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The phase space formulation of quantum statistical mechanics using the Feynman path centroid
density offers an alternative perspective to the standard Wigner prescription for the classical-like
evaluation of equilibrium and/or dynamical quantities of statistical systems. The use of this
formulation has been implicit in recent work on quantum rate theories, for example, in which the
centroid density distribution replaces the classical Boltzmann distribution. In order to further
understand the approximations involved in this and similar transcriptions, the present work
elaborates and clarifies the issue of operator ordering in a rigorous centroid-based formulation. In
particular, through the use of the Weyl correspondence, a precise definition of the centroid symbol
of operators and their products is presented. Though we fall short of finding the algebraic structure
tantamount to that found in the Weyl symbols—of which the Wigner distribution is an example—
the resulting expressions have internal consistency and are amenable to approximate evaluation
through cumulant expansions. ©1995 American Institute of Physics.
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I. INTRODUCTION

Quantum effects play a significant role in the dynami
of many complex systems of chemical interest. Unfort
nately, these effects are rarely calculated exactly because
constructionandsolution of the full quantum statistical prob
lem is often unmanageable. On the other hand, Monte Ca
and molecular dynamics techniques have proven to be v
effective in calculatingclassicalquantities within statistical
mechanics. The conclusion of this syllogism is that a qua
tum statistical problem viewed classically—i.e., in terms of
some underlying phase space with an associated clas
Hamiltonian—would be amenable to calculation. This pha
space perspective is particularly needed in obtaining qu
tum dynamicalproperties as the extensions to equilibriu
properties are better understood.1–16

As early as the 1930s, Wigner1,2 proposed a phase spac
distribution function which is a classical-type-corresponde
to the quantum density matrix, and with which one can co
pute equilibrium averages within a classical framework3 up
to the arbitrary desired order in\. Concurrently, Weyl4 pre-
sented a correspondence rule between quantum operator
their corresponding classicalsymbolsover the complex num-
bers. The two methods are intimately related5 as the Wigner
distribution can be defined in terms of the Weyl symbols, b
the use of the Weyl correspondence does not necessarily
ply the use of the Wigner prescription. Nonetheless, wh
the use of the Wigner distribution has led to several imp
tant successes, its use has been hampered by the class
unphysical negative values it can take, and by the difficu
associated with calculating time-dependent behavior.6–9

These drawbacks are intimately related since both are m
festations of the fact that the Wigner distribution is not
classical density, and consequently does not satisfy
classical—i.e., linear differential—transport equation, no
the classical Liouville’s theorem for density conservation.9

Alternatively, the discretization of the Feynman path i
tegral representation10 of a quantum partition function has
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been shown to be isomorphic to the classical partition fun
tion of a flexible ring polymer.11–16 The main drawback of
this method is that the isomorphic classical phase space
significantly larger than the original phase space of the cla
sical problem. Use of the path centroid variable—as a pr
jection of this enlarged space—avoids this problem in pr
viding a classical symbol which acts on a classical pha
space with a dimensionality equal to that of the origina
problem.10 Besides being conceptually appealing, the ce
troid formulation can also provide accurate results as is su
gested by recent work17–25 as well as by the original calcu-
lation of Feynman and Hibbs10 in which they show that the
centroid is the classical-like coordinate for which a perturb
tion theory has no first-order correction. Thus the centro
provides an optimal variational~classical-like! phase space
representation for the path integral. A missing element in th
original Feynman–Hibbs theory,10 as well as its
generalizations,17,18,21was the classical phase space frame
work in which the centroid density could be used to calcula
equilibrium averages or correlations in a general sense. T
independent, but similar, formulations have been propos
recently within the literature, with the differences being
found primarily in the approximate scheme chosen to eval
ate the centroid path integrals.23,26

At the simplest level, one can use a variationa
approximation17,18,21,27to evaluate the centroid constrained
path integral or centroid ‘‘density.’’ Tognetti and
co-workers,26 have suggested an interesting extension of th
theory into the centroid phase space through an approa
similar to the self-consistent harmonic approximatio
~SCHA!.28–31Alternatively, in previous work,21,23 two of the
present authors have used a second-order cumulant exp
sion to evaluate operator averages and imaginary-time cor
lations in the centroid phase space. In principle, evaluation
the second-order cumulant expressions using the ex
Hamiltonian can provide a better treatment than the SCH
approach, as it directly includes anharmonic effects in th
averaging. In practice, this quantity must be evaluated a
6/95/103(12)/5018/9/$6.00 © 1995 American Institute of Physicst¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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5019Hernandez, Cao, and Voth: Feynman path centroid density
proximately or numerically; in particular, if a harmonic ap
proximation is employed, the error is on the same order
that of the harmonic estimates.25 In summary, the cumulant
approach has the advantages that, unlike the SCHA estim
it provides a systematic method for obtaining the phase sp
centroid representation of equilibrium quantities for a ge
eral potential, and it need not involve the SCHA. Howev
the presentation in Ref. 23 of the phase space centroid
mulation did not stress the correspondence between quan
operators and their symbols, or the associated problems
sulting from non-commutative operators, and this pap
serves to clarify these concepts.

The outline of the paper is as follows: The phase spa
path centroid density perspective is reviewed in Sec. II.
order to construct the desired averages, one must first st
late the quantum-classical correspondence. In this work,
Weyl ordering rule4 is used to specify the canonical orderin
for the quantum mechanical operators, and some relev
results are reviewed briefly in Sec. III.~This is a natural
choice for the correspondence and it is also the one taken
Tognetti and coworkers.!26 In Sec. IV, the equilibrium aver-
age with respect to the centroid density is rigorously deriv
using a proof based on the earlier heuristic argument of R
23. The two primary differences between this derivation a
the previous one are~a! that care is taken to establish th
appropriate classical correspondents—symbols—to the quan-
tum operators, and~b! that the non-commutativity of the po
sition and momentum operators is explicitly considered. A
consequence, the final general expressions are actually
different form, with the earlierliteral results23 being related
to it by a stationary phase approximation. The centroid-ba
expression for imaginary-time correlation functions is o
tained in Sec. V taking advantage of this earlier analysis.
in previous work,21,23 the form of these averages lends itse
to a second-order cumulant expansion and the revised
pressions are presented in Sec. VI. These formulas provid
rigorous justification for the practical algorithm implicit in
the earlier work for the inclusion of non-commutative e
fects. The generalization of these formulas for the constr
tion of real-time correlation functions22,23is presented in Sec
VII. Finally, some suggestions for the implementation of th
formulation are discussed in the concluding Sec. VIII.

For simplicity, the following conventions have bee
adopted in the notation throughout the paper. Vectors a
matrices are not explicitly identified through the notatio
The phase space is assumed to be 2N-dimensional and con-
tains the elementz5(p,q) with positionq and momentum
p. In general, position~momentum! components of a phase
space variable are referred to through aq (p) subscript. An
operatorÔ is specifically identified as such by an overhat

II. PHASE SPACE FEYNMAN PATH CENTROID
DENSITY

The phase space centroid density is defined through
constrained path integral23,26

rc~zc!5E Dzd~zc2z0!e
2S@z~• !#/\, ~2.1!
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wherezc is a phase space vector, andz0 is a functional of the
Feynman pathz(•) defined through the centroid formula,10

z05~\b!21E
0

\b

dtz~t!. ~2.2!

@Note that the center dot in the notation ‘‘z(•)’’ is used to
emphasize thatz is a path—i.e., a function of the imaginary
time—and not the valuez(t) specified by the dummy index
t. The notation which this would otherwise afford is no
desirable here—though standard in the literature—as t
pathand the value it can take at a particular imaginary tim
slice will often appear within the same formula.# The action
functional for the imaginary-time phase space path integral
the usual action over the pathz(•),

S@z~• !#5E
0

\b

dtL@z~t!#, ~2.3!

but with the imaginary-time Lagrangian,32

L~z!5 1
2zp•m

21
•zp2 i zp• żq1V~z!. ~2.4!

The ultimate goal of the centroid formulation of quan
tum statistical mechanics is to obtain expressions in whi
the final statistical quantities are obtained by averaging ov
the distribution of the effective classical-like phase spac
variable zc—i.e., the centroid.21,23,26 This is tantamount to
requiring that averages be computed through the classic
like partition expression,

^Â&5
*dzac~z!rc~z!

*dzrc~z!
, ~2.5!

where thecentroid symbol ac corresponds to the operator
Â. Either because the algebraic structure of this symbol
intrinsically interesting, or because of the importance of co
relation functions in statistical mechanics, it is also useful
derive acentroid!-product rule,

~ÂB̂!c5ac!bc , ~2.6!

in analogy to the Weyl* -product to be reviewed in the next
section. Given the centroid symbols of operators one c
proceed to calculate exact quantum statistical mechanical
erages through Eq.~2.5! within a calculation which has a
classical structure. In this work, we fall short of obtaining th
general rule@Eq. ~2.6!# and present a result only for centroid
symbols within a trace. This, however, is sufficient to evalu
ate thermodynamic quantities. Moreover, the formalism to b
presented can be used to guide the approximate derivati
of these quantities using the cumulant expansion23 or the
SCHA26 for the centroid symbol, or using analogous tech
niques to those employed for the Wigner distribution.3,7,8,33

III. WEYL CORRESPONDENCE RULE

The first step in obtaining the centroid symbol require
an identification between an operator and its classical sy
bol. The Weyl correspondence provides a natural identific
tion in which the position and momentum operators a
treated on an equal footing, and as such is an ideal choice
the centroid phase space objects we wish to construct.4,34
o. 12, 22 September 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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5020 Hernandez, Cao, and Voth: Feynman path centroid density
The canonical ordering of the position and momentu
operators is fixed through the parametric family of Heise
berg operators:4,34

T̂~p,q![ei ~pq̂2qp̂!/\, ~3.1!

where the hats denote operators. Alternatively, one can u
q̂-before-p̂ or p̂-before-q̂ ordering, for example, as was don
implicitly in the centroid phase space formulation of Ref. 2
Though these are simpler, they do not place momentum
position on the same footing, nor do they manifestly provi
a Fourier structure to the representation. It is these two f
tures of the Heisenberg operators which are exploited in
construction of the centroid symbols in the remainder of th
work.

The Weyl correspondence rule between an operator
its symbolcan be defined implicitly through the Heisenbe
operators.34 The alternate symbolfa , corresponding to the
operatorÂ, is defined through either of the equations:

Â5~2p\!2NE dzfa~z!T̂~z!, ~3.2a!

fa~z!5Tr@ T̂~z!†Â#. ~3.2b!

The symbola corresponding to the operatorÂ is implicitly
defined through the alternate symbol,

~Â!s[a~z!5~2p\!2NE dz8fa~z8!ei ~p8q2q8p!/\,

~3.2c!

or

fa~z!5~2p\!2NE dz8a~z8!ei ~p8q2q8p!/\. ~3.2d!

Intuitively, the one-to-one correspondence between an op
tor and its symbol can be seen from the fact that each can
uniquely represented by the Fourier-like componentsfa .
The uniqueness of the projection from the operator onto
symbol can also be seen through the more standard—
equivalent—definition of the Weyl symbol,3

a~z!5E dx8eipx8/\^x2 1
2x8uÂux1 1

2x8&. ~3.3!

In this work, Eq.~3.2! is preferred because its structure
symmetric in the position and momentum variables as w
as being reminiscent of the Fourier transformations used
the earlier heuristic arguments of the phase space cent
formalism.23

The symbol of a product of operators is related throu
the *-product, defined by

a* b[~ÂB̂!s5aeiL
J /2\b, ~3.4!

whereLJ is the Janus operator which acts as a differential
both sides,5,35,36

LJ[(
i

]Q

]qi

]W

]pi
2

]Q

]pi

]W

]qi
, ~3.5!
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where the overarrows indicate the directionality of the opera
tor. However, it turns out that within a trace the*-product
reduces to a simple product, and thus traces can be obtain
easily through the relation,

TrÂB̂5~2p\!2NE dza~z!b~z!, ~3.6!

where it should be emphasized that there is no approximatio
involved in this relation.34 The approximations involved in
using the Weyl correspondence will in general arise eithe
because the symbol is obtained approximately, or because
is time-evolved through the classical equations of motion
rather than through the correspondence of the time-evolve
quantum operator.

The Wigner distribution is the symbol corresponding to
the density matrix.3,34As such all of the properties described
thus far for general operators apply to calculations using th
Wigner distribution. However, the use of the Weyl corre-
spondence rule does not require that this be the distributio
and in the remaining sections the centroid density wil
emerge as an alternative phase space distribution, with th
Weyl symbols providing the underlying form for the classical
analogues of the quantum operators.

IV. EQUILIBRIUM AVERAGES

The equilibrium average of a quantity can be written in
terms of the averages of the Heisenberg operators using t
alternate symbols, as

^Â&5~2p\!2NE dz0fa~z0!^T̂~z0!&. ~4.1!

Each of the equilibrium averages of the Heisenberg operato
may in turn be calculated through the Feynman path integra

^Â&5Z21~2p\!2NE dz0fa~z0!

3E DzT@z~• !;z0#e
2S@z~• !#/\, ~4.2!

where eachz(•) is a continuous phase-space path indexed b
an imaginary time between 0 and\b; andT is an expecta-
tion value of the Heisenberg operator taken between a pa
ticular set of time slices of the path integral,

T@z~• !;z0#[
^zq~t1e!uT̂~z0!uzp~t!&

^zq~t1e!uzp~t!&
, ~4.3!

where the timee in t1e denotes the subsequent time slice in
the discretized representation of the path, and represents
‘‘infinitesimal’’ time in the continuum limit. Note that be-
cause of the invariance of the trace, Eq.~4.2! is independent
of t, and thust has not been included within the argument
of T.

The centroid variablezc , and the fluctuation of the
Feynman path about it through the relation,

z̃~t ![z~t!2zc , ~4.4!

provides a change-of-variables in the path integral@Eq. ~4.2!#
which converts it to the suggestive form,
o. 12, 22 September 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



-

p

o

r

s

n
t

h

h
e

-

n-
d
e

-

ng

n
-

t-
e

e

in
ry

-

of

5021Hernandez, Cao, and Voth: Feynman path centroid density
^Â&5Z21E dzcac~zc!rc~zc!, ~4.5!

where

ac~zc![rc~zc!
21~2p\!2NE Dz̃E dz0fa~z0!T

3@zc1 z̃~• !;z0#e
2S@zc1 z̃ ~• !#/\. ~4.6!

Equation~4.5! is precisely of the form in Eq.~2.5! since the
partition functionZ is just the integral over the centroid den
sity. What remains is to simplify the form of the centroid
symbolac .

The matrix elementT provides the first departure from
the derivation in the earlier work.23 If the operatorÂ con-
sisted exclusively of commuting position and momentum o
erators, i.e.,

Â5A~ x̂i ,p̂'!, ~4.7!

wherexi andx' represent orthogonal Cartesian subspaces
the configuration space, then the matrix elementsT̂ depend
only on z(t) through the expression,

T@z~• !;z0#5ei @p0•xi~t!2q0•p'~t!#/\, ~4.8!

where the invariance of the trace has been used. Up t
trivial sign, Eq.~4.8! provides the Fourier expansion which
led to the configuration representation or momentum rep
sentation results for the centroid formula obtained earlier.21,23

However for an arbitrary operator, all of the matrix element

T@z~• !;z0#5ei @p0•zq~t1e!2q0•zp~t!#/\e2 ip0•q0/2\, ~4.9!

contribute. The presence of thee infinitesimal time is thus a
manifestation of the non-commutation between position a
momentum, as is the presence of the second term on
right-hand side of the equality in Eq.~4.9!. In the continuum
limit of the Feynman path integrals, non-continuous pat
are significant, and thee term can play a non-trivial role in
the calculation.

Upon combining equations~4.6! and~4.9!, a Fourier ex-
pansion of the alternate symbol into the Weyl symbol ofÂ
and some standard manipulation leads to

ac~zc!5rc~zc!
21~p\!2NE dz1a~z1!E Dz̃

3Y1@z1 ,zc ;t,z̃~• !#e2S@zc1 z̃ ~• !#/\, ~4.10a!

where

Y1@z1 ,zc ;t,z̃~• !#[e22i @q12zc,q2 z̃q~t1e!#@p12zc,p2 z̃p~t!#/\,
~4.10b!

and t is explicitly referenced for later convenience thoug
the trace is invariant to it. Other than for a trivial sign in th
Fourier components, Eq.~4.10! reduces essentially to Eq.
~2.9! in Ref. 23,
J. Chem. Phys., Vol. 103, NoDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subjec
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SPA~zc!5rc~zc!

21~2p\!2NE dzfa~z!e2 i ~qzc,p2pzc,q!/\

3E Dz̃e2 i @qz̃p~t!2pz̃q~t1e!#/\e2S@zc1 z̃ ~• !#/\,

~4.11!

upon integration overz1 through the stationary phase ap
proximation~SPA!. This should not be surprising as the SPA
ignores the higher order terms which manifest the no
commutativity of the position and momentum operators, an
this is precisely what was not explicitly addressed in th
earlier analysis. Equation~4.10!, however, contains no ap-
proximation and is the central result of this section. Alterna
tively, the approximate evaluation of Eq.~4.10! using a cu-
mulant expansion—see Sec. VI—does retain terms arisi
from the non-commutativity.

We note, in passing, that the equilibrium average of a
operator can be written with respect to the Wigner distribu
tion as

^Â&5Z21~2p\!2NE dza~z!~e2bĤ!s , ~4.12!

where here the Wigner distribution has been explicitly wri
ten as the Weyl symbol of the Boltzmann density. Since th
operatorÂ is arbitrary, comparison with Eq.~4.10! suggests
the following path integral form for the Wigner distribution:

~e2bĤ!s~z!52NE Dze22i @q2zq~t1e!#@p2zp~t!#/\e2S@z~• !#/\,

~4.13!

which is equivalent to the path integral evaluation of th
definition in Eq.~3.2!.

V. IMAGINARY-TIME CORRELATION FUNCTIONS

In the t→0 limit, the imaginary-time correlation func-
tion, ^Â(t)B̂(0)&, reduces to the equilibrium average of the
operator product,ÂB̂. To illustrate that this is indeed the
case, both of these expressions are explicitly presented
this section. This comparison further illustrates the necessa
role played by the infinitesimale in representing non-
commutativity in the continuum limit.

A. Zero imaginary-time case

As before, the equilibrium average of a product of op
erators,Â and B̂, may be written in terms of their corre-
sponding alternate Weyl symbols,

^ÂB̂&5~2p\!22NE dzaE dzbfa~za!fb~zb!

3^T̂~za!T̂~zb!&. ~5.1!

This may be evaluated most directly by taking advantage
the product rule of Heisenberg operators,34 which may be
written as

T̂~za!T̂~zb!5T̂~za1zb!e
i ~paqb2qapb!/2\. ~5.2!
. 12, 22 September 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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5022 Hernandez, Cao, and Voth: Feynman path centroid density
With this substitution, the derivation is now analogous to t
employed in the previous section for the equilibrium av
age, and the result follows similarly, providing

^ÂB̂&5Z21E dzc~ÂB̂!crc~zc!, ~5.3!

where

~ÂB̂!c5rc~zc!
21~p\!22NE dzaE dzba~za!b~zb!

3E Dz̃Y2@za ,zb ,zc ;t,z̃~• !#e2S@zc1 z̃ ~• !#/\,

~5.4a!

and

Y2@za ,zb ,zc ;t,z̃~• !#

[e22i @~qb2qa!zc,p2~pb2pa!zc,q1qapa1qbpb22qbpa#/\

3e22i @~qb2qa!z̃p~t!2~pb2pa!z̃q~t1e!#/\. ~5.4b!

Noting that the Weyl symbol for the identity operator is
(Â)c and (B̂)c as calculated through Eq.~5.4! reduce respec
tively to ac andbc as calculated through Eq.~4.10!. Alterna-
tively, this expression could also have been obtained thro
the use of the equilibrium result in Eq.~4.10! with the Weyl
producta* b representing the operatorÂB̂.

Though the result in Eq.~5.4! may seem somewhat com
plicated, it is actually simpler than that for the equilibriu
average in light of the cumulant approximation used ear
to evaluate the centroid-path integral.23 Namely Eq.~5.4! is
amenable to a cumulant expansion because the expone
the integrand is linear in the fluctuation variablez̃ whereas
the corresponding exponent in Eq.~4.10! is not. However,
the two are equivalent as the latter can be obtained from
former as noted above, and the former may be obtained f
the latter through the introduction of an auxiliary variab
The results for both equilibrium averages and correlat
functions using this ‘‘trick’’ and the cumulant expansion a
described in Sec. VI.

B. General case

The imaginary-time correlation function may be writte
in analogy to the equilibrium average in Eq.~4.2! as

^Â~t!B̂~0!&5Z21~2p\!22NE dzaE dzbfa~za!fb~zb!

3E DzT@z~• !;za ,~t1e!#

3T@z~• !;zb,0#e
2S@z~• !#/\, ~5.5!

where now the imaginary-time dependence is explicitly
cluded in the argument list ofT in Eq. ~4.3!. Note that the
infinitesimal imaginary timee in this expression is neces
sary; for example, ife is set trivially to 0, the zero-time limit
result~5.4! is not recovered. A series of manipulations sim
lar to that in Sec. IV leads to the result,
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subje
at
r-

,

gh

ier

t of

the
om
.
on
e

n

n-

i-

^Â~t!B̂~0!&5Z21E dzc~ Â~t!B̂~0!!crc~zc!, ~5.6a!

where

~Â~t!B̂~0!!c[rc~zc!
21~p\!22NE dzaE dzba~za!b~zb!

3E Dz̃Y1@za ,zc ;~t1e!,z̃~• !#

3Y1@zb ,zc ;0,z̃~• !#e2S@zc1 z̃ ~• !#/\, ~5.6b!

with Y1 defined as in Eq.~4.10b!.
In the t→0 limit, the imaginary-time correlation func-

tion in Eq.~5.6b! reduces to the zero imaginary-time expres
sion in Eq.~5.4!. In this limit, the correlation function in Eq.
~5.6b! contains discrete terms dependent on the three time
t, t1e, andt12e, while only two of these appear in Eq.
~5.4!. As before, these infinitesimal imaginary times arise
from the the non-commutation between position and mome
tum operators. Equation~5.4! contains only two of these
imaginary times because the operators were explicitly reo
dered by way of Eq.~5.2!, thereby eliminating the need for
one of the imaginary time slices in the path integral.

VI. CUMULANT EXPANSIONS

Though results~4.10! and~5.6b! are formally the correct
quantum-mechanical centroid-based expressions, they m
offer little or no computational advantages compared to th
original path integrals. The perspective gained in these co
structions, however, suggests that the path fluctuatio
should provide a small perturbation to the mostly classica
behavior of the path centroid. This motivates the approx
mate path integration over the fluctuating pathsz̃~•!. Follow-
ing earlier work,23 the averages will be expanded here in
terms of their cumulants and truncated at second order. T
reader is referred to Ref. 26 for an alternative treatment in
volving the SCHA.

It is useful to begin by defining the centroid-constrained
average of a possibly imaginary-time dependent quantity,Q ,
in phase space as

^Q&c[rc~zc!
21E Dz̃Qe2S@zc1 z̃ ~• !#/\, ~6.1!

where the dependence on the centroid variablezc is implicit,
and the subscript ‘‘c’’ denotes a centroid-constrained aver-
age. With respect to this average, the cumulant expansion37

truncated to second order may be written as

^e(
i

aiQ i&c'expF(
i
ai^^Q i&&c1

1

2(i , j aiaj^^Q iQ j&&cG ,
~6.2!

where the double brackets^^•&& are used to denote a cumu-
lant average, and̂^•&&c denotes a centroid-constrained cu-
mulant average.

The first-order cumulant for the centroid fluctuation is
trivial, i.e.,

^^z̃~t!&&c50 , ~6.3!
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5023Hernandez, Cao, and Voth: Feynman path centroid density
which follows from the fact that averages are independen
the imaginary time, and that the centroid-constrained aver
requires that the integral of the fluctuation over the path
zero. The construction of the cumulant average to sec
order thus depends only on the second-order cumulant
trix Cc(t,zc) defined by the matrix elements,

Cc~t,zc! i , j[^^z̃ i8~t!z̃ j8~0!&&c5^z̃ i8~t!z̃ j8~0!&c , ~6.4!

where

z̃8~t![S z̃p~t!

z̃q~t1e!
D , ~6.5!

and the second equality results because the first-order a
ages in the fluctuations are zero according to Eq.~6.3!. Note
that the definition ofCc(t,zc) differs from that in Ref. 23 in
that the momentum and position terms are now evaluate
infinitesimally different time slices.

A. Equilibrium averages

The equilibrium average in Eq.~4.10! may be written
using the zero time product formula in Eq.~5.4! by taking
one of the operators to be the identity operator.~The corre-
sponding Weyl symbol of the latter is 1.) The equilibrium
average may be equivalently written as

ac~zc!5~p\!22NE dzaa~za!

3E dzb^Y2@za ,zb ,zc ;t,z̃~• !#&c . ~6.6!

Taking advantage of the tensor algebra of the full pha
space, the inner integrand of this equation takes the form

^Y2@za ,zb ,zc ;t,z̃~• !#&c

5e22i @~za2zb!J~za2zc!11/2~za2zb!uJu~za2zb!#/\

3^e2i ~za2zb!Jz̃ 8~t!/\&c , ~6.7!

where use is made of the symplectic matrix,

J[S 0 2I

I 0 D , ~6.8!

in which I is theN by N identity matrix. Note that the sym-
plectic matrix is anti-Hermitian (J†52J) and unitary
(J†J51).

A cumulant expansion over the centroid average of t
‘‘fluctuation’’ z̃8(t) truncated at second-order results in

^Y2@za ,zb ,zc ;t,z̃~• !#&c

'exp$2~2/\2!~za2zb!J@Cc~0,zc!2~ i\/2!uJu#

3J†~za2zb!2~2i /\!~za2zb!J~za2zc!%, ~6.9!

where

uJu[S 0 I

I 0D . ~6.10!

Gaussian integration over the vector variable (za2zb)J pro-
vides the final result,
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subjec
of
ge
is
nd
a-

er-

at

se
,

e

ac~zc!'det21/2$2p@Cc~0,zc!2~ i\/2!uJu#%

3E dz̃a~zc1 z̃ !

3exp$2 1
2z̃@Cc~0,zc!2~ i\/2!uJu#21z̃%, ~6.11!

where the Gaussian fluctuationz̃ is now a 2N-dimensional
phase space vector and not a path.

The result in Eq.~6.11! has the same structure as tha
obtained in Ref. 23, except for modification of the Gaussia
coupling matrix. In addition to the subtle imaginary-time
modification in Eq. ~6.5! found in the cumulant matrix
Cc(0,zc), there is now an additional term,2 i\uJu/2, which
affects only those fluctuations involvingq̂i and p̂i with the
same index. This is consistent with the approximation of th
previous work in which the non-commutation of position and
momentum was not explicitly discussed.

B. Correlation functions

Though the evaluation of the equilibrium average in Eq
~6.6! in the previous section was motivated by using the zer
time centroid product formula, the result can also be derive
directly. Briefly, the form of the equilibrium average ame-
nable to the cumulant expansion may also be derived direc
from Eq. ~4.10! by the introduction of an auxiliary variable
through the following steps:~a! multiplication by the identity
operator expressed as an integral over a delta function who
argument is either of the terms in the exponent inY1@ in Eq.
~4.10b!#, ~b! subsequent Fourier representation of the delt
function, and~c! Gaussian integration over a transformed
variable. Similarly, the product centroid symbol~5.6b! may
be rewritten with respect to not one but two auxiliary vari-
ables as,

~Â~t!B̂~0!!c[~p\!24NE dzaE dzba~za!b~zb!E dza8

3E dzb8^Y2@za ,za8,zc ;~t1e!,z̃~• !#

3Y2@zb ,za8,zc ;0,z̃~• !#&c . ~6.12!

Evaluating the integrand of Eq.~6.12! provides

^Y2@za ,za8,zc ;~t1e!,z̃~• !#Y2@zb ,za8,zc ;0,z̃~• !#&c

5e22i @~za2za8!J~za2zc!1~1/2!~za2za8!uJu~za2za8!#/\

3e22i @~zb2zb8!J~zb2zc!1~1/2!~zb2zb8!uJu~zb2zb8!#/\

3^e2i $~za2za8!Jz̃8~t1e!1~zb2zb8!Jz̃8~0!%/\&c . ~6.13!

Once again, a cumulant expansion of the centroid
constrained average, transformation of the integration va
ables by a simplifying unitary transformation and Gaussia
integration—all of which are analogous to the less tediou
manipulations performed in the derivation of the equilibrium
average—leads to the result,
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5024 Hernandez, Cao, and Voth: Feynman path centroid density
~Â~t!B̂~0!!c'det21/2$4p2Cc
1~t,zc!Cc

2~t,zc!%

3E dz̃1E dz̃2a~zc1 z̃a!b~zc1 z̃b!

3e2~1/2!z̃1@Cc
1

~t,zc!#21z̃12~1/2!z̃2@Cc
2

~t,zc!#21z̃2,

~6.14!

where the effective Gaussian path fluctuations,

z̃a[
z̃11 z̃2

A2
, ~6.15a!

z̃b[
z̃12 z̃2

A2
, ~6.15b!

correspond to fluctuations about the centroidzc in the sym-
bols a and b, respectively. The fluctuationsz̃6 are phase
space vectors obeying Gaussian statistics through the Ga
ian coupling matrix,

Cc
6~t,zc![@Cc~0,zc!2~ i\/2!uJu#

6@Cc~t1e,zc!2~ i\/2!uJu#, ~6.16!

which once again differs slightly from that in Ref. 23. As
the previous subsection, the termi\uJu/2 would be zero if
terms of order\ are ignored, as was effectively done
previous work wherein the operators were replaced with
zeroth-order classical—vis-a-vis principal—symbols. Since
the cumulant expansion does retain terms of order\, the
final results~6.11! and~6.14! do retain an order\ correction.
Close inspection of Eq.~6.16! in the t→0 limit reveals that
Cc

2 would be zero if one did not take proper care of t
infinitesimal times included in this expression. The prese
of the infinitesimals, however, ensures that the zero-time
sult of the previous subsection is recovered in this limit.

VII. REAL-TIME CORRELATION FUNCTIONS

As was pointed out in previous work,22,23 the exact real-
time centroid-based correlation function may be obtain
through the inverse Wick rotation16,38—i.e., the analytic con-
tinuation,t→ i t—of the imaginary-time correlation functio
in Eq. ~5.6!. However, the analytic continuation of th
centroid-based correlation functions approximated by the
mulant expansion—see, e.g., Eq.~6.14! or Ref. 23— or the
SCHA may lead to inaccuracies at intermediate to lo
times. A better approach22,23 may be to express the gener
imaginary-time correlation functions in terms of a centro
unconstrained cumulant expansion. This expression, in t
may be formally continued analytically to real time an
evaluated using the centroid molecular dynamics~CMD!
approach.22–24 This prescription has been developed pre
ously for configuration space operators,22 and in phase spac
using the arguments of Ref. 23. In this section we rigorou
derive the formulas using the arguments employed in
preceding sections.

The general imaginary-time correlation function corr
sponding to the centroid-based formula in Eq.~5.5! can be
written with respect to the Weyl alternate symbols and
Heisenberg operator matrix elements as
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^Â~t!B̂~0!&5~2p\!22NE dzaE dzbfa~za!fb~zb!

3^T@z~• !;za ,~t81t1e!#

3T@z~• !;zb ,t8#&, ~7.1!

where the general path-integral average is over all paths, i

^•••&[
*Dz@•••#e2S@z~• !#/\

*Dze2S@z~• !#/\ , ~7.2!

instead of the centroid-constrained average^•••&c defined by
Eq. ~6.1!. As in Sec. V B, the general imaginary-time corre
lation function may be written directly with respect to the
Weyl symbols as

^Â~t!B̂~0!&5~p\!22NE dzaE dzba~za!b~zb!

3^Y1@za ,zc ;~t1e!,z̃~• !#

3Y1@zb ,zc ;0,z̃~• !#&, ~7.3!

where theY1 function defined in Eq.~4.10b! depends on the
path z(•) through its componentszc and z̃(•). As before,
this expression is not amenable to cumulant expansion b
cause the exponent is non-linear with respect to the pa
z(•). Introduction of auxiliary variables as in Sec. VI B pro-
vides the desired form,

^Â~t!B̂~0!&5~p\!24NEdzaEdzba~za!b~zb!Edza8Edzb8
3e~1/2!~za2za8!uJu~za2za81zb2zb8!/\

3^e2i$~za2za8!Jz8~t1e!1~zb2zb8!Jz8~0!%/\&, ~7.4!

which is analogous to Eqs.~6.12! and ~6.13!, but with the
centroid-based average^•••&c replaced by the general path-
integral averagê•••&.

The cumulant approximation may now be taken as
Sec. VI providing the result

^Â~t!B̂~0!&'det21/2$4p2Cd
1~t!Cd

2~t!%

3E dz1E dz2a~^z&1za!b~^z&1zb!

3e2~1/2!z1@Cd
1

~t!#21z12~1/2!z2@Cd
2

~t!#21z2,

~7.5!

where$za ,zb% are related toz6 by the transformation in Eq.
~6.15!. The averagêz& in the argument of the symbols origi-
nates from the first-order cumulant term which was zero
the earlier derivation. The generalized coupling matrices a
here defined as,

Cd
6~t![@Cd~0!2~ i\/2!uJu#6@Cd~t1e!2~ i\/2!uJu#,

~7.6a!

where the second-order cumulant matrixCd(t) is defined by
its matrix elements,

Cd~t! i , j5^z i8~t!z j8~0!&2^z i8~t!&^z j8~0!&, ~7.6b!
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5025Hernandez, Cao, and Voth: Feynman path centroid density
in which thez8 are related toz by the transformation in Eq
~6.5!. Note that these formulas do reduce to the centr
formulas in the earlier sections upon replacement of the g
eral path-integral average with the centroid-based avera

The real-time correlation function may now be obtain
by analytic continuation of Eq.~7.5!. Since the only time
dependence is to be found in the cumulant matrices, this
be performed formally by the change of variables,t→ i t .
Thus an arbitrary correlation function may be obtained a
one calculates the second order correlation functionCd(t).
In practice, the elements of this correlation function mat
are obtained using the CMD method.22–24,39Note also, that
this algorithm is not unrelated to the previous sections as
CMD method implicitly assumes that an average may
written as in Eq.~2.5!.

VIII. CONCLUDING REMARKS

In light of the present work, the previous developmen23

of the phase space centroid formalism may be interpre
either as~a! a ‘‘rigorous’’ derivation of the formulation in
which operator non-commutativity is not explicitly ad
dressed, or~b! a heuristic derivation of the cumulant formu
las which implicitly includes the non-commutativity of th
position and momentum operators through aq-before-p or
p-before-q symbol. The first interpretation~a! suggested the
use of the Weyl analysis used in this work to generalize
rigorous formulation of the phase space theory. As such
the interpretation which has been generally adopted throu
out this work.

Under the second interpretation~b!, it was heretofore
necessary to interpret the cumulant-based formulas in a
scribed way in order to include the non-commutativity. Up
using the cumulant approximation, the centroid symb
which result are all simply Gaussian averages. Since
Gaussian average of an arbitrary product of operators ca
written as a sum of terms, all of which involve only produc
of pairs of operators, then the final result can be writ
explicitly in terms of matrix elements of the cumulant matr
Cc defined by Eq.~6.4!. If one takes care in retaining th
order of the operators when this is performed, then the fi
results will inherit the correct non-commutative structu
found in Cc . Thus this intuitive approach will provide th
results of this paper under the cumulant approximation
those operators which can be written as polynomials in
sition and momentum. However, the present work provide
formally correct expression which can be evaluated exp
itly as written, and which can be used for operators of ar
trary structure.

Though one may be tempted to define the product
centroid symbols using the centroid symbol for the prod
of the corresponding operators as in Eq.~5.4!, e.g.,

ac!bc[~ÂB̂!c , ~8.1!

this would be premature here, because the RHS is not ex
itly defined in terms of the centroid symbols,ac and bc .
Moreover, it is not clear if the RHS product rule is assoc
tive. Thus as remarked earlier, Eq.~5.4! provides the
!-product rule only when two operators appear within
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trace. Nonetheless, we are currently working on this issue,
well as studying the algebraic properties of the centroid sym
bols under various orders of the cumulant expansion.

Note that the above discussion is not just an ‘‘academi
exercise, as a well-defined algebraic structure for the ce
troid symbols is the first step towards understanding th
transformation properties of the centroid-based phase sp
traces. This, in turn, should provide a deeper understand
of the phase space coordinate dependence of such formu
and provide a means of obtaining general variational form
las. For example, though the use of the centroid density
reaction rate theory has already provided intriguing agre
ment with exact results,40–43 its use in quantum variational
transition state theories is not on a firm footing because, f
example, one is unsure if there rigorously exists a pseud
classical Hamiltonian corresponding to the centroid quantu
dynamics. An understanding of the transformation properti
of the centroid density could afford us an implicit under
standing of the centroid dynamics—without recourse to th
precise form of the pseudo-classical centroid Hamiltonia
—and thereby lead to a better understanding of the centro
variational rate theories. Generally, this could also lead to
more complete and satisfying derivation of CMD39,22,24with
the effective potential, defined as the free energy of the ce
troid density, acting as a true ‘‘propagator’’ for the centroid
symbol. Work on this and other issues is in progress.
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