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A theory for time correlation functions in liquids
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A theory for time correlation functions in liquids is developed based on the optimized quadra
approximation for liquid state potential energy functions. The latter approximation leads to t
rigorous mathematical definition of inherent structures in liquids and their vibrational fluctuation
in turn leading to the concept of inherent normal modes in the liquid state. These normal modes
called ‘‘optimized normal modes.’’ Unlike normal modes based on instantaneous liquid sta
configurations, the optimized normal modes are stable, having real-valued frequencies, and
inherent liquid state structure has a different set of modes associated with it. By including a sin
phenomenological decay function which captures the average transition rate between the diffe
sets of normal modes, velocity time correlation functions and dynamical friction kernels for solu
bonds can be predicted in good agreement with direct molecular dynamics simulat
results. ©1995 American Institute of Physics.
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I. INTRODUCTION

One of the basic ingredients in condensed mat
theory1,2 is the concept of phonons, i.e., the small oscillatio
about a stable structure or the energy minimum, which c
be related to many equilibrium and transport properties su
as heat capacity, thermal conductivity, thermal expansi
light scattering, etc. It is clear, however, that liquids are d
ferent from solids because of their lack of stable structur
making it formally difficult to apply the well-developed
theory of phonons in order to calculate, e.g., time correlat
functions and thereby predict experimental observables
clear challenge, therefore, is to derive from first principles
set of ‘‘modes’’ which to some degree dominate the molec
lar motions in liquids, at least for times smaller than som
phenomenological relaxation time of such modes.3,4 The pur-
pose of this paper is to provide a formal prescription f
defining such modes which we call ‘‘optimized norma
modes’’ ~ONM!. A related and challenging problem is th
microscopic origin of the relaxation behavior of these mod
but this issue will be left to future research.

It should be noted that the theory described herein bui
on the earlier work of Stillinger and Weber5–7 and of
Zwanzig.8 The former authors proposed the inherent stru
ture picture of liquids in which such structures are det
mined by a steepest-decent quench on the liquid state po
tial hypersurface. The many-body phase space is t
divided into subspaces corresponding to many different lo
minima. The distribution of the inherent structure loc
minima depends on the interaction potential, temperatu
and density. The Stillinger and Weber stable states,5–7 being
local potential minima, are free of imaginary frequencies a
thus ideal candidates for an effective harmonic approxim
tion. Unlike in solids, however, the inherent structure is
metastable state so there must be an overall decay beha
associated with the transitions between the metastable st
Though rich in physical insight, the work by Stillinger an
Weber did not provide a variational procedure for definin
the inherent structures and their associated vibrational mo
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for a given set of thermodynamical state variables~e.g., tem-
perature!.

In his dynamical view of liquids, Zwanzig8 suggested
that after some of vibrational motion about an inherent struc
ture minimum, the liquid will jump through a saddle point to
another local minimum and its associated vibrations. Eve
tually, the liquid will explore all the phase space available t
it. The transition process is characterized by an average lif
time ‘‘t’’ and thus an exponential decay factor is imposed o
the harmonic motion. The identification of the inherent struc
tures, the vibrational motion about them, and the inte
minima transitions provides a plausible picture of the unde
lying dynamical behavior of a liquid. Based on this picture
Zwanzig8 derived an expression for the self-diffusion con-
stant and a relation between self-diffusion and viscosit
which is consistent with the Stokes–Einstein law. In thi
theory, Zwanzig invoked the idea of inherent structur
modes, but he did not explicitly define those modes startin
with the microscopic potential~i.e., he used a Debye-like
approximation!. In the present paper, a mathematical proce
dure is used to specify the inherent structure modes~i.e., the
optimized normal modes! which provides the missing ele-
ment in Zwanzig’s picture.~See also Refs. 9 and 10 for an-
other such approach.!

In our previous study on the formulation of statistica
mechanics based on an effective quadratic potential,11 the
exact cumulant expansion of the partition function wa
shown to have a one-to-one correspondence with a diagra
matic representation. It was also shown that diagramma
classifications and topological reductions result in the reno
malization of the three diagrammatic elements and thus le
to a set of self-consistent effective quadratic equations
different levels of approximation. The theory is applicable to
both classical and quantum systems, and can be shown in
extremely low temperature limit to be equivalent to ground
state calculations in a harmonic oscillator basis set. Amon
the central results of the formalism11 is the optimized qua-
dratic approximation~OQA! for the partition function which
is of special importance because of its applicability to rea
istic many-body systems. The lowest-order OQA equation
4211)/4211/10/$6.00 © 1995 American Institute of Physicst¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4212 J. Cao and G. A. Voth: Time correlations in liquids
can be derived from the diagrammatic approach or, equi
lently, from the Gibbs–Bogoliubov variational principle. I
can be shown that the optimized quadratic reference po
tial represents the best fit to an anharmonic potential and
further corrections are beyond the effective potential desc
tion.

Similar to the inherent structure picture, there exist m
tiple solutions to the OQA equations at different position
each corresponding to a local potential minimum with
associated effective normal mode frequencies. Therefore,
OQA solutions separate the many-body potential hypers
face into different regions, each having a definite therm
partition, and all physical quantities can be expressed a
superposition of the OQA expectation values weighted
the thermal partitions. The nature of the OQA solution on
many-body hypersurface reveals the distinction between
ids, liquids, and glasses, as well as the transitions betw
those phases. When applied to liquids, this theory defines
inherent structures within a rigorous theoretical framewo
and, furthermore, introduces the optimized normal mod
~ONM! of oscillation in a well-defined fashion. Thus, to
reasonable degree of mathematical rigor, there exist s
statelike concepts in liquids such as equilibrium structu
and phonon excitations, though they are of a metastable
ture.

The notion of inherent structures and their optimize
normal modes immediately induces one to extend the O
theory to characterize the dynamics of liquid state syste
particularly time correlation functions. At the level of th
OQA, the approach expresses the time correlation funct
as a thermal partition-weighted superposition of optimiz
harmonic oscillator time correlation functions. As suggest
by Zwanzig,8 such a linear description is adequate for a tim
interval shorter than some relaxation time, beyond which
effective harmonic motion for an inherent structure deca
into the effective harmonic motion for a different inhere
structure. Motivated by this physical intuition, a decay fact
is incorporated into the expression for the time correlati
function predicted by the optimized normal modes, thus
troducing a broadening of the spectrum which defin
damped normal modes~DNM!. The decay function describe
the average long time decay of correlations due to the tr
sitions between the normal modes of different inherent str
tures. It will be shown that the combination of the DNM
picture with the self-consistent OQA proves to be a fruitf
theoretical framework for predicting liquid state time corr
lation functions.

Another outgrowth of the present theory applies to
wide variety of processes involving intramolecular motio
in liquids which can be modeled by the generalized Lange
equation~GLE!.3,12,13 In the GLE approach, the dynamica
solvent effect on, e.g., a molecular bond or some more co
plicated solute coordinate is characterized by a dynamic f
tion kernel which can be predicted theoretically only in th
simple case of translational and rotational motions.14,15

Though the validity of the GLE has not been proven in ge
eral, it can be rigorously derived for a Gaussian bath wh
consists of harmonic oscillators linearly coupled to th
solute.4 It will be shown that the OQA and DNM theory can
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subjec
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be extended to identify the bath normal modes in a man
body system and their coupling coefficients to a solute, thu
providing a theory for the friction kernel in the GLE picture.
This generalization of the theory has important implication
for the study of friction on solute bond vibrations as well as
activated barrier crossing. In accord with the Zwanzig pic
ture, the GLE bath from the DNM theory experiences a
exponential decay because of the transitions between diffe
ent inherent structure OQA solutions. By assuming that th
exponential decay parameter can be determined from t
self-diffusion behavior of thepure solvent, one can predict
the dynamical friction kernel for asolute bond in good
agreement with the exact result from MD simulations.16 We
believe this result to be significant because, in principle,
provides a microscopic theory for the GLE friction kernel in
liquids.

Before proceeding to the next section, it is important t
contrast the present theory with the concept of ‘‘instanta
neous normal modes’’~INM !.9,10,17–25In the latter theory, the
liquid state potential is Taylor expanded at different instan
taneous configurations through quadratic order. A set of no
mal modes is then obtained by diagonalizing the force con
stant matrix and the short time dynamics resulting from tha
liquid configuration can be predicted. This effective har
monic motion is suggested to persist up to some character
tic relaxation time, at which point it is transformed into mo-
tion characteristic of another set of instantaneous norm
modes.9,10,17–25The overall short time dynamics of the liquid
is thereby determined by a superposition of the harmon
motions of all possible configurations. The liquid state ‘‘pho
non spectrum’’ is taken to be the ensemble average of th
instantaneous normal modes of the liquid configurations.17

Instantaneous normal modes have been used to study, e
the short-time dynamics of coupled translational and rota
tional motions in molecular fluids.19 The predictions of the
short-time harmonic motion were compared with exact mo
lecular dynamics~MD! simulation results and found to agree
only for short times. As a result of the anharmonicity in the
liquid, the difficulty in describing such correlation functions
with the INM theory arises due to the presence of the un
stable modes which diverge exponentially with time. From
this point of view, it is mainly the unstable modes which
destroy the linear motion of the liquid. Since the imaginar
frequencies presumably become operational after the char
teristic relaxation time, it can be argued that the unstab
modes should be removed from the INM correlation
function.19,20 Reasonable agreement with exact MD correla
tion functions can be obtained when this ‘‘stable mode’’ ap
proximation is implemented.19,20,26,27The underlying ONM
spectrum in the DNM theory does not contain globally un
stable modes, and it involves a rather different set of assum
tions and approximations in its formulation. The prediction
of the stable mode INM and DNM theories will be compared
numerically for several examples in Sec. IV.

The sections of this paper are organized are follows: I
Sec. II, the DNM analysis of inherent structures is presente
within the rigorous OQA framework. Then, in Sec. III the
GLE picture is formulated in terms of constrained OQA
equations and the DNM theory. Some illustrative numerica
o. 10, 8 September 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4213J. Cao and G. A. Voth: Time correlations in liquids
examples are presented in Sec. IV and concluding rema
are given in Sec. V.

II. DAMPED NORMAL MODE THEORY OF LIQUIDS

In an effort to bring conceptual order to the disordere
liquid state, Stillinger and Weber5–7 advanced the idea of
separating the statistical mechanical description of liquid
into two distinct parts, namely, the mechanically stable pac
ing part and the thermally fluctuating part. Their key ide
was a configurational mapping where arbitrary sets of m
lecular positions are referred to potential minima which ar
the inherent structuresunderlying the liquid phase. This
mapping is generated by a quench procedure which follow
the steepest-descent paths on the hypersurface of the ma
body system. Much attention has been focused on the ide
tification and characterization of these mechanically stab
packings.

The formalism of Stillinger and Weber5 begins with the
canonical partition function forN structureless classical par-
ticles, given by

ZN5E dq exp@2bV~q!#, ~2.1!

whereN is the particle number and the usual normalizatio
factor is omitted here for simplicity. The configurational in-
tegral is next broken into the separate contributions fro
each quench region, i.e.,

ZN5(
l
E
R~ l !

dq exp@2bV~q!#, ~2.2!

whereR( l ) defines the segment on the potential hypersurfa
which can be uniquely mapped to the inherent structure de
ignated by the indexl . Within the regionR( l ), any set of
coordinates can be traced to the quenched inherent struct
giving

V~q!5V~ql !1D lV~q!, ~2.3!

whereV~ql! is the potential local minimum, satisfying

“V~ql !50, ~2.4!

and“ denotes the spatial derivative. Consequently, the pa
tition function can be rewritten as

ZN5(
l

exp@2bV~ql !#E
R~ l !

dq exp@2bD lV~q!#,

~2.5!

where the integration accounts for the thermal fluctuation
around the stable packing structure.

While the quench procedure may reveal thehidden
structuresof the liquid phase, it may not be particularly suc
cessful in recovering the equilibrium properties of liquid
and even less successful in predicting their dynamical pro
erties. While the thermal fluctuations in the inherent structu
potential wells are suggestive of a linear harmonic motion,
turns out that thermally broadening the quenched structu
by using an Einstein or Debye vibrational approximatio
fails to reconstruct important features such as pair correlati
functions. There are at least two reasons for this, one bei
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subjec
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the significant anharmonicities of the liquid state interactio
potential and the other being the geometric disorder of th
inherent structures. Thereby, an actual set of effective ha
monic modes will bear little resemblance to the phonon spe
trum of solids as described by the Einstein or Debye mode
Evidently, a systematic theory is required to formalize th
concept of inherent structures, to establish the relationsh
between liquid dynamics and collective harmonic motions
and to allow for higher-order corrections. This goal can b
accomplished within the framework of the OQA theory de
veloped for general potentials in Ref. 11.

To start, the OQA of Ref. 11 for anN-body coordinate
space is briefly reviewed. Here, vectors and matrices are d
noted by bold fonts, and optimized frequencies and position
are denoted by bars. The basic OQA equations can be writt
as

^“V~ q̄1q̃!&C50, ~2.6!

^“:“V~ q̄1q̃!&C5K , ~2.7!

whereK is the optimized effective force constant matrix and
“ is the partial derivative vector“ i5]/] i . The notation
^•••&C here denotes a multidimensional Gaussian avera
centered atq̄, i.e.,

^V~ q̄1q̃!&C5
1

Adet@2pC#
E dq̃ V~ q̄1q̃!

3exp@2q̃–C21
–q̃/2#, ~2.8!

where the Gaussian width factor matrixC is formally ex-
pressed in the classical limit as

C5~bK !21. ~2.9!

In terms of the eigensolutions, a unitary matrixU can be
found to diagonalize the mass-scaled force constant mat
K̄ , giving the effective normal modes, i.e.,

U†K̄U5@ I–v̄2#, ~2.10!

where $v̄% is the set of the eigenfrequencies,I is the 3N-
dimensional identity matrix, and@I–v̄2# denotes a diagonal
matrix with the i th diagonal element given byv̄i

2. The
Gaussian width factor matrix in Eq.~2.9! can also be deter-
mined from the relation

C5Ū@ I–ā#Ū†, ~2.11!

where Ū5m21/2U, m is the diagonal mass matrix, and the
individual elements of the normal mode mass-scaled therm
width vector are given in the classical limit by

ā i51/bv̄ i
2. ~2.12!

Thus, the set of optimized frequencies$v̄% and average po-
sitions $q̄% are variationally obtained as the self-consisten
solution to the transcendental matrix equations Eqs.~2.6! and
~2.7! in N-dimensional space. The quantum generalization o
the OQA equations is given in the Appendix.

As it stands, there are many possible solutions to th
self-consistent OQA equations, each being defined in a loc
potential well of the many-body system. Under the conditio
that different wells are separated, i.e., the barrier betwee
any two neighboring wells is significantly higher than the
o. 10, 8 September 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4214 J. Cao and G. A. Voth: Time correlations in liquids
average thermal energy, one can assume a linear super
tion of all the metastable solutions. In this spirit, the partitio
function in Eq.~2.1! is intrinsically separated into differen
integration regions and can be written in the quadratic a
proximation as11

ZN.(
l
Zl ,ref exp@2b^DV~ q̄l1q̃!&Cl#, ~2.13!

where subscriptl denotes thel th set of OQA solutions to
Eqs. ~2.6! and ~2.7!. In this sense, the differences betwee
liquids and solids can be attributed to the nature of the OQ
solutions for the many-body configurations. Indeed, this i
portant concept makes it possible to rigorously represent
inherent structures for liquids, which was previously pr
posed and pursued from the perspective of quenched po
tial minima, and to introduce an optimized normal mod
spectrum which will be an analog to the phonon spectrum
solids.1,2 To be more explicit, one can identifyq̄, i.e., the
solution to Eq.~2.6!, as the inherent structures, and the co
responding eigenvectors and eigenvalues, i.e., the solutio
Eq. ~2.7!, as the optimized normal modes~ONM! for the
inherent structure. This definition differs significantly from
that of Stillinger and Weber’s quenched minima for it inco
porates the packing structures and thermal fluctuations in
unified theory. The equilibrium state of the inherent structu
defined in the OQA will shift from the mechanical equilib
rium state because of the thermal motion, while the distrib
tion of the optimized normal modes will display very differ
ent features from the Einstein or Debye model which a
only meaningful for well-defined solid lattices. Moreove
the formulation here is applicable to both classical and qu
tum Boltzmann liquids~cf. the Appendix!. Along these lines,
we note that the mechanical equilibrium state in Stilling
and Weber’s theory lacks a plausible interpretation in qua
tum mechanics because inherent quantum fluctuations m
introduce uncertainties in the particle positions.

In general, all expectation values of physical variabl
can be expressed as the sum of the distinct OQA soluti
weighted by the partitions of the metastable wells. To ta
into account the weight of each solution correctly, the ma
ping method, introduced as the main ingredient in Stilling
and Weber’s approach, proves to be helpful. In this approa
the liquid hypersurface is divided into regionsR( l ), each of
which can be mapped uniquely to an OQA inherent structu
Correspondingly, certain instantaneous liquid configuratio
are traced to the same OQA solution, while other OQA
herent structures must correspond to different subsurface
the liquid potential hypersurface. In practice, a mapping p
cedure can be devised as follows:

~a! Randomly select an instantaneous liquid configurati
from the canonical distribution;

~b! quench the liquid configuration to its potential min
mum;

~c! solve the self-consistent optimized quadratic appro
mation near the mechanical stable structure;

~d! collect data for the optimized inherent structure;
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subje
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~e! repeat steps~a!–~d! for many independent liquid con-
figurations.

Because of the one-to-one correspondence of the mappi
the thermal partition of the optimized quadratic solutions i
accurately incorporated into the scheme. The quench in t
procedure can be achieved by the steepest-descent or
conjugated gradient algorithms. Many physical propertie
can be investigated within the frame of the optimized qua
dratic theory. In particular, the transition between the soli
and the liquid states can be viewed as the change from
global inherent structure to many possible metastable stru
tures. This paper, however, is devoted to the study of liqu
statedynamicsbased on this model.

To begin the dynamical analysis, one can define a
ONM spectrum such that

DONM~v!5
1

3N (
i51

3N

^d@v2v̄ i~q0!#&q0, ~2.14!

wherev̄i~q0! are the set of eigensolutions to Eq.~2.10! for
the regionR( l ) mapped from an instantaneous liquid con
figurationq0. The average in Eq.~2.14! is from the canonical
distribution of instantaneous liquid configurations. The opti
mized normal modes variationally capture the characterist
stable mode thermal excitations,11 at least for the time period
when the system remains in the metastable potential well.
contrast, the INM description9,10,17–25is instantaneous by na-
ture and, through the continuity of the fluid motion, render
instabilities to some of the modes. The ONM spectrum i
essentially the liquid state analog of the self-consistent ph
non spectrum of anharmonic solids.28–30

On the other hand, the metastability of the optimize
normal modes tends to destroy the coherence of their vibr
tions. The liquid motion can be viewed as transitions from
one optimized inherent structure to another, an interplay
barrier crossings and thermal vibrations. The short lifetim
of the ONM’s will broaden the overall spectrum as in the
case of a damped oscillator. This dynamical picture is in
cluded by introducing a decay factor into the time correlatio
functions. For example, the velocity time correlation func
tion for a simple atomic fluid may be written as

CDNM~ t !5
1

mb E dv DONM~v!cos~vt ! f ~v,t !, ~2.15!

where the subscript DNM stands for the ‘‘damped norma
mode’’ approximation andf (v,t) is a decay function which
may, in the most general case, depend on the frequency
simplifying assumption here is to adopt a simple monotoni
decay function which ignores the frequency dependence su
that the DNM spectrum now reads

DDNM~v!5E dv8 F~v2v8!DONM~v8!, ~2.16!

whereF(v) is the Fourier transform of the universal decay
function which broadens the ONM spectrum.

Since a procedure to determine the functional form o
the decay function from first principles has not yet been de
veloped, it can simply be assumed to be an exponential fun
tion, i.e.,

f ~ t !5exp~2lutu! ~2.17!
o. 10, 8 September 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4215J. Cao and G. A. Voth: Time correlations in liquids
with the corresponding spectral convolution functionF(v)
given by

F~v!5
1

p

l

l21v2 ~2.18!

which takes the form of a Lorentzian broadening functio
Since f (t) is not an analytic function att50, the decay
constantl cannot be determined from the short time beha
ior of a time correlation function. From the microscop
point of view,l can be understood as the average escape
from the OQA inherent structures. Therefore, one might
timate this constant from transition state theory~TST!13,31

provided the typical values of the ONM frequencies and t
barrier heights are available. Alternatively, we note that E
~2.16! with the Lorentzian broadening factor Eq.~2.18! is
exactly the expression introduced by Zwanzig in his analy
of the self-diffusion constant.8 In the context of the presen
DNM theory, one can therefore adjust the decay constanl
to yield the correctexperimentaldiffusion constant, i.e.,

D5E dv
1

p

l

l21v2 DONM~v!, ~2.19!

which is the zero-frequency component of the Fourier tra
form of the velocity autocorrelation function. With the quan
tities DONM~v! andl in hand, other liquid state correlation
functions can then be predicted~cf. the next section!. A simi-
lar approach has been proposed in Ref. 10 in order to in
duce damping into the stable mode INM theory.

Before proceeding to the applications of the theory, w
note that an alternative choice off (t) is a Gaussian decay
function, i.e.,

f ~ t !5exp~2kt2/2!, ~2.20!

wherek is an undetermined constant, and the spectral c
volution function is given in this case by

F~v!5A k

2p
exp~2v2/2k! ~2.21!

which broadens a single frequency into a Gaussian distri
tion with a width factork. The Gaussian choice of dampin
function f (t) allows one to impose the condition

ve
25E dv DONM~v!v21k, ~2.22!

whereve is the ‘‘Einstein frequency’’ calculated from equi
librium properties via the second-order moment expansi
This approach uniquely specifies the Gaussian width fac
k. The optimal choice of the damping functionf (t) will
depend on the problem at hand and the time scale of
behavior under examination. The two choices described h
are, of course, qualitatively different since one~the Gauss-
ian! is based on short time~inertial! behavior, while the other
~the exponential! is based on longer time~diffusive! behav-
ior. In the examples studied in Sec. IV B, an exponent
damping function was found to be superior, but this is n
necessarily always true.
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subje
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III. DYNAMICAL FRICTION ON SOLUTE BONDS

The generalized Langevin equation~GLE! has been used
to understand a wide range of problems involving molecula
motion in liquids such as activated barrier crossing and vi
brational relaxation.3,4,12,13The GLE for a molecular bond
can be expressed as

mq̈~ t !1mṽ2q~ t !1E
0

t

dt8 h~ t2t8!q̇~ t8!5F~ t !, ~3.1!

whereq is the displacement in the bond length,F(t) is the
random force along the bond, andṽ can be determined by
the mean square displacementṽ225[bm^q2&]. Using pro-
jection operator techniques, one can explicitly derive the ex
pressions for the dynamic frictionh(t), the random force
F(t), and the second fluctuation dissipation theorem whic
relates the two. However, the formal definitions provide little
help in evaluating these quantities. It is thus necessary
obtain the dynamical friction kernel by some other means
An often used approximation is to set the dynamical friction
kernel equal to the autocorrelation function of the fluctuating
force exerted on the rigid bond by the bath degrees of free
dom. The rigid bond approximation has been shown to be th
high frequency limit of true dynamical friction coefficient.16

If the bond motion can be characterized by a high fre
quency oscillation, the dynamic friction kernel is equivalent
to that evaluated for a rigid bond fixed at the average pos
tion of the bond coordinate.16 Then, the second dissipation
theorem yields a simple prescription for the friction, i.e.,

h~ t !5b^dF~ t !dF~0!&, ~3.2!

where the random force fluctuationdF(t) is evaluated with
the bond frozen at its equilibrium length. The explicit rela-
tion between the force fluctuations and the dynamic friction
cannot be derived in general except if the nonlinear bon
coordinate is bilinearly coupled to a harmonic bath, i.e.,

V5Veq~q!1(
i51

N

v i
2S xi2 ci

v i
2 qD 2, ~3.3!

whereVeq(q) is the potential of mean force alongq, xi is the
i th Gaussian bath normal mode, andci is the coupling
strength. It was shown by Zwanzig4 that the elimination of
the bath modes from the equations of motion for the abov
potential yields the GLE. The dynamical friction coefficient
is then identified as

h~ t !5(
i51

N ci
2

v i
2 cos~v i t !5

2

p E
0

`

dv
J~v!

v
cos~vt !,

~3.4!

where J(v) is the spectral density, defined in the discrete
limit by

J~v!5
p

2 (
i51

N ci
2

v i
d~v2v i !. ~3.5!

The random force can be explicitly expressed in terms of th
initial conditions of the bath variables. Therefore, under the
o. 10, 8 September 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



d

o

a

t

e

t

p
i

h
i
i

a

-

o

u
n

n
l

e
t
t
le
e
s

-
e
f
e

ol
nt
is

t:

-

al
e

-
s
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assumption that the initial bath distribution in phase space
in thermal equilibrium in the presence of the system, one c
readily show that

h~ t !5b^F~ t !F~0!&, ~3.6!

where the equilibrium condition̂F&50 is implied.
The introduction of the spectral densityJ(v) makes it

possible to pass from a discrete set of modes to a continu
spectrum, and hence to represent an arbitrary time depen
friction h(t). The relation in Eq.~3.6! holds for a harmonic
bath regardless of the anharmonic bond potential or the b
length. It is for this reason that the Gaussian bath is an
tractive analytical model to study the solvent frictional e
fects on vibrational relaxation and activated reaction dyna
ics. In a real system, the asymptotic limit of the frictio
mentioned previously implies that the frequency of the osc
lating bond must be much larger than the peak frequency
the solvent spectral density.

While the GLE is an appealing picture, questions rema
whether the harmonic bath is suitable for describing realis
systems and, if so, how the spectral density can be calcula
from first principles. The rigor of such a derivation relies o
the quadratic nature of the bath and the linearity of the co
plings. This situation may be best realized in the solid st
where the bath modes can be well understood as the pho
excitations. In contrast, there is not such aglobal quadratic
bath for liquids, a bath defined as being independent of
temperature and density. In liquids, however, one can app
to the concept of aneffectiveGaussian bath—precisely th
target of this paper!

In the previous section, it was proposed that the config
ration space of liquids can be partitioned into different op
mized metastable potential subspaces so that the short
liquid motion is described as effective harmonic thermal e
citations in the inherent structure wells. The optimized stru
ture and the effective thermal fluctuations can then be fou
in a self-consistent fashion by virtue of the general OQ
theory. Furthermore, the dynamics of liquids can be se
rated into the effective harmonic oscillations in the potent
wells and the transitions between the different wells. In th
simplified picture, liquids can be described as a set
damped harmonic oscillators. Following the same line of re
soning, one can picture a solute bond in a solvent as be
coupled to a damped harmonic bath consisting of expon
tially decaying normal modes. In light of the present the
retical developments, the harmonic bath can be identified
a set of optimized normal modes in the OQA theory. T
normal modes thus defined will depend on the particular l
uid configuration from which the optimized configuration
mapped. Therefore, the actual modes and couplings not o
depend on the nature of the solvent, but also on the m
flexibility, and length of the bond.

In order to formalize the DNM picture of dynamical fric
tion, a modification of the OQA equations is necessary: T
ONM solutions will apply toall degrees of freedom excep
the bond variable. This introduces an extended OQA the
with one or several degrees of freedom constrained so
projection of the solvent modes will introduce linear co
plings and thus identify the origin of the dynamic friction i
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subje
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the DNM picture. For the present purposes, the formulatio
will be confined to the specific situation of a nonrotationa
rigid bond. From the perspective of the OQA, a flexible bond
would allow for an optimization of the bond frequency and
Gaussian fluctuations of the bond variables, whereas th
rigid bond imposes constraints on the OQA equations. I
should be noted, however, that in the high frequency limi
the matrix element corresponding to the bond length variab
becomes decoupled from other elements in both the forc
constant and Gaussian width matrices, so it actually make
little difference whether the bond length is held fixed or al-
lowed to oscillate. Furthermore, when the bond does not ro
tate, the variables corresponding to the bond rotation will b
constrained in the optimization. Similarly, when the center o
the bond does not move, the variables corresponding to th
bond translational motion will be constrained.

For a rigid bond at rest, the OQA equation can be written
under the imposed constraints as

^“V&q50, ~3.7!

^“:“V&q5K , ~3.8!

where the gradients are in Cartesian space and the symb
^•••&q denotes a Gaussian average in the optimized solve
normal modes. In both cases, the bond degree of freedom
appropriately constrained. After performing the optimization
to find the ONM’s, the equation for the coupling constants is
giving by

^“ i“qV&q5ci , ~3.9!

where the subscript ‘‘i ’’ stands for thei th ONM mode andq
stands for the bond variable. Now comes an important poin
To calculate the dynamical bond friction in the DNM picture,
thesameexponentially decaying functionf (t) is used as for
thepure solvent, giving

h~ t !5
2

p E dv
JONM~v!

v
cos~vt !e2lt

5e2lt(
i51

N ci
2

v i
2 cos~v i t !, ~3.10!

wherel is the decay parameter from the pure solvent self
diffusion constant@cf. Eq. ~2.19!#. The effective DNM spec-
tral density function for the friction should be broadened
according to the convolution relation in Eq.~2.16!, i.e.,

JDNM~v!5
1

p E dv8
l

l21~v2v8!2
JONM~v8!. ~3.11!

IV. APPLICATIONS

A. A simple example

To test the concepts proposed in this paper, numeric
calculations were performed for a one-dimensional doubl
well potential, given by

V~q!52 1
2q

21cq31gq4 ~4.1!

with the parametersc50.01,g50.1,m51.0, andb55.0.
The barrier for this potential is located at the origin, separat
ing the two asymmetric wells. Obviously, there are two set
o. 10, 8 September 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4217J. Cao and G. A. Voth: Time correlations in liquids
of OQA solutions corresponding to the left-hand side and t
right-hand side of the barrier. However, as the temperature
increased or the barrier height is sufficiently decreased,
two solutions merge into a single quadratic well near th
origin, indicating that the thermal excitations overwhelm th
barrier.~In contrast, for a many-body potential there exists
complicated branching and merging of the multidimension
OQA solutions as the temperature changes.! For comparison,
the instantaneous normal mode~INM ! correlation function
was also calculated for this simple example. Moreover,
order to demonstrate the importance of self-consistently a
justing the equilibrium position to the center of the therm
excitation along with the fluctuation frequency, the norm
mode equation Eq.~2.7! was also solved at the quenche
potential minimum without optimizing the equilibrium posi-
tion via Eq.~2.6!. The resulting quenched normal mode spe
trum ~QNM! reflects the infinitesimal vibrations correspond
ing to the minima of Stillinger and Weber’s mechanica
stable structures~i.e., at zero temperature!. The correlation
function CQNM(t) resulting from the QNM spectrum was
assumed to also incorporate the exponential damping fu
tion.

Monte Carlo importance sampling was employed to ge
erate the instantaneous configurations and the normal m
analysis was applied at each independent configuration: T
INM frequency was determined by the local curvature, whi
the ONM equilibrium position and frequencies were chos
from the two sets of OQA solutions depending on the insta
taneous position, as was the QNM frequency. The freque
cies were accumulated to yield the corresponding norm
mode spectra. To predict the velocity autocorrelation fun
tion, an exponential decay function withl50.1 was em-
ployed in Eq.~2.17!. For comparison, the TST barrier cross
ing rate for the double well was evaluated to be about 0.1
which is somewhat larger than the optimal decay rate. Co
sidering that the TST rate in this simple well certainly ove
estimates the true barrier crossing rate, the choice ofl is
consistent with the interpretation that the incoherence of t
ONM’s arises from the barrier crossings.

In Fig. 1, the velocity autocorrelation functions are plo
ted for the exact MD simulation results, for the DNM pre
diction, for the QNM prediction, and for the stable-mod
INM prediction. Clearly, the DNM correlation function gives
the best agreement with the MD result, the QNM correlatio
function is out of phase, while the INM correlation function
dephases too quickly after the second period. It should
noted that in this example, as well as in the following two
the correlation functions calculated by the different metho
~i.e., MD, DNM, INM, QNM! have all been normalized to
give the same initial (t50) value. Since the initial value of a
correlation function can be calculated exactly from equilib
rium properties through a Monte Carlo or MD simulation
any approximate theory can always be calibrated to give
exact zero-time value. The important comparison to ma
here is in the time dependence of the correlation functions
should also be noted that damping could be included in t
stable mode INM correlation function as in Ref. 10, but
would need to have a significant frequency dependence
order to bring the INM result into better agreement with th
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subjec
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exact one. That is, a simple exponential or Gaussian dampi
function in the INM theory would just worsen the agreemen
between the exact and INM correlation functions since th
stable mode INM function already decays much too rapidl
in this case.

B. Velocity autocorrelation functions in liquids

The DNM theory was next applied to a simple homoge
neous liquid of particles interacting through a pairwise po
tential, given by

V~r i j !5r i j
212, ~4.2!

where all quantities such as mass, length, time, energy, a
temperature are assumed to be unity. The numerical stud
were performed at a temperature of 1.2 and a density of 0.8
After the system was relaxed to equilibrium, independen
liquid configurations following every 1000 Monte Carlo
moves were used for the optimization. Following the step
described in the text, liquid configurations were sampled
quenched, and optimized. The ONM distribution function
was accumulated over 300 independent liquid configuration
For comparison, MD simulations were performed for the
same system, with 104 trajectories being integrated to yield
the velocity time correlation function.

It can be time consuming to solve the self-consisten
OQA equations for a many-body system. Fortunately, th
thermal fluctuation matrixC is a relatively small quantity for
many cases. Such a narrow Gaussian width allows one
Taylor expand the OQA equations through leading orde
giving

“:“V1 1
2“:“~“:“ !VC5K ~4.3!

and

“V1 1
2“~“:“ !VC5“~“V!•~ q̄2q̄c!, ~4.4!

FIG. 1. A plot of the velocity autocorrelation function for the classical
potential given by Eq.~4.1!. The solid circles are the MD simulation results,
the solid line is the DNM result, the dashed line is the QNM result, and th
dash–dot line is the INM result with the unstable modes removed.
o. 10, 8 September 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4218 J. Cao and G. A. Voth: Time correlations in liquids
where all quantities are evaluated at the current optimi
position q̄c . The above equations can be solved iterativ
until convergence is reached.

In Fig. 2, the normalized velocity correlation functio
calculated from the DNM analysis is plotted along with t
MD simulation result and the stable-mode approximation
the INM correlation function.19An exponentially decay func
tion with l55.0 is used for the DNM~I! correlation func-
tion, while a Gaussian decay function with the width factok
determined from Eq.~2.22! is used for the DNM~II ! corre-
lation function. It can be seen from Fig. 2 that, as expec
both the INM and DNM~II ! correlation functions agree with
the MD simulation result at short times. At relatively lon
times, however, the INM correlation function becomes out
phase and the DNM~II ! correlation function decays too rap
idly. Overall, it is thus seen that the DNM~I! correlation
function with the exponential damping function gives t
best prediction of the liquid state dynamics. This exam
clearly demonstrates the feasibility and accuracy of the DN
theory for realistic systems. In Fig. 3, the exact and DNM~I!
correlation functions are plotted along with the ONM corr
lation function having no damping factor~i.e., l50!. The
‘‘oscillation’’ is correct in the latter case and there is som
degree of dephasing due to the superposition of the diffe
metastable well solutions, but the damping function is ob
ously required in order to obtain quantitative agreement w
the MD result. Recall that the DNM theory explicitlysepa-
rates the oscillations of the various inherent structures fro
the damping behavior due to the transitions between s
structures.

As in the previous example, the accuracy of the DN
result illustrates the value of the variational determination
the ONMs. In particular, the phase of the correlation funct
oscillation is well reproduced in the DNM theory because
variational effective oscillator frequencies are chosen
model theanharmonicthermal fluctuations of the inheren

FIG. 2. A plot of the velocity autocorrelation function for a liquid with
pairwise potential given by Eq.~4.2!. The solid circles are the MD simula
tion results, the solid line is the DNM~I! result for an exponential damping
the dashed line is the DNM~II ! result for a Gaussian damping, and th
dash–dot line is the INM result with the unstable modes removed.
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subje
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structures. In contrast, the stable mode INM theory does n
incorporate such a procedure since the stable INMs are d
termined from the instantaneous configurations of the liquid
The INM correlation function is therefore less accurate in
reproducing the phase of the exact result, although
frequency-dependent damping function10 might improve the
accuracy of the INM theory~and, of course, the accuracy of
the DNM theory as well!. Unfortunately, the determination
of such a function from first-principles or otherwise is no
straightforward.

C. Dynamical friction on solute bonds

In this example, the system was the same as the liqu
described in the previous subsection except that two of th
atoms are not allowed to move. As was outlined in Sec. II
the solute molecule was rigid and held fixed with a separa
tion of unit length. The solvent–solvent and solute–solven
site–site interactions were again given by the repulsive 1/r 12

potential. To solve the self-consistent OQA equations, th
Gaussian average was expanded through second-order
the solution was found iteratively. The details are very sim
lar to those described in Sec. IV B. In the presence of th
rigid solute, however, the solvent spectrum was modified a
cordingly due to the presence of the solute. In particular, th
three translational invariants were broken, which correspon
to three nonzero frequency normal modes. The dynamic
friction on the bond in the DNM theory was then given by
Eq. ~3.4! with the exponential decay function and decay con
stant taken from the pure liquid described in Sec. IV B.

In the exact MD calculation, the solvent force parallel to
the rigid bond directionr̂ 12 was projected out at each time
step, giving

F~ t !5 1
2~F1~ t !2F2~ t !!• r̂ 12, ~4.5!

whereFi(t) is the force on atomi at time t.16 The factor of
1/2 arises because the mass associated with the coordinat

FIG. 3. A plot of the velocity autocorrelation function for a liquid with a
pairwise potential given by Eq.~4.2!. The solid circles are the MD simula-
tion results, the solid line is the DNM~I! result for an exponential damping,
the dashed line is the ONM result for no damping~l50!, and the dash–dot
line is the INM result with the unstable modes removed.
o. 10, 8 September 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4219J. Cao and G. A. Voth: Time correlations in liquids
the reduced mass of the diatomic bond. The force autoco
lation function was then averaged over MD trajectories
give the dynamical friction kernelh(t) of Eq. ~3.6!.

In Fig. 4, the dynamical friction kernels are shown
calculated from the DNM analysis with the damping para
eter taken from the pure solvent, the INM stable mode
proximation, and the MD simulation. All curves are norma
ized to be unity att50. Again, good agreement between t
DNM and exact friction kernels is obtained, confirming th
the DNM model can be an accurate approach for the ca
lation of dynamic friction on solute bonds. The stab
mode INM approach is again less accurate in this exam
perhaps requiring some kind of frequency-dependent da
ing function10 to improve its agreement with the exact resu

V. CONCLUDING REMARKS

In this paper, a rigorous definition of the inherent liqu
state structures and their metastable normal modes of v
tion was developed in order to calculate liquid state corre
tion functions. From this perspective, equilibrium a
transport properties can be studied in a systematic fash
Though the exponential decay assumption for the optimi
normal modes awaits a rigorous derivation, the intuitive p
ture of the damped oscillators is a compelling one wh
seems consistent with the linear regression hypothesis.
thermore, the damping factor from the DNM solution for t
pure solvent can be used along with the OQA theory to p
dict the friction on solute motions, thus providing a micr
scopic theory for the GLE friction kernel.

The OQA and DNM equations can be applied to a w
range of problems. As an example, the activated bar
crossing problem in condensed phases can be treated
effective multidimensional quadratic system coupled to
unstable degree of freedom so that the standard TST
proach can be used.13,32 The Gaussian bath, the unstab
mode, and the linear couplings can be solved from the

FIG. 4. A plot of the friction kernel for a rigid solute bond as described
Sec. IV C. The solid line is the MD result, the dashed line is the DN
prediction with the exponential damping parameter determined from
pure solvent, and the dash–dot line is the INM result with the unsta
modes removed.
J. Chem. Phys., Vol. 103, NDownloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subje
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tended ONM equations with the unstable coordinate co
strained at the barrier top. This procedure leads to
Kramers–Grote–Hynes type rate constant,32–34 but it incor-
porates in a self-consistent fashion the anharmonicity in t
vicinity of the barrier, the nonlinearity of the bath, and th
nonlinear couplings between the bath and the reactive co
dinate. This theory can also be extended to the quantum m
chanical limit, improving upon a result derived previously b
one of us.35 These and other applications of the prese
theory will be the subject of future publications.
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APPENDIX A: QUANTUM DAMPED NORMAL MODE
THEORY OF LIQUIDS

In the quantum mechanical limit, the OQA equations ar
written as11

^“V~ q̄1q̃!&C50, ~A1!

^“:“V~ q̄1q̃!&C5K , ~A2!

whereK is the optimized effective force constant matrix an
where“ is the partial derivative vector“ i5]/]qi . The no-
tation ^•••&C where denotes a multidimensional Gaussian a
erage centered atq̄, i.e.,

^V~ q̄1q̃!&C5
1

Adet@2pC#
E dq̃ V~ q̄1q̃!

3exp@2q̃–C21
–q̃/2#. ~A3!

The Gaussian width factor matrixC, in this case, can be
formally expressed as

C5 (
n52`

`

@bmVn
21bK #21, ~A4!

where m is the 3N-dimensional mass matrix and
Vn52pn/\b. A unitary matrixU can be found to diagonal-
ize the mass-scaled force constant matrixK̄ , giving the quan-
tum ONM frequencies

U†K̄U5@ I–v̄2#, ~A5!

where$v̄i% is the set of the eigenfrequencies and@I–v̄2# de-
notes a diagonal matrix with thei th diagonal element given
by v̄i

2. The Gaussian width factor matrix in Eq.~A4! can be
determined from the relation

C5Ū@ I–ā#Ū†, ~A6!

whereŪ5m21/2U and the individual elements of the norma
mode thermal width vector are given by

ā i5
1

bv̄ i
2 H ~\bv̄ i /2!

tanh~\bv̄ i /2! J . ~A7!

in

the
le
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4220 J. Cao and G. A. Voth: Time correlations in liquids
Thus the set of optimized frequencies$v̄% and average posi-
tions $q̄% are variationally obtained as the self-consistent s
lution to the transcendental matrix Eqs.~A1! and ~A2! in
N-dimensional space.

One can next define a quantum ONM spectrum, givin

DONM~v!5
1

3N (
i51

3N

^d@v2v̄ i~q0!#&q0, ~A8!

wherev̄i~q0! are the set of eigensolutions to Eq.~A5! for the
regionR( l ) mapped from an instantaneous liquid configur
tion q0. Following the DNM prescription, the quantum ve
locity correlation function for a simple atomic fluid is give
by

CDNM~ t !5
1

mb E dv DONM~v! f Q~v!cos~vt !e2lt,

~A9!

where the quantum mode-weighting factor is given by

f Q~v!5
~\bv/2!

tanh~\bv/2!
. ~A10!

It should be noted that the quantum generalization of
DNM theory is particularly significant because informatio
on quantum dynamics is very difficult to obtain for many
body systems using direct computer simulation techniqu
~as opposed to the classical case!.
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