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The formulation of quantum dynamical time correlation functions is examined within the context of 
the path centroid variable in Feynman path integration. This study builds on the centroid-based 
approach to equilibrium properties developed in the companion paper. The introduction of the 
centroid perspective into the calculation of real time position correlation functions is outlined and an 
intriguing quasiclassical role for the centroid variable in real time position correlation functions is 
identified. This quasiclassical perspective is developed in terms of general interaction potentials, and 
the computational effort in implementing the method should scale with the size of the system in the 
same fashion as a classical molecular dynamics calculation. The centroid-based theory is also 
implemented in several different approaches to calculate general time correlation functions. The 
theoretical results are illustrated and tested by representative numerical applications. 

I. INTRODUCTION 

In the preceeding paper’ (hereafter referred to as “paper 
I”), a formulation of quantum equilibrium statistical me- 
chanics was discussed which is based on the path centroid 
density in Feynman path integration.rm4 The centroid density 
pc(qc) is expressed as the path integralte3 

p,(q,)= *-* I I 
~(7)S(qc-40)exp{-S[q(7)ll~), 0.1) 

where S[q(T)] is the imaginary time action functional. The 
path centroid variable q. , defined by 

d7. d d, (1.2) 

and its corresponding density function are particularly useful 
classical-like quantities in statistical mechanics. It seems ac- 
curate to characterize the path centroid in equilibrium quan- 
tum systems as being the most direct analog to a classical 
degree of freedom. Indeed, this property forms the basis for 
the well-known Feynman-Hibbs quasiclassical theory of the 
partition function.’ 

In paper I, a formally exact theory for the centroid den- 
sity was presented which goes well beyond the Feynman- 
Hibbs theory by using a diagrammatic perturbation expan- 
sion along with resummation and renormalization 
techniques. The latter analysis reveals the relationship be- 
tween different variational approaches5-7 and the perturba- 
tion series and thus enables one to improve upon the varia- 
tional approximation. In addition, in paper I the usual 
quantum expressions for equilibrium quantities such as op- 
erator averages and imaginary time correlation functions 
were reformulated so that the centroid density is cast as the 
central statistical distribution in the computation of such 
quantities. Taken together, these two developments present a 
systematic formulation of equilibrium quantum statistical 
mechanics from the centroid density perspective. 

A natural component of the formalism developed in pa- 
per I is the theory for quantum imaginary time correlation 
functions (A( +3(O)). As in the other aspects of the formal- 

ism, the correlation function theory is expressed so that the 
path centroid variable and its corresponding density function 
[Eqs. (1.1) and (1.2)] occupy a central role. As shown in 
paper I, accurate analytic expressions can be obtained for 
such correlation functions through the use of general qua- 
dratic action functionals, a diagrammatic perturbation theory, 
and renormalization techniques. An important quantity in 
this theory is the centroid-constrained position correlation 
function which describes the correlations of imaginary time 
paths with respect to the constrained centroid variable. This 
correlation function acts as the imaginary time propagator in 
the diagrammatic theory and is also related to the effective 
thermal width (i.e., localization) of quantum particles. 

In the present paper, an analysis is presented of perhaps 
one of the most challenging problems in condensed matter 
theory-the efficient and accurate computation of general 
real time quantum correlation functions (A (t)B( 0)). Consis- 
tent with the theme of paper I, the properties of dynamical 
correlation functions are explored using the centroid-based 
perspective of quantum statistical mechanics.’ To be more 
specific, real time dynamical information is first extracted 
with the help of the centroid-constrained formalism for 
imaginary time correlation functions developed in paper I. 
This procedure involves the analytic continuation of imagi- 
nary time position correlation functions (q( r)q(O)) via the 
inverse Wick rotation r-+it. It will be shown in Sec. II be- 
low that there is a dual outcome from this exercise. First, an 
approximate, but mathematically rigorous, analytical ap- 
proach to real time position correlation functions is derived 
which is a direct outgrowth of the formalism in paper I. In 
essence, this theory turns out to be a quantum mechanical 
generalization of the classical “instantaneous normal mode” 
perspective,* which expresses the time correlation as the cen- 
troid density-weighted superposition of locally optimized 
linear harmonic oscillator (LHO) time correlation functions. 
The second, and in our opinion more important, outcome of 
the analysis is the development of a less mathematically rig- 
orous, but far more computationally promising, “centroid 
molecular dynamics (MD)” perspective for the computation 
of real time position correlation functions.’ Both approaches 
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are then extended in Sec. III to treat general correlation func- 
tions. 

Of the two approaches to time correlation functions 
mentioned above, the centroid MD approach is the most 
promising because it can be applied to general systems and 
the numerical effort of such an application scales with the 
number of particles in the same way as a classical molecular 
dynamics calculation. Furthermore, the centroid MD method 
is accurate and stable when compared to numerically exact 
results, and it holds considerable promise for future applica- 
tions. Centroid MD is motivated by the results of mathemati- 
cal analysis and can be supported by several reasonable 
physical arguments. Simply put, centroid MD “feels right.” 
Nevertheless, it must be stated very clearly that the centroid 
MD approach, which is the main focus of the present paper, 
has not yet been completely justified in a rigorous math- 
ematical sense, Rather, centroid MD is a theoretical construct 
which is based in part on rigorous analysis and in part on 

I 

physical reasoning and intuition. Although the results ob- 
tained thus far are both intriguing and promising, the present 
paper should be considered more of a progress report on 
evolving research than a definitive statement on the compu- 
tation of quantum time correlation functions. 

The sections of this paper are organized as follows: In 
Sec. II, the real time position correlation function is analyzed 
from the centroid perspective and the centroid MD method is 
described. Next, various centroid-based approaches are de- 
scribed in Sec. III for calculating general time correlation 
functions. Numerical applications are then presented in Sec. 
IV and concluding remarks are given in Sec. V. 

II. POSITION CORRELATION FUNCTIONS 

To begin the analysis, it proves useful to first describe 
the centroid-constrained imaginary time position correlation 
function’ 

c 
c 
(7q )-I*.*I ~(~)~(q,-40)[4(~)-401[4(0)-q0lexp{-~[q(~)llfL} 

,c- S***S ~(~)~(q,-q0)exp{-S[q(~)lifL} ’ (2.1) 

This correlation function, which describes the correlations of 
the imaginary time paths about the centroid variable, is re- 
lated to the usual position correlation function 
C( 7) = (q( T)q( 0)) by the relationship 

C( d = (CCC 77qc) +d), 7 (2.2) 

where the subscript “p,” denotes averaging with the normal- 
ized centroid distribution pc(qc)lJ dq,p,(q,) [cf. Eq. (1.2)-J. 

A. Analytically continued effective harmonic theory 

Clearly, the centroid variable plays a central role in the 
behavior of the centroid-constrained correlation function in 
Eq. (2.1). The issue of interest here, however, is the role of 
the centroid variable in the real time quantum position cor- 
relation function. This information can in principle be ex- 
tracted from the exact centroid-constrained correlation func- 
tion C,( T,qc) through the analytic continuation v+it. Such 
a procedure, however, is generally not tractable unless there 
is some prior simplification of the problem. One such sim- 
plification is achieved through the use of an optimized refer- 
ence quadratic action functional given bylv7 

(2.3) 

where (I, is the centroid-dependent optimized effective LHO 
frequency. In paper I, it was shown that the effective fre- 
quency 0 can be determined from summation and renormal- 
ization of the single vertex diagrams in the perturbation ex- 
pansion of the centroid density or, equivalently, through the 
use of the Gibbs-Bogoliubov-Feynman (GBF) variational 

I 

principle6 with d treated as the variational parameter.7 The 
value for the optimized frequency (3 is determined from the 
solution of the transcendental equation 

1 ma2=- 
x.&z I 

di V”(q,+q)exp( -G2/2&), (2.4) 

where the effective thermal width factor Cr for a particular 
position of the path centroid is given by 

fipd2 
tanh(?i@/2) -’ I 

(2.5) 

The imaginary time correlation function in Eq. (2.2) can be 
determined analytically for the optimized LHO reference 
system giving”’ 

fi. 
C,,Ar)=~ I dqc Pc(clc) ~ 

cosh[ a( r- tip/a)] 
sinh(fLp~,2) 

-((m82p)-1)p,+(q,2)p,, (2.6) 

where Z=.f~~(qJdq, is the partition function. The second 
term in Eq. (2.6) is the effective LHO representation of the 
centroid mean squared fluctuation, i.e., 

Now one can make use of the equality 

G73&-((4c- (qc)p,)2)p,= (SC);/ 
In turn, (qc)z, can be easily shown to exactly equal (q)2. 
Since this term is a simple factor and not the focus of the 
dynamical analysis, the last two terms in Eq. (2.6) and re- 
lated equations will hereafter be replaced by (q)2 or (qc)ic 
interchangeably. 
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By using the expression in Eq. (2.6), it is ‘now possible to 
analytically continue the above function to obtain the opti- 
mized LHO representation of the real time position correla- 
tion function’ 

C&t) =; 
I 

h 1 
&c PC(%) - 

[ 2m6 tanh(h/3&/2) 
cos( a> 

-i sin(&) -t(q)2. 1 (2.8) 

The real time correlation function at this level of theory is 
just the superposition of centroid correlation functions for 
effective harmonic oscillators defined at each centroid posi- 
tion qc . Each centroid correlation function is then weighted 
by the centroid density for the given value of qc. The ex- 
pression for the correlation function in Eq. (2.8) represents a 
quantum mechanical generalization of the classical “instan- 
taneous normal mode” perspective for condensed phase cor- 
relation functions.* 

One intriguing feature of Eq. (2.8) is the factorization 
into the centroid density (i.e., the centroid statistical distribu- 
tion) and a dynamical part which depends on the centroid 
frequency G. It is by no means obvious that such a factoriza- 
tion should occur. Furthermore, a rather different factoriza- 
tion occurs when the conventional formalism for computing 
time correlation functions is used [i.e., a double integration 
in terms of the ofidiagonal elements of the thermal density 
matrix and Heisenberg operator q(t) are required]. This re- 
sult is considered as being significant, particularly in view of 
the physical insight it provides regarding the role of the cen- 
troid variable in real time position correlation functions.’ 

B. The centrold molecular dynamics method 

In this section, the centroid MD method is first moti- 
vated by analyzing the result of the previous section. To do 
this, it is beneficial to introduce another real time correlation 
function given in terms of the centroid variable by 

c;At)=; 
I dqc pc(qc) & cos(W + kd;; 

(2.9) 

This correlation function is the exact analog of a classical 
correlation function for an effective LHO with the centroid 
“frequency” 8, and it is related to the quantum correlation 
function in Eq. (2.8) by the Fourier relation given in Eq. 
(2.15) below? By noting that the first term on the right-hand 
side of Eq. (2.9) describes the correlation of fluctuations 
about the mean value (qc)pc = (q), Eq. (2.9) can then be 
rewritten as 

cgt)=; 
I dqc ~c(qc)(qcWqcW)cs, (2.10) 

where (4&MOh is a position correlation function cal- 
culated for quasiclassical centroid dynamics on the opti- 
mized LHO centroid potential. The dynamical centroid “tra- 
jectories” for this correlation function are given by the 
classical-like equations 

PC(O) qc(t)=q,(O)cos{~[q(O)lt}+ - m44(0>1 
sin{ti[q(O)]t}. 

(2.11) 

The symbol (es-)(;, in Eq. (2.10) denotes initial condition 
averaging using the optimized LHO approximation to the 
phase space centroid density, which is given in the general 
case by 

P,(Pc,q,)= .** I I ~~~~~~~~~~Pc-Po~~~4c-~o~ 

Xexp(-S~[p(~),q(~)llh}. (2.12) 

The Euclidean phase 
sion is given by” 

space action functional in this expres- 

=hpg+fipx ;:, ( 2rn 

n+O 2m 
hp I%-n i 

I 
w + dr Vcddl, 0 

(2.13) 

where the Fourier modes (i;, ,in} are for the momentum and 
position paths, respectively. It seems particularly significant 
that the momentum centroid PO is always decoupled from 
position coordinates and is precisely the same as the classical 
Boltzmann momentum distribution. It should also be noted 
that Eq. (2.9) turns out to be the optimized LHO representa- 
tion of the Kubo transformed” position correlation function 
given by 

cCl(t) =& Ioh ddq(t+ir)q(O)). 
The latter connection is apparently significant for a centroid- 
based approach to general correlation functions (see the Ap- 
pendix) . 

After Fourier transforming Eq. (2.9) and using the prop- 
erties of the Dirac delta function, the relationship of CzXt) 
to the optimized LHO representation of the quantum position 
correlation function C&t) can be shown to be9 

C,Xo)=(tLpo/2)[coth(tipw/2)fl]~‘,*,Xw). (2.15) 

For general systems, the analytically continued result for 
the position correlation function in Eq. (2.10) must be con- 
sidered a short time approximation to the actual quantum 
correlation function. In particular, the LHO approximation 
for the time evolution can and will break down at long times. 
It is then reasonable to assert that Eq. (2.10) must actually be 
an approximation to a more accurate expression. In a pre- 
liminary communication,’ we have argued that, in fact, a 
more accurate representation of the quantum position time 
correlation function is related to a general centroid position 
correlation function 

(2.16) 
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where the centroid trajectories are now generated by the ef- V,(q,)= -kJ ln[p,(q,)l(m/2~~2P)1'21. (2.18) 
fective classical equations of motion 

dVc(qc) mGJt)= - ~ 
dqc ’ 

(2.17) 
The centroid force -dV,(q,)ldq, defined in the right-hand 

and the centroid potential is the exact excess quantum free side of Eq. (2.17) is the quantum mechanical potential of 

energy of the centroid, i.e., mean force for the centroid given by 

I 

dVc(q,) S-S ~(7)S(q,-qo){dVCq(O>lldq}exp{-S[q(7)lhl} - -=- 
dqc S-S ~(7)6(qc-q0)exp{-S[q(?)llh} ’ 

(2.19) 

In the centroid MD correlation function [Eq. (2.16)], the no- 
tation (es .)pc means that the exact (normalized) phase space 
centroid density in Eq. (2.12) is used to average the initial 
conditions of the centroid trajectories. After the centroid cor- 
relation function C*(t) in Eq. (2.16) is calculated, the exact 
quantum position correlation function C(t) can be estimated 
through the Fourier transform relationship 

c(w)=(fiflw/2)[coth(hpw/2)+l]?*(w). (2.20) 

An alternative route to these expressions is to use the fact 
that C*(t) is an approximation to the Kubo transformed po- 
sition correlation function in Eq. (2.14). The relationship of 
the Kubo function to C(t) is always given by the expressions 
in Eq. (2.20). 

There is no doubt that the centroid MD prescription has 
ad hoc elements to it since the expressions in Eqs. (2.16) and 
(2.17) have not yet been rigorously derived. Yet, there are a 
number of strong arguments in favor of the centroid MD 
approach. First, it is noted that the analytically continued 
effective LHO theory in Eqs. (2.9)-(2.11) has been rigor- 
ously developed. The notion of classical-like centroid trajec- 
tories and a statistical averaging of initial conditions using 
the phase space centroid density has its basic origin to that 
theory. On the other hand, the analytically continued effec- 
tive LHO theory must be taken for what it is-a short time 
approximation to some more accurate expression. By anal- 
ogy with the classical instantaneous normal mode picture’ 
and its connection to exact classical correlation function 
theory, the centroid MD perspective seems to provide the 
natural improvement of the optimized LHO theory. Further- 
more, once the notion of a centroid trajectory is accepted, it 
seems quite evident that the force on a centroid trajectory at 
some later time and position in space should be no different 
from the force experienced by a different centroid trajectory 
which is initiated at t=O at that same point in space. The 
centroid MD expression in Eqs. (2.16) and (2.17) satisfies 
this condition, while the analytically continued optimized 
LHO theory does not. Furthermore, centroid trajectories 
should be derived from the same effective potential which 
gives the exact centroid statistical distribution so that a “cen- 
troid ergodic theorem” will hold. Again, the centroid MD 
approach satisfies this condition, while the analytically con- 
tinued optimized LHO theory may not. Finally, one would 
wish to have an approach which recovers the exact limiting 

expressions for globally harmonic potentials and for general 
classical systems. The centroid MD procedure in Eqs. 
(2.16)-(2.19) satisfies this criterion in each case. 

Having made the above statements, it must again be 
stressed that centroid MD is approximate for nonlinear quan- 
turn systems. It seems clear that further research is needed to 
justify and/or improve on the approach. However, the nu- 
merical results presented in Ref. 9 and in Sec. IV suggest 
that centroid MD already provides an accurate and stable 
approximation to quantum position correlation functions. 
Based on this result, in the next section, the extension of the 
theory to treat general quantum time correlation 
explored. 

functions is 

111. GENERAL CORRELATION FUNCTIONS 

In this section, three strategies are presented to calculate 
general time correlation functions within the centroid dy- 
namics perspective. While none of the three should be 
viewed as being completely satisfactory, it seems clear that 
each approach has promising and useful aspects to it. More- 
over, these three approaches have different computational 
strengths and weaknesses which will become apparent in the 
numerical applications discussed in Sec. IV. 

A. Analytical continuation of centrold-constrained 
correlation functions 

One of the primary results from paper I is the expression 
for general imaginary time correlation functions in the 
centroid-based perspective given by 

C&3(4 = hd wc>>pc 9 (3.1) 

where the centroid-dependent imaginary time-correlated op- 
erator productp&r,q,) is defined in the centroid density 
picture by the double-Gaussian average 

/1AB(r,q,)=(A(q,+ql)B(q,+q2))Cf ,c;. (3.2) 

Here, the variables +I and q2 are expressed as linear combi- 
nations of the two Gaussian variables q+ and q- such that 

(3.3) 

The variables q+ and q- have the respective centroid- 
dependent Gaussian width factors 
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(3.4) 

and the centroid-constrained imaginary time position corre- 
lation function C,(T,qJ is defined in Eq. (2.1). 

In principle, the double-Gaussian average in Eq. (3.2) 
can be performed for certain forms of the general operators A 
and B. The resulting expression will then involve an average 
of functions which depend on C,( T,qc) over the normalized 
centroid density. An example is for the correlation function 
(q3(r)q3(0)), which is given by 

(43(t)43(o))=(q~+3q~[2C,(0,q,)+3C,(t,q,)l 

+ 9q%[C34q,) + 2c:(w,) 

+2C,(t,q,)C,(O,qc)l+3C,(t,q,) 
wc304,) +2C~(~4c)l),c * (3.5) 

This equation is exact in the case of a globally harmonic 
potential. 

At this point, two approaches can be taken to calculate 
the real time correlation function (A(r)B(O)). The first is to 
seek an exact numerical analytical continuation of the 
centroid-constrained correlation function C,( r,qc) in Eqs. 
(3.1)-(3.4) to real time. Numerical analytical continuation of 
correlation functions is a subtle issue” which will be re- 
served for future research. The second approach, which is 
discussed here, is to analytically continue the optimized 
LHO expression for the centroid constrained propagator 
C,( T,qJ by replacing r with it and to then use the resulting 
expression in Eqs. (3.1)-(3.4). In this case, the real time 
version of C,( T,q,) is given by 

h 

[ 

1 
c,(ol,)=--- 2mG tanh(fiP8/2) cos( Bt) - i sin( Gr) 

I 
1 

-zp (3.6) 

where the optimized frequency d depends on the centroid 
position via Eq. (2.4). The next step is to replace CJr,q,) 
with the approximate C,(r,q,) in the closed-form expression 
forpAB( T,qJ, resulting in the real-time centroid constrained 
correlated operator productp&r,qJ. This function is then 
calculated for each value of the centroid variable and aver- 
aged over the centroid density [cf. Eq. (3.1)]. 

As will be shown in Sec. IV, the result obtained from this 
procedure is not completely satisfactory for the following 
two reasons: (1) The accuracy of the analytically continued 
version of Eq. (3.2) is only as good as the accuracy of the 
analytically continued centroid constrained propagator 
C,(r,qJ. While the effective LHO version of this function 
given in Eq. (3.6) is good at short times, anharmonicities in 
the real potential will cause it to deviate from the exact be- 
havior at long times even in the classical limit. (2) The op- 
erator representation in Eq. (3.1) is expressed at the level of 

‘a second-order cumulant expansion [cf. Eqs. (2.14)-(2.19) of 
paper I]. Though this approximation is an excellent one for 
imaginary time calculations, real time correlation functions 
are more sensitive to nonlinear interactions and hence less 

predictable in their behavior. In principle, however, the cu- 
mulant average discussed in paper I could be carried out to 
higher order. 

B. Cumulant expansion combined with centroid MD 

In Sec. II B, the centroid MD method was described 
which is based on the propagation of quasiclassical centroid 
trajectories qc(r) derived from the mean force on the cen- 
troid as a function of position [cf. Eqs. (2.17)-(2.19)]. This 
method, combined with Eq. (2.20), generally provides an 
accurate representation of the exact quantum real time posi- 
tion correlation function (q(r)q(O)). It is therefore advanta- 
geous to first introduce the position time correlation function 
directly into the formulation of the general correlation func- 
tion (A(r)B(O)) and to then use centroid MD to calculate 
W M W  

To begin, the general imaginary time correlation func- 
tion C,a( T) = (A( r)B(O)) is expressed as 

+ W .(O)l), (3.7) 
where 

~~~~)~.f~--.f ~(7)(.‘.)exp{-S[q(7)llh} 
J-*+S ~(+qd.-~[q(~)llfi) * (3-S) 

The cumulant average of the exponential term in Eq. (3.7) 
can be performed and truncated at second order giving 

(exp[ik,q(T)fik,q(O)l)=exp 4(q)+%(q) i 

- ; [k&(0)+2klk,C&) 

+~:WNl , I (3.9) 

where now the imaginary time position fluctuation correla- 
tion functions are defined by 

c~~~=(w~)&(o)), (3.10) 

where Sq = q - (q). In order to perform the integrals over k 1 
and k, in Eq. (3.9), new imaginary time correlation functions 
are defined as 

c,‘(T)=cg(o)+c&). (3.11) 

After performing the k integrals in Eq. (3.9), the expression 
for the general imaginary time correlation function is given 
by the double-Gaussian average 

C,,(T)=(A((q)+ql)B((q)+~2))c6+ ,c; > (3.12) 

where the variables St and q2 are related to the two Gaussian 
variables q+ and q- such that 

41,2= $ (q+*q-). (3.13) 

The Gaussian variables q+ and q- have width factors given 
by C:(r) and C;(T), respectively, defined in Eq. (3.11). 
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At this point, the above imaginary time expression for 
C;(r) can be continued analytically via the inverse Wick 
rotation r-+ir. The resulting expression for the real time 
correlation function C&r) is given by 

CAB(r)=(A((q)+ql)B((q)+q2))C,f(1),Cg(t), (3.14) 

where the time-dependent Gaussian width factors are given 
by 

C,‘(r)=C~O)tC~r). (3.15) 

Since Cd(r) equals (q(r)q(O)) -(q)2, the correlation func- 
tions in Eq. (3.15) can be calculated with the help of the 
centroid MD method for real time position correlation func- 
tions outlined in Sec. II B. It should be noted that both the 
real and imaginary parts of C(r) = (q(r)q(O)) are required in 
the above expression. The centroid MD position correlation 
function C*(r) defined in Eq. (2.16) can be used to calculate 
the real and imaginary parts of C(r) through the Fourier 
transform relation in Eq. (2.20). 

Equation (3.14), which is the central result of this sub- 
section, has two particularly appealing characteristics. 
Namely (a) it involves only the real time position correlation 
function (q(r)q(O)) h h w ic can be determined from centroid 
MD; and (b) the double-Gaussian average in Eq. (3.14) does 
not have to be expressed in closed form [i.e., it can be evalu- 
ated numerically at each time point using the values of the 
complex Gaussian width factors C:(r) computed from the 
centroid MD algorithm]. On the negative side, Eq. (3.14) is 
exact only in the globally harmonic limit due to the tnmca- 
tion of the cumulant expansion in Eq. (3.9). Furthermore, Eq. 
(3.14) may disagree with the exact classical limit for highly 
anharmonic systems at elevated temperatures. Nevertheless, 
Eq. (3.14) represents a promising first step towards the cal- 
culation of general real time correlation functions using the 
centroid MD method. This method is expected to be particu- 
larly useful for studying the quantum dynamics of high fre- 
quency molecular vibrations in condensed phases. 

C. Centroid MD with semiclassical operators 

In this subsection, a third algorithm is proposed for cal- 
culating general correlation functions. This procedure em- 
ploys centroid MD along with a semiclassical representation 
of the quantum operators. While this approach is less math- 
ematically direct than the ones developed in the previous two 
subsections, the goal here is one of utility. That is, the algo- 
rithm proposed below is easy to use and is capable of recov- 
ering the exact classical limit of general correlation func- 
tions. This approach, therefore, may be the method of choice 
for studying many problems in chemistry which are nearly 
classical in nature. The basic equations underlying the algo- 
rithm are simply stated below-the reader is referred to the 
Appendix for some supporting mathematical analysis. 

The centroid MD method with semiclassical operators 
involves the computation of a general real time centroid cor- 
relation function C,*,(r) given by 

C,“,(t)=(A,(t)B,(0)),c, (3.16) 

where the initial condition averaging is performed with the 
(normalized) phase space centroid density defined in Eq. 
(2.12), and the semiclassical operators O,[q,(r)] are given 
by the time-dependent analog of Eq. (2.11) in paper I, i.e., 

~cCqcWl = (OMd + 91)c,~~,q,~1)~. (3.17) 

Here, qc(r) is the centroid trajectory which obeys the quasi- 
classical equation motion in Eq. (2.17), and the time depen- 
dent Gaussian width factor CJO,qJr)] for the variable 4 is 
given by the zero-time value of the centroid constrained cor- 
relation function in Eq. (2.1) with its centroid q. located at 
q,(r). It should be noted that Eq. (3.17) reduces to the cen- 
troid MD expression in Eq. (2.16) in the case of a position 
correlation function. As will be shown in Sec. IV B, the nu- 
merical results on general correlation functions indicate that 
for such problems, the Gaussian “smeared” representation of 
the operators in Eq. (3.17) will be superior to a simpler clas- 
sical representation in terms of the centroid variables [cf. Eq. 
(4.3) below]. Schenter et aL13 have employed the latter pro- 
cedure to estimate the dynamical corrections to the path in- 
tegral quadratic transition state theory (QTST) rate 
constant,r4 although their approach will be exact” in the glo- 
bally quadratic limit for the barrier potential and orthogonal 
nonreactive modes. 

As shown in the Appendix, the general centroid correla- 
tion function in Eq. (3.16) is actually an approximation to the 
Kubo transformed version” of the exact correlation function 
C,,(r). Therefore, in order to calculate C,,(r), one must 
make use of the general Fourier relationship 

CAB(W)=(h/?o/2)[coth(h@/2)+l]~‘,*,(o). (3.18) 

The expression in Eq. (3.16) emphasizes the appealing 
characteristics of the centroid MD method in a fairly trans- 
parent fashion, but, as will be shown in the next section, it is 
somewhat lacking in its description of certain features of low 
temperature nonlinear vibrational correlation functions. 

IV. APPLICATIONS 

In this section, the accuracy of the centroid MD method 
is tested. In order to do this, two nonlinear oscillator models 
have been employed. The first model is an asymmetric po- 
tential given by 

V(q)=iq2+cq3+gq4 (4.1) 
withtheparametersc=0.10,g=0.01,h=1.0,andm=1.0. 
In these units, the inverse temperature p is given in terms of 
values of the dimensionless parameter @w. The potential in 
Eq. (4.1) has a single minimum at q= 0, exhibiting a cubic 
anharmonicity for small deviations from the minimum and a 
quartic anharmonicity for larger deviations from the mini- 
mum. At low temperatures where mode quantization effects 
are operational, the cubic anharmonicity is therefore the 
dominant perturbation. The potential in Eq. (4.1) shifts the 
energy gap between the ground and first excited vibrational 
states downward by 6% compared with the harmonic limit of 
the energy spectrum. This anharmonic shift is equivalent to, 
e.g., a 180 cm-’ shift of a 3000 cm-’ C-H stretching mode 
or a 60 cm-’ shift of a 1000 cm-’ C-C stretching mode. 
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This magnitude of the anharmonic energy shift is somewhat 
on the large side for realistic molecular vibrations. Two tem- 
peratures are employed in the calculations p=3 and 10. The 
first system is typical of a C-Cl single bond at 300 K, while 
the second is more like a C=C double bond at the same 
temperature. 

A second model potential used to test the centroid-based 
theory is the quartic potential given by 

(4.2) -0.4 

with the parameters g=O.O3, m=l.O, and fi=l.O. For this 
model, the energy gap between the ground and first excited 
states increases by 8%. The eigenvalue spacing of the quartic 
potential in Eq. (4.2) exhibits a nonlinear growth as n4’3 with 
the quantum number n. This behavior might be typical of 
certain molecular bending vibrations which “stiffen” as the 
amplitude increases. 

For both potential models, the exact results were ob- 
tained by first diagonalizing the nonlinear Hamiltonian in a 
harmonic oscillator basis set to find its eigenvalues and 
eigenvectors. Then, 100 of the eigenstates were employed to 
calculate the time correlation functions. The centroid mo- 
lecular dynamics calculations for the two potential models 
required accurate centroid forces and centroid potential. 
These quantities were calculated from the optimized har- 
monic reference centroid density which was shown in paper 
I to be an extremely good representation of the exact result. 
The centroid potential and forces were interpolated from a 
lOOO-point grid within the range [- lO,lO]. As specified by 
the centroid MD algorithm, initial positions were generated 
by Metropolis importance sampling from the centroid distri- 
bution, while the initial momenta were directly sampled from 
the Gaussian centroid momentum distribution function. The 
dynamics of 10’ centroid trajectories were then calculated 
using the leapfrog algorithm with a time step of 0.05. Be- 
cause the correlation functions are always even functions of 
time, a discretized cosine Fourier transformation was em- 
ployed to process the centroid correlation functions via Eq. 
(3.18). The classical MD simulations were performed in the 
same fashion except that the real potential and force were 
used instead of centroid quantities. 

In the application of the direct analytical continuation 
method from Sets. II A and III A, the effective centroid fre- 
quency d was determined self-consistently from Eq. (2.4) 
and the centroid constrained correlation function in Eq. (3.6) 
was calculated for that centroid position. The integration 
over the centroid density was then performed on a 200-point 
grid from q= -2.0 to 2.0. 

In all figures below, the real part of the time correlation 
functions is plotted. 

A. Position correlation functions 

In Fig. 1, the position correlation function is shown for 
the nonlinear oscillator in Eq. (4.1) at p=lO. The solid 
circles are the exact quantum results, the solid line is the 
centroid MD result from Eq. (2.16) with Eq. (2.20), the 
dashed line is the analytically continued effective harmonic 
result from Eq. (2.8), and the dotted-dashed line is the clas- 
sical MD result. The centroid MD formalism is clearly the 
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FIG. 1. A plot of the real time position autocorrelation function for the 
nonlinear oscillator described in Eq. (4.1) at a temperature of p=lO. The 
solid circles are the exact quantum resuIts, the solid Iine is the centroid MD 
result from Eq. (2.16), the dashed line is the analytically continued effective 
harmonic result from Eq. (2.8), and the dotted-dashed line is the classical 
MD result. 

superior approach. The analytically continued result is also 
reasonably accurate, but it dephases somewhat too rapidly. 
The classical correlation function is in poor agreement with 
the exact quantum result. In Fig. 2, similar results are plot- 
ted, but for the higher temperature of /?=3. In this case, the 
classical correlation function is in better agreement with the 
exact result, but the centroid MD is still superior. The ana- 
lytically continued theory again dephases too quickly. (This 
anomalous dephasing seems to be a characteristic of the lat- 
ter method.) It should be noted that in Ref. 9, similarly en- 
couraging results were reported on the position correlation 
function for the quartic potential in Eq. (4.2) 

B. General correlation functions 

In order to test the methods outlined in Sec. III for cal- 
culating general correlation functions, the correlation func- 
tion (q3Wq3W was calculated for the nonlinear potential 
defined in Eq. (4.1). This correlation function presents a se- 
rious test for the approximate methods because of its nonlin- 
earity and the fact that its amplitude is highly quantum me- 
chanical in nature at lower temperatures. In Fig. 3, the results 

OS 3 
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I 
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FIG. 2. The same as Fig. 1, but for a higher temperature of p=3. 
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FIG. 3. A plot of the correlation function (q3(t)q3(0)) for the nonlinear 
potential in Eq. (4.1) at a temperature of p=lO. The solid circles are the 
exact quantum results, the solid line is the cumulant expansion with centroid 
MD theory of Sec. III B, the dashed line is the analytically continued effec- 
tive harmonic result from Sec. III A, and the dotted-dashed line is the 
classical MD result. 

for a temperature of /3=10 are shown. The solid circles are 
the exact quantum results, the solid line is the cumulant ex- 
pansion with the centroid MD theory of Sec. III B, the 
dashed line is the analytically continued effective harmonic 
result from Sec. III A, and the dotted-dashed line is the clas- 
sical MD result. The correlation function from the cumulant 
expansion theory is in best agreement with the exact result, 
although there is too much structure and symmetry in the 
oscillations. Again the analytically continued result dephases 
much too quickly, being accurate only at short times, while 
the classical result is extremely inaccurate. One should bear 
in mind that while the accuracy of the cumulant expansion 
method combined with centroid MD is encouraging, this 
method may not reproduce the exact high temperature limit 
of correlation functions for very nonlinear potentials. The 
cumulant method should thus be viewed as being best suited 
for vibrational systems in which fL/?w>l. 

In Fig. 4, the centroid MD with semiclassical operators 
approach of Sec. III C (solid line) is compared to the exact 
result (solid circles) and to the classical result (dotted- 
dashed line) at /3=10 for the potential in Eq. (4.1). Also 
shown is a centroid MD result (dashed line), but one calcu- 
lated without using the Gaussian averaged operators defined 
in Eq. (3.17), i.e., by instead using the classical form of the 
operators expressed in terms of the centroid variables such 
that 

C,*,(r)-(A,,[q,(t)lB,,[q,(0)l),c t (4.3) 

where A,, and B,, are the classical limits of the operators A 
and B (cf. Sec. III C). The centroid MD with semiclassical 
operators result does not completely capture the high fre- 
quency oscillation of the exact result, but it is clearly supe- 
rior to both the classical and approximate centroid MD re- 
sults. Evidently, the Gaussian representation of the effective 
operators is an essential component of this particular ap- 
proach. 

-3.0 ’ 
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time 
10.0 15.0 

FIG. 4. A plot of the correlation function (q3(r)q3(0)) for the nonlinear 
potential in Eq. (4.1) at a temperature of /3=10. The centroid MD with 
semiclassical operators method of Sec. III C is shown by the solid line, the 
exact result is given by the solid circles, and the classical result shown by 
the dotted-dashed line. Also shown by the dashed line is a centroid MD 
result, but one obtained by using the classical form of the operators as in Eq. 
(4.3). 

Calculations were also performed for the correlation 
function (q3(t)q3(0)) for the quartic potential in Eq. (4.2) at 
p=lO. These results are shown in Fig. 5. The solid circles 
depict the exact quantum results, the solid line is the cumu- 
lant with centroid MD method of Sec. III B, the dashed line 
is the centroid MD with semiclassical operators approach of 
Sec. III C, while the dotted-dashed line is the classical MD 
result. The general level of agreement between the various 
approximate approaches and the exact result is similar to that 
for the potential in Eq. (4.1) and depicted in Figs. 3 and 4, 
although the beat pattern of the exact case is not as well 
reproduced. 

In Fig. 6, the correlation function (q2(t)q2(0)) is shown 
for the nonlinear potential in Eq. (4.1) at /3= 10. The symbols 
and lines are the same as in Fig. 5. This correlation function 
is another serious test of the various methods because, clas- 
sically, it can have no negative values, while quantum me- 
chanically, it can be negative due to interference effects. 
Clearly, only the cumulant method can describe those effects, 
but its oscillation amplitude is not perfect. The classical re- 
sult is extremely poor for this correlation function at such a 
low temperature. The centroid MD with semiclassical opera- 
tors method also cannot give a correlation function with 
negative values in this case. This feature of the method arises 
because the correlation of the two operators at different times 
is ignored when the Gaussian averages are performed. Con- 
sequently, the semiclassical operator approximation underes- 
timates the quantum real time interference of the two opera- 
tors and may thus fail to provide the finer dynamical details 
of some general time correlation functions at low tempera- 
tures. On the other hand, the accuracy of the centroid MD/ 
semiclassical operator method is already far superior to a 
classical calculation and will rapidly improve as the tempera- 
ture is increased. It also provides a simple and intuitive semi- 
classical algorithm to evaluate general quantum time corre- 
lation functions. 
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I 
5.0 time 10.0 15.0 

FIG. 5. A  plot of the correlation function (q3(t)q3(0)) for the quartic po- 
tential in Eq. (4.2) at a temperature of p= 10. The solid circles are the exact 
quantum results, the solid line is the cumulant expansion with the centroid 
MD theory of Sec. III B, the dashed line is the centroid MD with semiclas- 
sical operators result from Sec. III C, and the dotted-dashed line is the 
classical MD result. 

C. Quantum self-diffusion constants 

Thus far, the numerical applications have focused on the 
nonlinear vibrational dynamics of one-dimensional systems. 
However, the centroid MD formalism is by no means re- 
stricted to such systems. For example, the diffusion constant 
is a transport coefficient often computed by computer simu- 
lation. Naturally, one would like to include quantum effects 
in these calculations in a straightforward manner. If a system 
of quantum particles is assumed to evolve under the laws of 
centroid dynamics, then the diffusion constant can be calcu- 
lated from the centroid velocity time correlation function via 
a Green-Kubo-like formula16 

L+; I - ~~(vc(~)*v,(o)), 
0 

1.2 r-.-?-+~;;:iyi 
0.8 

cm 0.4 

u” 

0.0 

-0.4 

5.0 time 10.0 15.0 

FIG. 6. A  plot of the correlation function (q’(t)q’(O)) for the nonlinear 
potential in Eq. (4.1) at a temperature of p=lO. The solid circles are the 
exact quantum results, the solid line is the cumulant expansion with the 
centroid MD theory of Sec. III B, the dashed Iine is the centroid MD with 
semiclassical operators result from Sec. III C, and the dotted-dashed line is 
the classical MD result. 

d 
0.2 . 0.3 0.4 0.5 

time 

FIG. 7. The centroid velocity autocorrelation function from Eq. (4.4) for 
neon is shown here by the dashed line. The classical MD result is given by 
the solid line. The results are plotted as the ratio C(t)/C,(O). 

where pC = mv, and the average is over all particles and ini- 
tial configurations according to the phase space centroid den- 
sity. While the centroid dynamics should formally be com- 
puted according to Eqs. (2.17)-(2.19), in a homogeneous 
nearly classical system, the leading quantum correction in 
the centroid potential is given by 

K(q)=w?)+~ h2p W(q). (4.5) 

This expression, which can be easily generalized to N par- 
ticles in three dimensions, simplifies the implementation of 
the centroid MD algorithm considerably in nearly classical 
systems. 

The above algorithm to compute diffusion constants was 
applied to liquid argon and neon as described by a pairwise 
Lennard-Jones interaction potential. In Fig. 7, the velocity 
time correlation function is plotted for liquid neon as de- 
scribed by the parameters listed in Table I. The quantum and 
classical diffusion constants were calculated from the veloc- 
ity correlation function using Eq. (4.4) and its classical limit. 
In Table I, the classical and quantum diffusion constants 
computed in this way are listed for Ne and Ar liquids. 

When the quantum mechanical nature of the noble gas 
atoms is taken into account, the diffusion constant is reduced 
by a small fraction. In the gas phase and to some degree in 
liquids, the diffusion process can be viewed as a sequence of 
two-body collisions, the frequency of which depends on the 
collision cross section. Because the quantum centroid cross 
section is larger than the corresponding classical value, the 
quantum diffusion constant is found to be smaller. In addi- 
tion, it has been suggested* that the magnitude of the un- 
stable instantaneous normal modes in liquids reveals the 
“fluidity” of the liquid and thus relates directly to the diffu- 
sion process. In a subsequent paper, it will be demonstrated 
that the quantum instantaneous phonon spectrum for 
Lennard-Jones fluids shows a less prominent peak in the 
imaginary frequency region than in the classical limit. This 
result supports the conclusions drawn from the present cen- 
troid MD simulation. 
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Fluid DCI D, D&‘D, 

A.r 6.34 6.27 0.99 
Ne 4.38 4.08 0.93 

*DD, and Dg, are the classical and quantum diffusion constants, respectively, 
as calculated from Eq. (4.4). The units of D are IO-’ cm2 s-t. 

bThe parameters for the argon fluid are a=3.4 A, a=120 K, m=40 a.u., 
T= 156 K, and pd=O.75, while the parameters for the neon fluid are 
~~2.75 A, c=35.8 K, m=20 a.u., T=40 K, and p~?=O.68. 

APPENDIX: THE CENTROID MD METHOD WITH 
SEMICLASSICAL OPERATORS 

V. CONCLUDING REMARKS 

In order to analyze the centroid MD method with semi- 
classical operators (cf. Sec. III C), it is useful to introduce the 
Kubo transformed time correlation function” 

In the present paper, the role of the path integral centroid 
variable in quantum real time correlation functions has been 
explored. Based on the analytical continuation of centroid 
constrained position correlation functions, the concept of a 
classical-like centroid trajectory was formulated. A “centroid 
molecular dynamics” method was then proposed which im- 
proves upon the analytically continued expression and also 
builds into the theory several desirable features of condensed 
phase correlation functions. Three strategies were then elabo- 
rated for using the centroid MD algorithm in the calculation 
of general correlation functions. The results of the various 
formulations were tested on nonlinear vibrational systems 
with varying degrees of success. The position correlation 
functions calculated with centroid MD are highly accurate, 
but none of the approaches for general correlation function 
gives completely satisfactory results. On the other hand, the 
test cases were stringent tests of the methods (i.e., low di- 
mensional, highly quantum mechanical systems). Higher 
temperatures and/or condensed phase dissipative effects 
should tend to enhance the accuracy of the centroid MD 
approaches. 

@Adt)=- +,$ I,“” dT(A(t + i@(O)) 

and the corresponding response function 

h(f)=; ([A(t),B(O)l), 

where 

KAB(t)= -P+(f). WI 

Classically, the two correlation functions $AB(t) and 
CAB(~) = (NOWO) are the same, whereas quantum me- 
chanically, they are related through the Fourier transform 
relations 

The future holds several challenges for the improvement 
and application of the centroid MD method. Above all, a 
more rigorous mathematical justification of the method is 
needed. It seems almost certain that the centroid force as 
specified by Eq. (2.19) should be augmented by other, more 
“quantum mechanical”, terms. These terms must depend on 
the nonlinearity of the potential since centroid MD is exact 
for globally harmonic systems. Second, a completely general 
and reliable centroid MD formalism is certainly needed for 
computing general correlation functions, although good 
progress on this issue has been achieved in the present paper. 
Finally, efficient algorithms will be required in order to 
evaluate the centroid forces for the centroid trajectories in 
general many-body systems. Future publications will be de- 
voted to these challenges, as well as to the application of the 
centroid MD method to a variety of condensed matter sys- 
tems. 

~,,(w>=(hpw/2)[COth(hpw/2)+l]~A;l,(w). (A4) 

To relate (/I to the centroid MD correlation function in 
Eq. (3.16), it proves informative to perform the Taylor ex- 
pansion 

$AB(t)=C ; d$ 
n * 

= c ; $ job” dd~A(dB(O)), W) n 
where operator 55 is defined by a commutator 

Z4+ [A,H], (fw 

which is the quantum analog of the Poisson bracket. The 
notation for purely imaginary time correlation functions 
CAB(~)=(A('-)B(O)) is used in Eq. (As) as opposed to the 
mixed time notation necessary for the Kubo correlation func- 
tion in Eq. (Al). 

Note added in proof. A forthcoming paper will present a 
phase space centroid analysis of centroid MD, as well as a 
second justification which is not based on the effective har- 
monic perspective. 

The leading order (n = 0) term in Eq. (A5) is the equi- 
librium value of the correlation given by 

#‘O’=L 
J 

w 
AB fiP d~(A(M(O)). 647) 0 
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where, after performing a cumulant average over the quan- 
tum path fluctuations through second order, the exponential 
term is expressed as 

(exp[ik,q(7)+ik24(0)1)=(exp(iklq,+ik*q,-~kTcu(O) 
+2k,k,a(7)+k:a(O)l})~=. 

649) 
Here, LY(T) is the centroid-constrained propagator in Eq. 
(2.1). Now the integration over T in Eq. (A8) can be approxi- 
mated by 

dr exp[-k,k,a(r)] 

-exp[ -ktk2 & I,“” d7 a(T)]=l, (AlO) 

where (Ap)-‘JtB dr cr( T) =0 according to the definition of 
the centroid-constrained correlation function in Eq. (2.1) of 
the main text. Since the coupling term between kr and k2 in 
Eq. (AlO) vanishes in this approximation after the integra- 
tion over T, the equilibrium quantity (c&y turns out to be 

+t,%=@ (4 WAq,)) c c PC ’ (All) 

where the centroid operators A,(q,) and B,(q,) are defined 
as in Eq. (3.17) of the main text and Eq. (2.11) of paper I. 
Equation (All) indicates that the initial value of the Kubo 
correlation function $A;iB( t) can be evaluated using a product 
of centroid quantities if the imaginary time correlation be- 
.tween the Gaussian averages in the expression is ignored [cf. 
Eq. (AlO)]. This approximation is a good one if the quantum 
width of the particle is relatively small, leading to the term 
“semiclassical operator” in this particular implementation of 
the centroid MD method. 

The &d term in Eq. (A5) vanishes because q(t) must 
be an even function of time t. The next term is nonzero, 
however, and is given by 

p=L AB fip d+Z+A($B(O)) 

-; A’(T)V’(T) B(0) +a** , 1 ) 6412) 

where terms of higher order in fi are neglected. By using the 
same approximations as used in deriving Eqs. (A9)-(All), 
one obtains 

,$?& f ,“,*v 
m  W3) 

where the notation (* .a), denotes a momentum and position 
centroid-constrained average with the phase space path inte- 
gral and ( * * .)p, here denotes an average over the normalized 
phase space centroid density. Consistent with the semiclassi- 

cal operator assumption is an approximation for the product 
of two operators A and B in the centroid representation given 
by 

WkA,(qcP,(q,). 6414) 
[This approximation introduces an error of the order 
A’(q,)B’(q,)C,(O,q,), where the centroid-constrained 
propagator C,(O,q,) is the Gaussian width factor of the par- 
ticle.] After using Eq. (A14) in Eq. (A13), the above expres- 
sion can be approximated to be 

[A”(q )I P* c c c 

-; [A’(q,)l,[V’(q,>l~B,(4c) 7 ) 
PC 

where the fact has been used that 

(A15) 

(p2L=d+9fi2). (Am 

The distribution for the centroid momentum pc is the same 
as the classical Boltzmann distribution [cf. Eq. (2.13)]. 

If the centroid MD correlation function C,*,(t) de- 
scribed in Eqs. (3.16) and (3.17) of the main text is expanded 
through second order in r, one discovers that the first two 
expansion terms agree with Eqs. (All) and (A15). In gen- 
eral, the operator -% always gives the same result as the 
Poisson bracket if all higher orders in ii* are ignored. With 
this approximation and the approximations in Eqs. (AlO) and 
(A14), the expansion terms in Eq. (As) can be expressed in 
terms of equivalent centroid quantities and the same proce- 
dure can in principle be carried out to all orders of I,&“. This 
analysis suggests that to a reasonable degree of accuracy, the 
general Kubo time correlation function @As(t) in Eq. (Al) 
can be approximated by the centroid MD correlation func- 
tion C,&(t) with semiclassical operators. The real time cor- 
relation function (A (t)B( 0)) can then be estimated through 
the Fourier relation in Eq. (A4) [i.e., Eq. (3.18)]. 
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