroid dynamics, Exp is the experimental value, Ccal is the corresponding

classical value. zero(I=1, P). .
(3) Perform an unscaled backward fast Fourier transform on
Label T (K) D (A?%ps the vector.
Qcal, 25 52 (4) The force on thg1)st mode is the real part of the 1st
Qcak 25 15 element of the transformed vector.
Ccal 25 0.5 (5) The force on the R)th mode is the real part of theP(
Exp 25 16 2+ 1)th element of the transformed vector.
Qcaly 14 0.55 (6) The force on thé1l)st mode(the centroidlis the real part
85;* 111 0.35 of the 1st element of the transformed vector.

Exp 14 0.4 (7) The force on the (P—2)th mode is twice the real part of
the Ith element of the transformed vector=2, P/2).
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(8) The force on the (P—1)th mode is twice the imaginary
part of thelth element of the transformed vector=2,

P/2).

To transform the normal modes coordinates to Cartesian p

sitions:

(1) Set the real part of thél)st element of complex vector
equal to the value of thé€l)st mode(the centroid posi-
tion).

Set the real part of theR/2+ 1)st element of the com-
plex vector equal to the value of thith mode.

Set the real part of thelth and the P—1+2)th ele-

@
()

2035

Free particle eigenvalue values of each normal modes:

(1) The eigenvalue of thé€l)st mode is zero.

(2) The eigenvalue of theR)th mode is 4.

43) The eigenvalues of the (2-2)th and the (2—1)th
modes are B[1—cos(2x[1 —1]/P)].
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