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Efficient numerical algorithms are developed for use with two finite temperature semiclassical
approximations to quantum dynamics both of which require trajectories generated on potentials of
mean force derived from the path integral expression for the density matrix. The numerical
algorithms are formed from the combination of a classical adiabatic relation similar to that used in
the Car–Parrinello method and an efficient path integral molecular dynamics scheme. Results on
model, an anharmonic oscillator and a realistic, fluidpara-hydrogen, problem indicate that
semiclassical dynamics can be obtained for virtually the same computational cost as structure and
thermodynamics. ©1996 American Institute of Physics.@S0021-9606~96!50203-1#

I. INTRODUCTION

Despite the fact that the thermodynamic and structural
properties of quantum many body systems can now, rou-
tinely be determined using path integral Monte Carlo or mo-
lecular dynamics methods,1–4 it is not, yet, possible to effi-
ciently calculate the corresponding quantum dynamical
properties. It is, therefore, worthwhile to investigate semi-
classical alternatives that can yield approximate quantum dy-
namics, at the same computational cost as structure and ther-
modynamics.

A semiclassical, finite temperature, quantum dynamics
scheme based on the use of classical time correlation func-
tions generated on the potential of mean force of the path
integral centroid has been developed.5–9 The method has
been shown to give the exact quantum position and velocity
autocorrelation functions of quadratic actions, contain the
classical limit and when used as statistical theory give the
correct rate constant for a parabolic barrier. A similar theory
which utilizes the potential of mean force on a path integral
bead has also been developed.10 Numerical methods capable
of generating these semiclassical dynamics schemes, without
the exhaustive enumeration of the necessary potentials of
mean force, are presented. The algorithms are based on the
coupling of an efficient path integral molecular dynamics
~PIMD! scheme4 to a Car–Parrinello-like11,12 classical adia-
batic principle. Tests of the methods on model, an anhar-
monic oscillator and realistic problems, fluidpara-hydrogen,
indicate that semiclassical dynamics can be generated for
virtually the same computational cost as thermodynamics
and structure. Other useful numerical methods for centroid
dynamics have been presented elsewhere.5–8

II. THEORY

In this section, two semiclassical quantum dynamics
methods, path integral centroid dynamics and path integral
Wigner dynamics are briefly described.

A. Centroid and Wigner dynamics

Centroid semiclassical dynamics5–8 is based on the use
of the path integral centroid density as a semiclassical phase
space function
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wherexP115x1. Time correlation function calculated using
centroid phase space function, can be related to the real part
of the true quantum result,C̄xx

(quant), by5–8

C! xx
~quant!~v!;F ~b\v/2!

tanh~b\v/2!GC̃xcxc
~centroid!~v!, ~2.2!

whereC̃(v) signifies the Fourier transform ofC(t) as cen-
troid MD generate an approximation to the Kubo trans-
formed time correlation function. The expression is exact for
quadratic potentials. Another relationship gives the imagi-
nary part of the time correction function in terms of the
Kubo-transformed variant.8

In analogy with the centroid method, path integral sepa-
rable second moment Wigner semiclassical dynamics is
based on the separable second moment Wigner semiclassical
phase space density10,13–16

Wssw~v,x;b!5Pv~v;b!Px~x;b!

5K exp@2bH ~eff!~v,x;b!#,
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where T̄ is the average kinetic energy. The semiclassical
Hamiltonian,H ~eff!(v,x;b), can be used to generate semi-
classical correlation functions which are exact for quadratic
problems. Note, in many body systems, the effective masses,
m~eff!~b!, must be introduced in an appropriate set of normal
modes.10 This is problematic in a quantum liquid where a
fixed set of normal modes does not exist and the method will
be shown to fail.

A higher order approximation, path integral nonsepa-
rable Wigner semiclassical dynamics is based on a nonsepa-
rable Wigner semiclassical phase space density10
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wherexP115x1 . It is more difficult to use than the sepa-
rable second moment approximation because the associated
equations of motion

ẋ5vSm~eff!~x;b!

m̄~eff!~b!
D ,

~2.5!

v̇5
F ~eff!~x;b!

m̄~eff!~b!
2Sm~eff!~x;b!v2

2m̄~eff!~b!
D d log@m~eff!~x;b!#

dx
,

where

m̄~eff!~b!5Fm^m~eff!~x,b!&

2bT̄ G1/2, ~2.6!

do not lend themselves to a straightforward application of an
adiabatic dynamics method~see below!. In one dimension, it
is straight forward to enumeratem~eff!(x;b), and apply an
adiabatic dynamics method. However, in a realistic system
such as a quantum liquid, the position dependent effective
mass is a tensor that must be generated on the fly. Efficient
numerical methods capable of handling this situation are cur-
rently being developed.

III. NUMERICAL METHODS

The different semiclassical dynamics methods described
above, centroid and Wigner, require the motion of a variable
on a true quantum mechanical potential of mean force. The
adiabatic path integral centroid and path integral~separable!
Wigner molecular dynamics methods~ACPIMD and ASW-
PIMD! capable for generating this dynamics are formed by
the combination of an efficient path integral molecular dy-
namics method~PIMD!4 and a classical adiabatic principle.
The basic PIMD method, the adiabatic principle and their
combination which defines ACPIMD and ASWPIMD are de-
scribed below.

A. PIMD

In order to derive a path integral molecular dynamics
algorithm, the discrete path integral expression for the ca-
nonical partition function,Q,17–20 is written in the form of a
fictitious phase space integral by introducingP momenta
with arbitrary mass,mc ,

11,21 conjugate to the coordinates
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where f (m,mc ,b,P) represents the overall normalization.
The effective classical Hamiltonian associated with this par-
tition function,
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can be used to define a molecular dynamics sampling tool.
Path integrals are notoriously difficult to evaluate using

molecular dynamics~MD! methods.1 The stiff harmonic
terms or bonds present in the classical Hamiltonian, Eq.
~3.2!, give rise to a nonergodic dynamics, a MD time step
that decreases as the square root of the number discretiza-
tions,P1/2, and a slow sampling of the available phase space
due to the wide range of normal mode frequencies~associ-
ated with the bonds!. These problems can be overcome
through the combination of several methods.4,22–24The mas-
sive Nose´–Hoover chain canonical dynamics method gives
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an ergodic canonical dynamics, multiple time step integra-
tion eliminates theP1/2 dependence of the time step and a
noncanonical transformation of variables places the normal
modes on the same frequency scale. The coupling of the
massive Nose´–Hoover chain canonical dynamics
method4,22,23 ~one Nose´–Hoover chain per degree of free-
dom! to multiple time integration24 is discussed, in detail,
elsewhere.4 The appropriate variable changes are reviewed
below.

There are two variables transformations of interest here.
The first transformation, useful in centroid dynamics, is to
the set of normal modes~P even!25

xn5 (
k51

P

ak expF2p i ~n21!~k21!

P G , ~3.3!

where a15Re(a1), a(P12)/25Re(a(P12)/2), aP2k12 5 ak*
and

u15a1 ; uP5a~P12!/2 ,
~3.4!

u2k225Re~ak!; u2k215Im~ak!

define theP independent variables.5–8 The associated classi-
cal Hamiltonian is
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~This is only equivalent to Fourier path integrals in theP5`
limit.26! The transformation is noncanonical because the
masses, themui

are chosen to be$mu1
5 m,muk

5 mlc
2lk% so

that all the modes have the same frequency. Fast Fourier
transforms~FFTs! can be used to switch back and forth be-
tween the Cartesian and normal mode coordinates as well as
to generate the forces on the normal modes from the forces
on the Cartesian variables~see the Appendix!. One is not
necessarily restricted toP52n as modern FFT packages
will, in general, contain efficientP52n3m5l radix methods.

The second transformation, useful in path integral sepa-
rable second moment Wigner dynamics, is to the staging
coordinates,2,4
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. ~3.6!

The inverse transformation is
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Here, the associated classical Hamiltonian is
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where themasses,$mu1

5 m/(2bT̄),muk
5 gs

2mk%, are again,
chosen to give all the modes the same frequency. For sim-
plicity u1 will be referred to as ‘‘the’’ staging bead and the
otheruk as the staging modes. More general staging trans-
formations and the method of application~the analog of the
Appendix! are presented elsewhere.4 The forward and back-
ward staging transformations are very fast because of their
simple recursive nature. Note, the staging Hamiltonian is in-
variant to a cyclic relabeling of the Cartesian positions,
xi→xi1L where i1L5 i1L2P if i1 l.P, although the
transform alters the specific values of theu’s. This relabeling
operation is referred to as a mass rotation.4 A third
transformation27

xk5u11S 2PD 1/2(
m52

P

um sinS ~m21!~k21!p

P D ~3.9!

which can, also, be applied using FFTs is not as computa-
tional efficient as the staging method.

The transformations defined above give rise to the same
expression for the force on the centroid coordinate as for the
force on the staging bead,

F15
1

P (
i51

P

“ iV~xi !. ~3.10!

If the potential is quadratic thenF152mv2xc wherexc is,
in fact, the centroid coordinate.

B. Adiabatic dynamics

A general treatment of adiabatic dynamics has been pre-
sented elsewhere.12 Some of the arguments have been re-
peated here for completeness. Consider two set of degrees of
freedom,$vx ,x% and $vy ,y%, undergoing Nose´–Hoover chain
canonical dynamics

ẋ5vx , ẏ5vy , v̇x5
Fx~x,y!
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2vxvh~x,1! ,
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wherea is summed over bothx andy andM is the number
of thermostats~h~a!’s! in the two Nose´–Hoover chains. Note,
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different temperatures,Tx/Ty , have been associated with the
x/y degrees of freedom. The Liouville operator for this dy-
namics is

iL5 iL x1 iL y1 iL x
~NHC!1 iL y

~NHC! ,

iL x5vx–“x1
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In the limit that thex variables are moving fast compared to
the y variables, the evolution operator for the dynamics can
be written as
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The solution to the equations of motion for they subsystem
determined from this approximate evolution operator is,
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The functions x(adb)@x8,vx8 ,vhx
8 ;y8;t# and vx

(adb)

3@x8,vx8 ,vhx
8 ;y;t# denote the positions and velocities at

time, t, obtained from the Nose´–Hoover chain dynamics of

thex subsystem with potential energy,V~x,y!, at fixedy8 and
initial condition, $x8,vx8 ,vhx

8 %. Similarly, the functions la-

beled, superscript~ref!, refer to the action of the reference
Liouville operator, iL ~ref!, on they subsystem. If the time
averages in the integrals are taken to the phase space aver-
ages than@i.e., the~adb! dynamics is ‘‘ergodic’’ on this time
scale#
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whereQx(bx ,y) is the canonical partition function of thex
degrees of freedom at temperature,kTx51/bx at fixed y.
Furthermore, in the limitDt goes to zero with the condition
that the the mass of thex degrees of freedom is taken to zero
fast enough that the time averages may be replaced by phase
space averages, the evolution operator for reduced dynamics
~i.e., they subsystem! can be written as,

expS DtF̄~y!
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my
–“vyGDt D
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1

bx
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The analysis presented above demonstrates that under
appropriate conditions, the slow subsystem, they, at tem-
perature,Ty , can be made to move on the potential of mean
force generated by the fast subsystem, thex, at temperature,
Tx ~i.e., V̄~y;bx!!. The traditional Car–Parrinello method11

corresponds toTx small so thatV̄~y;bx! is at a minimum
with respect to thex. The methods of this paper require
Ty5Tx . The third limit, Ty!Tx , the parametric minimiza-
tion of the potential of mean force~i.e. V̄~y;bx! is minimized
with respect toy!, is, also, of use in some applications.

C. Adiabatic centroid and Wigner PIMD

Centroid/separable Wigner semiclassical dynamics re-
quires the centroid/staging degree of freedom to move on the
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potential of mean force formed by the other modes in the
problem. The coordinate systems defined in Sec.~III A !, con-
veniently isolate the centroid/staging coordinates. It is, there-
fore, only necessary to adjust the parameter,ga , present in
the masses of the normal/staging modes so that the massive
Nosé–Hoover canonical dynamics of these subsidiary de-
grees of freedom is fast compared to the motion of desired
the centroid/staging coordinate. No other programming or
algorithmic changes are required.

It is not possible to straightforwardly apply an adiabatic
dynamics method to generate, the nonseparable Wigner
semiclassical dynamics because equations of motion

ẍ5
F ~eff!~x;b!m~eff!~x;b!

@m̄~eff!~b!#2
1
ẋ2

2

d log@m~eff!~x;b!#

dx
~3.17!

contain terms likê F ~eff!(x;b)&^m~eff!(x;b)&. This situation
requires the introduction of two independent path integral
polymer chains and is quite a challenging numerical prob-
lem. However, in one dimensional systems, the effective
mass can be independently enumerated and the adiabatic
dynamics method directly applied~see Results section of
Paper I!.

IV. RESULTS

In this section, the semiclassical dynamics methods,
adiabatic separable second momentum Wigner and adiabatic
centroid path integral molecular dynamics~ASWPIMD and
ACPIMD! are tested on both model and realistic problems.

A. Anharmonic oscillator

The ability of ASWPIMD and ACPIMD to efficiently
produce the time correlation functions of the model
Hamiltonian,5–8

Ĥ52
\2

2m

d2

dx2
1
mv2x2

2
1gx4, ~4.1!

where m51, v51, g50.1, m~eff!50.325, at temperature,
b\v55, is examined. The path integral was discretized into
P5128 beads or imaginary time slices. In both methods, a
time step of 0.08ga/v wherega is the adiabaticity control
parameter, was employed. Six hundred runs of length 16
harmonic periods were performed for each value ofga and
used to generate the time correlation functions. In the cen-
troid method, the velocity of the centroid coordinate~only!
was resampled at the beginning of each run while in the
Wigner method the velocity resampling of the staging bead

FIG. 1. ~a! The real part of the position–position correlation function,
Cxx(t) for the model Hamiltonian, Eq.~4.1! calculated usingACPIMD. The
time scale ratios, 1:1, the solid line, 4:1, the short dotted line, and 16:1, the
long dashed lined are shown.~b! The real part of the position–position
correlation function calculated usingASWPIMD. The time scale ratios, 1:1, the
solid line, 4:1, the short dotted line, and 16:1, the long dashed lined are
shown.

FIG. 2. ~a! The velocity autocorrelation function of the molecular center of
mass in fluid para-hydrogen at the state point,$T525 K, V̄531.7
cm3 mol21%, calculated usingACPIMD. The time scale ratios, 1:1, the solid
line, 4:1, the short dotted line and 16:1 the long dashed line are shown.~b!
The velocity autocorrelation function of the molecular center of mass in
fluid para-hydrogen at the state point,$T525 K, V̄531.7 cm3 mol21%, cal-
culated usingASWPIMD. The time scale ratios, 1:1, the solid line, 4:1, the
short dotted line and 16:1 the long dashed line are shown.
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coordinate was supplemented by a mass rotation~see Sec.
III !. Thermostats were coupled to each of the normal/staging
modes but not to the centroid/staging bead.

The efficiency of the two numerical techniques, ASW-
PIMD and ACPIMD, is directly related to the ‘‘separability’’
of the forces in the two coordinate systems, staging and
normal modes, respectively. In Sec. III, it was shown that the
preaveraged expressions for the force on the staging bead
and the centroid coordinate are the same,Fpre
5(1/P)( i51

P Fi(xi). For a harmonic oscillator, the centroid
force is completely decoupled from the other centroid vari-
ables,Fpre52vwxc , while the staging modes are strongly
coupled. Therefore, ASWPIMD may require a larger adia-
batic separation~smallerga! than ACPIMD. In Fig. 4, the
convergence of the two methods with increasing adiabatic
separation~decreasingga! is shown for the anharmonic os-
cillator. Unsurprisingly, the centroid method converges with
almost no separation while the Wigner method requires a
time dilation factor of at least 4.~An N:1 calculation re-
quires a time of step of 0.08/(Nv), i.e., ga51/N.! Thus
ACPIMD is about a factor of 4 times more efficient then
ASWPIMD for this simple example. Finally, the surprising
similarity between the correlation functions produced by the
two types methods, separable second moment Wigner dy-

namics and the centroid dynamics, should be noted. The ex-
act correlation function has little decay on this time scale.5,10

The nonseparable Wigner dynamics gives similar results~an
enumerated position dependent effective mass is employed.!

B. Fluid para-hydrogen

The semiclassical dynamics methods, ACPIMD and
ASWPIMD were tested on a realistic manybody problem,
fluid para-hydrogen at the state point,$T525 K, V̄531.7
cm3 mol21% ~approximately zero average pressure.28,29 The
para-hydrogen molecules were treated as spherical particles
and a pair potential used to describe their interactions.28–30

The minimum of the intermolecularpara-hydrogen pair po-
tential occurs at 3.44 Å and the well depth is 36 K. The mass
of the particles arem53672 a.u. The system size studied
was$N5180,P516% whereN is the number of particles and
P is the number of discretizations of the path integral. The
effective mass used in the separable second moment Wigner
dynamics calculation wasm~eff!52250 a.u. A time steps of
7.5ga fs was employed in all calculations. All runs were of
length 75 ps. It should be noted that the ASWPIMD method
can be expected to fail here as a straightforward scaling of
the frequencies of all the modes is clearly too naive. The
application of the higher level nonseparable Wigner dynam-
ics to this problem is quite challenging and beyond the scope
of this paper.

First, the convergence of the two methods, ACPIMD and
ASWPIMD, with the degree of adiabatic separation is shown
~Fig. 1!. In Fig. 2, the Kubo transformed mean square dis-
placement of the molecular center of mass are plotted for
various separations in time scale~ga!. Centroid dynamics
converges with little or no adiabatic separation. Wigner dy-

FIG. 3. ~a! The Kubo transformed mean square displacement of the molecu-
lar center of mass in fluidpara-hydrogen at the state point$T525 K,
V̄531.7 cm3 mol21%, calculated using centroid dynamics, the solid line,
Wigner staging dynamics, the dotted line, and classical dynamics~V̄531.7
cm3 mol21!, the long dashed line.~b! The velocity autocorrelation function
of the molecular center of mass in fluidpara-hydrogen at the state point
$T525 K, V̄531.7 cm3 mol21%, calculated using centroid dynamics, the
solid line, Wigner staging dynamics, the dotted line and classical dynamics
~V̄531.7 cm3 mol21!, the long dashed line.

FIG. 4. The molecule center of mass pair distribution function for fluid
para-hydrogen at T525 K treated quantum mechanically~V̄531.7
cm3 mol21!, the solid line, and treated classically~V̄520.2 cm3 mol21!, the
dotted line. In both the classical and quantum calculations, the average
pressure is approximately zero.
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namics requires a time dilation factor of approximately 4.
Next, the results of centroid dynamics and separable sec-

ond moment Wigner dynamics are compared both to each
other and classical mechanics. In Fig. 3, the Kubo trans-
formed mean square displacement of the molecular center of
mass and the molecular center of mass velocity autocorrela-
tion function, calculated using the centroid method, the sepa-
rable second moment Wigner method, as well as simple clas-
sical dynamics are presented. In the classical calculations, a
molar volume of,V̄~class!520.2 cm3 mol21, was used so that
the average pressure of the classical system is approximately
zero.28 The quantum and classical molecular center of mass
pair distribution functions~structure! are compared in Fig. 4
and the thermodynamic data is presented in Table I.28,29

The classical structure, dynamics and thermodynamics
of para-hydrogen are completely different from their corre-
sponding quantum mechanical counterparts~see Figs. 3 and
4 and in Table I!. For example, the first peaks in the radial
distribution and the zero pressure molar volumes differ by
factors of 1.5 and diffusion coefficients by a factor of 3.28,29

The classical and quantum velocity autocorrelation functions
are also different. Unsurprisingly, classical mechanics is un-
able to describe the properties of fluidpara-hydrogen.

The centroid and separable second moment Wigner
method, also, give different results for the dynamical prop-
erties examined here. The centroid seems to be in good
agreement with experiment,D51.6 Å2 ps21 31 while the
separable second moment Wigner method is off by approxi-
mately 40%. Additional calculations at$T514 K, V̄525.6

cm3 mol21% ~again, approximately zero average pressure28,29!
show that the centroid method is in agreement with experi-
ment while the Wigner based method has incurred about
40% error. At 14 K, the classical system is a solid. As stated
above, the separable second moment Wigner method is likely
in error because simply scaling frequencies by a constant
factor is a rather poor approximation. Application of the
higher level nonseparable Wigner semiclassical dynamics to
this system awaits further methodological development.

V. CONCLUSIONS

Numerical algorithms are developed for use with cen-
troid dynamics and the separable second moment Wigner
dynamics. The algorithms were found to be stable and effi-
cient on both model and realistic problems. The centroid
method, in particular, seems to give good results with little or
no overhead. The overhead of the Wigner based method is
approximately a factor of four. The two methods give re-
markably similar results for the one dimensional model prob-
lem but behave differently in the nontrivial calculation of the
properties of fluidpara-hydrogen as expected. The centroid
method seems to be give good agreement with experiment.
Therefore, the structure and to a reasonable approximation to
dynamics can be efficiently obtained in quantum mechanical
manybody systems within the centroid framework. It will be
of interest to see if the nonseparable Wigner theory is ca-
pable of correcting the results of the more basic second mo-
ment variant.
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APPENDIX

Here, is the series of logical steps necessary to imple-
ment the centroid PIMD algorithm.

To get the forces on the normal modes:

~1! Set the real part of a complex vector equal to the Carte-
sian force~I51, P!.

~2! Set the imaginary part of the complex vector equal to
zero ~I51, P!.

~3! Perform an unscaled backward fast Fourier transform on
the vector.

~4! The force on the~1!st mode is the real part of the 1st
element of the transformed vector.

~5! The force on the (P)th mode is the real part of the (P/
211)th element of the transformed vector.

~6! The force on the~1!st mode~the centroid! is the real part
of the 1st element of the transformed vector.

~7! The force on the (2I22)th mode is twice the real part of
the I th element of the transformed vector~I52, P/2!.

TABLE I. Energetics ofpara-hydrogen,Pext;0. Qcal is the quantum path
integral calculated value, Exp is the experimental value, Ccal is the corre-
sponding value from the classical mechanics calculation,T is the tempera-
ture, ^E& is the total energy,̂V& is the potential energy,̂KE& is the kinetic
energy and̂Vol& is the molar volume.

Label T ~K! ^E& ~K! ^V& ~K! ^KE& ~K! ^Vol& ~cm3 mol21!

Qcal 25 247 2109 62 31.7
Ccal 25 2150 2187 38 20.2
Exp 25 250 31.2
Qcal 14 273 2135 62 25.6
Ccal 14 2222 2243 21 16.6
Exp 14 275 26.2

TABLE II. Diffusion Coefficients ofpara-hydrogen,Pext;0. QcalW is the
value obtained from Wigner dynamics, QcalC is the value obtained from
centroid dynamics, Exp is the experimental value, Ccal is the corresponding
classical value.

Label T ~K! D ~Å2/ps!

QcalW 25 2.2
QcalC 25 1.5
Ccal 25 0.5
Exp 25 1.6
QcalW 14 0.55
QcalC 14 0.35
Ccal 14
Exp 14 0.4
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~8! The force on the (2I21)th mode is twice the imaginary
part of theI th element of the transformed vector~I52,

P/2!.

To transform the normal modes coordinates to Cartesian po-
sitions:

~1! Set the real part of the~1!st element of complex vector
equal to the value of the~1!st mode~the centroid posi-
tion!.

~2! Set the real part of the (P/211)st element of the com-
plex vector equal to the value of thePth mode.

~3! Set the real part of the (I )th and the (P2I12)th ele-
ments of the complex vector equal to the value of the
(2I22)th mode~I51, P/2!.

~4! Set the imaginary part of the (I )th and the (P2I12)th
elements of the complex vector equal to the plus and
minus the value of the (2I21)th mode~I51, P/2!, re-
spectively.

~5! Perform an unscaled forward fast Fourier transform on
the vector.

~6! The Cartesian position of the (I )th bead is equal to the
real part of theI th element of the transformed vector
~I51, P!.

To transform the Cartesian positions to normal modes coor-
dinates:

~1! Set the real part of theI th element of the a complex
vector equal to the Cartesian position of the (I )th bead
~I51, P!.

~2! Perform a scaled backward fast Fourier transform on the
vector.

~3! Set the value of the~1!st mode~the centroid position!
equal to the real part of the~1!st element of the trans-
formed vector.

~4! Set the value of thePth mode equal to the real part of
the (P/211)st element of the transformed vector.

~5! Set the value of the (2I22)th mode equal to the real
part of the (I )th element of the transformed vector~I52,
P/2!.

~6! Set the value of the (2I21)th mode equal to the imagi-
nary part of the (I )th element of the transformed vector
~I52, P/2!.

Free particle eigenvalue values of each normal modes:

~1! The eigenvalue of the~1!st mode is zero.
~2! The eigenvalue of the (P)th mode is 4P.
~3! The eigenvalues of the (2I22)th and the (2I21)th

modes are 4P@12cos(2p[ I21]/P)].
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