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A computational theory for determining electron transfer rate constants is formulated based on an
instanton expression for the quantum rate and the self-consistent solution of the imaginary time
nonadiabatic steepest descent approximation. The theory obtains the correct asymptotic behavior for
the electron transfer rate constant in the nonadiabatic and adiabatic cases, and it smoothly bridges
between those two limits for intermediate couplings. Furthermore, no assumptions regarding the
form of the diabatic potentials are invoked~e.g., harmonic! and more than two diabatic states can
be included in the calculations. The method thereby holds considerable promise for computing
electron transfer rate constants in realistic condensed phase systems. ©1995 American Institute of
Physics.
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I. INTRODUCTION

Electron transfer~ET! processes in chemistry, physic
and biology have been the subject of a considerable num
of experimental and theoretical studies.1,2 Recent computa-
tional approaches for computing ET rate constants ra
from those based on Fermi’s golden rule3 to explicit quantum
dynamical calculations on simplified models of E
processes.4–9 In addition, approaches derived from path int
gral quantum transition state theory10–13 have been devel
oped to calculate the ET rate based on the centroid densi
the electronic state variable.14–16Despite the many theoreti
cal and computational studies of ET reactions, a unified co
putational approach has not yet been developed whic
capable of determining ET rate constants for arbitrary val
of the electronic coupling in systems characterized by g
eral nonlinear potentials and/or a significant degree
nuclear mode tunneling. Significant progress towards
goal will be described in the present paper.

The underlying basis of the theory described herein
the semiclassical approximation to the quantum partit
function,17 which can be shown to be closely related to t
thermally averaged quantum tunneling rate in metasta
systems.18–21Along these lines, Miller has suggested that t
quantum reactive flux at low temperature can be determi
by the so-called bounce trajectory on the inverted poten
energy surface, i.e., the instanton.19 In terms of the steepes
descent approximation, the instanton trajectory along the
riodic imaginary time axis satisfies the Euler–Lagran
equation, and the quantum fluctuations along the trajec
take the form of a Gaussian functional which can be cal
lated by evaluating the Van Vleck determinant.22 The exten-
sion of these ideas to the dissipative quantum tunneling
gime has been discussed by Caldeira and Leggett at s
length.23 However, while the original instanton analysis
suitable when a unique potential energy surface can be
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sumed, an effort to include the possibility of nonadiabatic
transitions to other potential surfaces is necessary in order
correctly describe electron transfer processes in a gene
way. This is the focus of the present analysis.

Many advances have taken place in the field of nonadia
batic dynamics simulation for real time quantum dynamic
~see, e.g., Refs. 24–27!. The theoretical basis for several
algorithms24,27 is the Pechukas theory of nonadiabatic
collisions.28,29Although it was originally formulated for real
time quantum dynamics, the self-consistent nonadiabat
theory of Pechukas bears a similarity to the instanton theor
both being based on the stationary phase~or steepest de-
scent! approximation to a Feynman path integral.30,31 The
former theory is a real time formulation, while the latter is in
imaginary time. In the present paper, the nonadiabatic theo
of Pechukas will be combined with the instanton theory to
yield a novel and computationally powerful approach for the
calculation of electron transfer rate constants under rath
general conditions.

The present paper is organized as follows: In Sec. II, th
basic ‘‘nonadiabatic instanton’’ approach is formulated. A
numerical algorithm for solving the equations is then de
tailed in Sec. III, and results are presented for some repr
sentative examples. Concluding remarks are given in Sec. I

II. GENERAL FORMALISM

To put the formalism in the most general context, we
consider the Hamiltonian for a many-body, multilevel sys
tem, given by

H5Hd~q!1Hb~r !1Vint~q,r !, ~2.1!

whereq is the collection ofN nuclear degrees of freedom of
an electron transfer system of interest,r is the collection of
the ‘‘bath’’ nuclear degrees of freedom,Hd is the part of
Hamiltonian defined on an electronically diabatic basis,Hb

is the bath Hamiltonian, andVint is the interaction potential
between the system and the bath. The HamiltonianHd can be
1391391/9/$6.00 © 1995 American Institute of Physicst¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1392 Cao, Minichino, and Voth: Electron transfer rates
explicitly expressed in terms of the elementshii ~for the i th
diabatic surface! and hi j ~for the coupling between thei th
and j th diabatic surfaces!, i.e.,

Hd~q!5(
i
hii1(

i
(
j. i

hi j . ~2.2!

Here, the elements are defined as

hii5u i &@K~ q̇!1Vii ~q!#^ i u, ~2.3!

whereK is the kinetic energy term for the nuclear coord
natesq, and

hi j5Vi j ~q!~ u i &^ j u1u j &^ i u!, ~2.4!

where the off-diagonal coupling elements satisfy the Herm
ian relationVi j 5 Vji* . Unlike the usual adiabatic barrie
crossing problem, the potential energy termsVii in the ele-
mentshii describe ‘‘simple’’ diabatic surfaces having, or n
having, potential wells. Therefore, in the most general se
the quantum reactive dynamics is induced by a transi
between different diabatic surfaces instead of taking place
a single adiabatic surface~e.g., a double well formed on th
lowest adiabatic potential surface!. This formulation of the
problem is completely general.

Following a prescription originally proposed by Lang
at zero temperature18 and later employed in various adiabat
quantum rate calculations,20,21 the desired electron transfe
rate constantkET can be approximated in terms of equilib
rium quantities by

kET.2
1

\b
Im

ln Z

Z0
5

1

\b

Zb
Z0

, ~2.5!

with Z0 being the partition function of the reactant state,Z is
the overall system partition function, andZb is loosely de-
fined here as the ‘‘barrier’’ contribution to the partition fun
tion. The final states are assumed to have sufficient den
thatkET can be interpreted as the rate of exponential tunn
ing decay.

Provided the effective barrier height is significant
larger than the thermal energy in the diabatic wells,
steepest descent method can be applied to evaluate
imaginary part of the partition functionZ which leads to the
instanton solution in Eq.~2.5!. A number of aspects of the
instanton solution in various limits have been elaborated
others ~see, e.g., Refs. 32–37!. The focus of the presen
work, however, is on acomputationalmethodology to evalu-
ate the instanton rate constant in the most general case w
bridgesthe adiabatic and nonadiabatic~golden rule! limits of
ET. An assumption has been made in formulating this
proach that Eq.~2.5! is a valid approximation inall limits of
the ET problem. While numerical and analytical results p
sented below will support this assumption, it has not be
derived from first principles.

The stationary path of the Hamiltonian in Eq.~2.1! con-
sists of the nuclear instanton trajectory and the s
consistent electronic wave function propagation in imagin
time arising from the coupling of the two subsystems. T
self-consistency arises from the fact that the equation of
tion for the nuclear coordinates depends on the imagin
time evolution of the multilevel wave function which, i
J. Chem. Phys., Vol. 1Downloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subje
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turn, depends on the instanton trajectory. A similar challeng
albeit for real time dynamics, has been encountered prev
ously in the study of the dynamics of coupled classical
quantum systems.24,26,27Pechukas was the first to provide a
rigorous prescription for the self-consistent stationary phas
classical-like trajectory and time-dependent wave functio
based on Feynman’s path integral formulation of quantum
dynamics.28,29This elegant theory has since been develope
into various approximation algorithms for nonadiabatic
dynamics.24–27 A Pechukas-type theory will now be devel-
oped for the nonadiabatic quantum instanton solution@cf.
Eqs.~2.1! and~2.5!# so as to provide a means for calculating
the electron transfer rate constant under general condition

The trace operation of the quantum Boltzmann operato
for the Hamiltonian in Eq.~2.1! involves a summation over
all the electronic diabatic surfaces and an integration over a
nuclear coordinates. Importantly, however, this operatio
must be rewritten to expose the terms involving diabatic sta
transitions which contribute to the imaginary part of the par
tition function. By inserting complete sets of diabatic and
coordinate basis states, the tunneling rate from one diaba
surface, denoted byum&, to another diabatic surface, denoted
by un&, is related to the following quantity:

Zm,n5E drE dr 8E dqE dq8^m,q,r u

3exp~2bH/2!un,q8,r 8&^n,q8,r 8u

3exp~2bH/2!um,q,r &, ~2.6!

whereq andq8 are located near the wells of diabatic surface
um& and un&, respectively. It should be noted that the two
imaginary time propagators in Eq.~2.6! are the same.@See
also Eq.~C2! of Ref. 37, p. 145.#

Next, the propagator is separated into the wave functio
propagation of the diabatic levels and the propagation arisin
from H0, which is the Hamiltonian excludingHd , giving

Zm,n5E Dr ~t!E Dq~t!exp$2S0@q~t!,r ~t!#/\%

3Tmn@\b,\b/2,q~t!#Tnm@\b/2,0,q~t!#. ~2.7!

Here,S0@q~t!,r ~t!# is the action functional excluding the con-
tribution fromHd , i.e.,

S05E
0

\b

dt$ 1
2q̇~t!•m•q̇~t!1Vint@q~t!,r ~t!#%

1Sb@r ~t!#, ~2.8!

wherem is the mass matrix andSb is the action functional of
the bath.

The quantityTnm is the overlap between the initial diaba-
tic state um& and the final diabatic stateun&. In an explicit
form, the Bloch equation can be introduced to describe th
evolution of diabatic wave function, i.e.,

2
]u~t,t8!

]t
5Hd@q~t!#u~t,t8! ~2.9!

so that

Tnm@t,t8,q~t!#5^nuu~t,t8!um&, ~2.10!
03, No. 4, 22 July 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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which is a functional of the system nuclear pathq~t! and the
imaginary time interval satisfies 0<t<\b.
n

h
f

t
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To facilitate further analysis, the bath average of a func
tional f @q~t!,r ~t!# is introduced here as
^ f ~t!&b5
*Dr ~t8! f @q~t!,r ~t!#exp$2Sb@r ~t8!#/\2*0

\bdt8Vint@q~t8!,r ~t8!#/\%

*Dr ~t8!exp$2Sb@r ~t8!#/\2*0
\bdt8Vint@q~t8!,r ~t8!#/\%

, ~2.11!
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n

and the quantum average over the diabatic basis fort<\b/2
is denoted by

^ f ~t!&d5
^nuu~\b/2,t! f ~t!u~t,0!um&

^nuu~\b/2,t!u~t,0!um&
, ~2.12!

or, if t>\b/2, then

^ f ~t!&d5
^nuu~\b,t! f ~t!u~t,\b/2!um&

^nuu~\b,t!u~t,\b/2!um&
. ~2.13!

In Eqs.~2.12! and ~2.13!, the denominators are independe
of the variablet and f ~t! is in general a matrix. Both the
quantum average and the solvent average are carried ou
assuming a particular nuclear pathq~t! and are thus func-
tionals of the nuclear paths.

With the definition of Eq.~2.11! in hand, one can rewrite
the path integral in Eq.~2.7! as

Zm,n5E Dq~t!exp$2Seff@q~t!#/\%, ~2.14!

with the effective action functional given by

Seff@q~t!#5E
0

\b

dt$ 1
2q̇~t!•m•q̇~t!%1Wb@q~t!#

2\~ ln$Tmn@\b,\b/2,q~t!#%

1 ln$Tnm@\b/2,0,q~t!#%!, ~2.15!

where

Wb@q~t!#52\ lnS E Dr ~t!expH 2Sb@r ~t!#/\

2E
0

\b

dtVint@q~t!,r ~t!#/\J D . ~2.16!

Application of the steepest descent approximation to E
~2.14! leads to the equation of motion for the nuclear coo
dinates

m•
d2q~t!

dt2
5 K ]Hd@q~t!#

]q~t! L
d

1 K ]Vint@q~t!#

]q~t! L
b

~2.17!

which is to be solved together with Eqs.~2.9! and ~2.11!–
~2.13! to obtain the nonadiabatic instanton solution. Becau
of the time reversal property of the amplitudesTnm andTmn ,
the instanton trajectory is symmetric with respect to t
imaginary time\b/2, and so is the wave function. The sel
consistent condition for the many-body nonadiabatic insta
ton solution is twofold; the coupling between the diaba
t

t by

q.
r-

se

e
-
n-
ic

states propagation and the instanton trajectory, and the c
pling between the bath distribution and the instanton traje
tory.

In order to complete the instanton analysis, the secon
order functional derivative must be evaluated along the in
stanton trajectory. This procedure is numerically best imple
mented for a discretized path, i.e.,

d2S

dqidqj
5
m

e2
~2d i , j2d i , j112d i , j21!

1d i , j K ]2Hd@q~t!#

]qi]qi
L
d

1eCd,i j

1d i , j K ]2Vint@q~t!#

]qi]qi
L
b

1eCb,i j , ~2.18!

where the indicesi and j denote two different discretized
imaginary time slices,qi and qj are the corresponding
nuclear coordinates along the instanton path, ande5\b/P,
with P being the number of discretizations. Here,Cb,i j , the
bath fluctuation correlation matrix, is given by

Cb,i j5 K ]Vint@q~t!#

]qi

]Vint@q~t!#

]qj
L
b

2 K ]Vint@q~t!#

]qi
L
b
K ]Vint@q~t!#

]qj
L
b

, ~2.19!

and, Cd,i j , the quantum fluctuation correlation matrix, is
given by

Cd,i j5 K ]Hd@q~t!#

]qi
u~t i ,t j !

]Hd@q~t!#

]qj
L
d

2 K ]Hd@q~t!#

]qi
L
d
K ]Hd@q~t!#

]qj
L
d

. ~2.20!

The dimensionality implicit in the above equations is suc
thatd2S/dqidqj is a matrix of dimensionN3P. When diago-
nalizing this matrix, there will be a negative eigenvalue giv
ing arise to the imaginary part of the partition function, and
zero eigenvalue corresponding to the translationally invaria
mode.20 The existence of a zero eigenvalue is an indicatio
of a true instanton solution. The removal of the zero eigen
value requires the proper normalization, which is explaine
in Appendix A.

After the preceding analysis is carried out, one arrives
the nonadiabatic instanton approximation for the electro
transfer rate constant, i.e.,
3, No. 4, 22 July 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1394 Cao, Minichino, and Voth: Electron transfer rates
kET . S W

2p\D D 1/2 exp~2Sinst/\!, ~2.21!

whereW andSinst are the work and the action, respectivel
along the instanton trajectory, andD is a properly normal-
ized determinant of the matrix in Eq.~2.18!, excluding the
zero eigenvalue~cf. Appendix A!.

In light of the preceding discussion, there are seve
observations which can be made.

~a! Assuming a single diabatic surface in the Ham
tonian@Eq. ~2.1!# which contains a single barrier, one reco
ers the well-known single surface instanton solution. In t
case of a multilevel system, if the coupling is strong enou
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so that the nuclear system always moves on the lowest-lyin
adiabatic potential energy surface, the present nonadiabat
instanton solution can be shown to reduce to the single sur
face, adiabatic limit.

~b! In the limit of two weakly coupled diabatic surfaces,
the Bloch equation in Eq.~2.9! can be linearized, resulting in
a transition amplitudeTnm@t,t8,q~t!# which is proportional to
the off-diagonal coupling element of theHd matrix. This
limit of the theory thus recovers the golden rule ET rate
constant.3,38

~c! If the solvent is treated as being classical, the bath
pathsr ~t! shrink to a point and Eq.~2.11! can be rewritten as
the configurational integral
^ f ~t!&b5
*dr f @q~t!,r #exp$2bVb~r !2*0

\bdt8Vint@q~t8!,r #/\%

*dr exp$2bVb~r !2*0
\bdt8Vint@q~t8!,r #/\%

, ~2.22!
an-
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c-
whereVb~r ! is the potential function for the bath variables
~d! The Gaussian bath has a wide appeal in study

solvent effects in condensed media.23,39 Given a harmonic
bath and a bilinear coupling between system and bath,
can explicitly integrate out the bath modes in Eqs.~2.11! and
~2.16!, giving the equation of motion for the instanton traje
tory in Eq. ~2.17! as

m•
d2q~t!

dt2
5 K ]Hd~t!

]q~t! L
d

2
1

\ E
0

\b

dt8c~ ut2t8u!•q~t8!,

~2.23!

where c~ut2t8u! is the imaginary time correlation functio
matrix

c~ ut2t8u!5
\

p E
0

`

dvJ~v!
cosh~\bv/22vut2t8u!

sinh~\bv/2!
,

~2.24!

and J~v! is the bath spectral density matrix, related to t
elements of the classical friction tensorhi j (t) by

h i j ~ t !5
2

p E
0

`

dv
Ji j ~v!

v
cosvt. ~2.25!

~e! In the case of a two-state system with a const
coupling between the states, quadratic diabatic surfaces,
a Gaussian bath, the Hamiltonian becomes the spin-bo
model which has been often implemented in the study
electron transfer~see, e.g., Ref. 39!.

III. RESULTS

In this section, practical algorithms are described
solve the equations in the nonadiabatic instanton theory,
numerical calculations are carried out for the spin-bos
model in order to apply the theory to a well-known examp
In spite of its apparent simplicity, the spin-boson Ham
tonian serves as the primary model for investigating no
diabatic transitions because of its physical richness. Mo
over, the assumption of a Gaussian bath in the spin-bo
ng

ne

-

e

nt
and
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of

to
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n
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on

model removes the self-consistent requirement of the inst
ton path and the solvent distribution, thus greatly simplifyin
the numerical calculations.~It should be noted, however, tha
there is still the self-consistent requirement of the instant
path with the nonadiabatic state propagation.! There is no
fundamental problem associated with the former se
consistency issue and a subsequent publication will deal w
it explicitly for multidimensional, nonlinear potentials.

The major numerical effort in the present theory is t
find the instanton trajectory, that is, to solve Eq.~2.17! si-
multaneously along with the Bloch equation in Eq.~2.9!.
Given the force, the equation of motion in Eq.~2.17! is
solved iteratively for a discretized instanton path. It must b
pointed out, however, that the instanton trajectory is neithe
minimum nor a maximum of the action, but an extremum o
the action. Consequently, an iterative method has the po
bility of converging the instanton in real space to the min
mum of a double-well potential, which is a trivial solution to
the stationary condition in Eq.~2.17!. To prevent this behav-
ior in the iteration method, it is helpful to choose a goo
initial input trajectory to approximate the true instanton so
lution. An educated guess is the instanton solution for t
adiabatic surface, which works particularly well in the stron
coupling region. In the intermediate coupling region, a tr
jectory solved for a larger coupling constant can be em
ployed as an input to the algorithm. In the weak couplin
region, the adiabatic instanton solution for the cusped barr
is a good initial guess~cf. Appendix B!. The rate of conver-
gence depends on the discretization number and the ini
input. Generally, it has been found that around 103 iterations
will yield convergence.

Given a nuclear pathq~t!, the Bloch equation Eq.~2.9!
is solved by numerical integration. At each time stepe5\b/
P, the HamiltonianHd at that time is diagonalized and
propagated for one step. The initial stateum& and the final
stateun& are the right and the left diabatic surfaces, respe
3, No. 4, 22 July 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1395Cao, Minichino, and Voth: Electron transfer rates
tively. With the electronic wave function in hand, one retur
to the calculation of the instanton trajectory, which in tu
leads to a new electronic wave function. This procedu
forms a loop until self-consistency is reached. In the e
amples studied so far, the convergence of the wave func
and the nonadiabatic instanton trajectory was alwa
achieved in less than 100 iterations.

Once the instanton solution is found, the fluctuation m
trix of Eq. ~2.18! is computed and diagonalized. A vanish
ingly small eigenvalue will assure a satisfactory stationar
condition @Eq. ~2.17!# and a negative eigenvalue indicate
the metastability of the particular solution~i.e., the ‘‘barrier’’
partition function!. The prefactorD in Eq. ~2.21! can thus be
calculated, and the actionS and workW computed, hence
yielding the instanton rate constant. In summary, the co
plete nonadiabatic instanton algorithm consists of followi
steps:

~1! An approximate instanton trajectory is used as an inp
~2! The stationary condition in Eq.~2.17! is iterated to a

converged trajectory for a given electronic wave fun
tion.

~3! The Bloch equation in Eq.~2.9! is solved numerically for
a given nuclear path.

~4! Steps ~2! and ~3! are repeated until convergence
reached.

~5! The instanton rate constant is computed from Eq.~2.21!.

As stated before, in order to test the method the sp
boson model was studied. In one particular form, this mo
is described by the Hamiltonian

H5 1
2mq̇21Dsx1

1
2mv2~q2szq0!

2

1(
j51

N

cjqxj1
1

2 (
j51

N

~ ẋ j
21v j

2xj
2!1(

j51

N cj
2

2v j
2 q

2,

~3.1!

wheres is the Pauli spin matrix,D is one-half the tunnel
splitting, and the modes$x% constitute the Gaussian bath
The parameters were chosen in the present case to be\51.0,
v51.0,m51.0, b55.0, q055.0. A discretization paramete
of P5200 toP5400 was used in the calculations, dependi
on the temperature. The parameters of the bath were cho
so that its spectral density, given in discrete form by23

J~v!5
p

2 (
j51

N cj
2

v j
d~v2v j !, ~3.2!

reproduced an appropriate friction kernel in the classi
limit.

As a first calculation, a frictionless spin-boson mod
was used to verify that the method works in well-know
limits and to examine the numerical characteristics of t
algorithm. In Fig. 1, the electron transfer rate constant
plotted as a function of the coupling constantD on a loga-
rithmic scale. In the strong coupling region~i.e., largeD! the
nonadiabatic instanton rate approaches the adiabatic
~dot–dashed line! because the coupling is strong enough th
the quantum transition takes place on the lower adiaba
surface. In the weak coupling region, the nonadiabatic r
J. Chem. Phys., Vol. 103Downloaded¬27¬Mar¬2001¬to¬18.60.2.110.¬Redistribution¬subject
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obviously becomes proportional to theD2, as predicted by
the golden rule~dashed line!. The golden rule rate in this
simple case is given analytically by

kET5
D2

\
Ap sinh~b/2!

2Ea\v
expF2bEa

tanh~b/4!

~b/4! G , ~3.3!

where the activation energy isEa5mv2q0
2/2 andb5\bv.

The adiabatic tunneling rate reaches a plateau, which is
instanton rate for a cusped double-well discussed in Appe
dix B. It should be noted that even in this simple limit of th
spin-boson model, the method is capable of dealing with
arbitrary nonadiabatic coupling strength, bridging the adi
batic and nonadiabatic limits of the ET dynamics. It shou
also be noted that numerically exact methods exist for stud
ing the quantum dynamics of spin-boson model for all valu
of the relevant parameters.4–9

In the adiabatic limit, the instanton solution exists onl
in the quantum tunneling dominated region, but not in th
activated barrier crossing region~for a discussion of these
limits, see the review in Ref. 40!. The crossover to the in-
stanton rate is given by the well-known criterion\bvb.2p,
with vb being the adiabatic barrier frequency. A path integr
quantum transition state theory10–13 calculation can be per-
formed above the crossover region in the adiabatic lim
which will bridge with the instanton solution. Furthermore
in a complex system all that is required is that asingle
nuclear mode be tunneling in order for the instanton soluti
to exist. In the nonadiabatic limit, the weak coupling induce
a nonadiabatic transition in a small region near the cross
of the diabatic surfaces, thus leading to a sharp barrier c
vature in the adiabatic surface which insures the validity
the instanton approach. Therefore, in the golden rule reg
the steepest descent approximation is always valid, even
the classical limit of the nuclear coordinates.

To further illustrate the characteristics of the nonadi
batic instanton solution, the following results are present
to explore different aspects of the transition from the non

FIG. 1. A logarithmic plot of the rate constant vs the nonadiabatic couplin
constantD for the Hamiltonian given in Eq.~3.1!. For comparison, the
golden rule prediction from Eq.~3.3! is plotted as a dashed line, and the
adiabatic rate constant is plotted as a dot–dashed line.
, No. 4, 22 July 1995¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



fo
-
th
de

e
th

on
a

x

g
at

e
he
is
e

-
on
n

d

1396 Cao, Minichino, and Voth: Electron transfer rates
diabatic limit to the adiabatic limit:
~a! The nonadiabatic instanton trajectories are shown

D50.01 andD58.0 in Fig. 2. Obviously, the instanton tra
jectory shrinks as the coupling constant increases. On
other hand, the nonadiabatic trajectory becomes indepen
of the coupling constant as the latter becomes smaller.

~b! Assuming the electronic wave function has been d
termined, one can define an effective potential surface for
instanton trajectory as

Veff@q~t!#5^V@q~t!#&d , ~3.4!

the derivative of which gives the nonadiabatic instant
force. For comparison, one can also evaluate the adiab
potential by diagonalizing the Pauli spin matrix in Eq.~3.1!
for fixed values of the coordinateq. The effective potential is
plotted along with the adiabatic potential surface forD50.01
in Fig. 3 and forD58.0 in Fig. 4. As one can observe from
Fig. 4, the adiabatic potential surface is a very good appro

FIG. 2. The nonadiabatic instanton trajectories plotted forD50.1 and
D58.0 as a function of the imaginary time.

FIG. 3. The effective nonadiabatic potential defined in Eq.~3.4! plotted
along with the adiabatic potential surface forD50.01.
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mation to the effective potential surface for large couplin
constant, whereas the cusped adiabatic potential surface
the small coupling constant in Fig. 3 is very different from
the rounded effective potential.

~c! The evolution of spin population is plotted for
D50.01 in Fig. 5 and forD58.0 in Fig. 6. As has been stated
earlier, in the adiabatic region the relative population on th
two diabatic surfaces is such that its state vector forms t
adiabatic surface. In the golden rule region, the transition
confined in a small region near the crossing point of th
diabatic surfaces and happens rather dramatically.

Next, the dissipative quantum tunneling region was in
vestigated by adding a Gaussian bath to the spin-bos
model@cf. Eq.~3.1!#. The bath spectral density was chosen i
the Drude approximation, i.e.,

J~v!5hv
vc
2

v21vc
2 , ~3.5!

where the friction strengthh was 1.0 and the inverse of the
memory time scale,vc , was 1.0. In Fig. 7, the quantum rate

FIG. 4. The effective nonadiabatic potential defined in Eq.~3.4! plotted
along with the adiabatic potential surface forD58.0.

FIG. 5. The evolution of the population on the two diabatic surfaces plotte
for D50.01.
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1397Cao, Minichino, and Voth: Electron transfer rates
in the dissipative bath is plotted as a function of the coupli
constant and compared with the nondissipative rate. As
expected, the tunneling rate is reduced by a substan
amount because of the bath dissipation. In addition, the d
sipative suppression is stronger in the nonadiabatic limit th
in the adiabatic limit.

Finally, the effects of anharmonicity on the quantum ra
constant were studied by assuming diabatic surfaces defi
by

Vii ~q!5 1
2 mv2~q2szq0!

21g~q2szq0!
4, ~3.6!

whereg50.01 and the other parameters are taken to be
same as in Eq.~3.1!. In Fig. 8, the rate constant for the
frictionless system is plotted as a function of the nonad
batic coupling constantD. Clearly, introducing the anharmo
nicity reduces the tunneling rate and the reduction is m
drastic in the adiabatic region than in the nonadiabatic

FIG. 6. The evolution of the population on the two diabatic surfaces plot
for D58.0.

FIG. 7. The dissipative rate constant with the bath spectral density give
Eq. ~3.5! plotted as a function of the nonadiabatic coupling constant.
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gion. This example illustrates the real strength of the non
diabatic instanton method, i.e., it is not limited to quadrati
diabatic surfaces.

IV. CONCLUSIONS

In this paper, a computational methodology for dete
mining electron transfer rates has been developed. The
proach is based on the instanton expression for quantum r
constants combined with a nonadiabatic dynamics formalis
for treating the imaginary time instanton dynamics with
nonadiabatic transitions. The formulation is completely gen
eral and thereby capable of treating nonlinear diabatic pote
tial energy surfaces and multiple electronic states. It als
provides a computational method for bridging the adiabat
and nonadiabatic limits of electron transfer processes. T
theory was tested for the well-known spin-boson model, ob
taining excellent agreement with analytical predictions i
both the adiabatic and nonadiabatic~golden rule! limits. In
addition, it was shown that both dissipation and nonlinearit
in the diabatic potentials can readily be included in the ca
culations and may have large effects on the rate constant.
future publications, the nonadiabatic instanton method w
be further developed and applied to study electron transf
processes in realistic systems.
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1398 Cao, Minichino, and Voth: Electron transfer rates
APPENDIX A: EVALUATION OF THE INSTANTON
PREFACTOR

In this section, the prefactorD in Eq. ~2.21! is explicitly
expressed as a normalized determinant of the matrix in
~2.18!. For a free particle, the matrix describing the quant
path fluctuations is given by

d2S

dqidqj
5
m

e2
~2d i , j2d i , j112d i , j21!, ~A1!

wheree5\b/P. A normal-mode transformation immediate
leads to the eigensolutions of the matrix in Eq.~A1!, i.e.,

l l52@12cos~2p l /P!#, ~A2!

where the indexl ranges from2~P21!/2 to ~P21!/2. Obvi-
ously, l50 gives a zero eigenvalue which corresponds to
translational invariance of the free particle space. Remo
of this zero eigenvalue leads to the condition

)
lÞ0

l l5P2 ~A3!

which recovers the correct free particle density. Thereby,
instanton matrix in Eq.~2.18! is normalized to the free par
ticle prefactor, giving

D5 lim
P→`

1

P2 det8S e2

m

d2S

dqidqj
D , ~A4!

where det8 stands for the value of the determinant with t
zero eigenvalue removed. The above equation defines
prefactor in Eq.~2.21!.

APPENDIX B: THE INSTANTON SOLUTION FOR THE
CUSPED POTENTIAL

In the weak coupling limit of the spin-boson model f
electron transfer, the ground state adiabatic potential sur
approaches a cusped parabolic double well. For such a
tem, the instanton rate can be exactly calculated.33 For sim-
plicity, a one-dimensional symmetric double well potential
considered here, given by

V~q!5 1
2 mv2@q2sign~q!q0#

2, ~B1!

where the symbol sign(q) stands for the sign ofq. The ac-
tion functional for a quantum particle embedded in a Gau
ian bath then reads

S@q~t!#5E
0

\b

dt$ 1
2 mq̇~t!21V@q~t!#%

2
1

2\ E
0

\bE
0

\b

dt8c~ ut2t8u!q~t8!q~t!,

~B2!

where c~ut2t8u! is the correlation function given by Eq
~2.24!.

The quantum rate problem for this potential is most e
ily solved by properly connecting the two analytical sol
tions of the wells at the cusp. The resulting instanton r
constant is given by
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k54v2q0A m

2p\2b

(oddan
A(~21!nan

expS 2b
mq0

2

2(evenan
D ,

~B3!

where the factoran is defined by

an5
1

Vn
21v22b c̃n /m

. ~B4!

Here,Vn52pn/\b and c̃n is given by

c̃n5
1

\b E
0

\b

dteiVntc~ utu!. ~B5!

In the case of a frictionless cusped double-well, the rate co
stantk can be expressed in a closed form as

k52vq0Amv

\

sinh2~b/4!

sinh1/2~b/2!
expF2bEa

tanh~b/4!

~b/4! G .
~B6!

The exponential factor in the above equation is the same
the one in the golden rule expression@Eq. ~3.3!#, whereas the
prefactor is by no means the same. Thereby, it is necessar
introduce the nonadiabatic coupling mechanism in order
obtain the correct limit for the electron transfer dynamic
The above equations, however, can serve as a good in
guess for the nonadiabatic instanton algorithm~cf. Sec. III!.
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