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The formulation of quantum statistical mechanics based on the path centroid variable in Feynman 
path integration is generalized to a phase space perspective, thereby including the momentum as an 
independent dynamical variable. By virtue of this approach, operator averages and imaginary time 
correlation functions can be expressed in terms of an averaging over the multidimensional phase 
space centroid density. The imaginary time centroid-constrained correlation function matrix for the 
phase space variables is then found to define the effective thermal width of the phase space centroid 
variable. These developments also make it possible to rigorously analyze the centroid molecular 
dynamics method for computing quantum dynamical time correlation functions. As a result, the 
centroid time correlation function as calculated from centroid molecular dynamics is shown to be a 
well-defined approximation to the exact Kubo transformed position correlation function. This 
analysis thereby clarifies the underlying role of the equilibrium path centroid variable in the 
quantum dynamical position correlation function and provides a sound theoretical basis for the 
centroid molecular dynamics method. 

I. INTRODUCTION 

In two papers’** (hereafter referred to as paper I and 
paper II) and a Communication,3 the formulation of quantum 
statistical mechanics based on the Feynman path centroid 
was extensively studied. These efforts originated from the 
notion that the path centroid variable4 in equilibrium quan- 
tum systems is the most direct analog to a classical variable 
and should therefore possess both formally interesting and 
computationally useful properties. Paper I developed the for- 
mal “cornerstone” for the centroid-based formulation of 
equilibrium properties, introducing many of the mathemati- 
cal tools necessary for subsequent theoretical developments. 
For example, a formally exact theory was developed for the 
equilibrium density4 associated with the centroid variable 
(the so-called “centroid density”). This analytical theory 
goes well beyond the Feynman-Hibbs variational theory4 for 
the partition function by employing an infinite-order dia- 
grammatic perturbation expansion along with resummation 
and renormalization techniques. The analysis also explores 
the diagrammatic representation of various approximation 
schemes4*5 for the centroid density and then systematically 
improves upon those schemes. In addition to the analytical 
theory for the centroid density in paper I, the quantum ex- 
pressions for equilibrium operator averages and imaginary 
time correlation functions were reformulated so that the cen- 
troid density occupies the role of the underlying statistical 
distribution function. Taken together, the developments in 
paper I represent a unified view of equilibrium quantum sta- 
tistical mechanics from the centroid perspective. 

In paper II and the Communication, the path centroid 
perspective was significantly extended to address the chal- 
lenge of calculating quantum dynamical time correlation 
functions. The most intriguing and promising result of the 
dynamical centroid analysis is a method called centroid mo- 
lecular dynamics (centroid MD).29 Motivated by the appeal 

of the centroid perspective, it was argued that the quantum 
position correlation function can be related to a time corre- 
lation function for the centroid variable with the centroid 
“trajectories” generated by classical-like dynamical equa- 
tions on an effective, temperature-dependent, centroid poten- 
tial energy surface. A number of strategies were then devel- 
oped in paper II to compute the time correlation functions of 
general coordinate-dependent operators. By virtue of the 
centroid MD approach, time correlation functions can, in 
principle, be computed for quantum many-body systems 
with a numerical effort that scales with system size in the 
same manner as a classical molecular dynamics (MD) simu- 
lation. In the companion paper,6 some numerical algorithms 
are presented for centroid MD calculations in general physi- 
cal systems which obey Boltzmann quantum statistics. 

The formal analysis in the earlier papersle3 was based on 
the Feynman path integral formulation in coordinate space.7 
Though it can be argued that momentum dependent quanti- 
ties can in principle be obtained by taking time derivatives of 
the position coordinate, complications arise due to the time 
ordering of quantum operators, especially when mixed posi- 
tion and momentum terms appear in those operators. A better 
treatment, therefore, requires a path integral centroid formu- 
lation in phase space which not only generalizes the earlier 
position centroid-based formulation,‘-3 but also provides a 
remedy to the time ordering problem. Such a formulation is 
contained in the present paper [see also Refs. 5(b)-5(d)]. In 
a fashion similar to paper I, the imaginary time-correlated 
operators are reformulated as Gaussian averaged functions 
which are then to be averaged over the centroid phase space 
density. The final formulas resemble those in coordinate 
space, although they are defined here in phase space through 
a compact vector-matrix notation. For completeness, the ex- 
pressions are also formulated for many degrees-of-freedom 
which is simply an extension of a one-dimensional treatment. 
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In terms of the dynamical centroid variable perspective 
for quantum time correlation functions, a complete analysis 
of centroid MD, and its justification, again requires a path 
integral formulation in phase space’ so that momentum can 
be treated as an independent dynamical variable. Indeed, the 
phase space centroid formulation in the present paper has its 
most important application in the analysis of centroid MD 
presented in Sec. III. At the time when centroid MD was 
proposed,2’3 a relationship between the Fourier transform of 
the real time position correlation function and the centroid 
time correlation function was identified. This relationship is 
based on the analytical continuation of the variationally op- 
timized local quadratic approximation’.5(a) to the centroid- 
constrained imaginary time position correlation function.’ 
Since the Fourier relationship holds exactly if the centroid 
correlation function is replaced by the Kubo transformed9 
position correlation function, it was speculated that the cen- 
troid correlation function must therefore be an approximation 
to the Kubo transformed position correlation function. 
Through the phase space centroid formulation developed 
herein, the relationship between the centroid correlation 
function and the Kubo transformed position correlation func- 
tion is found to be unique and cannot be obtained unless the 
centroid is taken as the dynamical variable. In the end, cen- 
troid MD turns out to be exact for the first two terms in the 
Taylor expansion of the correlation function in time, and the 
systematic error in the method can be identified at all subse- 
quent orders. The deviation from the exact quantum time 
correlation function is directly proportional to the average 
thermal width of the centroid “particle,” as well as higher- 
order derivatives of the mean centroid force. Centroid MD is 
thereby shown to capture the leading quantum dynamical 
behavior of the position correlation function to within a well- 
defined error. 

As a direct extension of the centroid MD theory in phase 
space, three strategies are also presented in the present paper 
to calculate time correlation functions of general operators 
which may depend on both position and momentum. The 
derivations are relatively straightforward given the similar 
results for the correlation functions of general coordinate de- 
pendent operators published in paper II. Nevertheless, the 
demonstration that the momentum can be incorporated into 
the theory in the same fashion as the position is significant 
both from the formal point of view and for actual numerical 
applications. 

The present paper is organized as follows: In Sec. II, the 
equilibrium formulation of the Feynman path centroid den- 
sity, operator averages, and imaginary time correlation func- 
tions in multidimensional phase space is described. In Sec. 
III, the phase space centroid perspective is then used to ana- 
lyze and more completely justify the dynamical centroid MD 
method for the real time position correlation function. This 

I 

theory is then extended in Sec. IV to formulate three ap- 
proaches for computing general quantum time correlation 
functions. Some numerical examples are given in Sec. V, and 
concluding remarks appear in Sec. VI. 

II. FEYNMAN PATH CENTROID FORMULATION IN 
PHASE SPACE 

In paper I, general imaginary time correlation functions 
were expressed in terms of the coordinate space centroid 
density pC(qC) and the centroid-constrained imaginary time 
position correlation function C,( T,qC). Here, the formalism 
of paper I will be extended by a phase space path integral 
formulation8 so that the momentum appears as an indepen- 
dent variable. The development will first involve the specifi- 
cation of the phase space centroid density, then the definition 
of the centroid-constrained position, momentum, and cross- 
correlation functions, and finally the formulation of the ex- 
pressions for equilibrium operator averages and general 
imaginary time correlation functions. Unless specified other- 
wise, the analysis will be presented for an N-dimensional 
system with the position and momentum variables described 
by the N-dimensional column vectors q and p, respectively. 
The generalized vector 6 is defined as the collection of the 
2N degrees of freedom in phase space, i.e., &=(p,q). 

A. Phase space Feynman path centroid density 

The phase space centroid density can be straightfor- 
wardly defined as 

p,(k)= 1 **-I ~~(7)S(Sc-~;o)exp(-S[A7)llh}, 
(2.1) 

where the path centroid vector in phase space is given by 

&,=& j-o*8dr&+ (2.2) 

The action functional for the imaginary time phase space 
path integral is given by8 

+vca41 9 
I 

(2.3) 

where m is the diagonal particle mass matrix and G(r) is 
understood as the imaginary time velocity vector. The quan- 
tum partition function is related to Eq. (2.1) such that 
Z= Jdl&,(&). The phase space centroid-constrained corre- 
lation functions”* are defined by the 2NX2N matrix 

I...1~~(?)s(~-So)exp(-s[A~)]ln} . 
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Each element of this matrix with the indices i,j is given 
explicitly by the 2X2 block 

ccCFi(T)~‘(o)v4c1 ccCPi(T)G’(o)9%l 
rcc(~*qc)lii=( Cc[~i(7)pj(O),q,] Cc[qi(T)CjJ(O),qc] ’ I 

(2.5) 

where l(r) is the quantum path fluctuation with respect to the 
centroid position J,, i.e., LJr)=&+c(r). The elements of the 
centroid-constrained correlation function matrix in Eq. (2.5) 
can also be obtained by adding linear field terms of the form 
-f(T).$T) and -g(T).i;(T) to the action functional in Eq. 
(2.3) and by then taking the appropriate second-order func- 
tional derivatives of exp( -PF,[f(r),g(r)]} and dividing by 
h21pc in the limit f(T)-+0 and g(T)&+O, where 
-PF,[f(r),g(r)]=ln{p,[f(r),g(r)]} is the centroid free energy 
as functional of the two external fields. The centroid- 
constrained correlation function matrix in Eq. (2.5) is inde- 
pendent of the momentum centroid pc if the potential V is 
independent of the momentum variable. This fact can be 
proven by considering the Fourier mode representation2*3 of 
the phase space action functional in Eq. (2.3). 

B. Operator averages 

It proves informative to first formulate the expression for 
the equilibrium average of a general operator in the phase 
space centroid perspective. This simple analysis identifies the 
centroid-constrained correlation function matrix in Eqs. (2.4) 
and (2.5) as providing the effective centroid “width” factors 
in phase space. In the phase space path integral perspective,* 
the equilibrium average of an operator A is given by the 
expression 

(A)==-‘! ..*I ~~(7)A[S(O)lexp{-S[S(?)lIh). 
(2.6) 

Due to the cyclic invariance of the trace, the operator can be 
evaluated at any point along the cyclic imaginary time path 
g(r). The average in Eq. (2.6) is first re-expressed so that the 
centroid variable appears explicitly in the statistical averag- 
ing, i.e.,‘*” 

XA[~(0)]e-SIAT)~‘b . 
I 

(2.7) 

The operator A(&‘) is then represented in 2N-dimensional 
Fourier space, i.e., 

(2.8) 

where A(k) is the Fourier transform of the operator, k de- 
notes the 2N-dimensional k-vector (k, ,k&, and k-5 repre- 
sents the contraction k-6 = Cr= l(k,Pi + k4iqi). Equation 
(2.6) can then be rewritten as 
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(A)=Z-’ j- GP&)~- & &k)e’k’k 

X 
1...1~~~~)~ik.S(.‘)~-~[~+~(~)l/h 

J.. .J&(r),-SlL+IWh I ’ (2.9) 

where the notation for the action functional ~[&,+&r)] is 
understood to mean path integration over the fluctuations 
around a fixed phase space centroid at 5,. At this point, a 
cumulant average of the term exp[ik.&r)] in the brackets in 
Eq. (2.9) can be performed in terms of the path fluctuation 
variable C(T). The cumulant average, for the present pur- 
poses, is truncated at second-order, but it need not be, and it 
is assumed that the variable &T) exhibits symmetric fluctua- 
tions about the centroid. After performing the inverse Fourier 
transformation by integrating over k in Eq. (2.9), the final 
result for the operator average in the phase space centroid 
picture is given by5(b) 

(A)-(&tk>)p,~ (2.10) 

where the effective centroid-dependent quasiclassical opera- 
tor A, is given by 

1 = 
b42~C,(O&l I dbU5cftJ 

Xexp[-z.C,‘(O,q,).Zj2]. (2.11) 

Here, the vector variable t is obviously a Gaussian vector 
associated with a width matrix given by C,(O,q,). The above 
result is a generalization of an expression obtained 
previously’*‘o for coordinate-dependent operators. This ex- 
pression reveals the role played by the centroid-constrained 
correlation function matrix [Eq. (2.5)] in defining the effec- 
tive width factor in phase space for the centroid quasiparti- 
cle. 

C. General imaginary time correlation functions 

A general imaginary time correlation function is defined 
as 

=z-’ BX+M’(7)1B[&-~O)1 
xew{-~[~~~)l/fi~, (2.12) 

where the operators A and B are general functions of the 2N 
variables (p,q) and the imaginary time interval is bounded 
such that O~tihp. The goal here is to reformulate the cor- 
relation function CAB(r) in terms of the phase space centroid 
density and the centroid-constrained correlation function ma- 
trix C,( 7,qc) of Eq. (2.4). Following the analysis of paper I, 
one first factorizes the expression to expose the integration 
over the centroid density and then expresses the operators A 
and B as Fourier transforms, giving 
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C‘& 7) = z- 

X&kl)i(k2)ei(kl+k2)‘~ 

expressed as a cumulant expansion which, for the present 
purpose, is truncated at the second order. The result is given by 
(exp[ikl.Y(7)+ik2.5(0)1), 

j-m * *JBij 7)e i[kl.C[7)+kz.[O)],-s[k+-~r)]/n 

X S...J-~~(.),-s[5c+g[r)lln 1 = exp -; [k,.C,tO,q,).k,+k,.C,(T,q,).k, 

(2.13) +k2.C,tT,q,).k,+k2.C,(O,qc).k21 , 
I 

(2.14) 
where k and k-6 are as defined following Eq. (2.8). The 
centroid-constrained average in the bracketed term can be where the contractions can be explicitly written as 

k&h&k,=;: 5  (k i-1 j=l 

(2.15) 

In order to carry out the integrals over k, and k, in Eq. 
(2.13), a phase space vector rotation is first performed such 
that 

and new centroid-constrained correlation function matrices 
are defined as 

(2.17) 

After performing the integrals in Fourier space, one arrives at 
the following result for the imaginary time correlation func- 
tion in the phase space centroid density picture: 

Cd 4 =(BABt dJ)pc7 (2.18) 

where the centroid-dependent imaginary time-correlated op- 
erator product pAB(r,&) is defined as the multiple Gaussian 
average 

g~~(~,5c)=(At5,+S~)Bt5c+~2;2))cc+,cc. (2.19a) 

Here, the vectors gi and g2 are related to the two Gaussian 
vectors [+ and &, such that 

&.2=& (f;“cL (2.19b) 

where [+ and & have Gaussian width matrices given by 
C,‘(T,Q~) and Ci(~,q~), respectively. It should be noted that 
if the cumulant expansion is carried out beyond quadratic 
order in Eq. (2.14), a more complicated analytical form of 
Eq. (2.19) would be obtained. On the positive side, however, 
the expression in Eq. (2.19) simplifies considerably if the 
operators A and B depend only on the coordinates and/or 
momenta of a single particle of the system (i.e., almost all of 
the Gaussian integrals can be “integrated out” of the expres- 
sion). 

I 

Due to the compact notation adopted in the preceding 
analysis, the final expressions in Eqs. (2.18) and (2.19) re- 
semble those appearing in paper I. Nonetheless, complica- 
tions arise when cross terms appear because of the noncom- 
mutation of position and momentum operators. In fact, the 
two off-diagonal terms in the matrix C(T&) are complex 
functions and, in turn, complex conjugates of each other. In 
the expression for operator averages in Eq. (2.10) and for the 
time correlated operator product in Eq. (2.19), different op- 
erator orderings may lead to different values. Though the 
operator ordering is not explicitly taken into consideration in 
the Fourier transforms in Eq. (2.13), the final expressions in 
terms of the Gaussian averages should always be consistent 
with the original choice of the operator ordering. 

The multiple Gaussian average in the centroid- 
constrained operator product [Eq. (2.19)] may not be easy to 
evaluate, particularly if the operators A or B are not polyno- 
mials or exponentials in the phase space variables. However, 
if one has an analytical or numerical representation of the 
centroid density p&), a quadrature procedure can be em- 
ployed to evaluate Eq. (2.19) if the Gaussian averages cannot 
be evaluated analytically. Alternatively, if a good approxima- 
tion for the width matrix C,(O,q,) is in hand, a Monte Carlo 
procedure can be adopted for evaluating Eq. (2.18) simulta- 
neously with Eq. (2.19) by using a combined importance 
sampling function based on both the centroid density and the 
multiple Gaussian distribution of Eq. (2.19). 

III. PHASE SPACE ANALYSIS OF CENTROID 
MOLECULAR DYNAMICS 

In the earlier papers,2*3 the development of the centroid 
MD method was guided in part by a variational analysis and, 
in part, by physical reasoning and intuition. In this section, a 
more satisfactory analysis and justification will be provided. 
Centroid MD is essentially a classical MD method defined 
on a quantum mechanical effective potential energy surface. 
While the deterministic nature of a classical-like MD algo- 
rithm seems to be at odds with the uncertainty inherent in 
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quantum mechanics, this paradox is partially resolved in cen- 
troid MD by the introduction of the centroid mean force 
which is obtained by first averaging over the quantum ther- 
mal path fluctuations. Moreover, the quasiclassical form in 
centroid MD arises from a kind of quantum “preaveraging” 
procedure which is specifically suited for the computation of 
the position time correlation function. The evidence to date 
strongly suggests that centroid MD captures the major fea- 
tures of the ensemble averaged correlations of the quantum 
dynamical position operator. However, two important ques- 
tions deserve some further attention. These are (1) Can cen- 
troid MD be shown to always give a well-defined approxi- 
mation to quantum position correlation functions? and (2) 
Why does the equilibrium path centroid variable occupy 
such an important role in dynamical correlation functions? 

J. Cao and G. A. Voth: Quantum statistical mechanics. 111 6161 

After expanding C*(t) as a Taylor series in terms of t, 
and by taking into consideration the time reversibility of cor- 
relation function, one obtains 

c*(t)=% - 
t2n 

n=O (2n)! c[2”1’ (3.4) 

where the expansion coefficients are expressed as 

C[2nl= (q,@qJpc. (3.5) 

The operator LS’= is the classical Poisson bracket 

J%A={A,H,) (3.6) 

for a classical-like centroid Hamiltonian defined by 
H,=pz/2 + V,(q,) with the effective centroid potential 
given by V,(q,)= -k,T ln[p,(q,)l(m/2&z2P)1’2]. 

At this point, it proves to be particularly informative to 
similarly analyze the Kubo transformed position correlation 
function’ 

Important progress on the first question can be found in 
paper II. In that paper, the analogy of the equilibrium path 
centroid variable to a classical dynamical degree of freedom 
was motivated within the context of a variational theory 
based on effective quadratic action functionals in imaginary 
time.‘*5(8) Unfortunately, it is not possible to estimate the ab- 
solute accuracy of the centroid MD method using the varia- 
tional approach alone. Fortunately, the hint of a different 
approach is found in the Appendix of paper II where the 
analysis of a centroid MD approximation for general corre- 
lation functions is presented in the context of the Kubo trans- 
formed time correlation function.’ A similar approach will be 
developed here to demonstrate that the centroid MD time 
correlation function is, in fact, always a well-defined ap- 
proximation to the exact Kubo transformed position correla- 
tion function. For notational simplicity, the analysis is re- 
stricted to a two-dimensional phase space, but it can be 
readily generalized through the vector-matrix notation of the 
previous section. 

$Cl(t) =&j Jofi” dT(q(O)q(t+ id) (3.7) 

which is directly related to the quantum response function 
(cf. the Appendix of paper II) and the quantum dynamical 
position, momentum, and cross correlation functions. For ex- 
ample, by making use of the Kubo transformation and the 
commutator relation p/m = [q , H] /ifi, one can derive the fol- 
lowing Fourier relations: 

~,,(o)=(~ipw/2)[coth(lipo/2>+ 11$(o); (3.8) 

In centroid MD, the centroid variable evolves according 
to the classical-like equation of motion,2’3 

(3.1) 

where the instantaneous centroid force is defined by2*3 

F,(q,) = G’(qc+q”))c . (3.2) 

Here, the f= -dV/dq and the symbol (***), denotes the 
centroid-constrained average with the phase space imaginary 
time path integral or, as an approximation, the effective op- 
erator representation in Eq. (2.11). With trajectories in hand 
obtained from the above equations, the centroid MD time- 
correlation function is given by2V3 

and 

Cpq(w) = iwrnEq4( o), 

Epp( w) = w2m2Eqq( w), (3.9) 

where p and q stand for any two elements of the multidi- 
mensional vectors p and q. Equation (3.7) can also be writ- 
ten as a Taylor expansion, giving 

e(t)= g t2n @W, 
n=O OnI! 

(3. IO) 

where the expansion coefficients are expressed as 

c*(t) =(4cmL-(0))&~ (3.3) 

where the bracket with superscript pc means that the initial 
conditions of the centroid trajectories are averaged with the 
phase space centroid density in Eq. (2.1). The companion 
paperI is devoted to the development of several algorithms 
for evaluating centroid dynamics [Eq. (3.1)] in general 
many-body systems. 

Here, 55’ is a commutator, the quantum analog of the Poisson 
bracket, i.e., 

SA=; [A,H]. (3.12) 

After making use of the definition of the centroid variable in 
Eq. (2.2) and the invariance of trace, ones obtains 

#2n1= (qc(Z 2ndc)p,. (3.13) 

The centroid correlation function and the Kubo trans- 
formed correlation function take a similar analytical form 
[cf. Eqs. (3.5) and (3.13)], the difference being between the 
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terms Sznqc and (S2”q), in Eqs. (3.5) and (3.13), respec- 
tively. These terms can be determined explicitly and com- 
pared term-by-term. The first few terms are 

n=O, (4jc=qc; (3.14) 

n=l, (3?2q)c=(flm),=F,lm; (3.15) 

n=2, (S4q),,-& (v2)p2+2pf12)p+p2f2)]), 

order derivative of the force, j$‘), are different even though 
the centroid force is equal to the centroid-constrained aver- 
age of the force, i.e., F,=(f), . Application of the chain rule 
to FF) reveals the difference between the force derivative 
terms as 

tTf’,“‘=f’,“‘-Fy)= - fS,1+n’C!1’[4”(O~4”(O~,q~] 

+ $ V)f>c (3.16) 

+... 
7 (3.21) 

for the Kubo correlation function [Eq. (3.13)], but for the 
centroid correlation function [Eq. (3.5)], 

L5$qc=--$ Fi2)p:+$ Fb’)F,. (3.17) 

Therefore, the two leading terms of the Taylor expansions for 
the centroid and Kubo correlation functions are the same, the 
difference between them beginning with the third term (i.e., 
at order t4). The latter term will now be taken as an example 
to show how to evaluate the leading correction term to the 
centroid correlation function (i.e., to demonstrate that the 
centroid correlation function is a well-defined approximation 
to the Kubo correlation function). The Gaussian representa- 
tion of operators in phase space [Eq. (2.1 l)] proves to be 
useful, though not essential, in the following analysis. 

where the derivative of the width factor appears here instead 
of the width factor itself. This observation is particularly 
significant because it shows that an expression in terms of 
the centroid force or its derivatives agrees with its quantum 
counterpart f,“’ to all orders in the width factor C,, with 
corrections coming only in the spatial derivatives of that fac- 
tor. From Eqs. (3.5) and (3.13), it is seen that the latter cor- 
rection is then to be averaged over the centroid density, so 
large deviations will occur only if the width experiences 
large fluctuations which persist in the average sense. 

Returning to the first term in the right-hand side of Eq. 
(3.20), the quantum fluctuations in momentum will contrib- 
ute a further deviation from the similar term in the centroid 
correlation function [Eq. (3.17)]. The difference between the 
two terms for all powers of n is given by 

It is first noted that the centroid average of a product of 
operators can be written as a product of the centroid averages 
of operators and a leading correction term, i.e., 

(AB),=A,B,+A~B~c,, (3.18) 

where terms higher order in the phase space width factor C, 
[Eq. (2.4)] have been omitted. By virtue of the cyclic prop- 
erty of the trace, it can be shown in general that 

where C,[p(O)p(O),q,] is the width factor for the momen- 
tum path fluctuations. The terms associated with this correc- 
tion have a value of n no smaller than 2. The average of the 
term pze2 over the phase space centroid density will simply 
factorize and give a constant since the distribution of the 
momentum centroid is the classical Boltzmann distribution 
and independent of the higher-order path Fourier modes.2T3 

~,~p”~~~~~~~~~,l+~,~q”~~~~~~~~~,l=~. (3.19) 

It is also noted that the application of the commutator 2 of 
Eq. (3.12) four times in Eq. (3.16) leads to a symmetrized 
arrangement of momentum and coordinate operators. Com- 
bining this fact with Eqs. (3.18) and (3.19), it is seen that 
there will exist no centroid-constrained correlation functions 
mixing momentum and coordinate operators-at least to the 
order of the leading correction term. Thus, Eq. (3.16) be- 
comes 

Taking into account all of the preceding considerations 
and generalizing them to terms of higher order, one can sum 
up in general the difference between the Kubo transformed 
position correlation function [Eq. (3.11)] and the centroid 
MD correlation function [Eq. (3.3)] to give 

t2n t/+(t)-C*(t)= 5 - 
n=2 (2n)! 

Al2”1 
’ 

(=@q)~=$f?(P%+$ (.f’!f)c 9 (3.20) 

where fc’) stands for the centroid-constrained operator aver- 
age fc”=(f’“‘)c. Equation (3.18) is useful when comparing 
the second term on the right-hand side of Eq. (3.20) with the 
second term of Eq. (3.17), i.e., v(‘)f),- F:“F,. The correc- 
tion factor for this term contains the width factor and second- 
or higher-order derivatives of the force. The focus of the 
analysis can now shift to a comparison of the first tetm on 
the right-hand sides of Eqs. (3.17) and (3.20). 

with A being the difference between the two sets of coeffi- 
cients, given by 

A[2”1, $&I- @“1x ( qcccly. P), 

where at least one nl is no smaller than 2 and terms which 
involve the spatial derivatives of the width factor C, have 
been neglected. The above result can be confirmed by dimen- 
sional analysis. 

Because the centroid force F, is a function and f is a 
quantum operator, the nth order derivative of the centroid 
force, FF), and the centroid-constrained average of the nth 

The preceding analysis confirms that the apparent suc- 
cess of centroid MD is by no means incidental and is, in fact, 
both physically and mathematically understandable. A few 
comments on the implications and significance of the analy- 
sis are as follows: 
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Downloaded 27 Mar 2001 to 18.60.2.110. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Cao and G. A. Voth: Quantum statistical mechanics. Ill 6163 

(4 

(b) 

(4 

At first glance, Eq. (3.24) confirms two properties of 
centroid MD which are already obvious.2*3 Namely, the 
method is clearly exact if the potential contains no global 
anharmonicity [i.e., FC (“l) = 0] or if the system is near the 
classical limit (i.e., C, is small). However, upon closer 
inspection Eq. (3.24) also reveals why centroid MD is a 
good approximation in other, less straightforward, situa- 
tions. To be specific, the centroid force F, [Eq. (3.2)] at 
the centroid position qC is computed by averaging the 
classical force over the imaginary time Feynman paths 
around the centroid. This averaging tends to smooth out 
rather dramatically any “kinks” in the potential energy 
function, at least over the length-scale of the particle’s 
thermal width. The more “quantum” the particle, the 
more the averaging occurs. This behavior is very impor- 
tant and is one reason an effective quadratic action func- 
tional can be so accurate in describing, e.g., the equilib- 
rium properties of the polaron” and the hydrated 
electron.‘2 Given that such local “smoothing” occurs, 
the higher-order derivatives of the centroid force in Eq. 
(3.24) will tend to be small, giving a small correction 
factor in Eq. (3.24) even though the quantum thermal 
width C, may be sizable. In order for centroid MD to 
become inaccurate, the preceding argument suggests that 
the locally nonlinear features of the effective centroid 
potential (i.e., the effective anharmonic terms) must be 
large. Such behavior occurs if the local anharmonicities 
in the physical potential near the centroid are large in the 
average sense and persist on a length-scale greater than 
the thermal width factor of the centroid quasiparticle. 
Moreover, since any correction terms are then averaged 
in Eq. (3.24) over the centroid distribution, the effective 
anharmonic behavior must also be present to a signifi- 
cant degree in the regions of greatest centroid density. 
Interestingly, as the system becomes more classical the 
effective anharmonicities (i.e., the higher derivatives of 
the centroid force) will indeed become larger, but this 
effect will be compensated for by a greater reduction in 
the thermal width factor C, in Eq. (3.24). (Recall that 
centroid MD always yields the exact classical limit.) 
The definition of the centroid force captures the major 
contribution of quantum fluctuations and predicts the 
right quantum dynamics to within a tolerance propor- 
tional to the averaged higher-order derivatives of the 
centroid force and the centroid thermal width factor C, . 
Though many semiclassical approximations are ex- 
panded in terms of h, the centroid MD correlation func- 
tion already contains terms which are infinite order in 6. 
The leading corrections to the centroid dynamics depend 
on the thermal width factor for the potential at hand (i.e., 
not just the free particle width which is of order fi2). 
In general, the Kubo transformed position correlation 
function [Eq. (3.7)] is a well-defined quantum quantity 
which is an ideal candidate for any type of a classical- 
like approximation. This property arises because the in- 
tegration over the imaginary time r eliminates the imagi- 
nary part of the correlation function and also averages 
out certain quantum fluctuations. 

(4 To shed some light on the unique role of the centroid in 

formulating a classical-like approach to the position cor- 
relation function, one can apply the Taylor expansion to 
the symmetrized position correlation function C(t), giv- 
ing 

C(r)=; (Mth~o)l+)=n~o $- (43 2”d? 
(3.25) 

where [*+*I+ is the anticommutator. If one attempts to 
carry out a term-by-term analysis as was done for the 
Kubo transformed position correlation function, complica- 
tions arise with the first few terms because it is more dif- 
ficult to define the effective momentum distribution and 
mass in the general case.13 (Note again that the centroid 
momentum distribution is simply the Boltzmann 
distribution.2*3) F ocusing instead on the Kubo transformed 
position correlation function [Eq. (3.7)] reveals the factor- 
ization of the centroid variable which, in turn, leads one to 
the factorization of the centroid constrained average in Eq. 
(3.13). The subsequent identification of the centroid force 
in the Taylor expansion terms of the correlation function 
supports the conclusion that the centroid variable can in- 
deed be viewed as a dynamical variable at a well-defined 
level of approximation. 

(e) To improve its accuracy, it seems certain that centroid 
MD should be augmented by an additional quantum fac- 
tor. Because the correction to the centroid force begins at 
the t4 term in the Taylor series expansion, such a term 
will not add linearly to the deterministic centroid force, 
but it might instead be constructed as some kind of time 
convolution reflecting the nondetetministic nature of 
quantum mechanics. Apparently, this “quantum memory 
function” would depend locally on the width factor and 
the anharmonicity and still yield a time-reversible dy- 
namics. Of course, this argument is purely speculation. 

IV. GENERAL TIME CORRELATION FUNCTIONS 

In paper II, three different centroid-based approaches 
were proposed for calculating time correlation functions con- 
sisting of operators which depend on the coordinate vari- 
ables. In this section, these strategies are modified to allow 
the computation of correlation functions of general operators 
which may depend on both position and momentum.5(c) The 
phase space centroid perspective, developed in Sec. I, will be 
employed to extend the formulations of paper II to general 
operators. The results in the present case will also be given 
for a multidimensional phase space using the notation in ac- 
cord with that introduced in Sec. II. In addition, the compan- 
ion paper6 describes several algorithms for computing cen- 
troid MD trajectories. 

A. Analytical continuation of centroid-constrained 
correlation functions 

One of primary results from Sec. II is the expression for 
general imaginary time phase space correlation functions in 
the centroid-based perspective [Eqs. (2.12)-(2.19)]. In prin- 
ciple, the double Gaussian average in Eq. (2.19) can be per- 
formed for any functional form and the resulting expression 
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will then involve an average of functions which depend on 
C!JT,qc) over the normalized centroid density. At that point, 
the centroid-constrained propagator can be analytically con- 
tinued into real time (r+it) to yield an approximation to the 
real time correlation function C,,(t). Within the framework 
of the approximate locally optimized effective harmonic 
theory,‘p5 the real time version of the centroid-constrained 
correlation function matrix can be obtained by replacing r 
with it and the resulting expressions used in Eqs. (2.18) and 
(2.19). 

~kZ+kZ.Cg(~)~kl+k2-Cs(0)-k2]}, (4.3) 

where the imaginary time fluctuation correlation functions 
constitute a Hermitian matrix, defined by the elements 

As was pointed out in paper II, this analytical continua- 
tion method may not be completely satisfactory for two rea- 
sons: (1) The effective harmonic version of Eq. (2.4) is dy- 
namically accurate only for relatively short times. The 
anharmonicities in the real potential will cause the analyti- 
cally continued effective quadratic correlation function to de- 
viate from the exact behavior at long times even in the clas- 
sical limit. (2) The correlated operator representation in Eq. 
(2.18) is expressed at the level of a second-order cumulant 
expansion. Though this approximation may be an excellent 
one for imaginary time calculations, approximate real time 
correlation functions can be more sensitive to nonlinear in- 
teractions and thus less stable in their behavior at long times. 

(~P~(~)&~(O)) (&i(4&.(0)) 
[cAT)lij=[ (6q:(r)apI(o)) (6qi(7)a&o)) 9 1 (44) 

* 
where Sl=l-(Q. In order to perform the integrals over k, 
and k, in Eq. (4.1), new imaginary time correlation function 
matrices are defined as 

c~(7)=c&(o)+c6(7). (4.5) 

After performing the k-integrals in Eq. (4.3), the expression 
for the general imaginary time correlation function is given 
by the double-Gaussian average 

C~~(7)‘=(A((n+5,)B((n+fi))cgc,cg’ (4.6) 

where the vectors ct and J2 are related to the two Gaussian 
vectors g+ and <- such that 

B. Cumulant expansion combined with centroid MD 

As has been shown in Sec. III, the centroid MD correla- 
tion function [Eq. (3.3)] g enerally provides an accurate rep- 
resentation of the exact Kubo transformed position correla- 
tion function which, in turn, yields the real time correlation 
functions (&t)&(O)) through the- Fourier relations in Eqs. 
(3.8) and (3.9) after replacing Q+(O) with C*(w). Another 
strategy for computing general correlation functions is there- 
fore to first introduce the phase space variable correlation 
functions directly into the expression for the general correla- 
tion function (A(t)B(O)) and to then use centroid MD to 
calculate (&t)c(O)) in that expression. Though many of the 
following expressions in this approach are similar to those 
given in paper II, the derivation in phase space is included 
here for completeness. 

1 
5;,2=73 (5+“L>. (4.7) 

The Gaussian vectors &+ and c- have width matrices given 
by C,‘(r) and C;(r), respectively, as defined in Eq. (4.5). 

The imaginary time expressions for C;(r) can now be 
analytically continued via the inverse Wick rotation .r+it. 
The resulting approximate expression for the real time cor- 
relation function C,,(t) is given by 

C~~(t)=(A((n+~~)B((n+52))c~(r),cg(t), (4.8) 

where the real time-dependent Gaussian width matrices are 
given by 

To begin the derivation, one considers the general imagi- 
nary time correlation function C,,(r) = (A( T)B(O)) and ex- 
presses it as 

CAB( 4 = j- (;;;m j- (;;;xv &k)h) 
x(exp[ik,.5(7)+ik,.5(0)1), (4.1) 

where the canonical path integral average in phase space is 
explicitly given by 

C~(t)=CG(O)+C&). (4.9) 

The correlation function elements of Eq. (4.9) can be calcu- 
lated using the centroid MD position correlation function 
C*(f) defined in Eq. (3.3) and the_ Fourier transform rela- 
tions in Eqs. (3.8) and (3.9) with G(w) replaced by C*(w). 
Equation (4.8), with Eq. (4.9), is the central result of this 
subsection. It should be noted that Eq. (4.8) simplifies con- 
siderably if the operators A and B depend on only one phase 
space coordinate (i.e., most of the Gaussian integrals can be 
integrated out of the expression). 

C. Centroid MD with semiclassical operators 

S...I~~(7)(...>exp(-S[5(?)llh) 
(“‘)e S...S~~(~)exp(-S[5(7)]lh} . (4.2) 

The cumulant average of the exponential term in Eq. (4.1) 
can be performed and, for simplicity, truncated at second 
order, giving 

A third algorithm is discussed in this subsection for cal- 
culating general time correlation functions with centroid 
MD. This procedure, which is more approximate than the 
previous ones, assumes a semiclassical representation of the 
quantum operators, the goal here being one of computational 
utility. 
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The method called “centroid MD with semiclassical op- 
erators,” introduced in paper II, centers around the computa- 
tion of the real time correlation function C&(t), given by 

C&W =(4W&(0)),c~ (4.10) 

where the initial condition averaging is performed with the 
(normalized) phase space centroid density defined in Eq. 
(2.1). The semiclassical operators O,[q,(t)] in Eq. (4.10) are 
given by the time-dependent analog of Eq. (2.11), i.e., 

o,Cf;(t)l= (a&c(~) + t.l)c,[o,~(t)] * (4.11) 

Here, cc(t) is the phase space centroid trajectory which 
obeys the centroid MD equation of motion in Eq. (3.3), and 
the time dependent Gaussian width matrix C,[O,q,(r)] for 
the vector t is given by the centroid-constrained correlation 
function matrix in Eq. (2.4) with the position centroid q0 
located at e(t). 

As shown in the Appendix of paper II, the general cen- 
troid correlation function in Eq. (4.10) is an approximation to 
the Kubo transformed version of the exact correlation func- 
tion CAB(f). Therefore, in order to calculate CAB(r) one 
makes use of the Fourier relationship2 

~,,(~)=(hpw/2)[coth(hpw/2)+l]Z‘A~(~). (4.12) 

The expression in Eq. (4.10) is intended to maximize the 
utility of the centroid MD method in a transparent, though 
approximate, fashion for general correlation functions. The 
reader is referred to paper II for further analysis and com- 
ments. 

V. NUMERICAL EXAMPLES 

In this section, the accuracy of the centroid MD formu- 
lation is tested for correlation functions other than the posi- 
tion correlation function. In these studies, a nonlinear oscil- 
lator model is employed which is the same as one studied in 
paper II. The potential for this model is given by 

1 
V(q)=2 q2+cq3+gq4 (5.1) 

with the parameters c=O.lO, g=O.Ol, h=l.O, andm=l.O. In 
these units, the inverse temperature /? is given as values of 
the dimensionless parameter @LO. The single minimum of 
the potential in Eq. (5.1) is located at q =O. The cubic anhar- 
monicity is operational for small deviations from the mini- 
mum, while the quartic anharmonicity influences the larger 
deviations from the minimum. At low temperatures, the cu- 
bic anharmonicity is the dominant perturbation. The energy 
gap between the ground and first excited vibrational state for 
the potential in Eq. (5.1) is shifted to the red by 6% com- 
pared with the harmonic limit of the energy spectrum. Such 
an anharmonic shift is equivalent to a (rather large) shift of 
180 cm-’ for a 3000 cm-’ C-H stretching mode or a 60 
cm-’ shift of a 1000 cm-’ C-C stretching mode. A tempera- 
ture of p= 10 was employed in the calculations which is 
equivalent to a C=C double bond at 300 K. 

The exact correlation functions for the potential in Eq. 
(5.1) were obtained by diagonalizing the nonlinear Hamil- 
tonian in a harmonic oscillator basis and employing 100 of 

0.5 

zf$ 0.0 

-0.5 

1ua 
dl 

1 0.0 5.0 
time 

10.0 15.0 

FIG. 1. A plot of the real time momentum autocorrelation function for the 
nonlinear oscillator described in lZq. (5.1) at a temperature of /3=10. The 
solid circles are the exact quantum results, while the solid line is the cen- 
troid MD result (Ref. 14). 

the eigenstates in the dynamics calculations. The centroid 
forces and centroid potential in the centroid MD calculations 
were calculated from the optimized harmonic reference cen- 
troid density.‘75 This approximation was shown in paper I to 
be an extremely good representation of the exact result. The 
centroid potential and forces were interpolated from a lOOO- 
point grid within the range [- lO,lO]. The centroid MD ini- 
tial positions were generated by Metropolis importance sam- 
pling from the position centroid distribution, while the initial 
momenta were directly sampled from the Gaussian centroid 
momentum distribution function. The evolution of lo5 cen- 
troid trajectories were then calculated using the leapfrog al- 
gorithm with a time step of 0.05. The classical MD simula- 
tions were performed in the same fashion except that the real 
potential and force were used instead of centroid quantities. 

A. Momentum correlation functions 

In Fig. 1, the momentum correlation function is shown 
for the nonlinear oscillator in Eq. (5.1) at /3=10. The solid 
circles are the exact quantum results, while the solid line is 
the centroid MD result.14 The latter method is clearly very 
accurate. It should be noted that results of similar accuracy 
were reported in paper II for the position correlation func- 
tion. 

B. General correlation functions 

In order to test the methods outlined in Sec. IV for cal- 
culating general correlation functions in the phase space cen- 
troid perspective, the correlation function (p3(t)p3(0)) was 
calculated for the nonlinear potential defined in Eq. (5.1). 
This correlation function is a serious test for the approximate 
methods because of its nonlinearity and the fact that its clas- 
sical amplitude is almost completely negligible at lower tem- 
peratures. In Fig. 2, the results for a temperature of p= 10 are 
shown. The solid circles are the exact quantum results, the 
solid line is the cumulant expansion with centroid MD theory 
of Sec. IV B, the dashed line is the centroid MD with semi- 
classical operators result from Sec. IV C, and the dot-dashed 
line is the classical MD result. The correlation function from 
the cumulant expansion theory probably obtains the best 
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I . ExactO”arltum 1 
C,,(t) = <PJ0)P3(0)> --.~:~~;t~~;~~i~~:tors 

-.-~Clarsical MD 

-2.0 ’ I 
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FIG. 2. A plot of the correlation function (p3(r)p3(0)) for the nonlinear 
potential in Eq. (5.1) at a temperature of p=lO. The solid circles are the 
exact quantum results, the solid line is the cumulant expansion with centroid 
MD theory of Sec. N B, the dashed line is the centroid MD with semiclas- 
sical operators method of Sec. N C, and the dot-dashed line is the classical 
MD result. 

agreement with the exact result, although there is too much 
structure and symmetry in the oscillations. The centroid MD 
with semiclassical operators method is also accurate, but it 
does not seem to reproduce the higher frequency oscillation. 
By comparison, the classical MD result is extremely inaccu- 
rate. Qualitatively similar results were obtained in paper II 
for the correlation function (q3(t)q3(0)). A discussion of the 
strengths and weaknesses of the cumulant with centroid MD 
method was provided in paper II, and this discussion is also 
applicable to the phase space centroid formulation of this 
method. 

In Fig. 3, the correlation function (A(t)B(O)), where 
A =pq and B = qp, is shown for the nonlinear potential in 
Eq. (5.1) at p= 10. The symbols and lines are the same as in 
Fig. 2. This correlation function presents another serious test 
of the various methods because of the noncommutation of 
the position and momentum operators. Again, the classical 

c,,(t) = <(pq),(c~~)~> 
- Fmct Quantum 

-Cumulam wlthtroid MD 
- - ~Centmid MD w/SC Oprators 
-.-Xbssical MD 

I 

I 
5.0 time 10.0 15.0 

FIG. 3. A plot of the correlation function (A(r)B(O)), where A=pq and 
B = 4~. for the nonlinear potential in Eq. (5.1) at a temperature of p= 10. 
The solid circles are the exact quantum results, the solid line is the cumulant 
expansion with centroid MD theory of Sec. IV B, the dashed line is the 
centroid MD with semiclassical operators result from Sec. IV C, and the 
dot-dashed line is the classical MD result. 
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MD result is extremely inaccurate for this low temperature 
correlation function. The centroid MD with semiclassical op- 
erators method does not reproduce the amplitude and nega- 
tive values of this correlation function. This feature of the 
latter method arises because the correlation of the two opera- 
tors at different times is ignored when the Gaussian averages 
are performed. Consequently, the semiclassical operator ap- 
proximation underestimates the real time interference of the 
two quantum operators. On the other hand, the accuracy of 
the centroid MD with semiclassical operator method is supe- 
rior to the classical calculation. Apparently, only the cumu- 
lant method can describe the quantum interference effects for 
this correlation function, and it appears to do so quite well. 

Though the centroid MD results are quite encouraging 
and far superior to classical MD, it seems evident that none 
of the centroid MD approaches developed in Sec. IV for 
general correlation functions are completely satisfactory un- 
der all circumstances. Future research will be devoted to this 
important issue. 

VI. CONCLUDING REMARKS 

In the present paper, the formulation of quantum statis- 
tical mechanics based on the path centroid variable in Feyn- 
man path integration has been generalized to a phase space 
perspective. By virtue of this perspective, one can express 
operator averages and imaginary time correlation functions 
in terms of a classical-like averaging over the multidimen- 
sional phase space centroid density. An imaginary time 
centroid-constrained correlation function matrix for the 
phase space variables is seen to provide the effective width 
factors for the phase space centroid variables. The most sig- 
nificant aspect of the phase space analysis is that it facilitates 
a rigorous analysis and justification of the centroid molecular 
dynamics method for computing quantum dynamical time 
correlation functions.2’3 Specifically, the centroid time corre- 
lation function calculated with centroid MD is shown to be a 
well-defined approximation to the exact Kubo transformed 
position correlation function. This analysis thereby reveals 
the important and not completely obvious connection be- 
tween the equilibrium path centroid variable and the quan- 
tum dynamical position correlation function. Several strate- 
gies were then be developed for using centroid MD in the 
computation of general time correlation functions of quan- 
tum operators which depend on both position and momen- 
tum. In addition, the companion paper6 describes several al- 
gorithms for computing centroid dynamics in realistic many- 
body systems. Future publications will be devoted to the 
application of centroid MD in the simulation of real systems, 
as well as to the continuation of its formal development. 
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