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A computational theory for determining electron transfer rate constants is formulated based on an
instanton expression for the quantum rate and the self-consistent solution of the imaginary time
nonadiabatic steepest descent approximation. The theory obtains the correct asymptotic behavior for
the electron transfer rate constant in the nonadiabatic and adiabatic cases, and it smoothly bridges
between those two limits for intermediate couplings. Furthermore, no assumptions regarding the
form of the diabatic potentials are invokéel.g., harmonicand more than two diabatic states can

be included in the calculations. The method thereby holds considerable promise for computing
electron transfer rate constants in realistic condensed phase syste@95Gmerican Institute of
Physics.

I. INTRODUCTION sumed, an effort to include the possibility of nonadiabatic
transitions to other potential surfaces is necessary in order to

Electron transfe(ET) processes in chemistry, physics, correctly describe electron transfer processes in a general
and biology have been the subject of a considerable numbeyay. This is the focus of the present analysis.
of experimental and theoretical studiésRecent computa- Many advances have taken place in the field of nonadia-
tional approaches for computing ET rate constants ranggatic dynamics simulation for real time quantum dynamics
from those based on Fermi's golden flle explicit quantum  (see, e.g., Refs. 24—27The theoretical basis for several
dynamical calculations on simplified models of ET algorithm$*?’ is the Pechukas theory of nonadiabatic
processe$:° In addition, approaches derived from path inte- collisions282° Although it was originally formulated for real
gral quantum transition state thedty* have been devel- time quantum dynamics, the self-consistent nonadiabatic
oped to calculate the ET rate based on the centroid density @heory of Pechukas bears a similarity to the instanton theory,
the electronic state variabté-'® Despite the many theoreti- hoth being based on the stationary phése steepest de-
cal and computational studies of ET reactions, a unified comscenj approximation to a Feynman path integiaf! The
putational approach has not yet been developed which iormer theory is a real time formulation, while the latter is in
capable of determining ET rate constants for arbitrary valuegmaginary time. In the present paper, the nonadiabatic theory
of the electronic coupling in systems characterized by genof Pechukas will be combined with the instanton theory to
eral nonlinear potentials and/or a significant degree ofjield a novel and computationally powerful approach for the
nuclear mode tunneling. Significant progress towards thigalculation of electron transfer rate constants under rather
goal will be described in the present paper. general conditions.

The underlying basis of the theory described herein is  The present paper is organized as follows: In Sec. I, the
the semiclassical approximation to the quantum partitiorbasic “nonadiabatic instanton” approach is formulated. A
function;'” which can be shown to be closely related to thenumerical algorithm for solving the equations is then de-
thermally averaged quantum tunneling rate in metastablgiled in Sec. Ill, and results are presented for some repre-
systems®~?'Along these lines, Miller has suggested that thesentative examples. Concluding remarks are given in Sec. IV.
guantum reactive flux at low temperature can be determined
by the so-called bounce trajec:&ri/ on the inverted potential
energy surface, i.e., the instantonin terms of the steepest
descent approximation, the instanton trajectory along the pe!!' GENERAL FORMALISM

riodic imaginary time axis satisfies the Eulel’—Lagrange To put the formalism in the most genera| context, we

equation, and the quantum fluctuations along the trajector¥onsider the Hamiltonian for a many-body, multilevel sys-
take the form of a Gaussian functional which can be calcutem, given by

lated by evaluating the Van Vleck determindhfThe exten-

sion of these ideas to the dissipative quantum tunneling re- H=Ha(Q) +Hp(r) +Vin(a.1), 2.9
gime has been discussed by Caldeira and Leggett at somghereq is the collection olN nuclear degrees of freedom of
length?® However, while the original instanton analysis is an electron transfer system of interesis the collection of
suitable when a unique potential energy surface can be agne “bath” nuclear degrees of freedorki, is the part of
Hamiltonian defined on an electronically diabatic bakig,
permanent address: Dipartimento di Chimica, Universibia Basilicata, 1S the bath Hamiltonian, and;, is the interaction potential
Via Nazario Sauro 85, I-85100, Potenza, ltaly. between the system and the bath. The Hamiltorigrtan be
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explicitly expressed in terms of the elemehis (for theith  turn, depends on the instanton trajectory. A similar challenge,
diabatic surfaceand h;; (for the coupling between thgh  albeit for real time dynamics, has been encountered previ-

and jth diabatic surfacesi.e., ously in the study of the dynamics of coupled classical-
quantum systen’®:?%2" pechukas was the first to provide a
Hy(q)=2 hi+> >, hij . (2.2 rigorous prescription for the self-consistent stationary phase
[ N classical-like trajectory and time-dependent wave function
Here. the elements are defined as based on Feynman's path integral formulation of quantum
' _ . ) dynamics?®2° This elegant theory has since been developed
hii =K (@) + Vi(a) Kil, (23 into various approximation algorithms for nonadiabatic
whereK is the kinetic energy term for the nuclear coordi- dynamics:*~2" A Pechukas-type theory will now be devel-
natesq, and oped for the nonadiabatic quantum instanton solufici
o Egs.(2.1) and(2.5] so as to provide a means for calculating
hij = Vi (@ ([, (24 the electron transfer rate constant under general conditions.
where the off-diagonal coupling elements satisfy the Hermit- ~ The trace operation of the quantum Boltzmann operator
ian relationV;; = V% . Unlike the usual adiabatic barrier for the Hamiltonian in Eq(2.1) involves a summation over

crossing problem, the potential energy tersin the ele- all the electronic diabatic surfaces and an integration over all
mentsh;; describe “simple” diabatic surfaces having, or not nuclear coordinates. Importantly, however, this operation
having, potential wells. Therefore, in the most general sensgUst be rewritten to expose the terms involving diabatic state
the quantum reactive dynamics is induced by a transitioffansitions which contribute to the imaginary part of the par-
between different diabatic surfaces instead of taking place ofition function. By inserting complete sets of diabatic and
a single adiabatic surfade.g., a double well formed on the coordinate basis states, the tunneling rate from one diabatic
lowest adiabatic potential surfaceThis formulation of the —Surface, denoted bju), to another diabatic surface, denoted
prob]em is Comp|ete|y generaL by |V>, is related to the fOIIOWing quantity:

Following a prescription originally proposed by Langer
at zero temperatut®and later employed in various adiabatic Z#'V:f drf dr’f dqf dqg’(u,q,r|
quantum rate calculatiorf§?* the desired electron transfer

rate constankgr can be approximated in terms of equilib- X exp(—BHI2)|v,q",r" )(v,q’,r'|
rium quantities by s exp(— BHI2)| aur), 2.6
Kep=— i m In_Z = i é (2.5)  whereq andq’ are located near the wells of diabatic surfaces
hB Zy B Zg |w) and |v), respectively. It should be noted that the two

with Z, being the partition function of the reactant statés ~ imaginary time propagators in E¢.6) are the same[.See
the overall system partition function, arf, is loosely de-  also EQ.(C2) of Ref. 37, p. 145,
fined here as the “barrier” contribution to the partition func- ~ Next, the propagator is separated into the wave function
tion. The final states are assumed to have sufficient densifgropagation of the diabatic levels and the propagation arising
that ke can be interpreted as the rate of exponential tunnelffom Ho, which is the Hamiltonian excludingly, giving
ing decay.
Provided the effective barrier height is significantly Zuvyzf @r(f)f gq(r)exg —Solq(7),r(7)]/h}
larger than the thermal energy in the diabatic wells, the
steepest descent method can be applied to evaluate the XT,[hBHBI12,9(7)]T,,[7BI12,04(7)]. (2.7
imaginary part of the partition functiod which leads to the . . . .
instanton solution in Eg(2.5. A number of aspects of the JI[-|.ere,.SO[q(r),r(7-)] 'S the action functional excluding the con-
. o : o ribution fromHy, i.e.,
instanton solution in various limits have been elaborated by

others (see, e.g., Refs. 32—-B7The focus of the present (P, .

work, however, is on @omputationamethodology to evalu- So= . dr{zq(7)-m-q(7)+Viu{q(7),r(7)]}

ate the instanton rate constant in the most general case which

bridgesthe adiabatic and nonadiabatgolden rulg limits of +S[r(n)], (2.8

ET. An assumption has been made in formulating this apynerem is the mass matrix ang, is the action functional of
proach that Eq(2.9) is a valid approximation imll limits of o path.

the ET problem. While numerical and analytical results pre- e quantityT,,, is the overlap between the initial diaba-
sented below will support this assumption, it has not beefic giate|u) and the final diabatic state). In an explicit
derived from first principles. form, the Bloch equation can be introduced to describe the

The stationary path of the Hamiltonian in E@.1) con-  oojution of diabatic wave function, i.e.,
sists of the nuclear instanton trajectory and the self-

consistent electronic wave function propagation in imaginar au(r,t") )

onsiser . bronad Iy ———=Hda(nu(r,7) 2.9
time arising from the coupling of the two subsystems. This ar

self-consistency arises from the fact that the equation of mo-

> . . . _so that

tion for the nuclear coordinates depends on the imaginary

time evolution of the multilevel wave function which, in T, 77 a(n)]=(v|u(r,7")|u), (2.10
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which is a functional of the system nuclear pagth) and the To facilitate further analysis, the bath average of a func-
imaginary time interval satisfies<Or<#g. tional f[g(7),r (7] is introduced here as

Jor(eHE[a(),r(n)]expl— Solr () 1A — [aPdr' Vil a(7'),r (7)) 17}
Jor (7" )exp(—Splr (7)1 — [EPd T Vil ('), r (') 114}

(f(m)= (2.1

and the quantum average over the diabatic basis<fagrp/2  states propagation and the instanton trajectory, and the cou-

is denoted by pling between the bath distribution and the instanton trajec-
tory.

<f(7)>d:<V|u(ﬁﬁ/2’7)f(7)u(7'o)|“> 212 In order to complete the instanton analysis, the second

(v|lu(aBl2,r)u(7,0)|p) order functional derivative must be evaluated along the in-

stanton trajectory. This procedure is numerically best imple-

or, if 7=#/512, then mented for a discretized path, i.e.,

_(u(kB D (1)u(7,4B/2)| )

f(7))g= . 2.1 S m
=GB, u(r B2 Tw) (213 P ACLIRL TS TR
In Egs.(2.12 and(2.13, the denominators are independent 2HL()]
of the variabler and f(7) is in general a matrix. Both the S J<¢> +eCyj;
guantum average and the solvent average are carried out by aq;dq; d '
assuming a particular nuclear patr) and are thus func- V. [a(7)]
tionals of the nuclear paths. 5 J<L> +€Cpj (2.18
With the definition of Eq(2.11) in hand, one can rewrite 9qidq; |, ’

the path integral in Eq2.7) as o . . . .
where the indices and|j denote two different discretized

o imaginary time slices,q; and g; are the corresponding
Zw:f 2q(7)expl — Ser A(7)1/1i}, (2149 nyclear coordinates along the instanton path, aad /P,
. ) ) ) . with P being the number of discretizations. He, ;; , the
with the effective action functional given by bath fluctuation correlation matrix, is given by
ne _ _ .
Seff[q(T)]:J' dr{3q(7)-m-q(n)}+Wy[q(7)] Cbi':<[7vmt[q(7)] 5V|nt[Q(7)]>
0 M el aq; b
—A(In{T,[AB,ABI2,q(7)]} <3Vint[Q(7)]> <3Vint[Q(7)]> (219
+In{T,,[%B/2,0a(7)]}), (2.19 adi [\ [y '
where and, Cy;;, the quantum fluctuation correlation matrix, is
given by
Wylg(7)]=—% In( f @r(f)exp{ —=Sr(n)]/h
__[Hda(n] ) dHqla(7)]
s T\ e T g
- [Parvalamrounl | @1s
0 dHgla(n)]\ [dHq[a(7)]
L N - : (2.20
Application of the steepest descent approximation to Eq. e d aq; d

(2.14) leads to the equation of motion for the nuclear coor- ) ) S ) )
dinates The dimensionality implicit in the above equations is such

that(SzS/(Sqi&qj is a matrix of dimensiofN X P. When diago-
d?q(7) IH4q(7)] NVl a(7)] nalizing this matrix, there will be a negative eigenvalue giv-
m- —q7 = aq(7) d+ aq(7) . (2.17) ing arise to the imaginary part of the partition function, and a

zero eigenvalue corresponding to the translationally invariant
which is to be solved together with Eq®.9) and (2.1)—  mode?® The existence of a zero eigenvalue is an indication
(2.13 to obtain the nonadiabatic instanton solution. Becaus®f a true instanton solution. The removal of the zero eigen-
of the time reversal property of the amplitudeg, andT,,,  value requires the proper normalization, which is explained
the instanton trajectory is symmetric with respect to thein Appendix A.
imaginary time#£8/2, and so is the wave function. The self- After the preceding analysis is carried out, one arrives at
consistent condition for the many-body nonadiabatic instanthe nonadiabatic instanton approximation for the electron
ton solution is twofold; the coupling between the diabatictransfer rate constant, i.e.,
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w \1/2 so that the nuclear system always moves on the lowest-lying
Ker = (m exp( — St/ 1), (2.21)  adiabatic potential energy surface, the present nonadiabatic
instanton solution can be shown to reduce to the single sur-

whereW and S, are the work and the action, respectively, face, adiabatic limit.

along the instanton trajectory, ardl is a properly normal- (b) In the limit of two weakly coupled diabatic surfaces,
ized determinant of the matrix in E¢2.18), excluding the the Bloch equation in Eq2.9) can be linearized, resulting in
zero eigenvaluécf. Appendix A. a transition amplitudd [ 7,7',q(7)] which is proportional to
In light of the preceding discussion, there are severathe off-diagonal coupling element of the, matrix. This
observations which can be made. limit of the theory thus recovers the golden rule ET rate
(a) Assuming a single diabatic surface in the Hamil- constant®®
tonian[Eg. (2.1)] which contains a single barrier, one recov- (c) If the solvent is treated as being classical, the bath

ers the well-known single surface instanton solution. In thepathsr(7) shrink to a point and Eq2.11) can be rewritten as
case of a multilevel system, if the coupling is strong enougtthe configurational integral

¢y L Arfa().rlexp— BVo(n) — [6°d 7' Vinl a(7") 1111}
= dr exp = V(1) — [HPd Vil a7 ) T VA]

(2.22

whereV,(r) is the potential function for the bath variables. model removes the self-consistent requirement of the instan-
(d) The Gaussian bath has a wide appeal in studyingon path and the solvent distribution, thus greatly simplifying
solvent effects in condensed medid® Given a harmonic  the numerical calculationlt should be noted, however, that
bath and a bilinear coupling between system and bath, ongere is still the self-consistent requirement of the instanton
can explicitly integrate out the bath modes in E@s11) and path with the nonadiabatic state propagatioFhere is no
(2.16), giving the equation of motion for the instanton trajec- ¢,nqamental problem associated with the former self-

tory in Eq.(2.17) as consistency issue and a subsequent publication will deal with
d?q(7) dH4(7) 1 (w6 , , it explicitly for multidimensional, nonlinear potentials.
m- =472 :< aq(7) >d_ﬁ fo dr'c(|7=7'])-q(7"), The major numerical effort in the present theory is to
(2.23 find the instanton trajectory, that is, to solve ER.17) si-
multaneously along with the Bloch equation in EG.9).
Given the force, the equation of motion in E@.17 is

where c¢(|7—7|) is the imaginary time correlation function

matrix
solved iteratively for a discretized instanton path. It must be
N costih Bwl2—w|r—1'|) pointed out, however, that the instanton trajectory is neither a
o|r—1')=— dwd(w - , . . .
T Jo sinh(7 Bw/2) minimum nor a maximum of the action, but an extremum of

(2.24  the action. Consequently, an iterative method has the possi-
and J(w) is the bath spectral density matrix, related to thebility of converging the instanton in real space to the mini-

elements of the classical friction tensgg(t) by mum of a double-well potential, which is a trivial solution to
the stationary condition in Eq2.17). To prevent this behav-
7 ()= - do - cos wt. (2.25  ior in the iteration method, it is helpful to choose a good
0

initial input trajectory to approximate the true instanton so-

(e) In the case of a two-state system with a constantution. An educated guess is the instanton solution for the
coupling between the states, quadratic diabatic surfaces, ardiabatic surface, which works particularly well in the strong
a Gaussian bath, the Hamiltonian becomes the spin-bosaoupling region. In the intermediate coupling region, a tra-
model which has been often implemented in the study ofectory solved for a larger coupling constant can be em-

electron transfe(see, e.g., Ref. 39 ployed as an input to the algorithm. In the weak coupling
region, the adiabatic instanton solution for the cusped barrier
Ill. RESULTS is a good initial gues$cf. Appendix B. The rate of conver-

In this section, practical algorithms are described to%€"C® depends on the discretization number and the initial

solve the equations in the nonadiabatic instanton theory, anfgPut- Generally, it has been found that around itérations
numerical calculations are carried out for the spin-bosorVill yield convergence.

model in order to apply the theory to a well-known example. ~ Given a nuclear path(7), the Bloch equation E¢(2.9)

In spite of its apparent simplicity, the spin-boson Hamil- is solved by numerical integration. At each time stepi 5/
tonian serves as the primary model for investigating nonaP, the HamiltonianH, at that time is diagonalized and
diabatic transitions because of its physical richness. Morepropagated for one step. The initial state and the final
over, the assumption of a Gaussian bath in the spin-bosostate|v) are the right and the left diabatic surfaces, respec-
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tively. With the electronic wave function in hand, one returns
to the calculation of the instanton trajectory, which in turn -10 : ; : ' '
leads to a new electronic wave function. This procedure —— Nonadiabatic Instanton
forms a loop until self-consistency is reached. In the ex- T Adiabade Limit
amples studied so far, the convergence of the wave function

and the nonadiabatic instanton trajectory was always 5y 7 )
achieved in less than 100 iterations.

Once the instanton solution is found, the fluctuation ma-
trix of Eqg. (2.18 is computed and diagonalized. A vanish-
ingly small eigenvalue will assure a satisfactory stationarity
condition [Eqg. (2.17)] and a negative eigenvalue indicates
the metastability of the particular solutidie., the “barrier”
partition function). The prefactoD in Eq. (2.2 can thus be 25 . . . . .
calculated, and the actiod® and workW computed, hence 20 -15 10 05 00 05 1.0
yielding the instanton rate constant. In summary, the com- Log(A)
plete nonadiabatic instanton algorithm consists of following
steps:

Log(k)

FIG. 1. Alogarithmic plot of the rate constant vs the nonadiabatic coupling
1) An approximate instanton trajectory is used as an inputconstanta for the Hamiltonian given in Eq(3.1). For comparison, the
(2) h PP . diti . | P y .. d P golden rule prediction from Eg3.3) is plotted as a dashed line, and the
(2) The Statlonar)_/ condition in EC( 17 is 'te'rate 10 &  adiabatic rate constant is plotted as a dot—dashed line.

converged trajectory for a given electronic wave func-

tion.
(3) The Bloch equation in Eq2.9) is solved numerically for ) ) .
a given nuclear path. obviously becomes proportional to th, as predicted by
(4) Steps (2) and (3) are repeated until convergence is the golden rule(dashed ling The golden rule rate in this
reached. simple case is given analytically by

(5) The instanton rate constant is computed from @1). A? [z sinh(b/2) tanh(b/4)
. . Ket=— \| —5=5— -BE, —————|, 3.3
As stated before, in order to test the method the spin- = % 2E.lw exr{ PEa (b/4) } 33
boson model was studied. In one particular form, this mod

el P 2.2
h th tivati B,= /2 andb=%Lw.
is described by the Hamiltonian here the activation energy =,= Mo dg/~ an P

The adiabatic tunneling rate reaches a plateau, which is the
H=1m@+ Ao, + imw?(q—o,00)2 instanton rate for a cusped double-well discussed in Appen-
\ L \ di)g Bblt shoulddbeI nﬁted thﬁt zyen in thl;T sir?péle Ili.mit of thhe
: Cj spin-boson model, the method is capable of dealing with an
+J§=:1 Ciax+ 5 ;l (X12+“’12Xj2)+j§=:l 2_(:)2 9%, arbitrary nonadiabatic coupling strength, bridging the adia-
. batic and nonadiabatic limits of the ET dynamics. It should
(3.1) also be noted that numerically exact methods exist for study-
where o is the Pauli spin matrixA is one-half the tunnel ng the quantum dynamics of spin-boson model for all values
splitting, and the mode$x} constitute the Gaussian bath. Of the relevant parametefs” . _
The parameters were chosen in the present casefte-hed, N the adiabatic limit, the instanton solution exists only
0=1.0,m=1.0, 8=5.0, q,=5.0. A discretization parameter N tlhe quantum tunnell.ng domlnated region, _but not in the
of P=200 toP =400 was used in the calculations, depending@ctivated barrier crossing regidfor a discussion of these
on the temperature. The parameters of the bath were choséffits, see the review in Ref. 40The crossover to the in-

so that its spectral density, given in discrete fornfby stanton rate is given by the well-known criteribBwy, > 2,
. with wy, being the adiabatic barrier frequency. A path integral
2

7'r ; quantum transition state thedfy*3 calculation can be per-
Ho)=7 21 5. o= o)), (32 formed above the crossover region in the adiabatic limit
' . which will bridge with the instanton solution. Furthermore,

reproduced an appropriate friction kernel in the classicaln a complex system all that is required is thatsiagle
limit. nuclear mode be tunneling in order for the instanton solution

As a first calculation, a frictionless spin-boson modelto exist. In the nonadiabatic limit, the weak coupling induces
was used to verify that the method works in well-known a nonadiabatic transition in a small region near the crossing
limits and to examine the numerical characteristics of theof the diabatic surfaces, thus leading to a sharp barrier cur-
algorithm. In Fig. 1, the electron transfer rate constant isvature in the adiabatic surface which insures the validity of
plotted as a function of the coupling constanbon a loga- the instanton approach. Therefore, in the golden rule region
rithmic scale. In the strong coupling regi@re., largeA) the  the steepest descent approximation is always valid, even in
nonadiabatic instanton rate approaches the adiabatic ratke classical limit of the nuclear coordinates.
(dot—dashed linebecause the coupling is strong enough that  To further illustrate the characteristics of the nonadia-
the quantum transition takes place on the lower adiabatibatic instanton solution, the following results are presented
surface. In the weak coupling region, the nonadiabatic ratéo explore different aspects of the transition from the nona-

2
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3 T T . . 5.0 T T T T T
—— Nonadiabatic
- — - Adiabatic
4.5 + =
40 -
—_— —_
S z
k=1 >
35 -
30 F -
-3 1 1 1 1
25 1 1 3 1 1
0 1 2 3 4 5 15 <10 05 00 05 1.0 15

FIG. 2. The nonadiabatic instanton trajectories plotted Acr0.1 and

FIG. 4. The effecti diabati tential defined i 4) plotted
A=8.0 as a function of the imaginary time. e effective nonadiabatic potential defined in E2j4) plotte

along with the adiabatic potential surface f#8.0.

diabatic limit to the adiabatic limit: mation to the effective potential surface for large coupling
(a) The nonadiabatic instanton trajectories are shown fofonstant, whereas the cusped adiabatic potential surface at

A=0.01 andA=8.0 in Fig. 2. Obviously, the instanton tra- the small coupling constant in Fig. 3 is very different from

jectory shrinks as the coupling constant increases. On thé€ rounded effective potential. o

other hand, the nonadiabatic trajectory becomes independent () The evolution of spin population is plotted for

of the coupling constant as the latter becomes smaller. ~ A=0.01in Fig. 5 and foA=8.0 in Fig. 6. As has been stated
(b) Assuming the electronic wave function has been de&arlier, in the adiabatic region the relative population on the

termined, one can define an effective potential surface for th&vo diabatic surfaces is such that its state vector forms the

instanton trajectory as adiabatic surface. In the golden rule region, the transition is
confined in a small region near the crossing point of the
Verd (1) 1=(V[q(")]1)q, (3.9 diabatic surfaces and happens rather dramatically.

Next, the dissipative quantum tunneling region was in-
the derivative of which gives the nonadiabatic instantonvestigated by adding a Gaussian bath to the spin-boson
force. For comparison, one can also evaluate the adiabatf@0del[cf. Eq.(3.1)]. The bath spectral density was chosen in
potential by diagonalizing the Pauli spin matrix in Eg§.1)  the Drude approximation, i.e.,

for fixed values of the coordinatg The effective potential is wg
plotted along with the adiabatic potential surface&cr0.01 Jw)=nw Pl (3.5
in Fig. 3 and forA=8.0 in Fig. 4. As one can observe from @@

Fig. 4, the adiabatic potential surface is a very good approxiwhere the friction strengtly was 1.0 and the inverse of the
memory time scalewp,, was 1.0. In Fig. 7, the quantum rate

14 T T T

T T 1.0 T R T
— Nonadiabatic \l
12 b /‘\\ - — - Adiabatic i ! P@
1
/ 08 - | -=- P, ]
10 + | ||
06 | | .
S st - O
> A~
04 - .
6 . I
l
\
4L ] 02 - 'I g
'
V
2 I L I 1 I 0.0 i \ |
-3 -2 -1 0 1 2 3 0 1 2 3 4 5

FIG. 3. The effective nonadiabatic potential defined in E34) plotted FIG. 5. The evolution of the population on the two diabatic surfaces plotted
along with the adiabatic potential surface fb#=0.01. for A=0.01.
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-10 T

— Harmonic

-—- Anharmonic

Log(k)

-30 1 1 L L 1
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
Log(4)

FIG. 6. The evolution of the population on the two diabatic surfaces plotted

for A=8.0.

FIG. 8. The rate constant in an anharmonic diabatic potential given in Eq.
(3.6) plotted as a function of the nonadiabatic coupling constant.

in the dissipative bath is plotted as a function of the coupling _ _
amount because of the bath dissipation. In addition, the digdiabatic surfaces.
sipative suppression is stronger in the nonadiabatic limit than

in the adiabatic limit.

Finally, the effects of anharmonicity on the quantum rate

V. CONCLUSIONS

constant were studied by assuming diabatic surfaces defined

by

Vii(9)= 3 Mo?(q—0,00)°+9(q—0,00)*,

whereg=0.01 and the other parameters are taken to be th
same as in Eq(3.1. In Fig. 8, the rate constant for the
frictionless system is plotted as a function of the nonadia
batic coupling constank. Clearly, introducing the anharmo-
nicity reduces the tunneling rate and the reduction is mor
drastic in the adiabatic region than in the nonadiabatic re

(3.9

-10 T T T

— Frictionless
--- Dissipative

Log(k)

-2.0 -1.5 -1.0 -0.5
Log(A)

0.0

1.0

In this paper, a computational methodology for deter-
mining electron transfer rates has been developed. The ap-
proach is based on the instanton expression for quantum rate

onstants combined with a nonadiabatic dynamics formalism
or treating the imaginary time instanton dynamics with

nonadiabatic transitions. The formulation is completely gen-

eral and thereby capable of treating nonlinear diabatic poten-

éial energy surfaces and multiple electronic states. It also

provides a computational method for bridging the adiabatic
and nonadiabatic limits of electron transfer processes. The
theory was tested for the well-known spin-boson model, ob-
taining excellent agreement with analytical predictions in
both the adiabatic and nonadiabatgolden rulg limits. In
addition, it was shown that both dissipation and nonlinearity
in the diabatic potentials can readily be included in the cal-
culations and may have large effects on the rate constant. In
future publications, the nonadiabatic instanton method will
be further developed and applied to study electron transfer
processes in realistic systems.
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APPENDIX A: EVALUATION OF THE INSTANTON - S ol ma@
PREFACTOR k=4w?q . — ex;{ -B —) :
2mh B\/Z( 1) ap 22 evern
In this section, the prefactd® in Eq. (2.2 is explicitly (B3)
expressed as a normalized determinant of the matrix in EqQuhere the factor. is defined by
(2.18. For a free patrticle, the matrix describing the quantum "
path fluctuations is given by a— 1 (B4)
2S  m "0+ 0’ BT, Im’
5q;60; € (201~ 8ij+17 8ij-1), (A1) Here,),=2mn/A B andg, is given by
wheree=#£/P. A normal-mode transformation immediately .1 ﬁﬁd 0,7 BS
leads to the eigensolutions of the matrix in E41), i.e., “=%g ), 97° c(|7]). (B5)
N=2[1—cog2m7l/P)], (A2)  In the case of a frictionless cusped double-well, the rate con-
where the index ranges from—(P—1)/2 to (P—1)/2. Obvi-  stantk can be expressed in a closed form as
ously,| =0 gives a zero eigenvalue which corresponds to the Mo sint?(b/4) tanh(b/4)
translational invariance of the free particle space. Removal k=2w(qq TS exp{— a T}
of this zero eigenvalue leads to the condition sinft*(b/2) (b/4)
(B6)
—p2
|1;[0 M=P (A3) The exponential factor in the above equation is the same as

. . _ the one in the golden rule expressidty. (3.3)], whereas the
which recovers the correct free particle density. Thereby, the ota 401 is by no means the same. Thereby, it is necessary to
|_ns|tanto? matr|x.|r.1 Eq(2.18 is normalized to the free par- introduce the nonadiabatic coupling mechanism in order to
ticle prefactor, giving obtain the correct limit for the electron transfer dynamics.

( e S ) The above equations, however, can serve as a good initial

ey (A4)  guess for the nonadiabatic instanton algorittah Sec. I1)).

) 1
D= lim adel’ m 50,50,

P—w
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