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The concept of instantaneous normal modes in liquids is extended into the quantum regime using the 
Feynman path centroid perspective in quantum statistical mechanics. To accomplish this goal, the 
variational quadratic approximation for the effective centroid potential is recast in a general 
multidimensional phase space form. In the context of the effective quadratic approximation, the 
velocity autocoxrelation functions of liquids can then be predicted based on a set of instantaneous 
quantum normal modes. Representative applications are presented for quantum Lennard-Jones 
liquids and a quantum particle solvated in a classical fluid. The quantum effective phonon spectrum 
leads to some revealing observations and interpretations for these systems. 

I. INTRODUCTION 

In the framework of condensed matter theory,“* the con- 
cept of phonons, i.e., the small oscillations about a stable 
structure or the energy minimum, relates directly to many 
equilibrium properties and transport processes such as heat 
capacity, thermal conductivity, thermal expansion, light scat- 
tering, etc. Liquids, however, differ from solids because of 
their lack of static and stable structures. The fluidity of liq- 
uids thereby makes it formally improper to apply the well- 
developed theory of phonons. Yet, since the phonon spec- 
trum in solids gives the eigenfrequencies of the phonons, one 
can speculate that the peaks in a liquid spectrum might offer 
some insight into the physical modes which characterize the 
liquid. Indeed, macroscopic measurements, such as the Fou- 
rier transformation of the velocity time correlation function, 
must contain information on the underlying dynamics of the 
liquid phase.3 Because liquids exhibit diffusive properties, 
however, it remains a challenge to derive a set of modes 
which predict molecular motion in liquids from a micro- 
scopic point of view.4 Nevertheless, liquids might behave 
similarly to solids for times smaller than some phenomeno- 
logical relaxation time “7”. As a result, the concept of “in- 
stantaneous normal modes” (INM) remains useful during the 
lifetime of such solid-like behavior. Several authors have 
explored this intriguing picture of liquids5-” 

The INM approach suggests a liquid state analogy to the 
phonon spectrum in solids. However, rather than solving for 
the small oscillations at the global potential minimum, the 
liquid state potential is Taylor expanded at instantaneous 
configurations of liquids through quadratic order. A set of 
normal modes is then obtained by diagonalizing the force- 
constant matrix and the short-time dynamics resulting from 
that liquid configuration can be predicted. While the poten- 
tial which determines the equilibrium structure of liquid is 
far from harmonic, the short-time motion of the molecules is 
nevertheless linear for a time interval shorter than the relax- 
ation time r. This effective harmonic motion is suggested to 

persist up to the characteristic relaxation time, at which point 
it is transformed into motion characteristic of another set of 
instantaneous normal modes. The overall short-time dynam- 
ics of the liquid is thereby determined by a superposition of 
the harmonic motions of all possible configurations. The liq- 
uid state “phonon spectrum” is thus taken to be the en- 
semble average of the instantaneous normal modes of the 
liquid configurations. 

Though the short-time normal mode analysis is at best a 
qualitative model to study transport properties, it can suc- 
cessfully reveal some distinct features of liquids. Unlike sol- 
ids, the liquid INM configuration is not at a local minimum, 
so the force will therefore not vanish. Moreover, the force 
constant matrix will have negative eigenvalues correspond- 
ing to unstable normal modes. It can be argued that the frac- 
tion of unstable modes is the manifestation of the fluidity of 
liquids and the peak position of those modes is related to the 
size of the self-diffusion constant.6 

Instantaneous normal modes have also been used to 
study the short-time dynamics of coupled translational and 
rotational motions in molecular fluids.’ The predictions of 
the short-time harmonic motion were compared with exact 
molecular dynamics (MD) simulation results and found to 
agree only for very short times. As a result of the anharmo- 
nicity in the liquid, the difficulty in describing such correla- 
tion functions with the INM theory arises due to the presence 
of the unstable modes which diverge exponentially with 
time. From this point of view, it is mainly the unstable modes 
which destroy the linear motion of liquid. Since the imagi- 
nary frequencies presumably become operational after the 
characteristic relaxation time, it is perhaps reasonable to re- 
move the unstable modes from the INM correlation function. 
Reasonable agreement with the shorter time behavior of cor- 
relation functions was obtained when this method was 
implemented.* 
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The present paper extends the instantaneous normal 
mode picture of liquids into the quantum regime. This exten- 
sion is of particular interest because, as opposed to the clas- 
sical case, the qdantum dynamics of liquid state systems are 
extremely difficult to study by exact numerical methods. 
Therefore, the present work has both a formal and a practical 
bent to it. This paper is the fifth in a series’*-15 (hereafter 
referred to as Papers I-IV) which explores the static’* and 
dynamical’3-*5 properties of quantum equilibrium systems 
within the context of the path centroid variable’6-20 in Feyn- 
man path integration.*‘-*’ In addition to a number of other 
things, Papers I-IV contain the basic elements necessary to 
extend the instantaneous normal mode picture of liquids into 
the quantum regime. For example, Paper I develops the for- 
mally exact theory for the centroid density which goes be- 
yond the well-known Feynman-Hibbs’ quasiclassical 
theory** by employing a resummed and renormalized dia- 
grammatic perturbation expansion. This analysis explores the 
diagrammatic representations of various approximation 
schemes, including the effective quadratic variational 
approximation’7-‘0 which forms the imaginary time basis for 
quantum instantaneous normal modes. The focus of Paper II 
is on the challenging task of calculating quantum dynamical 
time correlation functions. Consistent with the theme of Pa- 
per I, real time dynamical information is extracted in Paper II 
from the analytical continuation of centroid-constrained 
imaginary time correlation functions so that the time corre- 
lation functions are expressed as the centroid density- 
weighted superposition of locally optimized harmonic time 
correlation functions. In Paper III, the centroid picture was 
extended to phase space and formulated for many degrees of 
freedom using a compact vector-matrix notation. The latter 
formulation will be employed in the present paper. 

The quantum instantaneous normal mode picture of the 
present work should not be confused with the particularly 
fruitful and intuitive outgrowth of the centroid analysis 
called centroid molecular dynamics.‘3-‘5*29 In the latter 
method, the motion of the quantum centroid variable is gov- 
erned by classical-like dynamics generated by the centroid 
force which is derived from the mean centroid potential (cf. 
the justification in Paper III). Centroid molecular dynamics is 
not the topic of this paper. 

The following sections are organized as follows: In Sec. 
II, the effective harmonic theory for the phase space centroid 
density is presented for the one-dimensional case and then 
extended to many dimensions. In the context of the centroid 
theory, quantum velocity correlation functions and self- 
diffusion constants3’30 are also discussed. The quantum in- 
stantaneous normal mode picture is next presented in Sec. III 
and applied in Sec. IV to two kinds of physical systems: 

I 

nearly classical quantum Lennard-Jones fluids and quantum 
particles solvated in classical solvents. The quantum and 
classical phonon spectra are compared and discussed in each 
case. Concluding remarks are given in Sec. V. 

I. EFFECTIVE HARMONIC THEORY 
In Paper I, the imaginary time position correlation func- 

tion was expressed in terms of the Feynman path centroid 
density in coordinate space and the centroid-constrained 
imaginary time position correlation function C,( r,qc). The 
former quantity defines the statistical distribution in the 
theory, while the latter function defines, among other things, 
the effective quantum width of the classical-like centroid 
“particle.” In Paper III, the one-dimensional formalism of 
Paper I was extended into phase space so that the momentum 
is treated as an independent dynamical variable. Before pro- 
ceeding to the variational effective harmonic representation 
of these quantities, some notation and definitions will be re- 
viewed. 

For a physical system consisting of N particles (or mo- 
lecular sites), there are N three-dimensional particle positions 
Cs’ , ,.. .,G,+,) and N three-dimensional particle momenta 
(6 , ,. ..$,,,). These variables will be represented by a single 
vector 5 which is defined as the collection of the 6N degrees 
of freedom in phase space, [= (p’i , . . . ,GN ,ii , . . . , <,v). The 
phase space centroid density as defined in Paper III is given 
by 

where the phase space centroid vector is given by 

(2.2) 

The action functional for the imaginary time phase-space 
path integral is given by24 

+v[G(dl f 
i 

(2.3) 

where ;( 7) is the imaginary time velocity vector, m is the 
diagonal particle mass matrix, and it has been assumed that 
the potential is defined to be independent of the momentum. 
The quantum partition function Z is calculated from Eq. (2.1) 
by taking _ the classical-like centroid trace, i.e., 
Z= S d&,( 5,). The centroid-constrained correlation func- 
tion matrix is defined byi 
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with each element of this matrix having the indices “i,j” 
being given explicitly by the 2X2 block s=s,+; tfn.A,Qn. 
[cc(79~c)lij= i 

cCIPi(T)P”j(o)v~cl ccGi(T)<j(o),~cl 
cc[Gi(T)Pj(o)3<cl 1 cc[~i(T)Gj(o)~~cl ’ 

(2.5) 

where k( 7) is the quantum path fluctuation with respect to 
the centroid variable ic, i.e., i( 7) = L$. + I( 7). The ele- 
ments of the centroid-constrained correlation function matrix 
in Eq. (2.5) can also be_calcuhtted by first incorporzting the 
external field terms - f( 7) . q( 7) and - g’( 7) . p( 7) into 
the action functional [Eq. (2.3)] and then fun_ctionally differ- 
entiating the functional with exp{- PF,[f( r),i( r)] two 
times with respect to the desired combination+of f(r) and 
g( 7) and multiply by h*/p, in the limit f(~)--+0 and 
it~)-+O. Here, F,l$4,&dl= -kBT ln{p,I.?(d,&dl} 
is the quantum centroid free energy written as a functional of 
the two external fields. 

A. One-dimensional systems 

For simplicity, a one-dimensional system will be first 
considered in this subsection,_in which case p and q are 
one-dimensional variables and 5 is a two-dimensional vector. 
In the case of an effective harmonic reference 
potentia1,‘*“‘,“‘*’ both the centroid density and the 2X2 
centroid-constrained correlation function matrix C,( T,q,) 
can be evaluated analytically. To do this, a Fourier decom- 
position of the phase space path fluctuation vector 7 
= (p,q j is introduced such that 

F(T)= C &-i%T, (2.6) 
n#O 

with Q, being the Matsubara frequency defined by 
fin= 27&h/3. The phase space action in Eq. (2.3) can then 
be rewritten as 

+ $ mwfl;nl* , I (2.7) 

where o, is the centroid-dependent frequency of the effec- 
tive harmonic oscillator, and So contains the remaining terms 
in the action 

1 

2 
So’ph $-+v[q,+q”(r)]-; mof<(T)* . 

I 
(2.8) 

This expression shows that the centroid momentum pr is 
decoupled from the position coordinates provided the poten- 
tial is not momentum dependent. 13~14,29 To be consistent with 
the vector-matrix notation, a generalized Gaussian width 
matrix A can be introduced here, given by 

!c=P( :;: ;;;j (2.9) 

so that the action in Eq. (2.7) takes on the compact form 

The effective harmonic potential approximation assumes 
that So depends only on the centroid variables.‘2~‘7~‘8~20 With 
the help of the Gibbs-Bogoliubov-Feynman variational 
principle3’ or a renormalization of the diagrammatic pertur- 
bation theory for the centroid density (see Paper I), it can be 
shown that the effective harmonic potential is determined by 
optimizing the frequency o, as a function of the centroid 
position. This optimized frequency is given from the solution 
to the transcendental equation’2~‘7~18V20 

mw~=(vyq,+4”)),=- 
J& I 

G V”(q,+G) 

X exp( - q”*/2 ffc), (2.11) 

where the Gaussian width for a particular centroid position is 

1 

I 

hpw, I2 
ac= x tanh(hpw,/2) - ’ ’ 1 (2.12) 

At this level of approximation, the action S,( 6,) becomes 

(2.13) 

which is a function only of the two phase space zentroid 
variables and therefore independent of the variables c( 7). As 
a result, the centroid-constrained propagator in Eq. (2.4) is 
solely determined by the matrix terms A,, 

C,(7-,5c)= c Antqc)e-in”T, 
n#O 

where A,, is the inverse of Eq. (2.9), i.e., 

(2.14) 

&I= p(W*+n,) cl, 
1 * (“4 my;). (2.15) 

The dependence here on the centroid qc comes implicitly 
through the optimized frequency o, defined in Eq. (2.11). 

By carrying out the summation in Eq. (2.14) to infinite 
order, one obtains the optimized harmonic approximation for 
the centroid-constrained correlation function matrix 

(mf.d,)*a,(7) -fihy,(T) 
cctT?qc)= 

$h Yc( 4 
(2.16) 

4 Q-1 

In this expression, the centroid-constrained imaginary time 
position correlation function is explicitly given by 

[~c(~d?,)l22=~c(~)= & sin;(g2,2, ( c 

xcosh[b,( 1/2-u)]- 1 (2.17) 

where u = rlhp and b,= iipw, . At this level of approxima- 
tion, the function yc( r) in the off-diagonal terms of Eq. 
(2.16) reads 
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YcO’= 
sinh[b,(1/2-u)] 

sinh(b, /2) * 

By integrating the above expres_ions over the normalized 
phase space centroid density p,( 5,)/Z, i.e., 

(2.18) 
where m is the 3N-dimensional particle mass matrix. 

A centroid-dependent unitary matrix U( <,) can be found 
which djagonalizes the mass-scaled centroid force constant 
matrix K,( i,), giving the eigenfrequencies 

u+t~,)~ct~,)uti,) =I. 4, (2.26) 

-7 
(5i(7)5j(0))=([C,(7,q,)lij+rc,ibc,j)pc, (2.19) 

one can obtain the effective harmonic expressions for the 
different imaginary time phase space correlation functions 
from Eq. (2.16). In the above equation, c,, t and cc,* equal pc 
and qc respectively. 

where w, is the column vector consisting of the centroid- 
dependent eigenvalues w: t and I is the 3N-dimensional 
identity matrix. The Gaussian width factor matrix in Eq. 
(2.23) is obtained from the relation 

c,t4’,)=Ut~,)tI.~,)U+t~,), (2.27) 

where the elements of the centroid-dependent normal mode 
thermal width factor vector Cr, are given by 

1 (~h%,l/2) 
%l= pi& tanh(hpw,,,/2)-1 ( i 

(2.28) 

and the mass-scaled, centroid-dependent matrix u(<,) is 
given by 

U(~,)=m-“2U(~,). (2.29) 

The set of optimized frequencies {o,,!} are obtained from 
the self-consistent solution to the transcendental matrix equa- 
tions in Eqs. (2.24)-(2.29) at each centroid position. 

Obviously, the multidimensional generalization of Eq. 
(2.9) is 

Some simple results immediately follow from Eq. (2.16) 
using the Gaussian representation of operators and imaginary 
time correlation functions developed in Papers II and III. For 
example, the adherence to the Uncertainty Principle in the 
effective harmonic theory can be demonstrated by evaluating 
the Heisenberg commutator 

In addition, the average kinetic energy is found to be given 
by P2 ( ) - =- 

2m 2’, ((PC+)*)= ?- 2p (Lln:&2))~~ t2.21) 

which is the same expression as a virial estimator for the 
kinetic energy derived previously.2o 

B. Multidimensional systems 

The analysis in the preceding subsection can be general- 
ized to treat a system consisting of N particles in three- 
dimensional space (see also the Appendix of Paper I and Sec. 
III of Paper IV). A 3NX 3N force constant matrix is first 
defined as 

With the eigensolutions {o~,~} from Eq. (2.26) in hand, Eq. 
(2.30) can be rewritten in terms of a mass-scaled unitary 
matrix S(Gc) as 

along with the Gaussian width matrix 

K’=asci,)j -AnI I~~)s+tic~~ (2.3 1) 

(2.22) where 

Sk&)= o 
i 

m- 1’2U( Gc) 0 

i m”*U( <,) ’ 
(2.32) 

The substitution of Eq. (2.31) into Eq. (2.14) then leads to 
the expression for the 6N-dimensional centroid-constrained 
phase space correlation function matrix C,( r,l,) [Eq. (2.5)], 
i.e., 

~c~~o~~~~lij~c~~~i~o~~j~o~~~~l (2.23) 

which is simply a submatrix of C,( r,{,) in Eq. (2.4) evalu- 
ated at r = 0. Following the notation used in the previous 
papers, ‘*-15 the effective harmonic centroid force constant 
matrix is given by 
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(2.30) 

Kt~,)=Wt&+;)L= 
1 

Jdet[2~w(XicII I 
dq” 

XK(<c+~)exp[-~~C,1({J.$/2]. (2.24) 

From the above equation, it is clear that the Gaussian width 
matrix C,(<,) is the multidimensional generalization to the 
centroid-constrained thermal width a’, in Eq. (2.12). At the 
level of the effective quadratic approximation, the Gaussian 
width matrix is given by 

i 

I.&&) - $hI- &(T) 
x 

+x1. qc( 7) I* &( 7) 1 
St&L 

(2.33) 

C,(O,<,) = c [Pm~~+fK,(q’c)l-l, (2.25) 
n+O 

where +J 7) and &,( Q-) are the multidimensional vector gen- 
eralizations of Eqs. (2.17) and (2.18), respectively. The indi- 
vidual elements of these vectors are given by 

fi2P ‘y,,l( 7) = - bc,, J2 
& sinh( b,*[ /2) 

cosh[b,J 1/2-u)]- 1 

(2.34) 
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and 

rc,dd = 
sinh[b,,l( l/2 - u)] 

sinh( b,,[ /2) (2.35) 

with u=~/(h/3) and bl=fP~,,I. Once the complete cen- 
troid constrained correlation function matrix in Eq. (2.33) is 
obtained, the appropriate average over the phase space cen- 
troid density allows one to obtain the imaginary time phase 
space correlation functions [cf. Eq. (2.19)]. 

C. Velocity correlation functions and diffusion 
constants 

In Paper II, it was argued that the time integral of the 
centroid velocity time correlation function gives an approxi- 
mation to the quantum self-diffusion constant D. The argu- 
ment is partly based on the relation 

(;c,itf) ’ u4c,i(o))pc= - $ (Gc,i(r> ‘~c,it”))pc* (2.36) 

where ;c,i(r) and <c,i(t) are the three-dimensional centroid 
velocity and position vectors for a “tagged” particle i, and 
these vectors obey the classical-like equations of motion of 
centroid molecular dynamics.‘3~14*29 This expression arises 
from the approximate Fourier relationship between centroid 
time correlation functions and the real part of quantum cor- 
relation functions for the general case, i.e.,i3,i4 

td4=f(4a3(4, (2.37) 

where A and B are arbitrary quantum operators and the factor 
f(w) is given by 

h @I2 
‘(@)= tanh(hwp/2) ’ 

(2.38) 
c 

In Eq. (2.37), C&(w) and C(w) are the Fourier transforma- 
tions of the centroid time correlation function and the real 
part of the quantum correlation function, respectively. Since 
the diffusion constant is the zero frequency component of the 
Fourier transform of the velocity correlation functions,3 the 
choice A, B = di in Eq. (2.37) immediately gives 

DC; I “dr(Gc,i(r) ’ ;c,iC”))pc (2.39) 
0 

+~(~-~o).K(~o).(~-~o), (3.1) 

where the linear force vector $(;o) and the force constant 
matrix K(Go) are the first and second derivatives of the po- 
tential with respect to Go, respectively, that is, 

where the bracket denotes an average over the equilibrium 
normalized phase space centroid density for all degrees of 
freedom. The above expression is the Green-Kubo-like ex- 
pression for the quantum self-diffusion constant in centroid 
dynamics. In Papers II and IV, the above formula was used 
within the context of the centroid molecular dynamics and 
method. In Sec. III below, Eq. (2.39) will instead be em- 
ployed within the context of the effective harmonic theory 
[Eqs. (2.21)-(2.29b)] to develop a quantum INM perspective 
for self-diffusion. 

Before proceeding to the next section, another centroid 
dynamical point of view on the self-diffusion constant will 
be outlined. This perspective arises directly from the defini- 
tion of the self-diffusion constant, i.e., 

lim(l<i(t)-Gi(0)]2)=6Dt. (2.40) 
I”” 

in which the index denotes the degree of freedom, and runs 
from I to 3N. The rest of the linear algebra is now straight- 
forward. The mass-scaled force constant matrix K(;a) can 
be diagonalized by a configuration-dependent unitary trans- 
formation, i.e., 
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This expression, of course, indicates that the mean-squared 
displacement of the tagged particle is not bound as a function 
of time unless its diffusion constant vanishes. The above ar- 
gument holds exactly for the quadratic reference potential 
approximation. Making use of Eq. (2.16) gives the relation 
between the Fourier transform of the centroid-constrained 
correlation functions 

cc(cc,ieGc,i VW)= 02ec(<c,i*<c,i Pw)* (2.41) 

which verifies Eq. (2.36) in the context of the centroid path 
integration. Then, combining Eqs. (2.40) and (2.41), one can 
write 

D=$ lim ~(u’i.;i,W)=4 lim O’~(~i.~i,W) (2.42) 
CO-0 O-+0 

which implies lim-coC(Gi. Gi , o) 0~ oM2, thus indicating dif- 
fusive behavior. Equations (2.39) and (2.40) are two altema- 
tives for obtaining the diffusion constant D and will serve as 
the basis for the definition of quantum instantaneous normal 
modes in the next section. 

III. INSTANTANEOUS NORMAL MODE ANALYSIS 

A. Classical theory 

In this subsection, the classical INM perspective6-’ will 
be reviewed. Intrinsically, a liquid state potential is highly 
anharmonic, so there is no stable configuration around which 
to perform a Taylor series expansion. It is only in the short- 
time limit, typically in the picosecond range, that the behav- 
ior of liquid molecules mimics linear harmonic equations of 
motion. One can picture a liquid during such short time in- 
tervals as being globally “frozen” so that only small dis- 
placements are observed without any major changes in the 
gross overall structure. Thereby, the liquid during a short 
time can be described by a set of collective linear harmonic 
oscillators.6 

If one considers a liquid configuration Go at the instant 
t = 0, one can expand the potential surface about this instan- 
taneous configuration as6*7 

wi) = w?o) + &io) . cs’- Go) 

(3.2) 

(3.3) 

1. &Go) = w~omo)U(~o), (3.4) 
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where {Oi} are the set of configuration-dependent eigenfre- 
quencies. From this expression and the INM approximation, 
the classical velocity correlation function for a tagged par- 
ticle is given by 

C,,(t) = $& $ (cosbi(;o)m 
i=l 

where the average is taken over all liquid configurations and 
a homogeneous atomic fluid has been assumed here for sim- 
plicity. 

(3.5) 

From the above expression, one can define the density of 
states for the instantaneous normal modes, namely, the in- 
stantaneous phonon spectrum 

(3.6) IV. APPLICATIONS 

Then, the INM velocity time correlation function in Eq. (3.5) 
is expressed as 

C,,(t) = L 
4 J 

dw D,,( w)cos( or) 

in which the integration is understood to also cover the 
imaginary frequency region. The INM spectrum can also be 
identified as the Fourier transformation of the INM velocity 
time correlation function.6y7 

B. Quantum generalization 

(3.7) 

The centroid-based effective harmonic theory in Sec. II 
readily allows quantum mechanics to be incorporated into 
the INM perspective. To begin, the centroid-constrained nor- 
mal mode correlation function in Eq. (2.34), can be analyti- 
cally continued to real time (r--tit) for each centroid posi- 
tion. Then, Eq. (2.41) can be used to obtain the centroid- 
constrained effective harmonic velocity correlation function 
in real time, and this correlation function can, in turn, be 
used to approximate the real part of the velocity time corre- 
lation function via Fqs. (2.19) and (2.37). After this math- 
ematical procedure, one obtains 

(3.8) 

where factor f is given by Eq. (2.38) and the centroid- 
dependent optimized frequencies o,,/ are given from the 
self-consistent solution to Eqs. (2.24)-(2.29). A homoge- 
neous atomic fluid has again been assumed. 

The interpretation of the above equation is clear: the 
short-time quantum velocity time correlations are given by 
the centroid density-weighted superposition of quantum har- 
monic motions having frequencies optimized for each instan- 
taneous centroid configuration. The centroid dependence of 
the frequencies is shown here explicitly. By analogy with the 
classical INM picture, the quantum normal mode spectrum 
Dq,(o) is defined in terms of centroid frequencies as 

D,,b)= & % (sl:~-~,,,(i,)l),c. 
I=1 

(3.9) 
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This result leads us to rewrite the quantum velocity correla- 
tion function as 

C,,(t)= $ j- dw fWDq,b)cosb~). (3.10) 

Hence, the centroid normal mode spectrum and the Fourier 
transformation of the quantum velocity time correlation are 
not the same but are related to each other via f(o). Within 
the context of the optimized harmonic centroid potential, it is 
straightforward to identify the set of optimized frequencies 
for a given centroid position as being the quantum INM fre- 
quencies for that configuration. The average of those opti- 
mized frequencies over the centroid density yields the liquid 
state quantum phonon spectrum. 

A. Quantum Lennard-Jones fluids 

In Paper II, the diffusion process in quantum Lennard- 
Jones (LJ) fluids was studied using centroid molecular 
dyn~cs’3-‘5.29 and the classical and quantum diffusion 
constants were compared. As neon or argon are nearly clas- 
sical fluids, the effective potential surface was taken to be the 
classical one with small centroid quantum corrections [see 
Eq. (4.5) of Paper II]. It was found that when the quantum 
mechanical nature of the LJ fluid is taken into account the 
diffusion constant is reduced by a small faction and the de- 
crease in diffusion constant is inversely proportional to its 
mass. Needless to say, the leading quantum correction em- 
ployed in the simulation of quantum LJ fluids can be a crude 
estimation of the true centroid potential. The locally opti- 
mized harmonic approximation in Eqs. (2.24)-(2.27) will 
give a more accurate representation of the centroid potential. 
It is precisely these equations which also yield the qualitative 
information provided by the quantum INM analysis outlined 
in the previous section. 

In practice, the calculation of the multidimensional 
Gaussian average in the transcendental matrix equation Eq. 
(2.24) can be a difficult task unless it can be evaluated as a 
analytical function. Fortunately, C, , representing the quan- 
tum thermal fluctuations about the centroid variables, is a 
relatively small quantity except at extremely low tempera- 
tures (an electron being the exception, of course). Such “nar- 
row” Gaussian widths allow one to Taylor expand the cen- 
troid force constant matrix with some confidence, giving 

Kc(Gc)=K(Gc)+ BJi.JjK(tc):Cc(ic), (4.1) 
where di is the partial derivative with respect to the ith de- 
gree of freedom. The force constant matrix K(<,) is a 3N 
X 3N matrix, the next term is a contraction of a fourth-order 
tensor and a matrix, and so on. Consequently, the computa- 
tional effort in obtaining the optimized solution to Eqs. 
(2.24)-(2.27) scales as (3N)2’, I being the order of Taylor 
expansion. In order to maintain computational efficiency 
while maintaining reasonable accuracy, a second-order Tay- 
lor expansion has been used in the present work. To be con- 
sistent, one can apply a similar expansion to Eq. (4.1) in the 
effective quadratic potential used in approximating the cen- 
troid density,12~‘7~18~20 giving 
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FIG. 1. A plot of the quantum INM spectrum of EZq. (3.9) (solid line) and the FIG. 2. A plot of the quantum INM spectrum of Eq. (3.9) (solid line) and the 
classical INM spectrum of Eq. (3.6) (dashed line) for an argon Ll liquid 
with 0=3.4 A, e=120 K, m=40 atu, T=156 K, and pa=O.75. 

classical INM spectrum of Eq. (3.6) (dashed line) for an argon LJ liquid 
with u=3.4 A, e=120 K, m=40 atu, T= 144 K, and &=0.84. 

PCGJ _ = 7 (~b%,,f2) 
Pcl(q,) sinh(fi/?w,,l/2) ’ (4.2) 

where {wl} is the set of frequencies defined by Eq. (2.26) 
and p,[( <,) is the classical density for the particular configu- 
ration of centroids <, . 

In order to carry out the quantum INM analysis, a LJ 
fluid consisting of 108 particles was studied by a Monte 
Carlo simulation. After every 1000 Monte Carlo moves, the 
resulting liquid configuration was used for the normal mode 
analysis wherein Eq. (4.1) was solved along with Eqs. 
(2.24)-(2.27) to yield the set of centroid eigenfrequencies 
{wI}. The classical frequencies were simply given by the 
local curvature of the potential. A weighting factor defined 
by Eq. (4.2) was assigned to each liquid configuration to 
account for the difference between the classical density and 
the centroid density. The classical and quantum INM distri- 
bution functions were then accumulated over 300 indepen- 
dent liquid configurations. 

As argued by Seeley and Keyes6 an inspection of the 
averaged distribution function of normal modes provides a 
qualitative understanding of certain aspects of liquid-state 
dynamics. Since it is unclear how to construct a quantitative 
theory of the self-diffusion constant based on the INM analy- 
sis, the goal of this numerical application, and in fact of 
much of the quantum INM analysis, is to uncover physical 
insights by comparing the classical and quantum INM distri- 
bution functions. In Figs. l-3, several quantum INM distri- 
bution functions of LJ fluids are plotted along with their 
classical counterparts. Figure 1 corresponds to liquid argon, 
while Fig. 2 corresponds to a liquid of the argon mass but at 
a higher density and a lower temperature than the liquid de- 
scribed in Fig. 1. Figure 3 depicts the quantum and classical 
INM spectra for liquid neon.32 In all cases, the imaginary 
frequencies are plotted on the negative frequency axis. As 
has been suggested, the magnitude of the unstable INMs re- 
veals the known fluidity of the liquid and thus must reflect 
the self-diffusion process. It is also seen in Figs. l-3 that the 
quantum INM distributions manifest a less prominent peak 

INM Distribution Function 
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in the imaginary frequency wing than in the classical limit. 
This strongly suggests a quantum-induced decrease of the 
self-diffusion constant. Moreover, neon shows a larger 
change than argon because, as expected, any quantum effects 
should be inversely proportional to the mass. All these con- 
clusions are in agreement with the results of the centroid MD 
simulations in Paper II. 

6. A solvated quantum particle 

The diffusion of a quantum particle such as an electron 
solvated in a classical fluid is a subject of considerable inter- 
est (see, e.g., Refs. 33-38) Path integral simulations have 
been carried out to study the equilibrium properties of the 
solvated electron and to investigate its localization behavior 
(see, e.g., the citations in Refs. 26-28). Such systems are 
characterized by several factors such as temperature, density, 
mass of the solvent particles, mass of the solvated particle, 
solvent-solvent interactions, and solute-solvent interaction. 

0.08 
INM Distribution Function 

1 
-40.0 -20.0 0.0 20.0 40.0 60.0 80.0 

w 

FIG. 3. A plot of the quantum INM spectrum of Eq. (3.9) (solid line) and the 
classical INIvl spectrum of Eq. (3.6) (dashed line) for a neon LJ liquid with 
a=2.75 A, e=35.8 K, m=20 atu, T=40 K, and d=O.68. 

J. Chem. Phys., Vol. 101, No. 7, 1 October 1994 

Downloaded 27 Mar 2001 to 18.60.2.110. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6191 

INM Distribution Function 
I 

0.05 - 

0.04 - 

3 - a' 0.03 

0.02 - 

0.01 - 

0.00 - 
-20.0 0.0 20.0 40.0 60.0 80.0 

co 

FIG. 4. A plot of the quantum INM spectrum of l%q. (3.9) for the quantum 
particle in a classical LJ solvent as described in Sec. N B with fL*=l.O 
(solid line), A*=0.5 (dashed line), fi*=O.3 (dot-dashed line), and R=O.O 
(dotted line) 

To simplify the problem in the present case, both of the latter 
interactions assumed the same LJ potential with (T= 1 and 
E= 1 .O. All other variables were parametrized by the LJ width 
C, the LJ depth E, and the unit mass m= 1.0, i.e., pd=O.& 
k,T/e= 1.0. The quantum nature of the solute particle was 
varied by adjusting Planck’s constant fi, namely, fi* 
= fi/v’x in the reQuced units. The solvent consisted of 
125 classical LJ particles, and the single solvated quantum 
particle was located in the center of the periodic box. The 
system evolved under classical molecular dynamics for a 
time step of 0.01 with the solvated particle moving on the 
centroid potential surface. The data were collected over lo5 
time steps after the system was equilibrated. Due to the 
quantum nature of the solvated particle and the anharmonic- 
ity of the interactions, the transcendental equations in Eqs. 
(2.25)-(2.27) were solved exactly by an iteration method 
discussed at length in Paper IV.15 

The quantum INM spectrum of Eq. (3.9) is plotted in 
Fig. 4 and the pair correlation function between the centroid 
of the solvated particle and the solvent particles is shown in 
Fig. 5. The changes in the curves solely reflect the dhanges in 
the quantum effects due to the adjustments in the value of h. 
Some comments on these changes are as follows 

(a) As h increases in value, the quantum INM spectrum 
in Fig. 4 is blueshifted, resulting in a larger positive wing 
and a smaller negative wing. This tendency is usually ob- 
served in the classical INM spectrum of a pure fluid when 
the temperature is decreased, indicating a transition from the 
liquid phase to solid phase. Since the temperature remains 
the same in the present case, it is instead a manifestation of 
the quantum effects, which make it more likely to find the 
quantum particle in a well region than in a barrier region, 
leading to less diffusive behavior. 

(b) The interpretation in part (a) above is supported by 
the pair centroid correlation functions g(r) given in Fig. 5, 
where the outward shift of the main peak with increased fi 
indicates the increase in the effective repulsive radius. In 
general, the effective centroid potential becomes more repul- 
sive as the solvated particle becomes more quantum me- 
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FIG. 5. A plot of the pair correlation between the centroid of the solvated 
quantum particle and the solvent particles for the same system as shown in 
Fig. 4. 

chanical and this change is reflected in the INM spectrum. 
(c) As the solvent becomes more dense, a further reduc- 

tion of the regions of negative curvature in the centroid po- 
tential eventually leads to an INM spectrum without any sig- 
nificant density of imaginary frequencies. For the case of 
h= 1 .O, it is observed that there are essentially no imaginary 
frequencies. An intuitive interpretation of this limit is that 
there is no physically accessible transition region for diffu- 
sion so that the solvated particle will always be trapped in an 
effective well with positive frequencies. Naturally, this situ- 
ation should correspond to a localized solvated quantum 
particle.34-39 It is an interesting question whether the critical 
density and value of h for the imaginary frequencies to van- 
ish corresponds to the situation in which a centroid molecu- 
lar dynamics calculation’3-‘5 would also give a vanishing 
diffusion constant. We hope to address this question in the 
future. 

V. CONCLUDING REMARKS 

The present paper builds on dur earlier work’2-‘5 on the 
path integral centroid perspective in quantum statistical me- 
chanics. The particular focus of the present paper has been to 
extend the interesting concept of instantaneous normal 
modes in liquids5-8 into the quantum regime. Because the 
quantum dynamics of many-body systems are very difficult 
to study numerically and/or analytically under any condi- 
tions, this extension is a useful one, helping to provide quali- 
tative insight into the behavior of such systems. Specific ap- 
plications were given to quantum Lennard-Jones fluids and 
to a quantum solute in a classical Lennard-Jones solvent. The 
effect of quantum mechanics was to reduce the number of 
unstable INMs in both cases. In the case of the solvated 
quantum particle, no unstable normal modes were observed 
for certain (high) solvent densities, suggesting the INM sig- 
nature of a localization transition. The analytical aspects of 
the present theory, as well as its application to more complex 
systems, remain for future study. 

J. Chem. Phys., Vol. 101, No. 7, 1 October 1994 
Downloaded 27 Mar 2001 to 18.60.2.110. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6192 J. Cao and G. A. Voth: Quantum theory of liquids 

ACKNOWLEDGMENTS 

This research was supported by the National Science 
Foundation (CHE-9158079). G.A.V. is a recipient of a Na- 
tional Science Foundation Presidential Young Investigator 
Award, a David and Lucile Packard Fellowship in Science 
and Engineering, an Alfred P. Sloan Foundation Research 
Fellowship, and a Dreyfus Foundation New Faculty Award. 
The authors are indebted to Diane Sagnella for her critical 
reading of this manuscript. 

’ M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, 
Oxford, 1955). 

*C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963). 
3 B. J. Beme and R. Pecora, Dynamic rjshr Scattering (Wiley-Interscience, 

New York, 1976). 
4R. Zwanzig, J. Stat. Phys. 9, 215 (1973). 
‘R. Zwanzig, J. Chem. Phys. 79, 4507 (1983). 
6G. Seeley and T. Keyes, J. Chem. Phys. 91, 5581 (1989). 
‘B. Xu and R. M. Stratt, J. Chem. Phys. 92, 1923 (1990). 
*M. Buchner, B. M. Ladanyi, and R. M. Stratt, J. Chem. Phys. 97, 8522 

(1992). 
9Y. Wan and R. Stratt, J. Chem. Phys. 100, 5123 (1994). 

“T. M. Wu and R. F. Loring, J. Chem. Phys. 97, 8568 (1992). 
” T. M. Wu and R. F. Loring, J. Chem. Phys. 99, 8936 (1993). 
‘*J. Cao and G. A. Voth, J. Chem. Phys. 100, 5093 (1994). 
I3 J. Cao and G. A. Voth, J. Chem. Phys. 100, 5106 (1994). 
14J. Cao and G. A. Voth, J. Chem. Phys. 101, 6157 (1994). 
“J. Cao and G. A. Voth, J. Chem. Phys. 101, 6168 (1994). 
16R P Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals 

(McGraw-Hill, New York, 1965). pp. 279-286. 
“R. P. Feymnan and H. Kleinert, Phys. Rev. A. 34, 5080 (1986). 
‘*R. Giachetti and V. Tognetti, Phys. Rev. Lett. 55, 912 (1985); see also, A. 

Cuccoli, V. Tognetti, P. Verrucchi, and R. Vaia, Phys. Rev. B 45, 8418 
(1992). 

19G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys 91,7749 (1989). 
“J. Cao and B. J. Beme, J. Chem. Phys. 92, 7531 (1990). 
*‘See Ref. 16, Chap. 10. 
*‘R. P Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA, 

1972), Chap. 3. 
a3L. S. Schulman, Techniques and Applications of Path Integration (Wiley, 

New York, 1986). 
“M. S. Swanson, Path Integrals and Quantum Processes (Academic, San 

Diego, 1992). 
2SD. Chandler and P. G. Wolynes, J. Chem. Phys. 80, 860 (1981). 
26B. J. Beme and D. Thitumalai, Annu. Rev. Phys. Chem. 37, 401 (1986). 
*‘D. Chandler, in Liquides, Cristallisation et Transition Vitreuse Les 

Houches, Session W, edited by D. Levesque, J. Hansen, and J. Zinn-Justin 
(Elsevier, New York, 1991). 

zBJ. D. Doll, D. L. Freeman, and T. L. Beck, Adv. Chem. Phys. 78, 61 
(1990). 

a9J. Cao and G. A. Voth, J. Chem. Phys. 99, 10 070 (1993). 
=J. P Hansen and I. M. McDonald, Theory of Simple Liquids (Academic, 

New York, 1986). 
3’In Ref. 16, pp. 303-307; in Ref. 22, pp. 86-96. 
32D. Thirumalai, R. W. Hall, and B. J. Beme, J. Chem. Phys. 81, 2523 

(1984). 
33D. Chandler, Y. Singh, and D. M. Richardson, J. Chem. Phys. 81, 1975 

(1984). 
34A. L. Nichols III, and D. Chandler, J. Chem. Phys. 84, 398 (1986). 
3’D. Laria and D. Chandler, J. Chem. Phys. 87, 4088 (1987). 
36D. Hsu and D. Chandler, J. Chem. Phys. 93, 5075 (1990). 
37D. E Coker, B. J. Beme, and D. Thirumalai, J. Chem. Phys. 86, 5689 

(1987). 
38B. Space, D. E Coker, Z. H. Liu, B. J. Beme, and G. J. Martyna, J. Chem. 

Phys. 97, 2002 (1992). 
39J M. Ziman, Models of Disorder (Cambridge University Press, Cam- 

bridge, 1979). 

J. Chem. Phys., Vol. 101, No. 7, 1 October 1994 

Downloaded 27 Mar 2001 to 18.60.2.110. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


