A scaling and mapping theory for excess electrons in simple fluids
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A simple scaling argument is proposed to understand the localization of excess electrons in simple
fluids and to interpolate numerical results of path integral simulations and reference interaction
site—polaron theory. A mapping is found between an impenetrable object of arbitrary geometry and
a spherical hard sphere. Numerical simulations of solvated electrons in atomic and diatomic solvents
are used to demonstrate the validity and applicability of these scaling and mapping
schemes. ©1995 American Institute of Physics.

I. INTRODUCTION electron—solvent interaction at normal temperatures is domi-
nated by low energy s-wave scattering provided the electron
The behavior of excess electrons dissolved in fluids haghermal wavelengthN= y%28/m) is much smaller than the
been the subject of many theoretical studiesin the gas effective range of the repulsive interaction. As is well
phase or the dilute liquid phase, the electron assumes lown, the phase shift for low energy s-wave scattering is
quasifree particle state where scattering from the disorderegharacterized by a single parameter, the scattering length,
media gives rise to diffusive motion. As the solvent densityand is otherwise independent of the details of the interaction
increases, electrons exhibit different properties depending opotential’ The scattering length for the hard sphere interac-
the nature of solvent and the electron—solvent interactionsion is its radiusd. The hard sphere model proves ideal for
Generally speaking, the electronic states can be properlgescribing excluded volume effects and it seems reasonable
catalogued asextendedndlocalizedstates. For systems with that systems with a short range repulsion can be effectively
strong electron—solvent repulsions, such as helium, densityepresented by this primitive model with the radaigenti-
fluctuations cause the electron to Iself-trapped Since fied as the scattering length.
electron—solvent repulsion excludes the solvent molecules In fact, similar ideas have been proposed before. In the
from the region occupied by the electron, the solvent mol-Green function Monte Carlo study of the ground state of
ecules rearrange to form a cavity centered at the centroid ahany-body quantum systems, Kalos, Levesque, and Yerlet
the electron isomorphic chain. The electron must move withrelated the simulated properties of hard sphere systems to
the cavity and thus, the electronic mobility is very small. more realistic smooth forces. They separated the interaction
Therefore theexcluded volume effe@xplains the mecha- potential of liquid helium into a short range repulsion and a
nism of electron localization. long range attraction, the latter being treated as a perturba-
Cokeret al. performed path integral Monte Carlo simu- tion. The repulsive part of the potential was modeled by a
lations for an excess electron solvated through a realistibard sphere interaction in which the radius was set equal to
pseudopotential in 6-12 Lennard-Jones fldidsd Sprik the scattering length of the repulsive part of the smooth po-
et al. studied the primitive model of an electron in a hard tential.
sphere fluid in which the electron—solvent interaction is also  Since the scattering length is introduced for constant en-
taken to be of the hard sphere type&handler and co- ergy scattering it is only useful in the ground state energy
workers developed a reference interaction site-polaron theorgalculations. The solvated electron is in thermal equilibrium
(RISM—polaron theory which agrees well with the hard with its environment and thus scatters successively at differ-
sphere simulations® In an attempt to compare the results of ent energies. The thermal distribution of energies should be
these different calculations, Laria and Chandler assumed théaken into consideration. In a previous publication on a new
some appropriately chosen hard sphere models could mimitard sphere propagatothe quantum electron—atom distri-
the effects of more realistic continuous pseudopotential modbution function
els. With this idea and a hard sphere radius as a single ad-

justable parameter, they showed that the results of different o(r,B)

models could indeed be related. This immediately raises a g(r)=———, 1.9
guestion: for a general short range potential, how should one Pired T )

choose the effective radius of the equivalent hard sphere in-

teraction. was defined wherg(r,8) is the quantum density function at

Since the electron structure is predominantly determinedemperatureB for a particle at distance away from the
by the excluded volume effect, the short range repulsive poscattering center angk(r,B) for a free particleg(r) thus
tential can be adequately modeled as a hard sphere potent@gfined is obviously the quantum mechanical equivalent of
with a single parametat specifying the closest distance the the Boltzmann distribution functioa™#Y("). It is then natu-
electron can come to the center of a solvent molecule. Theal to useg(r) to define the excluded volume as
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. . . . . whereR measures the physical size of the electron isomor-
wherer, is the exclusion radius. Obviously the equivalent Phy

; 14
hard sphere radiud is chosen so that the excluded volume phic chairt
2\ 1/2
> : (1.9

of the hard sphere interaction equals that of the real potential, R < ;
ie., -
with ing an arbitrary imaginary time. Then the universal
Vgg(d)=Vex, (1.3 t_rbe g an arbitrary imaginary time. Then the universa
scaling can be expressed as

—r(7)

gl
74‘7’

Wherevgg denotes the excluded volume for a hard sphere. In  R=F(p), 1.7
the classical limit this relation gives the leading term in the
WCA approximation'® As in the classical limit, Eq(1.3)
ignores solvent effects. In the low temperature linditye-
duces to the scattering length as suggested by Ketas®

where F is a universal function. This relation captures the
major contributions to the electron localization, such as, the
quantum interference between different solvent sites, the

; . . solvent—solvent correlations, and solvent reorganization due
Obviously, if two scattering centers have the same cross S the presence of the electron. It ignores, however, the de-

tion, they will have the same excluded volume. ftails of these factors because it is mapped onto a hard sphere

The argument is by no means limited to the mapping o . .

. : . —.system. The essence of the excluded volume effect is mani-

a real potential to a hard sphere potential. In fact the definiz - . . . )
. . ._fested by defining the effective density as the crucial scaling
tion of the effective hard sphere leads to a general scalin ) :
S Pparameter. Numerical calculations based on the RISM-

procedure. For the primitive hard sphere model the system i

fully determined by the thermal wavelength of the electron
\, the electron—solvent hard sphere raddjsthe solvent

molecule diametes as seen by other solvent molecules, and o . N . .
. . “localization density proves to be qualitative, but its applica-

the solvent density. Therefore, for electrons solvated in .. : . .
e . : ) bility as a scaling parameter in EL..7) is more general and
liquids of the same kind, there should exist a universal scal- . . ; o ;
: o o reliable. Instead of trying to predict the transition density
ing between the localization transition and some scaled num; o . .

: hrough a Mott criterion, we instead show that realistic sys-
ber den5|§y. : . . tems scale according to E@..7). This approach proves to be

In their discussion of the theory of electron conduction

in disordered materials, loffe and Retfeduggested that the useful and effective.

. . . Another interesting observation arises from studying ex-
electron can be found in a quasifree state only when its mean T : )
. . cess electrons solvated in diatomic solvents. In classical me-
free path is larger than its thermal wavelength. Mott further

. ] ; chanics, the cross section of a nonspherical hard target is
proposed that the electron will localiZevhen its mean free P 9

equal to the geometric cross section, that is, the area of the
path equals the electron wavelength. Gee and FreErean q 9

amined the limitations on the loffe—Regal and Mott criteriadISC that. blocks the propaggnon of the incident part!cle,.
whereas in quantum mechanics, the low energy scattering is

in the gas phase, and found both to be valid for gases ”k%ominated by the s-wave which senses the isotramicori-
helium and hydrogen where the electron—solvent interaction

is largely repulsive(hard-sphere-like but less accurate for entationally averagegotential energy surface. Thus the low

other solvents in which there are also attractive electron—energy limit of electron scattering from a nonspherical im-

X . . o o : penetrable object is equivalent to the scattering from a hard
solvent interactions. Thus this localization criterion will only . I

o : : sphere with the same surface area. The predictions based on
be qualitatively useful when applied to most fluids.

The applicability of the loffe—Regel criterion to helium this mapping will be shown to agree well with diatomic cal-

and hydrogen gases is apparently due to their net re ulsiv%UIations'
iion with PR Y P The hypothetical scaling method not only provides use-

interaction with electrons, which can be modeled as harqul insight but also approximately predicts the transition den-
sphere systems by the procedure described earlier. Then fqr. g P yp

; : S : ity at which the electron localization occurs. For both
the hard sphere interaction the cross section is proportion . .

. : - RISM-polaron and PIMC calculations, the scaling and map-
to the square of its radius, so that the loffe—Regel criterion_.

can be expressed asi2p,,. =constant. In gases like He ping method allows us to interconvert between two different

. : .system Itering one or tw rameter n the ex-
and hydrogen the same constant is found but in gases wif] stems by altering one or two parameters based on the e

attractive interactions a different constants will be found de-C ud_ed volume relation. One finds the optimal mapping if the
equivalent system resembles the unknown system the most.

pending on the strength of the attractions. Nevertheless, t . . . 4
Co Y L2 . etails are described later along with illustrative examples.
implication of the criterion does lead us to define the effec- . . .

In the following two sections, we present numerical

tive density as studies that demonstrate and verify the proposed scaling and
mapping schemes.

polaron model presented in the next section clearly support
this hypothesis.
The use of the effective densitiq. (1.4)] to predict the

p=pd?\, (1.4

where the wavelength is given as= VA28/m. Also we de- Il. SOLVENT OF SPHERICAL MOLECULES

note the localization transition by the reduced correlation  The electron—solvent pseudopotential used in the simu-
length lations of Cokeret al®
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—-——the hard sphere potential
—the soft core potential

the rest of this paper and in the figure captions the unit of
length is taken asg,, the diameter of the hard sphere solvent.
In Fig. 1 the quantum distribution functior(r) for

both the potential given in Eq2.1) and for the equivalent
hard sphere potential are plotted. The similarity of the two
1 curves is evident although the potential surfaces themselves
are very different. The calculated excluded radiys is

| 2.75 for the potential Eq(2.1) and 2.9 for the equivalent
hard sphere. Therefore a smaller radius/ould seem to be
required.

To test the validity of the scaling hypothesis, we carried
out RISM-polaron calculations on the primitive model with
d=0/2, o being the solvent—solvent hard sphere diameter.

r Readers are referred to the papers by Chandler and co-

workers for details of the RISM-polaron theory and the nu-

FIG. 1. The quantum distribution functiag(r) defined by Eq(L. for the ~ Merical algorithm®** In Fig. 2 the reduced correlation
electron—helium pseudopotential E&.1) at temperature 309 K and for a lengthR is plotted as functions of reduced denstiefined
hard sphere pote_ntial of ra_dimir—Q.48 and at Wavele_ngth=6.0. The pa- asp* =p0'3) for thermal wavelength =40, A=60, A=100,
rameters of path integral simulations can be found in the text. and \=16¢. In Fig. 3 the same set of data is plotted as
functions of the effective density=pd?\. Obviously the
three widely separated curves in Fig. 2 come much closer to
overlapping than in Fig. 3 after the density axis is rescaled.
This convergence demonstrates the adequacy of the universal

scaling relation Eq(1.7).
was used where A, B, and C are 0.655, 89 099, and 12608, ag gpserved in Fig. 2, the localization transition occurs

respectively(in the atomic units The quantum distribution 44 p* =0.3 for \=6¢ and atg* =0.15 forA\=10c. This indi-
functiong(r) defined in Eq(1.1) for an electron at the SiMU-  cate5 that the effective transition density ispat0.4—0.5.
lation temperature 309 K was calculated for this potential,\,laking use of the universal relation E@..7), we can predict
[Eq. (2.1]. The staging Monte Carlo technidffeas em- e transition region. In Fig. 4 the top curve stands for the
ployed to generate a sequence of free particle paths. Thesner pound and the bottom curve stands for the lower
Boltzmann factor exp-BZ2;U;/P] was evaluated at each poynd of the transition region. Since at small electron ther-
point on a fine grid off and then averaged overA@ath  ma| wavelengths the number density is scaled by a param-
integral configurations OT discretization numbBr=1000.  gter, the transition region will occur at high density and with
For a hard sphere potential, much faster convergence can beproad width. Concomitantly at large thermal wavelengths

achieved withP less than 50 if the new hard sphere yhe ransition will occur precipitouslywith a narrow width
propagatot is used. Laria and Chandférassumed for the 4t 5 jow density.

potential given in Eq(2.1) an equivalent primitive model of The estimation of the transition region is by no means

electron wavelengthh\=6.0c and radiusd=0.48 with  5ccyrate compared with systematic simulation studies. When
0=2.556 being the diameter of the solvent LJ potential. Inyges it hold and what factors are left out?

02
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FIG. 2. The reduced correlation Iengﬁmf Eq. (1.2) from RISM-polaron FIG. 3. The same reduced correlation function Ierétas a function of the
calculations as a function of reduced solvent dengity The results are  effective solvent density. The convergence of the three curves correspond-
given for the primitive model ofi=0.5 at wavelengths 4.0, 6.0, 10.0, and ing to wavelengths 4.0, 6.0, 10.0, and 16.0 affirms the scaling hypothesis
16.0. Eq. (1.7).
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FIG. 4. The transition region of electron localization predicted by the uni-FIG. 5. The excluded length,, as a function of bond length at electron

versal scaling relation E1.7). wavelengthn=60. The circles represent the results of a diatomic model
with d=0.5; the line is the predictions of the corresponding atomic model
with d defined by Eq(3.1).

(a) Unlike classical dynamics, the full quantum distribu-
tion in the presence of multiple solvent molecules of a par-
ticular configuration does not equal the product of quanturﬂ“' DIATOMIC SOLVENT
distribution probabilities for each molecule of the same con-  aq tar as low energy scattering is concerned, an impen-

figuration. If we compare different potentials all having the etrable object of arbitrary geometry is equivalent to a hard
same excluded volume at the same temperature, the diffefphere of the same surface area. Consider a model diatomic
ence due to many body interference is minimigsde(b)  gjecule composed of two hard spheres of radiuwith
below]. But if we compare systems of different electron—heir centers separated by the bond lengthThe surface
solvent potentials with the same excluded volume but at dify ;o5 is equal to that of a hard sphere of radius
ferent temperatures, there will be nonlinear dependence on
the solvent densitysee(d) below]. This is responsible for d=dy1+L/2d. (3.1
the discrepancies observed in Fig. 3. . L . . .
(b) Although the idealized hard sphere potential and aSlnce the, quant_um d|§tr|but|on. func_tlon for the d|-at.om|c
realistic potential such as Eq2.1) are very different, the molecule is not isotropic, an orientational average is intro-

guantum distribution functiorg(r) in Fig. 1 can be very duced in the definition og(r), giving

similar if the excluded volumes are approximately the same. 1 p(f”g )
The quantum dispersions smear out the details of local po-  9(r)=7— ord 1. B) dQ. (3.2
tential. Pirect

(c) The quantum distribution functions exhibit smaller The hard sphere propagator is modified accordingly so that
curvature as the wavelength increadésowever, based on the short time propagator for a particular path segment is
the universal scaling, we reason that the effective density idetermined only by the closer sphere. This idea can be used
the primary parameter which determines the collective forto simulate a hard sphere solvent for which the electron bead
mation of a cavity and the electron correlation function re-senses the closest hard sphere.
gardless of the details of electron—solvent interaction, Path integral calculations were performed for a model
solvent—solvent correlation, and other factors. diatomic fluid withd=0.5¢, and for the corresponding hard

(d) The simplicity of the definition ofr., arises from sphere with the radius given by E@.1). The excluded
ignoring solvent effects. Following the WCA approximation, lengthr, thus calculated is plotted in Fig. 5 as a function of
one can devise a theory which introduces the solvent densitiyond lengthL for wavelength\=6c. The results are in re-
as an additional variable in the relation E¢s.2) and (1.3 markable agreement.
such that the many-body effects of the solvent molecules can Furthermore, the surface mapping is tested in the context
taken into account. of the scaling relation: The same excluded radius given by
_In practice, we can infer the reduced correlation lengththe mapping equationi3.1) will predict the same reduced
R of a given system from numerical data of another systentorrelation length provided the solvents are the same as well.
according to the scaling. The method also helps to comparéhe calculations were carried out based on the RISM-
the RISM-polaron calculations with the realistic simulations.polaron theory. It turns out that only a small modification is
In addition, a realistic electron—solvent potential can berequired to formulate the atomic RISM-polaron equations for
separated into a short range repulsion, which defines théhe case of polyatomic molecular solvents. Assuming that the
equivalent hard sphere radius in E.3), and a long range molecule consists ofi, bonded hard-sphere sites, we can
interaction, which can be incorporated directly into therecast the RISM-polaron equation in terms of the SSOZ so-
RISM-polaron calculation¥ lution of the solvent/ giving
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T . — localization. In addition, a mapping is suggested for non-
24r atomic solvent (mapping) | spherical molecules. Both developments provide a shortcut
+ diatomic solvent to the understanding of the physics of solvated electrons and
serves as an auxiliary means to estimate the structure of an
excess electron in cryogenic fluids.

These scaling arguments also help to elucidate why an
excess electron localizes in ethane but not in methane, and
localizes in n-pentane and not in neo pentane. Recently Liu
: and Berné&® have shown that the introduction of repulsive
sites midway along the C—C bond gives simulation results in
accord with experiment. In their pseudopotential, exponen-
tial terms in the electron—solvent potential E¢2.1) and
0 03 056 09 (2.2) determines the hard sphere radius of the equivalent sys-
tem, whereas the long range attractive tail, i.e., the electron-
3 induced dipole interaction potential, serves as a perturbation.
. 6. The reduced correlation lengtas a function of bond length at The major effect of the three-site ethane models is that the

electron wavelengthh=60. The circles represent the results of a diatomi_c additional strong repulsion located at the center of the C—C

model withd=0.5; the line is the predictions of the corresponding atomic
model withd defined by Eq(3.1).

wit

He

formation andd; is the hard sphere radius of thia atom. In

Eq
Ci

bond will generate an equivalent hard sphere with larger sur-
face area than will the two site model, a sphere with a larger
d. Consequently the three site model will have a larger
- 1 i A A AL scaled density and will thus localize electrons at lower den-
lrisM=p E Ci(0)+ (ZT)BJ dkE CixijCjo, (3.3 sity than the two site model. Figure 2 of Ref. 18 gives an
! b idea of the classical excluded regions of the electron-ethane

h the PY closure: and electron-methane pseudopotentials. And this difference
accounts for the localization of electron in ethane.
Olasu _ g (3.4)
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