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The phase space formulation of quantum statistical mechanics using the Feynman path centroid
density offers an alternative perspective to the standard Wigner prescription for the classical-like
evaluation of equilibrium and/or dynamical quantities of statistical systems. The use of this
formulation has been implicit in recent work on quantum rate theories, for example, in which the
centroid density distribution replaces the classical Boltzmann distribution. In order to further
understand the approximations involved in this and similar transcriptions, the present work
elaborates and clarifies the issue of operator ordering in a rigorous centroid-based formulation. In
particular, through the use of the Weyl correspondence, a precise definition of the centroid symbol
of operators and their products is presented. Though we fall short of finding the algebraic structure
tantamount to that found in the Weyl symbols—of which the Wigner distribution is an example—
the resulting expressions have internal consistency and are amenable to approximate evaluation
through cumulant expansions. €995 American Institute of Physics.

I. INTRODUCTION been shown to be isomorphic to the classical partition func-
tion of a flexible ring polymet!~1® The main drawback of
Quantum effects play a significant role in the dynamicsthis method is that the isomorphic classical phase space is
of many complex systems of chemical interest. Unfortu-significantly larger than the original phase space of the clas-
nately, these effects are rarely calculated exactly because théal problem. Use of the path centroid variable—as a pro-
constructiorand solution of the full quantum statistical prob- jection of this enlarged space—avoids this problem in pro-
lem is often unmanageable. On the other hand, Monte Carloiding a classical symbol which acts on a classical phase
and molecular dynamics techniques have proven to be vergpace with a dimensionality equal to that of the original
effective in calculatingclassical quantities within statistical problem!® Besides being conceptually appealing, the cen-
mechanics. The conclusion of this syllogism is that a quantroid formulation can also provide accurate results as is sug-
tum statistical problem viewed classically-e-, in terms of  gested by recent wotk-?®as well as by the original calcu-
some underlying phase space with an associated classidation of Feynman and Hibbin which they show that the
Hamiltonian—would be amenable to calculation. This phaseentroid is the classical-like coordinate for which a perturba-
space perspective is particularly needed in obtaining quartion theory has no first-order correction. Thus the centroid
tum dynamical properties as the extensions to equilibrium provides an optimal variationdtlassical-lik¢ phase space
properties are better understobd® representation for the path integral. A missing element in the
As early as the 1930s, Wigrlérproposed a phase space original Feynman—Hibbs theoly, as well as its
distribution function which is a classical-type-correspondenigeneralizations!'®2* was the classical phase space frame-
to the quantum density matrix, and with which one can comwork in which the centroid density could be used to calculate
pute equilibrium averages within a classical framewarg  equilibrium averages or correlations in a general sense. Two
to the arbitrary desired order . Concurrently, Weyipre- independent, but similar, formulations have been proposed
sented a correspondence rule between quantum operators aredently within the literature, with the differences being
their corresponding classicsymbolsover the complex num- found primarily in the approximate scheme chosen to evalu-
bers. The two methods are intimately related the Wigner ate the centroid path integraf$2®
distribution can be defined in terms of the Weyl symbols, but At the simplest level, one can use a variational
the use of the Weyl correspondence does not necessarily inapproximation’'8212’to evaluate the centroid constrained
ply the use of the Wigner prescription. Nonetheless, whilepath integral or centroid “density.” Tognetti and
the use of the Wigner distribution has led to several imporco-workers?® have suggested an interesting extension of this
tant successes, its use has been hampered by the classicdligory into the centroid phase space through an approach
unphysical negative values it can take, and by the difficultysimilar to the self-consistent harmonic approximation
associated with calculating time-dependent behdVvidr. (SCHA).22-3!Alternatively, in previous work:?3two of the
These drawbacks are intimately related since both are mangresent authors have used a second-order cumulant expan-
festations of the fact that the Wigner distribution is not asion to evaluate operator averages and imaginary-time corre-
classical density, and consequently does not satisfy &tions in the centroid phase space. In principle, evaluation of
classical—+e., linear differential—transport equation, nor the second-order cumulant expressions using the exact
the classical Liouville’s theorem for density conservafion. Hamiltonian can provide a better treatment than the SCHA
Alternatively, the discretization of the Feynman path in-approach, as it directly includes anharmonic effects in the
tegral representatidh of a quantum partition function has averaging. In practice, this quantity must be evaluated ap-
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proximately or numerically; in particular, if a harmonic ap- where(, is a phase space vector, afifis a functional of the
proximation is employed, the error is on the same order afeynman path{(-) defined through the centroid formuld,
that of the harmonic estimatésin summary, the cumulant hp

approach has the advantages that, unlike the SCHA estimate, §o:(ﬁ,3)_lf dr(7). 2.2

it provides a systematic method for obtaining the phase space 0

centroid representation of equilibrium quantities for a gen{Note that the center dot in the notatio(“)” is used to

eral potential, and it need not involve the SCHA. However,emphasize thaf is a path—i.e., a function of the imaginary
the presentation in Ref. 23 of the phase space centroid fofime—and not the valué(7) specified by the dummy index
mulation did not stress the correspondence between quantum The notation which this would otherwise afford is not
operators and their symbols, or the associated problems reesjrable here—though standard in the literature—as the
sulting from non-commutative operators, and this papehathand the value it can take at a particular imaginary time
serves to clarify these concepts. slice will often appear within the same formdl@he action

The outline of the paper is as follows: The phase spac@nctional for the imaginary-time phase space path integral is
path centroid density perspective is reviewed in Sec. Il. Inthe ysual action over the patff-),

order to construct the desired averages, one must first stipu-

late the quantum-classical correspondence. In this work, the ()= fﬁﬁdn{:[g’( 1, 2.3
Weyl ordering rulé is used to specify the canonical ordering 0

for the gquantum mechanical operators, and some releval
results are reviewed briefly in Sec. I{This is a natural _
choice for the correspondence and it is also the one taken by £()= %gp- m~1. Lp—18p Lqt V(D). (2.4
Tognetti and coworkerg® In Sec. IV, the equilibrium aver-
age with respect to the centroid density is rigorously derive
using a proof based on the earlier heuristic argument of Re
23. The two primary differences between this derivation an
the previous one aré) that care is taken to establish the
appropriate classical correspondentsmbols—to the quan-
tum operators, an¢b) that the non-commutativity of the po-
sition and momentum operators is explicitly considered. As
consequence, the final general expressions are actually of a ~  fdZac({)pc()

different form, with the earlieliteral result$® being related (A)= T dipdO) 2.9
to it by a stationary phase approximation. The centroid-based

expression for imaginary-time correlation functions is ob_where thecentroid symbol @ corresponds to the operator

tained in Sec. V taking advantage of this earlier analysis. A$": Either because the algebraic structure of this symbol is
in previous worlé-23the form of these averages lends itself intrinsically interesting, or because of the importance of cor-
to a second—ordér cumulant expansion and the revised e)r((_alation functions in statistical mechanics, it is also useful to
pressions are presented in Sec. VI. These formulas providedgrve acentroid -product rule,

rigorous justification for the practical algorithm implicit in (AB),=a.xb,, (2.6)

the earlier work for the inclusion of non-commutative ef-

fects. The generalization of these formulas for the construcl @nalogy to the Weyk-product to be reviewed in the next
tion of real-time correlation functio?&2%is presented in Sec. Section. Given the centroid symbols of operators one can

VII. Finally, some suggestions for the implementation of thisProceed to calculate exact quantum statistical mechanical av-

formulation are discussed in the concluding Sec. VIII. erages through E2.5 within a calculation which has a
For simplicity, the following conventions have been classical structure. In this work, we fall short of obtaining the

adopted in the notation throughout the paper. Vectors an§€neral ruldEq. (2.6] and present a resuit only for centroid

matrices are not explicitly identified through the notation,SYMPOIs within a trace. This, however, is sufficient to evalu-
The phase space is assumed to bedimensional and con- ate thermodynamic quantities. Moreover, the formalism to be

tains the element=(p,q) with positiong and momentum presented can be used to guide the approximate derivations
p. In general, positioimomentur) components of a phase of these quantities using the cumulant exparfSian the

26 : H
space variable are referred to through &p) subscript. An S,CHA for the centroid symbol, or using ?”?"0%%‘?329‘5“'
operatorO is specifically identified as such by an overhat. Niaues to those employed for the Wigner distributidr:

But with the imaginary-time Lagrangia#,

The ultimate goal of the centroid formulation of quan-
um statistical mechanics is to obtain expressions in which
he final statistical quantities are obtained by averaging over
he distribution of the effective classical-like phase space
variable {.—i.e., the centroid*?3?® This is tantamount to
requiring that averages be computed through the classical-
6I1ike partition expression,

Il. PHASE SPACE FEYNMAN PATH CENTROID lll. WEYL CORRESPONDENCE RULE

DENSITY The first step in obtaining the centroid symbol requires
The phase space centroid density is defined through thg" identification between an operat(_)r and its clas_smal sym-
: . 26 bol. The Weyl correspondence provides a natural identifica-
constrained path integfal L . I
tion in which the position and momentum operators are
_ treated on an equal footing, and as such is an ideal choice for
= — S ()R )
pe(£e) f DL8(Lcdo)e ' (2.3 the centroid phase space objects we wish to constrifct.
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The canonical ordering of the position and momentumwhere the overarrows indicate the directionality of the opera-
operators is fixed through the parametric family of Heisentor. However, it turns out that within a trace theproduct
berg operatoré=>* reduces to a simple product, and thus traces can be obtained
R o easily through the relation,
T(p,q)Ee'(pq’qp)/h, (3.1

AR — -N
where the hats denote operators. Alternatively, one can use a TrAB=(27%) f dzaz)b(2), (3.6

q be_fqref_) orp before_q ordering, for example,_as was done where it should be emphasized that there is no approximation
implicitly in the centroid phase space formulation of Ref. 23.. : . a3 T . .
. involved in this relatior?* The approximations involved in
Though these are simpler, they do not place momentum and_. o . .
o . . . using the Weyl correspondence will in general arise either
position on the same footing, nor do they manifestly provid : ) . .
. . . ecause the symbol is obtained approximately, or because it
a Fourier structure to the representation. It is these two fea- . . . .
; . oo Is time-evolved through the classical equations of motion
tures of the Heisenberg operators which are exploited in the .
. ; . . . father than through the correspondence of the time-evolved
construction of the centroid symbols in the remainder of this
work guantum operator.
) The Wigner distribution is the symbol corresponding to
The Weyl correspondence rule between an operator an . 334 : :
. . AT . the density matriX:>*As such all of the properties described
its symbolcan be defined implicitly through the Heisenberg . .
thus far for general operators apply to calculations using the

A .
operators* The alternate symbab, , corresponding to the Wigner distribution. However, the use of the Weyl corre-

operatorA, is defined through either of the equations: spondence rule does not require that this be the distribution,
and in the remaining sections the centroid density will

A=(27Tﬁ)7Nf dz¢a(2)T(2), (3.2a8  emerge as an alternative phase space distribution, with the
Weyl symbols providing the underlying form for the classical
b.(2)=TH[T(2)'A]. (3.2  analogues of the quantum operators.
The symbola corresponding to the operatér is implicitly
defined through the alternate symbol, IV. EQUILIBRIUM AVERAGES
R L The equilibrium average of a quantity can be written in
(A)sEa(Z)Z(ZTfﬁ)*Nf dz’ ¢y(z')e' P a-aerh, terms of the averages of the Heisenberg operators using the
(3.20 alternate symbols, as
or <AF#ZWM‘Nfd%¢4%K?Q&% 4.2
b (Z):(zﬂ_ﬁ)—Nf dz/a(z/)ei(p’q—q’p)/ﬁ. (3.29 Each of the equilibrium averages of the Heisenberg operators
2 may in turn be calculated through the Feynman path integral,

Intuitively, the one-to-one correspondence between an opera-  ~  __, N
tor and its symbol can be seen from the fact that each can be (A)=Z""(2mh) dZy¢a(2o)
uniquely represented by the Fourier-like componesis

The uniqueness of the projection from the operator onto its % f DIT[L():zp]e” SHEOVA 4.2
symbol can also be seen through the more standard—but
equivalent—definition of the Weyl symb?l, where eacl{(-) is a continuous phase-space path indexed by
an imaginary time between 0 aB; and T is an expecta-
a(z):J dx’eipx/”%x—%x’|A|x+%x’). (3.3 tion value of the Heisenberg operator taken between a par-

ticular set of time slices of the path integral,

In this work, Eq.(3.2) is preferred because its structure is (Lo(T+ e)|1A'(z ) £o(7))
L " . ., 71— 154 0/l5p
symmetric in the position and momentum variables as well  T[{(-);z0]= Cr+Ola(7) ,
as being reminiscent of the Fourier transformations used in q P
the earlier heuristic arguments of the phase space centroilhere the timee in 7+ € denotes the subsequent time slice in

4.3

formalism?® the discretized representation of the path, and represents an
The symbol of a product of operators is related through'infinitesimal” time in the continuum limit. Note that be-
the *-product, defined by cause of the invariance of the trace, E412) is independent
o - of 7, and thusr has not been included within the argument
a*b=(AB),=a€"?p, (3.4  of T.

o i ] . The centroid variable/;, and the fluctuation of the
whereA is the Janus operator which acts as a differential orFeynman path about it through the relation,

both sides;®>36

o (n=4n~Lc, (4.4
‘*EE i i _ i i (3.5 provides a change-of-variables in the path inteffa. (4.2)]
T dq; Ip; Ip; Iq; ' which converts it to the suggestive form,
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(Ay=2"* f décac({o)pe({o), 45  aS¢)=pdL) 2mh) N f dze,(z)e (Aep—Pleg)l
where XJ D e ilaip()—pir+ Vg S+ (VA
aczo=pco) (2mh) N | oF [ dzogyizo)T @13
) upon integration over; through the stationary phase ap-
X[Z#Z( ):zg]e” SéctEIlh, (4.6)  proximation(SPA). This should not be surprising as the SPA

ignores the higher order terms which manifest the non-
Equation(4.5) is precisely of the form in E¢(2.5) since the commutativity of the position and momentum operators, and
partition functionZ is just the integral over the centroid den- this is precisely what was not explicitly addressed in the
sity. What remains is to simplify the form of the centroid earlier analysis. Equatiof4.10, however, contains no ap-
symbola.. proximation and is the central result of this section. Alterna-

The matrix elemenT provides the first departure from tively, the approximate evaluation of E@t.10 using a cu-

the derivation in the earlier work. If the operatorA con- ~ mulant expansion—see Sec. VI—does retain terms arising
sisted exclusively of commuting position and momentum opfrom the non-commutativity.

erators, i.e., We note, in passing, that the equilibrium average of an
operator can be written with respect to the Wigner distribu-
A=AG%.Bo), (47  tionas
wherex andx, represent orthogonal Cartesian subspaces of <A>:Z—1(27Tﬁ)—NJ dza(z)(e‘ﬁ'q)s, (4.12
the configuration space, then the matrix elemél'ntsbepend
only on¢(7) through the expression, where here the Wigner distribution has been explicitly writ-

ten as the Weyl symbol of the Boltzmann density. Since the
operatorA is arbitrary, comparison with Eq4.10 suggests
the following path integral form for the Wigner distribution:

T[Z(+);Zo]=€'[PoX|(7) =G0 PL(DVA (4.9

where the invariance of the trace has been used. Up to
trivial sign, Eq.(4.8) provides the Fourier expansion which .

_oN ~2i[q— {g(r+€)][p— I =S ()
led to the configuration representation or momentum repre(«e S(z)—2 fi)fe 1= el P Lp(nlifg=ALIVE,
sentation results for the centroid formula obtained eaftiét. (4.13

However for an arbitrary operator, all of the matrix elements, = = i ) i
which is equivalent to the path integral evaluation of the

T[é«(.);ZO]:ei[po-§q(r+e)fqo-§p(r)]/ﬁefipo-q0/2h, (4.9 definition in Eq.(3.2).

contribute. The presence of tlenfinitesimal time is thus a

manifestation of the non-commutation between position and; |MAGINARY-TIME CORRELATION EUNCTIONS

momentum, as is the presence of the second term on the

right-hand side of the equality in E@.9). In the continuum In the 7—0 limit, the imaginary-time correlation func-

limit of the Feynman path integrals, non-continuous pathgion, <A(T)B(O)> reduces to the equilibrium average of the

are significant, and the term can play a non-trivial role in operator productAB To illustrate that this is indeed the

the calculation. case, both of these expressions are explicitly presented in
Upon combining equation@t.6) and(4.9), a Fourier ex- this section. This comparison further illustrates the necessary

pansion of the alternate symbol into the Weyl symbolfof role played by the infinitesimak in representing non-

and some standard manipulation leads to commutativity in the continuum limit.
A. Zero imaginary-time case
— -1 —N ~
ac(fe)=pe(e) ~(mh) j dzla(zl)f D¢ As before, the equilibrium average of a product of op-
. . erators,A and B, may be written in terms of their corre-
XY4[2y,4c:7,¢(-)]e et OV, (4.108  sponding alternate Weyl symbols,
where

(AB)=(2mh) ™ [ dz, [ dzguz gz

Yl[zlyéc;T’Z(.)]Ee—2i[ql—{cyq—§qw'+6)][p1_5c,p_§p(7)](/j.,10b X<:|\-(Za)-’|\-(zb)> (51)

This may be evaluated most directly by taking advantage of

and 7 is explicitly referenced for later convenience thoughthe product rule of Heisenberg operatdtsvhich may be
the trace is invariant to it. Other than for a trivial sign in the \yitten as

Fourier components, Eq4.10 reduces essentially to Eq. R R R _
(2.9 in Ref. 23, T(zy) T(2y) =T(z,+ 7)€ (Padb~daPp)/2% (5.2
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With this substitution, the derivation is now analogous to that n A . A
employed in the previous section for the equilibrium aver-  (A(7)B(0))=Z f dZ(A(1B(0))epe(de),  (5.68

age, and the result follows similarly, providing
where

.
he)=2 f Al ABpel L) ©3 ABO)=put) M) D f dz, f 02,8(24)b(2y)

where

AR X | DIV 4[24, Lc5(7+€),L(-
<AB>c=pc(§c>*l(wﬁ>*2Nfdzaf dzya(z.)b(zy) J EYa[Za,Lei(TH€),4()]

XY [2y,40:02(-)]e Skt LA (5 6h)

><J DY [ 20,2y, 8¢5 7,4(+) ] et O, with Y, defined as in Eq(4.10b.
In the 7—0 limit, the imaginary-time correlation func-
(5.4a tion in Eq.(5.6b reduces to the zero imaginary-time expres-

and sion in Eq.(5.4). In this limit, the correlation function in Eq.
~ (5.6b contains discrete terms dependent on the three times,
YolZa:2,4c;7.4(+)] 7, 7+¢€, and 7+ 2¢, while only two of these appear in Eq.
= o 2[(Gp=Ga)ic p~ (Po—Pa)éc,q*+ GaPat ApPp—20pPallh (5.4). As before, these infinitesimal imaginary times arise
i i from the the non-commutation between position and momen-
x @~ 2[(Ah=0a) (7 = (P —Pa) (T + &)/ (5.4 tum operators. Equatios.4) contains only two of these

) _ _ ) imaginary times because the operators were explicitly reor-
Noting that the Weyl symbol for the identity operator is 1, gered by way of Eq(5.2), thereby eliminating the need for

(A)c and B) as calculated through E¢p.4) reduce respec- one of the imaginary time slices in the path integral.
tively to a. andb, as calculated through E¢4.10. Alterna-

tively, this expression could also have been obtained through
the use of the equilibrium result in EG4.10 with the Weyl  v|. CUMULANT EXPANSIONS
producta* b representing the operatéB.

Though the result in Eq5.4) may seem somewhat com- Though result§4.10) and(_5.6b) are formally.the correct
plicated, it is actually simpler than that for the equilibrium 9uantum-mechanical centroid-based expressions, they may
average in light of the cumulant approximation used earliefffer little or no computational advantages compared to the
to evaluate the centroid-path integfalNamely Eq.(5.4) is ongmgl path integrals. The perspective gained in these con-
amenable to a cumulant expansion because the exponent gfuctions, however, suggests that the path fluctuations
the integrand is linear in the fluctuation varialilevhereas should provide a small perturbation to the mostly classical
the corresponding exponent in E@.10 is not. However behavior of the path centroid. This motivates the approxi-
the two are equivalent as the latter can be obtained from th@ate path integration over the fluctuating paghs. Follow-
former as noted above, and the former may be obtained frorf!9 €arlier vyorkz, the averages will be expanded here in
the latter through the introduction of an auxiliary variable. terms of their cumulants and truncated at second order. The

The results for both equilibrium averages and correlatioff€ader is referred to Ref. 26 for an alternative treatment in-

functions using this “trick” and the cumulant expansion are Volving the SCHA. o _ ,
described in Sec. VI. It is useful to begin by defining the centroid-constrained

average of a possibly imaginary-time dependent quartity,
in phase space as

B. General case <Q>CEPC(§C)_1J D7 e Sk LN, (6.2)
The imaginary-time correlation function may be written _ S
in ana|ogy to the equi"brium average in 342) as where the dependence on the centroid VarI@QIB ImpIICIt,
and the subscript ¢” denotes a centroid-constrained aver-
A(PBON=Z"L(27% —ZNJ d f d 7 7 age. With respect to this average, the cumulant expatision
(A(7)B(0)) (2m#) Za | d2a(Za) $o(20) truncated to second order may be written as
1
Xf DLTLL(-);za) (1 €)] (e aif/i>c~exp[2i ai<<</’;>>c+§i2j aia,-<<<7i@',->>c},
XT[L(- )iz, 008 S, (55 €2

where the double bracke{¢- )) are used to denote a cumu-
lant average, and¥ - )). denotes a centroid-constrained cu-
mulant average.

The first-order cumulant for the centroid fluctuation is
trivial, i.e.,

where now the imaginary-time dependence is explicitly in-
cluded in the argument list of in Eq. (4.3). Note that the
infinitesimal imaginary timee in this expression is neces-
sary; for example, ik is set trivially to 0, the zero-time limit
result(5.4) is not recovered. A series of manipulations simi- .
lar to that in Sec. IV leads to the result, {L(1)))=0, (6.3
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which follows from the fact that averages are independent of  a (z.)~det Y427 C(0,{,) — (i%/2)|J|]}
the imaginary time, and that the centroid-constrained average

requires that the integral of the fluctuation over the path is Xf dZ“a(g“ +Z)

zero. The construction of the cumulant average to second ¢

order thus depends only on the second-order cumulant ma-
trix C¢(7,{;) defined by the matrix elements,

Co(7,L0i =L (DL (0))e=(Z{ (DL (0))e, (6.4  where the Gaussian fluctuatighis now a N-dimensional
phase space vector and not a path.

X exp{ — 3Z[C.(04c)— (i%/2)|3]171L), (6.1

where The result in Eq.(6.11) has the same structure as that

- ( Zp(r) obtained in Ref. 23, except for modification of the Gaussian

'(n)=| -~ : (6.5  coupling matrix. In addition to the subtle imaginary-time
Lo(7Te) modification in Eq. (6.5 found in the cumulant matrix

and the second equality results because the first-order avet(0,{.), there is now an additional term;i#|J|/2, which
ages in the fluctuations are zero according to (BcB). Note  affects only those fluctuations involving and p; with the
that the definition ofC.(7,{.) differs from that in Ref. 23 in  same index. This is consistent with the approximation of the
that the momentum and position terms are now evaluated girevious work in which the non-commutation of position and
infinitesimally different time slices. momentum was not explicitly discussed.

A. Equilibrium averages

_— . . B. lation f i
The equilibrium average in Eq4.10 may be written Correlation functions

using the zero time product formula in E(.4) by taking Though the evaluation of the equilibrium average in Eq.
one of the operators to be the identity opera(@he corre- (6.6) in the previous section was motivated by using the zero
sponding Weyl symbol of the latter is 1.) The equilibrium time centroid product formula, the result can also be derived

average may be equivalently written as directly. Briefly, the form of the equilibrium average ame-
nable to the cumulant expansion may also be derived directly
ac((c)Z(Wﬁ)_ZNJ dz.a(z,) from Eq. (4.10 by the introduction of an auxiliary variable

through the following stepga) multiplication by the identity
. operator expressed as an integral over a delta function whose
Xf dzo(Yolza,2p,{c; 7 4() e (6.6)  argument is either of the terms in the exponenYijin Eq.
(4.108], (b) subsequent Fourier representation of the delta
Taking advantage of the tensor algebra of the full phasgynction, and(c) Gaussian integration over a transformed
space, the inner integrand of this equation takes the form, yariable. Similarly, the product centroid symbi@.6b may
<Y2[Za,2b,§c;7,z’(')]>c be rewritten with respect to not one but two auxiliary vari-

ables as,
— 672i[(zafzb)J(zaf Lo)+ U2(23—2)|I|(2a— 2) 1/

X<e2i(za72b)‘]~{’(7)/h>c, (6.7) (A(r)é(O))CE(Trh)*“NJ' dzaf dzba(za)b(zb)f dz,

where use is made of the symplectic matrix, _
(o —1 Xf dz(Yolza,25,{c;(7+€),{(-)]
J=

L (6.9

in which | is theN by N identity matrix. Note that the sym-
plectic matrix is anti-Hermitian J'=—J) and unitary Evaluating the integrand of E¢6.12) provides
(313=1). ) N

A cumulant expansion over the centroid average of theY,[ 25,20, ¢c;(7+€),0(-)]1Y [ 2,,25,4c:0.4(-) ])e
“fluctuation” ¢'(7) truncated at second-order results in

<Y2[Za !Zb 1§C ; T!Z( . )]>C
~ expl — (211%) (24— 2) [ C(0.Lo) — (14/2)]J]]

XY o[ 2y, 24,404 ) ])e- (6.12

— @ 2il(za=2x) N2a— L)+ (112) (24— 2) (24— 2) Vi

% e—zi[<zb—zé)3(zb—gc)+(1/2)(zb—z{))u\(zb—z{))]/h

X 3N (24— 20) — (2015 (2a— 25) H(Za— L)) 6.9 X (A(Zam 2 (7€) (25 2) IOy (6.13
where Once again, a cumulant expansion of the centroid-
0 |1 constrained average, transformation of the integration vari-
|J|E( | 0). (6.10 ables by a simplifying unitary transformation and Gaussian

integration—all of which are analogous to the less tedious
Gaussian integration over the vector varialdg{z,)J pro-  manipulations performed in the derivation of the equilibrium
vides the final result, average—leads to the result,
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A s ~ ot 112 2+ - R R
(A(7)B(0))o=det THATCe (7:Le) Ce (7.Lo)) (A(1)B(0)) = (2m) 2N f dz, f U2 ba(2) b 25)

X J dZ, f dZ-a({c+ La)b(Let L) X(TLL(-)iza (7 + 7+ €)]
x @~ (2L CL (7)) Ty~ (DT [Cg (rio)) - XT[L(-):zp,7"]), (7.

(6.14 where the general path-integral average is over all paths, i.e.,

where the effective Gaussian path fluctuations, [ -] LOIh
Ry C0= e (72
(= , (6.153 _ _ _
V2 instead of the centroid-constrained averéage ). defined by
- o~ Eqg. (6.1). As in Sec. V B, the general imaginary-time corre-
ZbE {+— - (6.150 lation function may be written directly with respect to the
V2 Weyl symbols as

correspond to fluctuations about the centrgidn the sym- a o
bols a and b, respectively. The fluctuations. are phase (A(7)B(0))=(7h) f dZaJ dz,a(z,)b(zp)
space vectors obeying Gaussian statistics through the Gauss-

ian coupling matrix, X(Y1[2a,ci(m+€),L(+)]
C3 (7,60=[C(0.L) — (i#:/2)|3]] XY 1[2y,£6;04()]), (73
+[Cu(7+€,Lo)—(1%12)|I|], (6.16  where theY,; function defined in Eq(4.100 depends on the

which once again differs slightly from that in Ref. 23. As in Path £(+) through its components, and {(-). As before,
the previous subsection, the teiif|J|/2 would be zero if this expression is not_ amena_ble to c_umulant expansion be-
terms of order are ignored, as was effectively done in Cuse the exponent is non-linear with respect to the path
previous work wherein the operators were replaced with thé (+)- Introduction of auxiliary variables as in Sec. VI B pro-
zeroth-order classicalvis-a-vis principal—symbols. Since Vides the desired form,
the cumulant expansion does retain terms of orlethe VYN —AN
final results(6.11) and(6.14) do retain an ordet correction. (A(DB(O)=(h) fdzajdzba(za)b(zb)fdz;fddj
Close inspection of Eq6.16) in the 7— 0 limit reveals that
C. would be zero if one did not take proper care of the
infinitesimal times included in this expression. The presence
of the infinitesimals, however, ensures that the zero-time re-
sult of the previous subsection is recovered in this limit.  which is analogous to Eq$6.12 and (6.13, but with the
centroid-based averade- - ). replaced by the general path-

VIl. REAL-TIME CORRELATION FUNCTIONS integral averagé- - - ).

The cumulant approximation may now be taken as in
qSec. VI providing the result

x @ U2(2a=2)l(2a—Z + 2= 2l

(278! (74 0+ 3y 2) 3¢ O}y 7.4

As was pointed out in previous wofk?3the exact real-
time centroid-based correlation function may be obtaine
through the inverse Wick rotatioh®*—i.e., the analytic con- (A(m)B(0))~det Y4472Ct (1)C; ()}
tinuation, 7— it—of the imaginary-time correlation function
in Eg. (5.6). However, the analytic continuation of the
centroid-based correlation functions approximated by the cu- X f d§+f dZ-a({f)+L)b(5)+Lb)
mulant expansion—see, e.g., H§.14 or Ref. 23— or the
SCHA may lead to inaccuracies at intermediate to long
times. A better approaéh?® may be to express the general (7.5
imaginary-time correlation functions in terms of a centroid-
unconstrained cumulant expansion. This expression, in turnvhere{{,, ¢y} are related td. by the transformation in Eq.
may be formally continued analytically to real time and (6.19. The average() in the argument of the symbols origi-
evaluated using the centroid molecular dynami€MD) nates from the first-order cumulant term which was zero in
approacr’ﬁz_z‘1 Th|s prescription has been deve'oped previ_the earlier deriVation. The generalized COUp|ing matl’ices are
ously for configuration space operatéfsnd in phase space here defined as,
using the arguments of Ref. 23. In this section we rigorously N . .
derive the formulas using the arguments employed in the C5(n=[Cx0)~ (IR I]=[Cx(7+ E)_('hlz)"]?']é
preceding sections. (7.63

The general imaginary-time correlation function corre-where the second-order cumulant matiy( 7) is defined by
sponding to the centroid-based formula in Ef.5) can be its matrix elements,
written with respect to the Weyl alternate symbols and the
Heisenberg operator matrix elements as Cuo(7)i,j=(& (1 (0))—=(L{ (1))(¢[(0)), (7.6b

X @~ (UDLL[C5 (D] = (LD [C5 (0] M
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in which the{’ are related tq@ by the transformation in Eq. trace. Nonetheless, we are currently working on this issue, as
(6.5. Note that these formulas do reduce to the centroidvell as studying the algebraic properties of the centroid sym-
formulas in the earlier sections upon replacement of the gerbols under various orders of the cumulant expansion.
eral path-integral average with the centroid-based average.  Note that the above discussion is not just an “academic”
The real-time correlation function may now be obtainedexercise, as a well-defined algebraic structure for the cen-
by analytic continuation of Eq(7.5). Since the only time troid symbols is the first step towards understanding the
dependence is to be found in the cumulant matrices, this cammansformation properties of the centroid-based phase space
be performed formally by the change of variables;it. traces. This, in turn, should provide a deeper understanding
Thus an arbitrary correlation function may be obtained afteiof the phase space coordinate dependence of such formulas,
one calculates the second order correlation func@gft). and provide a means of obtaining general variational formu-
In practice, the elements of this correlation function matrixlas. For example, though the use of the centroid density in
are obtained using the CMD meth&t?**°*Note also, that reaction rate theory has already provided intriguing agree-
this algorithm is not unrelated to the previous sections as thenent with exact result®~*3its use in quantum variational
CMD method implicitly assumes that an average may bdransition state theories is not on a firm footing because, for
written as in Eq(2.5). example, one is unsure if there rigorously exists a pseudo-
classical Hamiltonian corresponding to the centroid quantum
dynamics. An understanding of the transformation properties
VIIl. CONCLUDING REMARKS of the centroid density could afford us an implicit under-
standing of the centroid dynamics—without recourse to the

of the phase space centroid formalism may be interpreteBreCise form of the pseudo-classical cen.troid Hamiltonian
either as(a) a “rigorous” derivation of the formulation in —and thereby lead to a better understanding of the centroid

which operator non-commutativity is not explicitly ad- variational rate theories_. G_enerall_y, this could alg(z)AIe_ad to a
dressed, ofb) a heuristic derivation of the cumulant formu- more complete and_ Sat'Smeg derivation of CHB**with

las which implicitly includes the non-commutativity of the thg eﬁectlye potgnual, defmed“as the free :anergy of the cen-
position and momentum operators througkj-beforep or troid density, acting as a true “propagator” for the centroid

p-beforeq symbol. The first interpretatiota) suggested the symbol. Work on this and other issues is in progress.
use of the Weyl analysis used in this work to generalize the
rigorous formulation of the phase space theory. As such it i@CKNOWLEDGMENTS
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