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A formulation of quantum statistical mechanics is discussed in which the Feynman path centroid 
density in Feynman path integration is recast as the central statistical distribution used to average 
equilibrium and dynamical quantities. In this formulation, the path integral centroid density 
occupies the same role as the Boltzmann density in classical statistical mechanics. Therefore, the 
statistical ensemble of imaginary time path centroid configurations provides the distribution which 
is used to avtrage the appropriately formulated effective operators and imaginary time correlation 
functions. An accurate renormalized diagrammatic perturbation theory for the centroid density and 
centroid-constrained imaginary time propagator will also be described with particular emphasis 
given to the mathematical advantages arising from the centroid-based formulation. The present 
paper is concerned with the calculation of equilibrium properties from the centroid perspective, 
while the companion paper describes a centroid-based formalism for calculating dynamical time 
correlation functions. 

I. INTRODUCTION 

The Feynman path integral representation of quantum 
mechanics,’ and in particular the representation of quantum 
statistical mechanics,2’3 provides a powerful method to cal- 
culate and visualize natural processes. For example, path in- 
tegrals are particularly useful in describing the quantum me- 
chanics of an equilibrium system because the canonical 
distribution for a single quantum particle in the path integral 
picture becomes isomorphic with that for a classical “ring 
polymer” of quasiparticles3v4 (cf. Fig. 1). In the discretized 
path integral representation, the partition function for a quan- 
tum particle is given by the expression3,4 

(1.1) 
where m is the particle mass, /? equals l/k,T, and the iso- 
morphic quasiclassical polymer potential VP is given by 

Vr(d=~ mP I v(qi) 
i=, w  (4im4i+1)2+~ * 1 (1.2) 

In this discrete representation, the coordinates {qi} describe 
the positions of the classical quasiparticles and have the cy- 
clic property such that qi+p= qi (cf. Fig. 1). Each quasipar- 
title is harmonically bound to its two nearest neighbors and 
it “feels” the interaction potential through the term V(q,)/P. 
In numerical applications, a finite value of the discretization 
parameter P is used which is large enough so that suitable 
numerical convergence is obtained.3 While the above equa- 
tions have been written for a single quantum particle in one 
dimension, a generalization to multiple particles and/or di- 
mensions is straightforward.le4 In the discretized representa- 
tion, the path integral formalism has allowed for the numeri- 
cal simulation of highly nontrivial quantum systems using 
path integral Monte Carlo (PIMC) or molecular dynamics 
techniques.3 

In the fully quantum (P --+m) limit, the path integral for, 
e.g., the partition function is expressed as a functional inte- 
gral over all possible paths q( 7) such that2 

z= 
I I 

. . . LS dexpi -S[q( ~)Il~lI~ 

where the exponential weighting of the paths is determined 
by the imaginary time action functional2 

(1.4) 

Analytically, the path integral method has proven to be par- 
ticularly advantageous in the theoretical analysis of several 
condensed matter problems such as the polaron’ and the sol- 
vated electron.6 

One of the many interesting ideas suggested by Feynman 
in his formulation and application of path integrals is the 
notion of the path centroid variable,7 denoted here by the 
symbol q,,. The centroid is the imaginary time average of a 
particular closed Feynman path q(T) which, in turn, is sim- 
ply the zero-frequency Fourier mode of that path, i.e., 

1 
I 

fia 
qo=hp o d7 44. (1.5) 

In the discretized path integral picture (i.e., for finite P), the 
path centroid variable is equivalent to the center of mass of 
the isomorphic polymer of classical quasiparticles (cf. Fig. 1) 
such that 

. P  

40’; F 4i* 
r=l 

(1.6) 

(It should be noted that in some previous publications, the 
centroid variable has been denoted by Go rather than q. . The 
tilde notation will be reserved in the present paper for an- 
other use.) 
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mined at each value of the centroid variable, resulting in an 
approximate expression for the centroid density in Eq. (1.7). 
An approximate variational partition function’-” can then 
be determined in such a theory by virtue of Eq. (1.8). 

FIG. 1. A schematic diagram depicting a discretized Feynman path q(7) 
within the imaginary time interval O~KQ?. The isomorphic classical qua- 
siparticles are shown by the dark circles which form a “ring polymer.” Each 
quasiparticle “interacts” with its two nearest neighbors through effective 
harmonic forces and feels the external potential through the term V(q,)/P 
[cf. Eq. (1.2)]. The centroid variable q0 defined in Eqs. (1.5) and (1.6) is also 
shown. 

Feynman noted that a quantum mechanical “centroid 
density” pC(qC) can be defined for the path centroid variable 
which is the path sum over all paths with their centroids 
located at some point in space denoted by qC. Specifically, 
the formal expression for the centroid density is given by 

PS4J = I I 
**a ~(~)~(q,-q0)exp{-S[q(7)]lh}. (1.7) 

The quantum partition function in Eq. (1.3) is then obtained 
by the integration of the centroid density over all possible 
positions of the centroid, i.e., 

z= I &I, PC(%)- (1.8) 

Some caution is in order when one uses the centroid density 
because it is distinctly different from the coordinate (or par- 
ticle) density p(q) given by 

One conclusion that can be reached from the aforemen- 
tioned work of Feynman7 and others,‘-” as well as from the 
apparent utility of the centroid density-based formulation of 
quantum transition state theory,12 is that the centroid density 
is a particularly useful quantity about which to develop ap- 
proximate, but highly accurate, quantum mechanical expres- 
sions and to probe the quantum-classical correspondence 
principle in statistical mechanics. It is in this spirit that a 
more general centroid density-based formulation of quantum 
Boltzmann statistical mechanics is presented in the present 
paper. This formulation is based on a single important no- 
tion: In any such theory, the centroid density should occupy 
the same role as the Boltzmann density in classical statistical 
mechanics. That is, the rules for calculating operator aver- 
ages and imaginary time correlation functions should be re- 
formulated so that the final result of such a calculation is 
obtained by an integration over the centroid density (i.e., by 
a statistical weighting with the centroid density). It will be 
shown that such a formulation is not completely trivial due 
to the mathematical differences between the centroid ap- 
proach and the usual rules of quantum statistical mechanics. 
Nevertheless, the resulting expressions are quite interesting 
both in terms of the classical-quantum correspondence prin- 
ciple and from the analytical point of view. One result from 
this approach is that the centroid formulation seems to actu- 
ally simplify the calculation of some quantum mechanical 
quantities since the imaginary time path fluctuations have 
been “preaveraged” in the centroid density expression. This 
statement is particularly true in the case of quantum dynam- 
ics (i.e., time correlation functions) which are discussed in 
the companion paper13 and in Ref. 14. 

Xew{-~[q(4ll~), (1.9) 
where q(0) is the beginning and end point of the cyclic 
quantum path q(7) and is definitely not the centroid variable 
in Eq. (1.5). Thus, the particle density function is the diago- 
nal element of equilibrium density matrix in the coordinate 
representation, while the centroid density does not have a 
similar physical interpretation. Nevertheless, the integration 
over either density yields the quantum partition function. 

Feynman used the definition of the centroid density 
along with a simple approximation for the action functional 
in Eq. (1.4) to derive an expression for a quasiclassical par- 
tition function.7 The latter function is expressed as an inte- 
gration over an effective Boltzmann factor which, in turn, 
depends on a variational effective potential determined at 
each value of the centroid variable with the help of an ap- 
propriate centroid density formulation’ of the Gibbs- 
Bogoliubov variational principle. In subsequent work, sev- 
eral authors’-” have improved on Feynman’s original 
approach by using a more physically accurate variational 
harmonic reference system to describe the imaginary time 
path fluctuations around the centroid variable. The effective 
harmonic frequency and effective potential are again deter- 

Another significant feature of the centroid density-based 
formulation of statistical mechanics is that by concentrating 
on the centroid density as the central statistical distribution, a 
formally exact diagrammatic expansion for the centroid den- 
sity can be employed which turns out to be simplified from 
the point of view of the relevant diagram topologies. The 
diagrammatic expansion is also particularly amenable to 
powerful renormalization techniques. The diagrammatic 
theory draws the formal connection between various varia- 
tional expressions for the centroid density which have been 
derived by others’-” and specific diagram resummation and 
renormalization strategies. A systematic approach to improve 
on the result of the variational centroid density theory thus 
emerges. A considerable amount of time will be devoted to 
the diagrammatic methods in the present article due to the 
central practical and formal importance of the centroid den- 
sity in the formalism. 

The sections of this paper are organized as follows: In 
Sec. II, the basic equations are derived for operator averages 
and imaginary time correlation functions in the centroid 
density-based formulation of quantum statistical mechanics. 
The diagrammatic methods for the centroid density and re- 
lated quantities are then discussed in Sec. III, while applica- 
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tions are presented in Sec. IV. Concluding remarks are given 
in Sec. V. 

Ii. GEPJERAL FORMALISM 

In this section, the general formulation of quantum Bolt- 
zmann statistical mechanics in terms of the centroid density 
is discussed. The term “general formulation” means that the 
rules are presented here with which to calculate operator av- 
erages and imaginary time correlation functions in the cen- 
troid density perspective at different levels of approximation. 
The emphasis in this section will not be on new numerical 
procedures which might or might not have advantages over 
the already well-established and successful numerical path 
integral techniques (see, e.g., Ref. 3). Rather, the theoretical 
development is more of a conceptual one which is intended 
to explore the quantum-classical correspondence in statistical 
mechanics. Moreover, the rules outlined below for calculat- 

I 

ing averages and correlation functions are formulated on the 
assumption that a good analytic expression for the centroid 
density can be obtained (cf. Sec. III), thereby bypassing the 
need for a fully numerical approach. Future research will be 
devoted to an exploration of any numerical advantages inher- 
ent in the centroid-based imaginary time path integral formu- 
lation. In the companion paper,13 it will indeed be shown that 
the centroid-based approach provides a quite promising com- 
putational approach for the determination of quantum real 
time correlation functions.14 

A. imaginary time position correlation functions 

At this point, it is advantageous to introduce the notion 
of a centroid-constrained imaginary time propagator, i.e., the 
correlation function of quantum path fluctuations with re- 
spect to the position of the centroid variable qo=qc . This 
correlation function is defined as 

(2.1) 

As the centroids of the paths q(7) in this correlation function 
are constrained to be at qc, the paths can be rewritten as 
q( 7) = qc + S( T), where G(T) is the quantum path fluctuation 
with respect to the centroid. A Fourier decomposition of the 
paths @( 7) can now be introduced such that 

4( 7) = c (jndQ, (2.2) 
?I+0 

where the summation is over all positive and negative inte- 
gers except for n=O, and fi, is the Euclidean frequency 
defined by 0,, = 2 ~n/2ip. 

The correlation function in Eq. (2.1) differs from the 
usual Euclidean position correlation function C(T) because 
only the paths with centroids at qc contribute to the centroid- 
constrained propagator C,( 7,qc). However, one can obtain 
C(T) by averaging the centroid-constrained propagator over 
the normalized centroid density pc(qc)lZ, i.e., 

I 

c(~)=(4(~)4(o)~=(c,(~,4e)+q:)p~, (2.3) 

or, equivalently, 

~14~~)-4(o)12~=c(o)-c(~) 

= (~,uh,)),~- (cchdpc. (2.4) 

It should be noted that the imaginary time function in Eq. 
(2.4) provides a measure of the localization of quantum par- 
ticles in condensed media.3Y4v6 From this point onward, the 
notation (** w)~, denotes an averaging by integrating some 
centroid-dependent function over the centroid position qc 
weighted by the normalized centroid density pc(qc)lZ. 

A general method to obtain the correlation function 
C,( ~,q,) is through functional differentiation of a generating 
functional. In order to formulate such a functional, an imagi- 
nary time-dependent force f(7) is introduced into the action 
functional of the centroid density [Eq. (1.7)] such that the 
potential V[q( 7-)] is replaced by V[q( 7-)] +f( T)G( 7). The 
centroid-constrained propagator is then given by 

1 C,( 7,qc) = lim - a2Pcrf( 4 1 
f--+0 PC W( 4 @to) * 

(2.5) 

Here, the centroid density pc is understood to be a functional 
of the extra time-dependent force f(7) and is therefore the 
generating functionall for the centroid-constrained correla- 
tion function. . . 

FIG. 2. A schematic diagram depicting the calculation of an operator aver- 
age (A) in the discretized Feynman path integral picture. The operator 
A [ q( r)] can be evaluated anywhere on the path integral ring 0~7 ST’@ due 
to the cyclic invariance of the trace operation. The centroid variable, which 
is off the ring, is also shown. 

B. Operator averages 

In the normal path integral perspective,23 the canonical 
average of an operator A is given by the expression 
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(A)=Z-11 . . j ~(7)A[q(O)lexp{-S[q(7)llh), (2.6) 
variable, which is off the ring, is also shown. The challenge 
therefore is to reformulate the rules for calculating the op- 

Due to the cyclic invariance of the trace, the operator can be 
evaluated at any point along the cyclic imaginary time path 
q(T). This situation is depicted in Fig. 2 where the centroid 

erator average, so that the centroid density can be used in the 
statistical averaging.” In order to do this, the average in Eq. 
(2.6) is first re-expressed as 

t-4=1 dqc( .f'--*S ~(?)6(q,-qo>A[cl(~)lexp{-S[q(7)llfL} 
S dq, pc(qc) 

The operator A is then represented in Fourier space, i.e., 

I dk .n 
A(q)= G A(k)e+, 

where A(k) is the Fourier transform of the operator. Equation (2.6) can then be written as 

(A)=Z-‘I dqc pc(clc) I 

J-...J $iqT)e’Gx~) exp{-S[4,+i(4llhI 
S***S ~(7)exp{-SCq,+q(7)llfL} ' 

(2.7) 

(2.9) 

where the notation for the action functional “S[q,+q( T)]” 
is understood to denote path fluctuations around a fixed cen- 
troid at qc. At this point, a cumulant average of the term 
exp[ ikij( T)] in the brackets in Eq. (2.9) can be performed 
over the path fluctuation variable 4( 7). This average, for the 
present purposes, is truncated at second order, but it need not 
be. [The variable G(T) is also assumed to have symmetric 
fluctuations about the centroid.] After performing the inverse 
Fourier transformation by integrating over k in Eq. (2.7), one 
arrives at the final result of the analysis which is given by 

(A)=&(qc)),c~ (2.10) 

where the effective centroid-dependent quasiclassical func- 
tion A, is given by 

Ac(qc) = (A(qc+G))c,(o,9,) 

=& 4 A(qc+G) I 
(2.11) 

(A(WW) = 

(T = 7’ - 5”) 

B[q(~“)l 

FIG. 3. A schematic diagram depicting the calculation of the imaginary time 
correlation function (A( 7)8(O)) in the discretized Feynman path integral 
picture. The operators A [q( r’)] and B[q( <‘)I can be evaluated at any two 
points on the path integral ring subject to the constraint OS 7= 7’- 7l’~ft@ 
The centroid variable, which is off the ring, is also shown. 

Here, the variable i is obviously a Gaussian variable with a 
width factor C,(O,q,). The effective classical function 
A,(q,) depends on the centroid variable qc and, in order to 
calculate the canonical average (A), is averaged in a 
classical-like fashion in Eq. (2.10) with the normalized cen- 
troid density pc(qc)/Z. The above result has been obtained 
previously by one of us’l from the somewhat more special- 
ized perspective of the Feynmann-Hibbs theory.7 If one has 
an analytic or numerical representation of the centroid den- 
sity pc(qc), a numerical quadrature strategy can be employed 
for evaluating Eq. (2.10) for cases in which the integral in 
Eq. (2.11) cannot be solved analytically. For multidimen- 
sional systems, a better numerical strategy might be to use a 
Monte Carlo procedure in which Eqs. (2.10) and (2.11) 
are combined in a single MC calculation based on the 
importance sampling function W44J = Pc(4c) 
Xexp[ - 42/2C,(0,q,)], assuming again that an analytical 
expression for C,(O,q,) has been obtained (cf. Sec. III C 
below). 

It should be noted that the effective centroid-based rep- 
resentation of the operatorA in Eq. (2.11), while useful in the 
context of the equilibrium averages, also occupies a central 
role in a semiclassical algorithm to calculate quantum time 
correlation functions in the centroid perspective.13 

C. General imaginary time correlation functions 

A general imaginary time correlation function for 
coordinate-dependent operators is defined as3 

C,,(~)=(A[q(7)1B[q(O)l) 

=z-' f f . . . %(dA[d41B[dO)l 

xexp{--S[qWllhI, (2.12) 

where the operators A [q( T)] and B[q(O)] can be evaluated 
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anywhere along the path such that 06rs2i/3. This situation 
is depicted in Fig. 3 and, again, the challenge is to reformu- 
late these rules so that the centroid density, which is off the 
ring, can be utilized. In order to do this, one can use the fact 

that the correlation function C,,( 7) can always be expressed 
in terms of the centroid-constrained propagator c,(~,qJ in 
Eq. (2.1) at the level of a second-order cumulant approxima- 
tion. To proceed, one first rewrites Eq. (2.12) as 

CAB( 7) = 
I 1 

dq, 
S+ ~(~)~(q,-qo>A[q(~)lB[q(O)lexp[-S[q(~)llfLl 

s dqc Pc(clc) 
The operators A and B are next written in Fourier space as in Eq. (2.8). Then, Eq. (2.12) becomes 

(2.13) 

dkz . 
g A(kl)&Wexp[i(kl +k&,l 

x S**-S ~(~)exp{iCk~li(~)+k,~(0)l)exp(-S[q,+~(~)llh) 
1 S---S ~(7)exp(-SCq,+q(7)l/n} I , (2.14) 

The centroid-constrained average in the bracket can be performed as a cumulant expansion which, for the present purpose, is 
truncated at second order. The result for the bracketed term is then given by 

(expEik14( 4 + jMOJl),=exp[ - f [k:C,(O,q,) + 2klW,(~,q,) +k~C,(O,q,)l I . (2.15) 

In order to perform the integrals over k, and k, in Eq. 
(2.14), a coordinate rotation is first performed such that 

and new centroid-constrained position correlation functions 
are defined as 

(2.17) 

After performing the integrals in Fourier space, one ar- 
rives at the final result for the imaginary time correlation 
function in the centroid density picture 

CAE( T, = (pAE( T&c))p, 7 (2.18) 

where the centroid-dependent imaginary time-correlated op- 
erator product~AB(r,qc) is defined in the centroid density 
picture by the double-Gaussian average 

+2-1’2(q+-q-)l)~~,c;. (2.19) 

Here, q+ and q- are Gaussian variables with width factors 
C: ( 7;q,) and C’, (T,q,), respectively. 

The double Gaussian average form for the centroid- 
constrained operator product in Eq. (2.19) is somewhat com- 
plicated to implement, particularly if the operators A or B are 
not polynomials or exponentials in the variable q. It should 
also be noted that if the cumulant expansion is carried out 
beyond quadratic order in Eq. (2.15), an even more compli- 
cated analytical form of Eq. (2.19) would be obtained. How- 
ever, it is also important to remember that in an analytical 
calculation of the imaginary time correlation function 
CAB(r) in the conventional path integral formalism, both the 

I 

diagonal and off-diagonal elements of the thermal density 
matrix are required. The formalism embodied in Eq. (2.18) 
requires only an accurate value of the centroid density 
pc(qc) and the centroid-constrained representation of the 
correlated operator product in Eq. (2.19), albeit the latter 
expression is somewhat complicated. As in the case of op- 
erator averages (Sec. II B), a numerical quadrature procedure 
can be employed if Eq. (2.19) cannot be evaluated analyti- 
cally. In the case of multidimensional systems, a combined 
Monte Carlo procedure for evaluating Eq. (2.18) simulta- 
neously with Eq. (2.19) can be developed using importance 
sampling based on the centroid density and the double- 
Gaussian distribution in Eqs. (2.18) and (2.19), respectively, 
if C,(O,q,) is also known analytically. 

III. DIAGRAMMATIC THEORY 

A. Exact diagrammatic representation of the centrold 
density 

Because of its central importance in the centroid-based 
theory, a systematic study is presented in this section of the 
perturbation expansion, or equivalently, the exact cumulant 
expansion of the centroid density. This expansion has a one- 
to-one correspondence with a diagrammatic representation. It 
will be shown that diagrammatic classifications and topologi- 
cal reductions result in the renormalization of the vertices 
and lines, and thus lead to a set of self-consistent equations. 
Previous results based on an optimized harmonic reference 
potentialg-” can be readily derived and thus systematically 
improved. Furthermore, the small parameter in the present 
theory is fi2, so the underlying classical limit of the theory is 
the exact classical equilibrium density function for any given 
system. 

In general, it will be assumed that the Euclidean action 
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of the reference system takes a quadratic form in the path 
fluctuations variable (i(r) such that 

(3.1) 

where CY,, defines the reference centroid-constrained propa- 
gator [cf. Eq. (2.1)] such that 

a( 7) = C a,eeinn7, 
n+o 

and CQ=O due to the centroid constraint. ‘Iwo well-known 
quadratic models are the free-particle reference system, 
where a,'=m/3i2$ and the linear harmonic oscillator 
(LHO) reference system, where ai ’ = mp( fIIz + w2), with w 
being the intrinsic LHO frequency. 

With a solvable reference system in hand, one can ex- 
press the centroid density as 

p,(q,)=p,,,,Aq,)(exp(-PAV)),,,f, 
- 

(3.3) 

where AV is the imaginary time average 

&l hp 
I 

,“” d7 AV[q,+i(r)] (3.4) 

and AV= V- Vref is the deviation of the real potential Vfrom 
the reference potential Vref. The symbol (* * .)c,ref in Eq. (3.3) 
denotes a centroid-constrained path integral average in the 
reference system. As the centroid-constrained propagator of 
the reference potential (Y(T) uniquely defines an infinite set of 
Gaussian averages over the Fourier modes {G,}, one can 
equivalently denote the centroid-constrained average in the 
reference system with the symbol (se*),. 

The first step in the development of a diagrammatic 
theory for the centroid density is to Taylor expand the aver- 
age in Eq. (3.3), i.e., 

(exp( - PEV)), 

R 
XA$‘(k,q,)eik3’) , I) n 

fl 

) a 

(3.5) 

where A?(k,q,) is the spatial Fourier transformation of dif- 
, ference potential AV(q,+.q) with respect to the variable 4. It 

should be noted that the subscript n in Eq. (3.5) differs from 
that used in the Fourier expansion in Eq. (3.2). Since <(pi) in 
the reference system is a Gaussian variable with zero mean at 
any imaginary time rj, the cumulant expansion of a linear 
combination of those variables truncates at second order, giv- 
ing 

= exp i 5 kfa(O)+k 5, kikja( Ti- Tj) 7 
I=1 If1 

(3.6) 

in which a(r) is defined by Eq. (3.2). There is no linear term 
in Eq. (3.6) because (4) = 0 according to the definition of the 
variable G(r) being the path fluctuation with respect to the 
centroid. This property greatly simplifies the cumulant ex- 
pansion and diagrammatic analysis. By substituting the Tay- 
lor expansion of Eq. (3.6) into Eq. (3.5), and transforming 
back into coordinate space, one arrives at the result 

(exp( - PAV)Kf= 2 i g 
n=O m=O 

l::, \ 

; g a(O)d” 
r=l 

1" 
+z +, a(ri-rjJdidj AV, 

I 
(3.7a) 

I+1 

where 

Adi Wq,+~(~r)ll+o 
l=l 

(3.7b) 

and the partial derivative symbol is defined to be 
~?~-Jl&j( ri) applied at time slice rj. The imaginary time 
integrals in Eq. (3.7a) are understood to be integrations over 
any and all imaginary time slices which appear in the expan- 
sion. After the derivatives are taken, the potential difference 
terms are evaluated at the position of the centroid qc . 

In principle, the above perturbation series gives a com- 
plete description of the quantum mechanical centoid density 
and the expansion can be carried out to any order according 
to the accuracy required for a specific problem. However, it 
is conceivable that, in higher orders, the expansion terms 
become increasingly complicated and a low-order calcula- 
tion will not provide a reasonable physical picture of a quan- 
tum system. Therefore, a diagrammatic representation of Eq. 
(3.7) is introduced here which provides a powerful way to 
analyze the perturbation expression and to visualize the ana- 
lytical expressions. 

A careful examination of the series in Eq. (3.7) reveals 
the basic composition of the expansion terms. That is, all 
diagrams consist of two basic elements, vertices and lines. 
Each vertex is designated by a Euclidean time 7i to be inte- 
grated from 7i=O to ri= hfi, and the potential, or its deriva- 
tives, are evaluated at the position of the centroid. Each line 
connecting two vertices at times 7i and rj is designated as a 
reference centroid-constrained propagator a( 7i - 7j). When- 
ever a line connects to a vertex, a spatial derivative is applied 
to the potential so that the order of the derivative is equal to 
the number of lines that connect to the vertex. A negative 
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sign is assigned to each vertex. The value of a diagram is the 
product of all the composing elements which multiply a sym- 
metry coefficient determined by the topological structure of 
the diagram. 

With above definitions in hand, one can establish a one- 
to-one correspondence between each distinct perturbation 
term and each diagram. The expansion series of Eq. (3.7) is 
then the collection of all topologically different diagrams and 
all possible combinations. The following diagrams are some 
examples: 

(exp( -SC), 
0 

=1+0+ +o 
0 

“,+Q+Qo +o+-. 

(3.8) 

A well-known graph theorem16 states that an infinite se- 
ries of all possible topologically different diagrams and their 
combinations is equal to the exponential of all possible to- 
pologically different connected diagrams. For a connected 
diagram, any two vertices are linked to each other by at least 
one line or one path of lines. Therefore, one can to express 
the centroid density as 

pc(qc) = ~c,reftqckwCi3~ 

where .7 is given by 

(3.9) 

.* 0 + Q + m+ 0 +... . 
(3.10) 

The underlying diagrammatic techniques employed here 
are not new, having appeared many times in the literature 
such as in the Meyer cluster expansion17 and the Feynman 
diagrams.‘* However, in order to apply these techniques to a 
specific problem, one must search for the proper diagram- 
matic representation. In the case of the centroid density, the 
present approach is not restricted by the functional form of 
the potential and proves to be particularly advantageous in 
analytical studies. It should also be noted that the topological 
reduction performed in the present case is equivalent to a 
diagrammatic representation of the cumulant expansion. The 
cumulant expansion itself becomes tedious in high orders 
and there are a large number of cancellations in the present 
approach not given explicitly in the cumulant relations. It 
therefore proves to be much easier to keep track of higher 
order terms in the diagrammic representation. 

As pointed out earlier, all the diagrams of Yare closed 
due to the fact that (yg=O (i.e., the centroid constraint). For 
example, there exists no class of diagrams D with single 
lines hanging outside of the main diagram, such as 

y= M + 0-Q + e +... . 

(3.11) 

These kinds of diagrams contribute, e.g., to the expansion for 
the usual quantum density (41 exp( - /3H) 1 q). This feature of 

Eq. (3.10) simplifies the analysis enormously and makes the 
centroid density perspective a preferable choice for the ana- 
lytical calculation of equilibrium averages and imaginary 
time correlation functions in quantum statistical mechanics. 
It remains to be seen, however, whether the centroid perspec- 
tive can offer any numerical advantage over standard nu- 
merical path integral approaches for calculating equilibrium 
properties.3 This issue will be explored in future research. 

B. Renormalization of the vertices 

The diagrammatic representation of the centroid density 
enhances our intuition and capability in an approximate 
evaluation of the full perturbation series. Instead of a tedious 
term-by-term calculation, one can focus on a class of dia- 
grams with the same topological characteristics. The sum of 
such a class often results in a compact analytical expression 
which includes infinite terms in the summation. A very use- 
ful technique in such cases is the renormalization of 
diagrams.lg This procedure is first applied here to the verti- 
ces to obtain an effective potential and thereby an accurate 
approximation to the centroid density. 

The first set of diagrams to be studied contain only one 
vertex, i.e., 

0 =o + 
Q 

+ m +... 

1 
=-/?AV-2 /3AVC2)a(0)& /3Af14)a2(0)+..., 

(3.12) 

where the superscripts “(i)” denote the order of the spatial 
derivative and all terms A V and A$‘) are evaluated at the 
centroid position qc . The different terms in Eq. (3.12) corre- 
spond to the corrections due to local quantum path fluctua- 
tions 4( 7). Summing up the series, one obtains a closed form 
expression for Eq. (3.12) in the form of a Gaussian average 
over a single variable with a Gaussian width factor a(O) such 
that 

(Av)a=J&Tj I dcj AV(q,++)exp[-q2/2a(0)]. 

(3.13) 

This form of the effective potential incorporates to a certain 
degree quantum effects and the anharmonicity of the poten- 
tial. In the case of the free particle reference system, the 
centroid-constrained propagator is given by 

a,(r)=: [3(1-2~)~-1], (3.14) 

where u = r/n/3 and X2= fi2P/12m. Substitution of this ex- 
pression for a(O) in Eq. (3.13), and using fact that for the 
free particle reference system Vlef=O, one recovers the well- 
known Feynman-Hibbs quasiclassical theory7 for the 
centroid-dependent effective classical potential from Eq. 
(3.13). Of course, any general quadratic reference system for 
the propagator LX(~) can be used in the present theory and 
will lead to greater accuracy (see below). 

The next order diagram to be considered is a ring dia- 
gram with two vertices and two lines, i.e., 
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0 =& (*P)fBdTl~o%-2 a2( 71- 72). 

(3.15) 

Equation (3.20) now defines an effective potential which has 
the same form as Eq. (3.13), except the Gaussian width fac- 
tor is now given by 

As an example, substituting Eq. (3.14) into Eq. (3.15) 
yields the first correction term to the Feynman-Hibbs 
approximation 

dr2 4J71- 72) 

(3.16) 

which is exactly what one would expect from the cumulant 
expansion [see, e.g., Eq. (2.28) in Ref. lo]. Again, any qua- 
dratic reference propagator o(r) could be used here instead 
of the free particle one. 

A further correction is to add local quantum fluctuations 
to the diagrams with two vertices, the latter diagrams being 
given by 

(3.17) 

This procedure is equivalent to replacing the potential A V in 
Eq. (3.15) with the effective potential (AV), of Eq. (3.13). 
This correction can be introduced in the same fashion for all 
higher-order diagrams. However, before doing this, it is ad- 
vantageous to include more diagrams in the vertex correc- 
tions. The set of local fluctuation diagrams [Eq. (3.12)] is 
only the simplest correction. One can extend the analysis to 
incorporate all ring corrections, given by 

@ = Q + Q +‘6f + ... 

=-&v(Z) I ohpdq a(q) 

dr2 

xa(q-~~)cx(~~-q)(AV(~))~+~~~ . (3.18) 

By expressing the convolution integrals in the powers of a,, , 
one can obtain a simple closed form for the ring diagrams 
given by The seemingly complicated equations given above actu- 

ally have a relatively simple interpretation. By substituting 
the centroid-constrained propagator for the LHO into Eq. 
(3.24), and using a general LHO frequency w such that 
AV(q,+q)=V(q,+ij)-$zw2cj2 and a,1=mp(i2~+w2), 
the renormalized LHO frequency (I, can be specified from the 
definition 

d2 
1 

AV= -@AV, 

where $9 should be understood as an operator. Furthermore, 
one can include diagrams with multiple rings hanging on the 
same vertex which leads symbolically to 

e = 0 + q + -, +... 

=-p( 1+9++&,9~+~~jAV. (3.20) 
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m6P=(P)(qc+cj))~ (3.25) 

The value of the renormalized LHO frequency is determined 
from the solution to the above transcendental equation, 
where the renormalized Gaussian width factor in Eqs. (3.24) 
and (3.25) is now given by 

a)=C 
nfO 1 +/3(L;2))aan ' 

This is a particularly useful form of the equation for the 
effective potential because it involves only the second de- 
rivative of the potential averaged about the centroid using the 
unoptimized reference propagator width factor a. 

As has already been suggested, AV in Eq. (3.21) can be 
replaced by an effective potential difference AV. The proce- 
dure here is called the renormalization. Analytically, the 
renormalized element appears as an unknown variable to be 
solved from self-consistent equations which relate the given 
unrenormalized quantities to the renormalized ones. Usually, 
it is straightforward to discover such a relationship by ob- 
serving the topology of diagrams. As a result of the renor- 
malization of the vertices, one arrives at the expression for 
the renormalized potential difference A‘lr by replacing the 
Gaussian width factor a in the averaging in the right-hand 
side of Eq. (3.21) by the effective width factor 6. Note that 
this equation must now be solved self-consistently. The re- 
sulting expression for AV is given by 

AV=(AV(q,+q))h, (3.22) 

with 

-PAP- l (3.23) 

and (--*)G denotes a Gaussian average with a width factor 

Ly=C an 

n#O 1+/3Af12)a,, * 
(3.24) 

The notation “Af12)” means that the second derivative of 
AV(q,+ 4) is taken with respect to 4. Renormalized quanti- 
ties will be denoted hereafter with an overbar. Diagrammati- 
cally, a black vertex stands for a renormalized potential [cf. 
Eq. (3.23)], while a bold line stands for a renormalized 
centroid-constrained propagator. Again, the underlying logic 
of renormalization is not new and has been used many times 
in, e.g., Green’s function theory, mean field theory, etc. To 
our knowledge, it has not been applied in a general way to 
treat the centroid density. A multidimensional generalization 
is discussed in the Appendix. 
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6=C 
1 
2 

n+rJ Mw,+~2) . 
(3.26) f.(b)=( f)“-‘ld du[sinb&2J cosh(l-2u)b,2-lr, 

(3.32) 
It should be noted that these equations are to be solved for 
each position of the centroid qc, The frequency in Eq. (3.25) 
is exactly the effective frequency obtained for the optimized 
LHO reference system using the path integral centroid den- 
sity version of the Gibbs-Bogoliubov variational method.’ 
Originally suggested by Feymnan8.9 as an approximate route 
to the quantum partition function, this variational theory has 
also been employed in the evaluation of quantum rate 
constants*2(‘) and to improve the convergence of path inte- 
gral Monte Carlo simulations.” The present derivation, how- 
ever, does not depend on a specific reference system as long 
as it is quadratic. In addition, Eqs. (3.25) and (3.26) are not 
derived from any variational principle, but are instead the 
result of diagram renormalization. More importantly, the dia- 
grammatic analysis provides a way to systematically im- 
prove on the variational theory. 

which becomes a constant in the limit of large b. More cor- 
rections can be included by adding more diagrams. This pro- 
cedure will be discussed in the next subsection in the context 
of renormalization of the centroid-con&rained propagator 
(i.e., the lines). 

C. Renormalization of the lines 

In order to improve on the optimized LHO theory for the 
effective centroid potential, one needs to consider the contri- 
bution from higher order diagrams. One way to accomplish 
this is to diagrammatically impose the condition 
(Av’*‘),= 0 [cf. Eqs. (3.25) and (3.26)]. This condition 
specifies that all vertices linked to two lines will vanish, i.e., 

The other essential element of the diagrams is the line 
which represents the centroid-constrained propagator. The 
renormalization of vertices leads to the evaluation of the ef- 
fective potential while the renormalization of lines leads to 
the evaluation of the Euclidean centroid-constrained propa- 
gator defined in Eq. (2.1). This propagator can be obtained 
formally from Eq. (2.5) combined with Eq. (3.9). 

Following the diagrammatic analysis of Sec. II, all the 
leading diagrams for C,( T,qc) are obtained from Eq. (3.10), 
I.e., 

cct r,qc) = - +-+- +... 

+---a-+ a +... 

+ .-e-- + * + .” . - =o (3.27) 

Consequently, all diagrams containing this element will van- 
ish, giving the result a=&. The leading corrections in the 
centroid density expansion in Eq. (3.10) are then given by 

e =& P(AV’3’)% i/*‘dT a3( 7) . . 0 

and 

e =A ,O(Afl”‘)~ i-“dT a4( 7) 0 

(3.28) 

(3.29) 

where the centroid-constrained propagator for the LHO is 
given by 

Obviously, the above collection of diagrams represents 
all possible contributions to the centroid-constrained correla- 
tion function. In fact, all the decorations attached to the in- 
termediate vertices can be removed if the vertex is renormal- 
ized. This operation can be achieved by replacing all the 
A V’s by A v’s, giving 

A~=(Av(qc+q))c,(o,4.), (3.34) 

where the Gaussian width factor is now C,(O,q,) instead of 
40). In the case of fully renormalized vertices, C,(O,q,) is 
equivalent to the renormalized reference centroid- 
constrained propagator & of Eq. (3.24). These two notations 
will not be distinguished hereafter. 

The simplest set of lines is the chain collection, given by 

1 
‘( ” = rn- 

b/2 
sinh( b/2) 

cosh(l-2u)b/2-1 , 
I 

(3.30) 

in which b = tip& and u = r/2ip. These two terms provide an 
improvement on the optimized harmonic reference centroid 
density approximation, giving 

Here, f,(b) is a dimensionless coefficient defined by 

- = - + - + --t--+- + . * . , (3.35) 

where the bold line stands for a renormalized line. This dia- 
gram can also be expressed in the compact form 

- = ----+- (3.36) 

which leads to the following self-consistent equation: 

i iy,=a,-~Ah2~iina,. (3.37) 

By noting that &= Z,,o&,, , it is seen that Eqs. (3.34) and 

(3.31) 
(3.37) are the same as the optimized LHO reference equa- 
tions in Eqs. (3.22) and (3.24) derived in the last section. In 
fact, differentiating a ring collection of the generating func- 
tional always produces a chain collection in the correlation 
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diagrams.16 The multidimensional generalization of the 
above equation is described in the Appendix, 

The next stage in the analysis is to include all the hvo- 
line-loop corrections in the renormalization given by 

=$ a,;Y,z(PA@3))2-$ a,&,(~)2(pAfi3))2pA~4) 

+ *** . (3.38) 

Because of the imaginary time convolutions in the expres- 
sion, the analytical expressions for the above diagrams are 
written in Fourier space, where 2 is the contribution from 
the two-line loop given by 

z= 2 &n-m&m. (3.39) 
m+O 

Since 2 is a convolution expression, the self-consistent 
equation for Er is not local in Fourier space and therefore we 
can no longer seek a single effective frequency solution as in 
Eq. (2.15). As a matter of fact, this analysis shows that the 
optimized LHO reference system reaches the maximum ca- 
pacity for a quadratic potential to approximate an anhar- 
manic potential and any further corrections are beyond an 
effective frequency description. 

The infinite summation in Eq. (4.10) can be carried out 
to yield a closed equation given by 

&,=a,-a,,&,~A~2)+ 
(l/2)a,&n&fiA?3))2 

1+(1/2)ai(pA.3(4)) ’ 
(3.40) 

which can be solved numerically. It is important to incorpo- 
rate infinite terms corresponding to the same class of dia- 
grams, so that at low temperature and high aharmonicity, the 
self-consistent equation will not diverge. 

Further corrections to the propagator diagrams will con- 
sist of multiline loops and their combinations. However, the 
expressions become increasingly complicated and we have 
not been able to reach a general result for the infinite sum- 
mation of all the multiline loops. Apart from the simple mul- 
tiline loops, there also exist a large number of irreducible 
diagrams that are not included in the above renormalization 
scheme. It may be possible that information from some of 
the lower-order diagrams could help in the construction of an 
accurate renormalization equation by means of a Pad6 ap- 
proximant or a continued fraction scheme. 

As shown in Sec. II, the centroid-constrained Euclidean 
correlation function is of central importance in studying 
equilibrium properties via the centroid density perspective. 
Even more importantly, its real-time counterpart is essential 
in describing the quantum dynamics of a system (cf. the 
companion papeG and Ref. 14). The real time and imagi- 
nary time correlation functions are of course related by the 
analytical continuation ~-+it, so the detailed study of the 
Euclidean centroid-constrained correlation function pre- 
sented in this section helps us to understand the real time 
behavior of quantum systems. 

TABLE I. The average value (4’) for the potential in Eq. (4.1) evaluated 
with the centroid-based formalism in Eq. (2.18) and with various levels of 
approximation for the centroid density.’ The exact results were obtained by 
path integral Monte Carlo. 

P (q2L.,ci (q2)1 (s2)2 4 4 

5 1.378 1.361 1.371 1.3 0.5 
7 1.382 1.352 1.372 2.2 0.7 
9 1.384 1.344 1.372 2.9 0.9 

‘The results (q*), are based on the optimized LHO reference potential ap- 
proximation for the centroid density in Eqs. (3.22)-(3.26), while (q2)* are 
the results including the higher-order corrections (3.28) and (3.29). The 
quantities S, and 4 are the percentage errors of (q*), and (q*)*, respec- 
tively, compared with the numerically exact result. 

IV. APPLICATIONS 

In this section, the results of calculations which probe 
the accuracy of the four main topics discussed in this paper 
are presented. These topics are: (1) the centroid-based for- 
mulation for calculating equilibrium averages (Sec. II B); (2) 
the centroid-based formulation for calculating imaginary 
time correlation functions (Sec. II C); (3) the analytic dia- 
grammatic approach for the calculation of the centroid den- 
sity (Sec. III B); and (4) the analytic diagrammatic approach 
for calculating the imaginary time propagator (Sets. II A) 
and III C). 

For all of the above, the numerical calculations are based 
on a completely nonquadratic potential given by 

V(q)=q3+q4/2, (4.1) 

where the mass m and h are taken to be unity. The inverse 
temperature p is thus the same as the value as the dimen- 
sionless parameter phw. All of the analytical results on this 
application are compared with PIMC simulation results. To 
achieve good convergence, the path integral simulations em- 
ployed P = 100 discretizations (or “polymer” quasiparticles) 

3.5 , I 

s 
2 

u 

0.0 0.1 0.2 0.3 0.4 0.5 
U 

FIG. 4. A plot of the imaginary time correlation function (q2(7)q2(0)) for 
the nonquadratic potential described in Sec. IV [Eq. (4.1)]. The correlation 
function is plotted as a function of the dimensionless variable u = r/r?p with 
p=S. The solid circles show the numerically exact results, while the solid 
line is for the optimized LHO theory in Eqs. (3.22)-(3.26) with the 
centroid-based formulation of the correlation function in Eq. (2.18). 
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FIG. 5. A plot of the imaginary time correlation function (q3(7)q3(0)) for 
the nonquadratic potential described in Sec. IV [Eq. (4.1)]. The correlation 
function is plotted as a function of the dimensionless variable u = r/h/7 with 
/?=5. The solid circles show the numerically exact results, while the solid 
line is for the optimized LHO theory in Eqs. (3.22)-(3.26) with the 
centroid-based formulation of the correlation function in Eq. (2.18). 

and 10” MC passes. The number of beads moved on each 
trial was adjusted to yield an acceptance rate of 50%. 

In Table I, the values for the equilibrium average (4’) 
are tabulated for the potential in Eq. (4.1) as calculated by 
PIMC and by the centroid formulation in Eq. (2.10) with the 
optimized LHO approximation to the centroid density [cf. 
Eqs. (3.22)-(3.26)]. Also tabulated are the analytic results 
obtained using the optimized LHO theory with the higher- 
order corrections in Eqs. (3.28) and (3.29). The results are 
shown for various temperatures. Clearly, the centroid ap- 
proach is an accurate one. It should also be noted that these 
calculations represent a stringent test of the centroid formu- 
lation because the potential in Eq. (4.1) contains no intrinsic 
quadratic term. One consequence of this is that the optimized 
LHO approximation for (q2) actually gets progressively 
worse as the temperature is lowered, reflecting the essential 
nonquadratic character of the ground state. 

In Fig. 4, the imaginary time correlation function 
(q2(T)q2(0)) is plotted for a temperature of p=5 and as a 
function of the dimensionless variable u = r/tip. The solid 

TABLE II. Quantum correction factors* from Eq. (4.2) for the Eckart 
barrier! 

6 4.4 4.4 4.4 
8 15.0 17.0 17.0 

10 73.0 110.6 105.0 
12 514.0 1278.0 1240.0 

‘The quantum corrections r, are based on the optimized LHO reference 
potential approximation for the centroid density in Eqs. (3.22)-(3.26), 
while I’a are the results including the higher-order terms in Eqs. (3.31). The 
quantum correction rMC is the path integral Monte Carlo result reported in 
Ref. 12(a). 

b?he Eckart barrier potential is given by V(q) = V, sech’(q/ae) with the 
parameter values 2nV,,hi We= 12.0 and u= @iob in the present calcula- 
tions, and wb is the magnitude of the classical barrier frequency. 

0.4 , 

1 . 
0.2 0.3 

U 
0.5 

FIG. 6. A plot of the centroid-constrained correlation function Cc(T,qc) 
defined in Eq. (2.1) for the nonquadratic potential described in Sec. IV [Eq. 
(4.1)] The numerically exact results are shown by the solid circles. The 
correlation function obtained from the optimized LHO approximation in Eq. 
(3.37) is shown by the dashed line, while the solid line shows the results 
obtained by including the two-line-loop correction from Eq. (3.40). The 
correlation functions are plotted as a function of u = r/h/l and for /3= 10 and 
q,=o.o. 

circles depict the exact PIMC result, while the solid line is 
for the optimized LHO result along with the centroid-based 
formulation of the correlation function in Eq. (2.18). In Fig. 
5, similar results are shown for the correlation function 
(q3Wq3(‘W Ag ain, the centroid-based formalism is in 
very good agreement with the numerically exact result. 

Although the calculations described above provide an 
indirect test of the analytic expressions derived for the cen- 
troid density, it is desirable to provide a direct test. There- 
fore, the quantum correction factor for a Eckart barrier has 
been calculated and tabulated in Table II within the context 
of path integral quantum transition state theory.” In the con- 
text of that theory, the quantum correction factor F to the 
classical rate constant is given by 

(4.2) 

where pc and per are the centroid density and the classical 
density at the barrier top (q=q*), respectively. Since the 
centroid density is larger than the classical density at the 
barrier top, the quantum rate is enhanced by the correction 
factor F. In their paper, Voth et aLlzta) evaluated this factor 
for an Eckart barrier at different temperatures and found the 
difference between the numerical path integral results and 
the optimized LHO approximation for the centroid density 
increases as the temperature is lowered. Therefore, the 
higher-order analytic corrections in Eq. (3.31) become im- 
portant in the extreme quantum limit. As the Eckart barrier is 
an even potential, the cubic term in Eq. (3.31) vanishes at the 
barrier top and the leading correction is quartic. In Table II, 
the results are listed from the optimized LHO reference ap- 
proximation, from the optimized LHO approximation includ- 
ing the higher order corrections, and from the PIMC results. 
For the last two entries, the quartic correction seems to 
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FIG. 7. A plot of the imaginary time position correlation function C(r) in 
Eq. (2.3) for the nonquadratic potential described in Sec. IV [Eq. (4.1)]. The 
numerically exact results are shown by the solid circles. The correlation 
function obtained using the centroid-constrained optimized LHO approxi- 
mation in Eq. (3.37) is shown by the dashed line, while the solid line shows 
the results obtained by including the two-line-loop correction from Eq. 
(3.40). In the two latter cases, the correlation function C( 7) was obtained by 
averaging the appropriate analytical centroid-constrained correlation func- 
tion over the numerically determined centroid density. The results are plot- 
ted as a function of u = r/fip and for p=5. 

slightly overestimate the PIMC result, although in either 
case, the analytic theory is essentially exact to within the MC 
error (-5%) of the numerical results. 

A final set of calculations was designed to test the accu- 
racy of the analytic expressions for the centroid-constrained 
correlation function Cc(T,qc) [Eq. (2.1)], as well as the 
imaginary time position correlation function C( 7) obtained 
by averaging the centroid-constrained propagator over the 
coordinate space weighted by the centroid density. To dem- 
onstrate the effect of the higher-order correction terms in Eq. 
(3.40), the centroid-constrained propagator was first evalu- 
ated using the optimized LHO approximation in Eq. (3.37) as 
shown by the dashed line in Fig. 6 for p= 10 and qc = 0. The 
result obtained by including the two-line-loop correction in 
Eq. (3.40) is shown by the solid line, while the PIMC results 
are given by the solid circles. The results are again calculated 
as a function of ZJ = r/tip. Though the effective LHO ap- 
proximation provides a good approximation to the exact 
centroid-constrained correlation function, the correction 
from the two-line-loop diagram renormalization clearly im- 
proves the agreement with the numerical data. In fact, the 
latter theoretical prediction virtually coincides with the exact 
PIMC result. 

Figure 7 shows the imaginary time position correlation 
function C(7) for p=S. The effective frequency 0 was 
solved self-consistently from Eqs. (3.25) and (3.26) at each 
centroid position qc and then the centroid-contrained opti- 
mized LHO correlation function was averaged with the nu- 
merical centroid density. As seen from Fig. 7, good agree- 
ment was obtained with the numerical result. Even better 
agreement was obtained from Eq. (3.40) using the two-line- 
loop correction (solid curve). Again, the deviation from the 
exact result in either case is quite small. 
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V. CONCLUDING REMARKS 

In the present paper, the basic computational procedures 
of equilibrium statistical mechanics have been reformulated 
in order to cast the path integral centroid density into a role 
of the underlying statistical distribution in quantum statistical 
mechanics. The usual expressions for equilibrium averages 
and imaginary time correlation functions have been modified 
so that the final answer is obtained by averaging an effective 
centroid-dependent function over the centroid distribution. 
These effective functions involve, in the case of an operator 
average, a quasiclassical centroid-dependent function, or, in 
the case of an imaginary time correlation function, a quasi- 
classical operator product. In each case, the quasiclassical 
centroid-dependent quantity is formulated as a Gaussian av- 
eraged function “broadened” by the intrinsic quantum ther- 
mal width of the particle. 

In addition to the computational formalism for averages 
and correlation function, a formally exact diagrammatic per- 
turbation theory for the centroid density and related quanti- 
ties has been formulated and analyzed in some detail. The 
connection between different levels of diagrammatic summa- 
tion and renormalization in the perturbation theory and the 
Feynman-Hibbs7 or variational theories’-” for the centroid 
density have been identified, leading to a systematic analytic 
methodology for improving upon the latter two approaches. 
Correspondingly, specific correction factors have been de- 
rived and excellent agreement with numerical calculations 
obtained. 

The primary motivation for the development of the 
present formalism arises from the numerous appealing prop- 
erties of the centroid density such as its compelling analogy7 
with the classical Boltzmann density and the topological 
simplicity of its underlying diagrammatic representation. An- 
other motivation is the apparently central role occupied by 
the centroid density in the path integral quantum transition 
state theory’* for activated rate constants. These facts have 
led us to develop the more general perspective presented in 
the present paper. The companion paper13 explores the in- 
triguing role played by the centroid variable and centroid 
density in dynamical quantum time correlation functions.‘4 
Applications of the centroid-based formalism described in 
the present and companion papers will be the subject of fu- 
ture research. 
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APPENDIX: THE RENORMALIZED CENTROID- 
CONSTRAINED PROPAGATOR IN 
MULTIDIMENSIONAL SPACE 

It is first assumed that the reference centroid-constrained 
propagator [cf. Eq. (3.2)] for a multidimensional system is a 
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diagonal matrix, i.e., A(T) = cT~,~P,,( r), where the upper case 
letters here stand for matrices or vectors. Because there are 
mixed-index partial derivatives at the vertices, the multidi- 
mensional centroid-constrained propagator C,( T,qJ matrix 
[cf. Eq. (2.1)] is not necessarily diagonal. (Note here that qc 
is now the multidimensional centroid variable.) The first cor- 
rection to consider is the chain summation in Eq. (3.36), 
which gives rise to the optimized centroid-constrained corre- 
lation function matrix 

Cc(7;q,)=A-P((AD):(DC,)AV)cc, (Al) 

where D is the partial derivative vector D,= d, and A V is 
the scalar multidimensional potential difference. The nota- 
tion (*- -)c, here denotes a multidimensional Gaussian aver- 
age with width factors taken from the matrix of optimized 
C,(O,q,) values. Upon substituting the explicit form of A in 
Eq. (Al), one obtains the multidimensional matrix analog of 
Eq. (3.37) as 

1 
cc*“=m/3fl~+/3((D:D)AV)cc ’ 

which leads to the definition of the optimized frequency 
tensor 

ma;,,,= (d,d,V)c, . bw 

This is the same self-consistent equation obtained previously 
[see, e.g., Eq. (2.48) of Ref. lo]. The two-line-loop correc- 
tion in Eq. (3.38) is more complicated, but as long as one 
uses the tensor prescription, it is always possible to general- 
ize the one-dimensional equations to multidimensional 
space. 
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