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A theory for time correlation functions in liquids is developed based on the optimized quadratic
approximation for liquid state potential energy functions. The latter approximation leads to the
rigorous mathematical definition of inherent structures in liquids and their vibrational fluctuations,
in turn leading to the concept of inherent normal modes in the liquid state. These normal modes are
called “optimized normal modes.” Unlike normal modes based on instantaneous liquid state
configurations, the optimized normal modes are stable, having real-valued frequencies, and each
inherent liquid state structure has a different set of modes associated with it. By including a single
phenomenological decay function which captures the average transition rate between the different
sets of normal modes, velocity time correlation functions and dynamical friction kernels for solute
bonds can be predicted in good agreement with direct molecular dynamics simulation
results. ©1995 American Institute of Physics.

I. INTRODUCTION for a given set of thermodynamical state variakikeg., tem-
perature.

One of the basic ingredients in condensed matter In his dynamical view of liquids, ZwanZigsuggested
theory"?is the concept of phonons, i.e., the small oscillationsthat after some of vibrational motion about an inherent struc-
about a stable structure or the energy minimum, which camure minimum, the liquid will jump through a saddle point to
be related to many equilibrium and transport properties suchnother local minimum and its associated vibrations. Even-
as heat capacity, thermal conductivity, thermal expansiortually, the liquid will explore all the phase space available to
light scattering, etc. It is clear, however, that liquids are dif-it. The transition process is characterized by an average life-

ferent from solids because of their lack of stable structuresime “7” and thus an exponential decay factor is imposed on
making it formally difficult to apply the well-developed the harmonic motion. The identification of the inherent struc-
theory of phonons in order to calculate, e.g., time correlatiorfures, the vibrational motion about them, and the inter-
functions and thereby predict experimental observables. Ainima transitions provides a plausible picture of the under-
clear challenge, therefore, is to derive from first principles dYing dynamical behavior of a liquid. Based on this picture,
set of “modes” which to some degree dominate the molecuZWanzig' derived an expression for the self-diffusion con-
lar motions in liquids, at least for times smaller than someStant and a relation between self-diffusion and viscosity

phenomenological relaxation time of such mo@&ghe pur- which is consistent with the Stokes—Einstein law. In this
pose of this paper is to provide a formal prescription fortheory, Zwanzig invoked the idea of inherent structure

defining such modes which we call “optimized normal m_odes, bUt. he did pot explic.itly define those modes stgrting
modes” (ONM). A related and challenging problem is the with the microscopic potentiafi.e., he used a Debye-like
. L . . approximation. In the present paper, a mathematical proce-
microscopic origin of the relaxation behavior of these modesdure is used to specify the inherent structure mdiles the
but this issue will be left to future research'. . . .optimized normal modgswhich provides the missing ele-
It should be noted that the theory described herein buildg. Zwanzig's picture(See also Refs. 9 and 10 for an-
on the earlier work of Stillinger and Webef and of '

® The f h 4 the inh other such approach.
Zwanzig- The former authors proposed the inherent struc- |, our previous study on the formulation of statistical

ture picture of liquids in which such structures are deterochanics based on an effective quadratic potethitie

mined by a steepest-decent quench on the liquid state potepsact cumulant expansion of the partition function was
tial hypersurface. The many-body phase space is thughown to have a one-to-one correspondence with a diagram-
divided into subspaces corresponding to many different locahaic representation. It was also shown that diagrammatic
minima. The distribution of the inherent structure local ¢|assifications and topological reductions result in the renor-
minima depends on the interaction potential, temperatur@nalization of the three diagrammatic elements and thus lead
and density. The Stillinger and Weber stable stdtéieing 1o a set of self-consistent effective quadratic equations at
local potential minima, are free of imaginary frequencies andjifferent levels of approximation. The theory is applicable to
thus ideal candidates for an effective harmonic approximapoth classical and quantum systems, and can be shown in the
tion. Unlike in solids, however, the inherent structure is aextremely low temperature limit to be equivalent to ground
metastable state so there must be an overall decay behavistate calculations in a harmonic oscillator basis set. Among
associated with the transitions between the metastable statelse central results of the formalidtis the optimized qua-
Though rich in physical insight, the work by Stillinger and dratic approximatiofOQA) for the partition function which
Weber did not provide a variational procedure for definingis of special importance because of its applicability to real-
the inherent structures and their associated vibrational modéstic many-body systems. The lowest-order OQA equations
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4212 J. Cao and G. A. Voth: Time correlations in liquids

can be derived from the diagrammatic approach or, equivabe extended to identify the bath normal modes in a many-
lently, from the Gibbs—Bogoliubov variational principle. It body system and their coupling coefficients to a solute, thus
can be shown that the optimized quadratic reference potermproviding a theory for the friction kernel in the GLE picture.
tial represents the best fit to an anharmonic potential and anyhis generalization of the theory has important implications
further corrections are beyond the effective potential descripfor the study of friction on solute bond vibrations as well as
tion. activated barrier crossing. In accord with the Zwanzig pic-
Similar to the inherent structure picture, there exist mul-ture, the GLE bath from the DNM theory experiences an
tiple solutions to the OQA equations at different positions,exponential decay because of the transitions between differ-
each corresponding to a local potential minimum with itsent inherent structure OQA solutions. By assuming that the
associated effective normal mode frequencies. Therefore, thexponential decay parameter can be determined from the
OQA solutions separate the many-body potential hypersurself-diffusion behavior of theure solventone can predict
face into different regions, each having a definite thermathe dynamical friction kernel for &olute bond in good
partition, and all physical quantities can be expressed as agreement with the exact result from MD simulatidhsve
superposition of the OQA expectation values weighted bybelieve this result to be significant because, in principle, it
the thermal partitions. The nature of the OQA solution on gprovides a microscopic theory for the GLE friction kernel in
many-body hypersurface reveals the distinction between soliquids.
ids, liquids, and glasses, as well as the transitions between Before proceeding to the next section, it is important to
those phases. When applied to liquids, this theory defines theontrast the present theory with the concept of “instanta-
inherent structures within a rigorous theoretical frameworkneous normal modegINM).%1917=29n the |atter theory, the
and, furthermore, introduces the optimized normal modediquid state potential is Taylor expanded at different instan-
(ONM) of oscillation in a well-defined fashion. Thus, to a taneous configurations through quadratic order. A set of nor-
reasonable degree of mathematical rigor, there exist solichal modes is then obtained by diagonalizing the force con-
statelike concepts in liquids such as equilibrium structurestant matrix and the short time dynamics resulting from that
and phonon excitations, though they are of a metastable ndiquid configuration can be predicted. This effective har-
ture. monic motion is suggested to persist up to some characteris-
The notion of inherent structures and their optimizedtic relaxation time, at which point it is transformed into mo-
normal modes immediately induces one to extend the OQAion characteristic of another set of instantaneous normal
theory to characterize the dynamics of liquid state systemsnodes’!%17~?The overall short time dynamics of the liquid
particularly time correlation functions. At the level of the is thereby determined by a superposition of the harmonic
OQA, the approach expresses the time correlation functiomotions of all possible configurations. The liquid state “pho-
as a thermal partition-weighted superposition of optimizednon spectrum” is taken to be the ensemble average of the
harmonic oscillator time correlation functions. As suggestednstantaneous normal modes of the liquid configuratidns.
by Zwanzig® such a linear description is adequate for a timelnstantaneous normal modes have been used to study, e.g.,
interval shorter than some relaxation time, beyond which thehe short-time dynamics of coupled translational and rota-
effective harmonic motion for an inherent structure decaysional motions in molecular fluid® The predictions of the
into the effective harmonic motion for a different inherent short-time harmonic motion were compared with exact mo-
structure. Motivated by this physical intuition, a decay factorlecular dynamic§MD) simulation results and found to agree
is incorporated into the expression for the time correlationonly for short times. As a result of the anharmonicity in the
function predicted by the optimized normal modes, thus indiquid, the difficulty in describing such correlation functions
troducing a broadening of the spectrum which defineswith the INM theory arises due to the presence of the un-
damped normal modé®NM). The decay function describes stable modes which diverge exponentially with time. From
the average long time decay of correlations due to the trarthis point of view, it is mainly the unstable modes which
sitions between the normal modes of different inherent struceestroy the linear motion of the liquid. Since the imaginary
tures. It will be shown that the combination of the DNM frequencies presumably become operational after the charac-
picture with the self-consistent OQA proves to be a fruitful teristic relaxation time, it can be argued that the unstable
theoretical framework for predicting liquid state time corre-modes should be removed from the INM correlation
lation functions. function®2?° Reasonable agreement with exact MD correla-
Another outgrowth of the present theory applies to ation functions can be obtained when this “stable mode” ap-
wide variety of processes involving intramolecular motionsproximation is implementet??°262"The underlying ONM
in liquids which can be modeled by the generalized Langevirspectrum in the DNM theory does not contain globally un-
equation(GLE).>*?%3|n the GLE approach, the dynamical stable modes, and it involves a rather different set of assump-
solvent effect on, e.g., a molecular bond or some more contions and approximations in its formulation. The predictions
plicated solute coordinate is characterized by a dynamic fricef the stable mode INM and DNM theories will be compared
tion kernel which can be predicted theoretically only in thenumerically for several examples in Sec. IV.
simple case of translational and rotational moti&hs. The sections of this paper are organized are follows: In
Though the validity of the GLE has not been proven in gen-Sec. Il, the DNM analysis of inherent structures is presented
eral, it can be rigorously derived for a Gaussian bath whictwithin the rigorous OQA framework. Then, in Sec. Il the
consists of harmonic oscillators linearly coupled to theGLE picture is formulated in terms of constrained OQA
solute? It will be shown that the OQA and DNM theory can equations and the DNM theory. Some illustrative numerical
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examples are presented in Sec. IV and concluding remarkke significant anharmonicities of the liquid state interaction
are given in Sec. V. potential and the other being the geometric disorder of the
inherent structures. Thereby, an actual set of effective har-
monic modes will bear little resemblance to the phonon spec-
Il. DAMPED NORMAL MODE THEORY OF LIQUIDS trum of solids as described by the Einstein or Debye models.

In an effort to bring conceptual order to the disorderedEVvidently, a systematic theory is required to formalize the
liquid state, Stillinger and Web%r advanced the idea of CONCept o_f mherent structures, to es_tabllsh the .relatlo.nsh|p
separating the statistical mechanical description of liquid@etween liquid dynamics and collective harmonic motions,
into two distinct parts, namely, the mechanically stable pack@nd to allow for higher-order corrections. This goal can be
ing part and the thermally fluctuating part. Their key idea@ccomplished within the framework of the OQA theory de-
was a configurational mapping where arbitrary sets of moYeloped for general potentials in Ref. 11. _
lecular positions are referred to potential minima which are 10 Start, the OQA of Ref. 11 for aN-body coordinate
the inherent structuresunderlying the liquid phase. This SPace is briefly reviewed. Here, vectors and matrices are de-
mapping is generated by a quench procedure which follow&oted by bold fonts, and optm_‘nzed frequen_mes and posmpns
the steepest-descent paths on the hypersurface of the marff€ denoted by bars. The basic OQA equations can be written

body system. Much attention has been focused on the ide®S

tification and characterization of these mechanically stable (vv(g+@))c=0, (2.6)
ackings.
P Thg formalism of Stillinger and Webebegins with the (V:VV(q+0a))c=K, (2.7
canonical partition function foN structureless classical par- wherek is the optimized effective force constant matrix and
ticles, given by V is the partial derivative vectoW;=4/d;. The notation
(---)c here denotes a multidimensional Gaussian average
ZN:f dqg exd — BV(a)], (2.1)  centered ag, i.e.,

whereN is the particle number and the usual normalization V(TT &)= 1 f dé V(a+6
factor is omitted here for simplicity. The configurational in- (V@+ae ydef{27C] avig+a
tegral is next broken into the separate contributions from

—_— q . 71~~
each quench region, i.e., xXexd—q-C"-0/2], 2.9
where the Gaussian width factor mati& is formally ex-
Zn=2, f dg exd —BV(9)], (2.2  pressed in the classical limit as
T R(I)

, , C=(BK) ™. (2.9
whereR(l) defines the segment on the potential hypersurface _ ) _ )
which can be uniquely mapped to the inherent structure dedD terms of the eigensolutions, a unitary mattikcan be
ignated by the index. Within the regionR(l), any set of found to diagonalize the mass-scaled force constant matrix

coordinates can be traced to the quenched inherent structut§; 9iving the effective normal modes, i.e.,
giving UTKU=[1-0?], (2.10

V(a)=V(a)+A4V(a), (2.3 \where{a] is the set of the eigenfrequencidsis the 3N-
whereV(q,) is the potential local minimum, satisfying dimensional identity matrix, anfl - 2] denotes a diagonal
matrix with the ith diagonal element given bw?. The
VV(a)=0, 24 Gaussian width factor matrix in Eq2.9) can also be deter-
andV denotes the spatial derivative. Consequently, the pamined from the relation
tition function can be rewritten as c=u[l-au', (2.1

Zn=2 EXF[—,@V(QO]J dg exd — BAV(Q)], whereU=m~Y4, m is the diagonal mass matrix, and the

! R() individual elements of the normal mode mass-scaled thermal
(29 \idth vector are given in the classical limit by
where the integration accounts for the thermal fluctuations — ., —»
around the stable packing structure. a=1/pw;. (212

While the quench procedure may reveal thielden  Thus, the set of optimized frequencigs} and average po-

structuresof the liquid phase, it may not be particularly suc- sitions {q} are variationally obtained as the self-consistent
cessful in recovering the equilibrium properties of liquids solution to the transcendental matrix equations E2$) and
and even less successful in predicting their dynamical prope2.7) in N-dimensional space. The quantum generalization of
erties. While the thermal fluctuations in the inherent structuréehe OQA equations is given in the Appendix.
potential wells are suggestive of a linear harmonic motion, it  As it stands, there are many possible solutions to the
turns out that thermally broadening the quenched structurself-consistent OQA equations, each being defined in a local
by using an Einstein or Debye vibrational approximationpotential well of the many-body system. Under the condition
fails to reconstruct important features such as pair correlatiothat different wells are separated, i.e., the barrier between
functions. There are at least two reasons for this, one beingny two neighboring wells is significantly higher than the
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average thermal energy, one can assume a linear superpo&@) repeat stepsa)—(d) for many independent liquid con-
tion of all the metastable solutions. In this spirit, the partition figurations.
function in Eq.(2.1) is intrinsically separated into different .
: . . . . . Because of the one-to-one correspondence of the mapping,
integration regions and can be written in the quadratic ap- s . : . .
L the thermal partition of the optimized quadratic solutions is
proximation a$ . ; .
accurately incorporated into the scheme. The quench in the
procedure can be achieved by the steepest-descent or the
conjugated gradient algorithms. Many physical properties
can be investigated within the frame of the optimized qua-
dratic theory. In particular, the transition between the solid
where subscript denotes thdth set of OQA solutions to alndb tr,e rl:qwdtst?test carl{ be viewed a}zlthe Ctha?gl;%l frotm a
Egs. (2.6) and (2.7). In this sense, the differences betweend'0Pa! INNerent structure to many possible metastable struc-

liquids and solids can be attributed to the nature of the OQAl:r?Sa This pasger, f:jOWE\:ﬁr, s d((jevloted to the study of liquid
solutions for the many-body configurations. Indeed, this im-> a? yr;)am_lc tr?sed on this Imo ell . defi
portant concept makes it possible to rigorously represent thgN 0 begin the dynamical analysis, one can definé an

inherent structures for liquids, which was previously pro- M spectrum suc?Nthat

Zy= 2% Zyer XKL~ BAV(@+ B)c ), (2.13

posed and pursued from the perspective of quenched poten- o
tial minima, and to introduce an optimized normal mode DONM(w):miZl <5[w—wi(%)]>qov (2.14

spectrum which will be an analog to the phonon spectrum of _ , .
solids2 To be more explicit, one can identify, i.e., the Wherew;(do) are the set of eigensolutions to Hg-10 for

solution to Eq.(2.6), as the inherent structures, and the cor-th€ regionR(l) mapped from an instantaneous liquid con-
responding eigenvectors and eigenvalues, i.e., the solution figurationgo. The average in Eq2.14 is from the canonical
Eq. (2.7), as the optimized normal modé®NM) for the distribution of instantaneous liquid configurations. The opti-
inherent structure. This definition differs significantly from Mized normal modes variationally capture the characteristic
that of Stillinger and Weber’s quenched minima for it incor- stable mode thermal excitatiofsat least for the time period

porates the packing structures and thermal fluctuations into §Nen the system remains in the metastable potential well. In

[ 401017-25
unified theory. The equilibrium state of the inherent structurecontrast, the INM descripticrt IS instantaneous by na-

defined in the OQA will shift from the mechanical equilib- ture and, through the continuity of the fluid motion, renders

fium state because of the thermal motion, while the distribuinstabilities to some of the modes. The ONM spectrum is

tion of the optimized normal modes will display very differ- essentially the liquid state gnalog cifs(t)he self-consistent pho-
ent features from the Einstein or Debye model which ard!©n SPectrum of anharmonic solitfs. - o
only meaningful for well-defined solid lattices. Moreover, ~ ©On the other hand, the metastability of the optimized
the formulation here is applicable to both classical and quan?0rmal modes tends to destroy the coherence of their vibra-
tum Boltzmann liquidgcf. the Appendix. Along these lines, tions. The_llqmq motion can be viewed as transitions from
we note that the mechanical equilibrium state in Stillingero® OPtimized inherent structure to another, an interplay of
and Weber’s theory lacks a plausible interpretation in quanparrler crossings and thermal vibrations. The short lifetime

tum mechanics because inherent quantum fluctuations mugf theé ONM's will broaden the overall spectrum as in the
introduce uncertainties in the particle positions. case of a damped oscillator. This dynamical picture is in-

In general, all expectation values of physical variablestluded by introducing a decay factor into the time correlation

can be expressed as the sum of the distinct OQA solution%mCtionS' For example, the velocity time correlation func-

weighted by the partitions of the metastable wells. To takd!on for & simple atomic fluid may be written as

into account the weight of each solution correctly, the map- 1

ping method, introduced as the main ingredient in Stilinger ~ Conm(t) = mg do Donu(w)cogwt)f(w,t), (2.19
and Weber's approach, proves to be helpful. In this approacr\k’here the subscript DNM stands for the “damped normal

the. liquid hypersurface is’. divided into regigRﬁl), each of mode” approximation and(w,t) is a decay function which

which can be mapped uniquely to an OQA inherent structuremay in the most general ca’se depend on the frequency. A

Correspondingly, certain instantaneous liquid configurations, -’ ... ; o . ;

are traced to the same OQA solution, while other OQA in_S|mpI|fy|ng assumption here is to adopt a simple monotonic
" decay function which ignores the frequency dependence such

herent structures must correspond to different subsurfaces Hat the DNM spectrum now reads

the liquid potential hypersurface. In practice, a mapping pro- P

cedure can be devised as follows: DDNM(w):J' do’ F(o—o")Dou(®’), (2.16

(8 Randomly select an instantaneous liquid configuratiofVhereF () is the Fourier transform of the universal decay
from the canonical distribution: function which broadens the ONM spectrum.

(b) quench the liquid configuration to its potential mini- Since a procedure to determine the functional form of
mum: the decay function from first principles has not yet been de-

(©) solve the self-consistent optimized quadratic approxi-V€/oPed, it can simply be assumed to be an exponential func-

mation near the mechanical stable structure; tion, i.e.,
(d) collect data for the optimized inherent structure; f(t)=exp(—\|t]) (2.17
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with the corresponding spectral convolution functiBfw) I1l. DYNAMICAL FRICTION ON SOLUTE BONDS
iven b
g Y The generalized Langevin equati@BLE) has been used
1 A to understand a wide range of problems involving molecular
Flo)=— 272 (2.18  motion in liquids such as activated barrier crossing and vi-

brational relaxatiof:*'>'3The GLE for a molecular bond
which takes the form of a Lorentzian broadening function.can be expressed as
Since f(t) is not an analytic function at=0, the decay .
constani\ cannot be determined from the short time behav- m'q(t)+m&)2q(t)+f dt’ p(t—tHg(tH=F(t), (3.1
ior of a time correlation function. From the microscopic 0
point of view,\ can be understood as the average escape rate ) ) . )
from the OQA inherent structures. Therefore, one might esWWhereq is the displacement in the bond lengt(t) is the
timate this constant from transition state thegfygT)!33t  random force along the bond, %mdcan bg determined by
provided the typical values of the ONM frequencies and thée mean square displacemét“=[sm(q")]. Using pro-
barrier heights are available. Alternatively, we note that EqI€Ction operator techniques, one can explicitly derive the ex-
(2.16 with the Lorentzian broadening factor E(2.18) is pressions for the dynamic frictiom(t), the random force

exactly the expression introduced by Zwanzig in his analysi€ (1), @nd the second fluctuation dissipation theorem which
of the self-diffusion constaritin the context of the present relates the two. However, the formal definitions provide little

DNM theory, one can therefore adjust the decay constant help_in evaluating thesg guantities. It is thus necessary to
to yield the correcexperimentabdiffusion constant, i.e., obtain the dynamical friction kernel by some other means.
An often used approximation is to set the dynamical friction

1 kernel equal to the autocorrelation function of the fluctuating
sz do — 773 Donu(®), (219 force exerted on the rigid bond by the bath degrees of free-
dom. The rigid bond approximation has been shown to be the
which is the zero-frequency component of the Fourier transhigh frequency limit of true dynamical friction coefficietit.
form of the velocity autocorrelation function. With the quan- If the bond motion can be characterized by a high fre-
tities Doyw(w) @and\ in hand, other liquid state correlation quency oscillation, the dynamic friction kernel is equivalent
functions can then be predictédf. the next section A simi-  to that evaluated for a rigid bond fixed at the average posi-
lar approach has been proposed in Ref. 10 in order to intration of the bond coordinat¥. Then, the second dissipation
duce damping into the stable mode INM theory. theorem yields a simple prescription for the friction, i.e.,
Before proceeding to the applications of the theory, we
note that an alternative choice 6t) is a Gaussian decay n(t)=B(SF(t)5F(0)), 3.2

function, i.e., where the random force fluctuatiafi-(t) is evaluated with

f(t)=exp — kt2/2), 292 the bond frozen at its equilibrigm length. The expllicit _rella—
® A= xth2) (220 tion between the force fluctuations and the dynamic friction
where k is an undetermined constant, and the spectral concannot be derived in general except if the nonlinear bond

volution function is given in this case by coordinate is bilinearly coupled to a harmonic bath, i.e.,
N 2
K 2 Ci
Flw)= ‘/E exp— w?/2k) (2.22) V=Veq(q)+i2l ;] (xi— — q) : (3.3
- I

which broadens a single frequency into a Gaussian distribuvhereV,(q) is the potential of mean force alowmg x; is the
tion with a width factork. The Gaussian choice of damping ith Gaussian bath normal mode, aegd is the coupling
function f(t) allows one to impose the condition strength. It was shown by ZwanZighat the elimination of
the bath modes from the equations of motion for the above
potential yields the GLE. The dynamical friction coefficient

2_ 2
e J de Donm(@) @™+ k, (222 Sthen identified as

wherew, is the “Einstein frequency” calculated from equi- N 2 2 (» I

librium properties via the second-order moment expansion. 7(t)=2, —5 cofwit)=— f do —— coqwt),
This approach uniquely specifies the Gaussian width factor =1 @ mJo @ 3.4
x. The optimal choice of the damping functidift) will ’
depend on the problem at hand and the time scale of th&here J(w) is the spectral density, defined in the discrete
behavior under examination. The two choices described herémit by
are, of course, qualitatively different since oftee Gauss-

ian) is based on short tim@nertial) behavior, while the other T i
(the exponentialis based on longer tim@iffusive) behav- Iw)= 2 241 P (o= ). 3.5

ior. In the examples studied in Sec. IV B, an exponential

damping function was found to be superior, but this is notThe random force can be explicitly expressed in terms of the
necessarily always true. initial conditions of the bath variables. Therefore, under the

N 2

Downloaded-27-Mar-2001-to-18.60.25% TNeRE FWSutfRl- 108 d0a B SeRtmper 4995 hitp://ojps.aip.orglicpoljcper.jsp



4216 J. Cao and G. A. Voth: Time correlations in liquids

assumption that the initial bath distribution in phase space ithe DNM picture. For the present purposes, the formulation
in thermal equilibrium in the presence of the system, one cawill be confined to the specific situation of a nonrotational

readily show that rigid bond. From the perspective of the OQA, a flexible bond
would allow for an optimization of the bond frequency and
7(t)=B(F(HF(0)), (36 Gaussian fluctuations of the bond variables, whereas the

rigid bond imposes constraints on the OQA equations. It
should be noted, however, that in the high frequency limit
me matrix element corresponding to the bond length variable

comes decoupled from other elements in both the force

where the equilibrium conditiogF)=0 is implied.
The introduction of the spectral densilfw) makes it
possible to pass from a discrete set of modes to a continuu

spectrum, and hence to represent an arbitrary time depend . . . .

friction 7(t). The relation in Eq(3.6) holds for a harmonic ‘?O”S‘?m and Gaussian width matrices, S0 It actgally makes
bath regardless of the anharmonic bond potential or the bonlbttIe ngerentf ;Nhithet;] the bond Ir(]angttf;] 'SbhEIg ;lxed ortal-
length. It is for this reason that the Gaussian bath is an a{tp\t/ve tho oscl ;e. ur ermo(;_e, V\f[ et?] be gn i <t)_es nc_J” LO'
tractive analytical model to study the solvent frictional ef- ate, the variabes corresponding to the bond rotation witt be

fects on vibrational relaxation and activated reaction dynam_constramed in the optimization. Similarly, when the center of

ics. In a real system, the asymptotic limit of the friction Lhe g?nd dIO(te.S nolt m(i_ve, th.ﬁ k\)/arlablets c_orrgspondmg o the
mentioned previously implies that the frequency of the oscil- ond transiational motion will bé constrained.

lating bond must be much larger than the peak frequency of dForha r|_g|d bon(;j at rest,_the OQA equation can be written
the solvent spectral density. under the imposed constraints as

While the GLE is an appealing picture, questions remain ~ (VV),=0, 3.7
whether the harmonic bath is suitable for describing realistic )
systems and, if so, how the spectral density can be calculated (V:VV)q=K, 3.9

from first principles. The rigor of such a derivation relies onwhere the gradients are in Cartesian space and the symbol
the quadratic nature of the bath and the linearity of the cou¢- -y, denotes a Gaussian average in the optimized solvent
plings. This situation may be best realized in the solid stat¢ormal modes. In both cases, the bond degree of freedom is
where the bath modes can be well understood as the phonepropriately constrained. After performing the optimization

excitations. In contrast, there is not suclglabal quadratic  to find the ONM'’s, the equation for the coupling constants is
bath for liquids, a bath defined as being independent of thgiving by

temperature and density. In liquids, however, one can appeal
to the concept of aeffectiveGaussian bath—precisely the (ViVaV)g=ci, (3.9
target of this paper! where the subscripti” stands for theith ONM mode andj

In the previous section, it was proposed that the configustands for the bond variable. Now comes an important point:
ration space of liquids can be partitioned into different opti-To calculate the dynamical bond friction in the DNM picture,
mized metastable potential subspaces so that the short tinfiee sameexponentially decaying functiof(t) is used as for
liquid motion is described as effective harmonic thermal ex-the pure solventgiving
citations in the inherent structure wells. The optimized struc-
ture and the effective thermal fluctuations can then be found ) — 2 j dw Jowm(@) cod wt)e M
in a self-consistent fashion by virtue of the general OQA ™ @
theory. Furthermore, the dynamics of liquids can be sepa- N2
rated into the effecyye harmonic oscnlat_|ons in the potentle_ll —e" xtz — cog wjt), (3.10
wells and the transitions between the different wells. In this i=1

simplified picture, liquids can be described as a set Ofypere) s the decay parameter from the pure solvent self-
damped harmonic oscillators. Following the same line of reag;s,sion constanicf. Eq. (2.19]. The effective DNM spec-

soning, one can picture a solute bond in a solvent as being,| gensity function for the friction should be broadened
coupled to a damped harmonic bath consisting of eXPONeNccording to the convolution relation in E@.16), i.e.,
tially decaying normal modes. In light of the present theo-

retical developments, the harmonic bath can be identified af )= = J de’ 3 , (3.19)

a set of optimized normal modes in the OQA theory. The o (@ r ? N (w—w')? onm(@”)- '

normal modes thus defined will depend on the particular lig-

uid configuration from which the optimized configuration is |v. APPLICATIONS

mapped. Therefore, the actual modes and couplings not onl

depend on the nature of the solvent, but also on the mass;

flexibility, and length of the bond. To test the concepts proposed in this paper, numerical
In order to formalize the DNM picture of dynamical fric- calculations were performed for a one-dimensional double

tion, a modification of the OQA equations is necessary: Thavell potential, given by

ONM solutions will apply toall degrees of freedom except 1

the bond variable. Thpis ?/ntroducegJ an extended OQA th([a)ory V(a)=~3q"+cq’+gq’ 4.

with one or several degrees of freedom constrained so theith the parameters=0.01,g=0.1,m=1.0, andB=5.0.

projection of the solvent modes will introduce linear cou- The barrier for this potential is located at the origin, separat-

plings and thus identify the origin of the dynamic friction in ing the two asymmetric wells. Obviously, there are two sets

. A simple example
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of OQA solutions corresponding to the left-hand side and the

right-hand side of the barrier. However, as the temperature is Double Well Velocity Correlation Function

increased or the barrier height is sufficiently decreased, the 1.0 ' ' '

two solutions merge into a single quadratic well near the * g‘ﬁM
origin, indicating that the thermal excitations overwhelm the 05 L 11 ---Q M| |
barrier.(In contrast, for a many-body potential there exists a : R o _-INM
complicated branching and merging of the multidimensional | ; \ JAVY o
OQA solutions as the temperature changEsr comparison, €> 0.0 L ,: \‘\ L _,\T__',_,’._ O LA .
the instantaneous normal mod&M) correlation function o | v h A A Y S
was also calculated for this simple example. Moreover, in | /' Y / A =
order to demonstrate the importance of self-consistently ad- 05 \ B v, -
justing the equilibrium position to the center of the thermal R/

excitation along with the fluctuation frequency, the normal *

mode equation Eqg(2.7) was also solved at the quenched -1.0 . ' '

potential minimum without optimizing the equilibrium posi- 0 5 Tillge 15 20

tion via Eq.(2.6). The resulting quenched normal mode spec-
trum (QNM) reflects the infinitesimal vibrations correspond-

ing to the minima of Stillinger and Weber's mechanical FIG. 1 A_plot of the velocity aqtoc_orrelatlon functlon_for the classical
potential given by Eq4.1). The solid circles are the MD simulation results,

stable structuresi.e., at zero temperatLDreThe correlation the solid line is the DNM result, the dashed line is the QNM result, and the
function Conw(t) resulting from the QNM spectrum was dash—dot line is the INM result with the unstable modes removed.
assumed to also incorporate the exponential damping func-

tion.

Monte Carlo importance sampling was employed to gen- _ . . . .
erate the instantaneous configurations and the normal mO(?e acF one. That is, a simple expor_1ent|al or Gaussian damping
analysis was applied at each independent configuration: Tr}oger;vvd:aoenn”;htgeei(l;g t:fg?moﬂ?rigatxﬁrijgci?:nzgéﬁizetﬂte
INM frequency was determined by the local curvature, while

the ONM equilibrium position and frequencies were chosenStable mode INM function already decays much too rapidly

from the two sets of OQA solutions depending on the instan’" this case.
taneous position, as was the QNM frequency. The frequen-
cies were accumulated to yield the corresponding normal

mode spectra. To predict the velocity autocorrelation funcB. Velocity autocorrelation functions in liquids

t|<|)n, 3“? eépogelntlallz decay fun_ctlonﬂ\:vmﬁl_zs(_)r.t was em- The DNM theory was next applied to a simple homoge-
ployed in q.(2.17). For comparison, the arrier Cross- neous liquid of particles interacting through a pairwise po-
ing rate for the double well was evaluated to be about 0.15tential given by

which is somewhat larger than the optimal decay rate. Con-
sidering that the TST rate in this simple well certainly over-  V(rjj)= ri}lz, 4.2
estimates the true barrier crossing rate, the choica «f
consistent with the interpretation that the incoherence of th
ONM’s arises from the barrier crossings.

In Fig. 1, the velocity autocorrelation functions are plot-
ted for the exact MD simulation results, for the DNM pre-

diction, for the QNM prediction, and for the stable-mode > .
INM prediction. Clearly, the DNM correlation function gives moves were used for the optimization. Following the steps
P ’ Y, 9 described in the text, liquid configurations were sampled,

the b_est _agreement with the_MD result, the QNM Correl"’?t'onquenched, and optimized. The ONM distribution function
function is out of phase, while the INM correlation function

deoh ¢ icklv after th q iod. It should bwas accumulated over 300 independent liquid configurations.
ephases 100 quickly after the second period. 1t Shou Bor comparison, MD simulations were performed for the
noted that in this example, as well as in the following two,

) . . same system, with fQrajectories being integrated to yield
the correlation functions calculated by the different method y ) g g y

. . the velocity time correlation function.
(i.e., MD, DNM, INM, QNM) have all been normalized to It can be time consuming to solve the self-consistent

give the_ same in.itialt(=0) value. Since the initial value of_g OQA equations for a many-body system. Fortunately, the
correlation function can be calculated exactly from equmb-thermal fluctuation matri€ is a relatively small quantity for

rium properties through a Monte Carlo or MD simulgtion, many cases. Such a narrow Gaussian width allows one to
any approximate theory can always be calibrated to give th%aylor expand the OQA equations through leading order,
exact zero-time value. The important comparison to make?- ing

I

here is in the time dependence of the correlation functions.

should also be noted that damping could be included in the V:VV+3V:V(V:V)VC=K (4.3
stable mode INM correlation function as in Ref. 10, but it

would need to have a significant frequency dependence in

order to bring the INM result into better agreement with the ~ VV+3V(V:V)VC=V(VV)-(q—q.), (4.9

where all quantities such as mass, length, time, energy, and
?emperature are assumed to be unity. The numerical studies
were performed at a temperature of 1.2 and a density of 0.84.
After the system was relaxed to equilibrium, independent
liquid configurations following every 1000 Monte Carlo
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FIG. 3. A plot of the velocity autocorrelation function for a liquid with a
pairwise potential given by Ed4.2). The solid circles are the MD simula-

tion results, the solid line is the DNM) result for an exponential damping,
the dashed line is the ONM result for no dampiiag=0), and the dash—dot

line is the INM result with the unstable modes removed.

FIG. 2. A plot of the velocity autocorrelation function for a liquid with a
pairwise potential given by Ed4.2). The solid circles are the MD simula-
tion results, the solid line is the DNM) result for an exponential damping,
the dashed line is the DNMII) result for a Gaussian damping, and the
dash—dot line is the INM result with the unstable modes removed.

structures. In contrast, the stable mode INM theory does not

where all quantities are evaluated at the current optimizeghcorporate such a procedure since the stable INMs are de-
positiong.. The above equations can be solved iterativelytermined from the instantaneous configurations of the liquid.
until convergence is reached. The INM correlation function is therefore less accurate in

In Fig. 2, the normalized velocity correlation function reproducing the phase of the exact result, although a
calculated from the DNM analysis is plotted along with thefrequency-dependent dampmg funcﬁ6m|ght impro\/e the
MD simulation result and the stable-mode approximation foraccuracy of the INM theorYand, of course, the accuracy of
the INM correlation functiort” An exponentially decay func- the DNM theory as well Unfortunately, the determination

tion with A=5.0 is used for the DNM) correlation func-  of such a function from first-principles or otherwise is not
tion, while a Gaussian decay function with the width faotor = straightforward.

determined from Eq(2.22) is used for the DNMII) corre-
lation function. It can be seen from Fig. 2 that, as expected _ L
both the INM and DNM(II) correlation functions agree with C. Dynamical friction on solute bonds
the MD simulation result at short times. At relatively long In this example, the system was the same as the liquid
times, however, the INM correlation function becomes out ofdescribed in the previous subsection except that two of the
phase and the DNMII) correlation function decays too rap- atoms are not allowed to move. As was outlined in Sec. lll,
idly. Overall, it is thus seen that the DNM) correlation  the solute molecule was rigid and held fixed with a separa-
function with the exponential damping function gives thetion of unit length. The solvent—solvent and solute—solvent
best prediction of the liquid state dynamics. This examplesite—site interactions were again given by the repulsivé?/
clearly demonstrates the feasibility and accuracy of the DNMpotential. To solve the self-consistent OQA equations, the
theory for realistic systems. In Fig. 3, the exact and DNM  Gaussian average was expanded through second-order and
correlation functions are plotted along with the ONM corre-the solution was found iteratively. The details are very simi-
lation function having no damping factdr.e., A=0). The lar to those described in Sec. IV B. In the presence of the
“oscillation” is correct in the latter case and there is somerigid solute, however, the solvent spectrum was modified ac-
degree of dephasing due to the superposition of the differerdordingly due to the presence of the solute. In particular, the
metastable well solutions, but the damping function is obvi-three translational invariants were broken, which correspond
ously required in order to obtain quantitative agreement withto three nonzero frequency normal modes. The dynamical
the MD result. Recall that the DNM theory explicitsepa-  friction on the bond in the DNM theory was then given by
ratesthe oscillations of the various inherent structures fromgg. (3.4) with the exponential decay function and decay con-
the damping behavior due to the transitions between suctant taken from the pure liquid described in Sec. IV B.
structures. In the exact MD calculation, the solvent force parallel to
As in the previous example, the accuracy of the DNMthe rigid bond directiorr,, was projected out at each time
result illustrates the value of the variational determination ofstep, giving
the ONMSs. In patrticular, the phase of the correlation function u
oscillation is well reproduced in the DNM theory because the F(t)=3(Fy(t) = Fa(t) -T2, 4.5
variational effective oscillator frequencies are chosen towhereF;(t) is the force on atom at timet.” The factor of
model theanharmonicthermal fluctuations of the inherent 1/2 arises because the mass associated with the coordinate is

t16
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Solute Bond Friction tended ONM equations with the unstable coordinate con-
1.2 . . : : strained at the barrier top. This procedure leads to a
Kramers—Grote—Hynes type rate const#nt’ but it incor-
porates in a self-consistent fashion the anharmonicity in the
vicinity of the barrier, the nonlinearity of the bath, and the
nonlinear couplings between the bath and the reactive coor-
dinate. This theory can also be extended to the quantum me-
chanical limit, improving upon a result derived previously by
one of us® These and other applications of the present
theory will be the subject of future publications.

Friction Kernel
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APPENDIX A: QUANTUM DAMPED NORMAL MODE
THEORY OF LIQUIDS

the reduced mass of the diatomic bond. The force autocorre- |n the quantum mechanical limit, the OQA equations are
lation function was then averaged over MD trajectories toyritten a<?!
give the dynamical friction kernef(t) of Eq. (3.6). — .

In Fig. 4, the dynamical friction kernels are shown as  (VV(a+@))c=0, (A1)
calculated from the DNM analysis with the damping param-  (y:yv(q+4))c=K, (A2)
eter taken from the pure solvent, the INM stable mode ap- ) o ) )
proximation, and the MD simulation. All curves are normal- WhereK is the optimized effective force constant matrix and
ized to be unity at=0. Again, good agreement between the Where'V is the partial derivative vectdv; = d/Jq; . The no-
DNM and exact friction kernels is obtained, confirming that {&tion{:-)c where denotes a multidimensional Gaussian av-
the DNM model can be an accurate approach for the calclf'@g€ centered &, i.e.,
lation of dynamic friction on solute bonds. The stable _ 1 L
mode INM approach is again less accurate in this example, (V(q+ Q)>c=m f dqg V(g+q)
perhaps requiring some kind of frequency-dependent damp- 7

ing function'® to improve its agreement with the exact result. xexd—q-C 1.g/2]. (A3)
The Gaussian width factor matrig, in this case, can be
V. CONCLUDING REMARKS formally expressed as
In this paper, a rigorous definition of the inherent liquid o
state structures and their metastable normal modes of vibora- C= z [,BmQﬁJrﬂK]‘l, (A4)

n=-—ow

tion was developed in order to calculate liquid state correla-
tion functions. From this perspective, equilibrium andwhere m is the 3N-dimensional mass matrix and
transport properties can be studied in a systematic fashioi),,=2sn/# 8. A unitary matrixU can be found to diagonal-
Though the exponential decay assumption for the optimizedékze the mass-scaled force constant marjgiving the quan-
normal modes awaits a rigorous derivation, the intuitive pictum ONM frequencies

ture of the damped oscillators is a compelling one which foT Ly —2
seems consistent with the linear regression hypothesis. Fur- UKU=[1-7], (A5)
thermore, the damping factor from the DNM solution for the where{w;} is the set of the eigenfrequencies dihdv?] de-
pure solvent can be used along with the OQA theory to prenotes a diagonal matrix with thigh diagonal element given
dict the friction on solute motions, thus providing a micro- by w?. The Gaussian width factor matrix in EGA4) can be

scopic theory for the GLE friction kernel. determined from the relation
The OQA and DNM equations can be applied to a wide =
range of problems. As an example, the activated barrier C=Ull-a]u’, (AB)

crossing problem in condensed phases can be treated as whereU=m YU and the individual elements of the normal
effective multidimensional quadratic system coupled to ammode thermal width vector are given by

unstable degree of freedom so that the standard TST ap- —

proach can be uséd® The Gaussian bath, the unstable o —_ { (7w /2) ] (A7)

a; = —
mode, and the linear couplings can be solved from the ex- ' ﬁaiz tanh(7 Bw; /2)
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Thus the set of optimized frequencigs} and average posi-
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