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quantum networks to kinetic networks
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We apply a new formalism to derive the higher-order quantum kinetic expansion (QKE) for study-
ing dissipative dynamics in a general quantum network coupled with an arbitrary thermal bath. The
dynamics of system population is described by a time-convoluted kinetic equation, where the time-
nonlocal rate kernel is systematically expanded of the order of off-diagonal elements of the system
Hamiltonian. In the second order, the rate kernel recovers the expression of the noninteracting-blip
approximation method. The higher-order corrections in the rate kernel account for the effects of the
multi-site quantum coherence and the bath relaxation. In a quantum harmonic bath, the rate ker-
nels of different orders are analytically derived. As demonstrated by four examples, the higher-order
QKE can reliably predict quantum dissipative dynamics, comparing well with the hierarchic equa-
tion approach. More importantly, the higher-order rate kernels can distinguish and quantify distinct
nontrivial quantum coherent effects, such as long-range energy transfer from quantum tunneling and
quantum interference arising from the phase accumulation of interactions. © 2013 AIP Publishing
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. INTRODUCTION

Quantum dissipation plays a key role in understanding
quantum dynamic processes. The interaction between a quan-
tum system and its surrounding environment causes an ir-
reversible loss of the energy and coherence of the quan-
tum system. The relaxation and decoherence times are the
limiting factor of the quantum computation and quantum
information.! In the Caldeira-Leggett model, the change of
the dissipation strength can interpret quantum tunneling and
localization in macroscopic systems.>* For many years, the
solvent modulation in chemical reactions and quantum trans-
port processes have attracted a lot of attention.*> Incorpo-
rated with the description of the solvent reorganization, the
Marcus theory is able to explain essential features of electron
transfer.® In the recent two-dimensional (2D) electronic light
spectroscopy, long-lived quantum coherence and wavelike dy-
namics have been found in natural light-harvesting protein
complexes’ and organic conjugated polymers,® which also
triggers studies on the energy transfer optimization from the
dissipation induced by the protein environment.’~'> To under-
stand the nontrivial effect of quantum coherence in the energy
transfer, we need to study the underlying quantum dissipative
dynamics beyond the conventional Forster resonance energy
transfer (FRET) theory.'®

An accurate and reliable approach to compute quantum
dissipative dynamics is a long-lasting but difficult theoreti-
cal problem. A large number of methods have been devel-
oped under many different frameworks, such as the Nakajima-
Zwanzig projection operator,'”-'8 the Feynman-Vernon influ-
ence functional approach,' and quantum stochastic noises
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formulation.’>> The second-order perturbation methods,
such as Fermi’s golden rule rate, Redfield equation,”* general-
ized Bloch-Redfield equation,”?* and noninteracting-blip ap-
proximation (NIBA),? are derived in the limit of either a weak
or strong system-bath interaction. In the variational polaron
approach,” a self-consistent reference can partially improve
the prediction of the second-order perturbation. With a clas-
sical bath, the Haken-Strobl-Reineker (HSR) model?*% and
other quantum-classical mixed methods*’~3* describe dissipa-
tive dynamics at high temperatures. The dissipative dynamics
under a quantum harmonic bath can be evaluated by many
sophisticated methods, such as the semiclassical initial value
representation (SC-IVR),** the iterative linearized density
matrix (ILDM) propagation,® the quasi-adiabatic propagator
path integral (QUAPI),*® the path integral Monte Carlo,*”-38
etc. Despite their successes, these methods can be numeri-
cally expensive and become difficult for long-time dynamics.
If the time correlation of the harmonic bath can be expanded
as a sum of exponentially decaying functions, the hierarchy
equation approach can accurately predict quantum dissipa-
tive dynamics by expanding over auxiliary fields.>*** How-
ever, the hierarchy equation is numerically difficult for large-
scale systems and the bath with a long-tail correlation, and
converges slowly for strong system-bath interactions and low
temperatures.

Hopping kinetics of the Fermi’s golden rule rate is often
considered as a “classical” description of quantum dissipa-
tive dynamics, although the two-“site” quantum coherence is
included in the rate expression.!"-?° The interesting quantum
phenomena beyond the second-order hopping kinetics can be
attributed to nontrivial quantum effects of multi-“site” coher-
ence, e.g., long-range transfer (tunneling) and quantum inter-
ference. The temporal correlation of bath is also crucial in
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understanding the full quantum dynamics. The higher-order
bath relaxation effect is caused by the deviation from
the system-bath factorized reference state. In addition, the
second-order hopping kinetics cannot predict the detailed bal-
ance of quantum dynamics, i.e., the Boltzmann equilibrium
distribution including both the system and the bath.*** The
comparison of the second-order hopping kinetics and the full
quantum dynamics in our previous paper'' has revealed the
integrated behavior of the above effects, together with the
flux network analysis. To distinguish and quantify nontrivial
quantum effects, we need a systematic expansion procedure
to calculate every higher-order correction beyond the second-
order hopping kinetics, which is almost impossible in many
sophisticated theoretical methods discussed above. Following
the stationary approximation for the coherent term, the kinetic
mapping of quantum dynamics allows us to identify the multi-
site quantum coherence term by term in the HSR model.”
However, the theoretical method for a general quantum bath
is still missing.

To address the above concerns, we will apply a general
non-Markovian quantum kinetic equation, where the time-
nonlocal rate kernel is obtained by a systematic expansion ap-
proach. This higher-order quantum kinetic expansion (QKE)
method presents a rigorous mapping from a quantum net-
work to a kinetic network, which helps us to identify non-
trivial quantum effects and bath relaxation beyond the tradi-
tional classical description. In addition, the higher-order QKE
is expected to serve as a numerically reliable method to cal-
culate the population dynamics. For simplicity, we focus on
a product state between the system and the bath at zero time,
and assume that quantum system is initially prepared in the
population subspace without quantum coherence. This initial
incoherent assumption is acceptable for an initially localized
(quasi-) particle in the quantum transport process, e.g., an ex-
citon after absorbing incoherent sunlight in a natural light-
harvesting protein complex.* Accordingly, the bath induced
fluctuation is assumed on the diagonal elements of the system
Hamiltonian. Since the system is not defined in its eigenbasis
(the system Hamiltonian is not diagonal), the diagonal fluctu-
ation can still lead to both relaxation and decoherence. As we
discussed, many theoretical approaches require the presump-
tion of the harmonic bath, which is often considered as a good
approximation under many circumstances. In complex envi-
ronments such as a protein backbone, anharmonicity however
could be relevant even in a fast energy transfer process. Here,
the higher-order QKE is free of the harmonic bath presump-
tion, although the additional numerical implementation is re-
quired in the anharmonic bath.

An essential part of our theory is the systematic expan-
sion of time-nonlocal kinetic rate kernels. For the two-site
system, the bath relaxation effect was calculated in elec-
tron transfer following a term-by-term comparison in inte-
grated population between microscopic expansion of quan-
tum dynamics and a formally exact non-Markovian kinetic
equation.*® Here we will extend this procedure to a multi-site
system. Although some of the higher-order corrections have
been studied in the past,*’~! the higher-order QKE in this pa-
per provides a systematic formalism of obtaining the general
expression of the time-nonlocal rate kernels and unifies the
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bath relaxation and the multi-site coherence under the same
framework for a multi-site quantum network.

The paper is organized as follows: In Sec. I, we will inte-
grate the time evolution of quantum coherence and project the
Liouville equation to be a closed dynamic equation of system
population. In Sec. III, we will develop the non-Markovian
higher-order quantum kinetic expansion method. The time-
nonlocal kinetic rate kernel is generalized from the simplest
second-order, i.e., the NIBA expression, to an arbitrary kth
order. The time correlation function formalism in the Hilbert
space provides rigorous expressions of rate kernels in an arbi-
trary bath. In Sec. IV, we will focus on the harmonic bath and
apply the displacement operator and the cumulant expansion
to derive the analytical expressions of rate kernels. In Sec. V,
the higher-order QKE will be applied to four model systems
for its reliability. In addition to its numerical accuracy, we will
identify the bath-induced slow-down in the quantum transport
rate, and two nontrivial quantum coherent effects, quantum
tunneling and quantum phase interference. In Sec. VI, we will
conclude and discuss the higher-order QKE method.

Il. POPULATION DYNAMICS PROJECTED
FROM THE LIOUVILLE EQUATION

For an arbitrary open quantum network, the total Hamil-
tonian is written as H = Hg + Hp + Hgg, where Hg and Hp
denote the bare system Hamiltonian and the bath Hamilto-
nian, respectively. The interaction between the system and
the bath is described by Hgg. The bare system Hamiltonian
Hjy is defined in its N-dimensional (N-D) Hilbert space. In
the single-excitation manifold of a Frenkel exciton system,
the nth basis of the Hilbert space, |n) = |0,..., 1, 0,---),
represents a combination of one excitation state at the nth
local chromophore site and the ground state at all the other
chromophore sites.* The total Hamiltonian H can be also ex-
panded in the N-D system Hilbert space using |n)|b) = |0,
bis--+3 1, by 0, bn-H; --+), where |b,) = |by1, bua, .. ., bnM,l>
is the complete basis set of M, (— oco) bath modes surround-
ing |n). Here we consider a bath-induced fluctuation, Hgg.,
= Zb,b, Hspy.pn.p |b) (P, over each diagonal element (g,) of
Hjy. The fluctuation over off-diagonal elements (J,,,) of Hy is
not included in our current model; this approximation is often
applied in the study of energy and charge transfer.*> The total
Hamiltonian is given as

H =" Hyln)(n|+ Y Jualm)nl, (1)
n m#n

where H, = ¢, + Hp + Hgp,, is implicitly a quantum operator
of bath.

The time evolution of the total density matrix p(¢) for
the system-bath Hamiltonian is governed by the Liouville
equation, p = —iLp, where £ =[H,...] is the Liouville
superoperator. The Planck constant 7% is treated as a unit
throughout this paper. With respect to the system basis {|n)},
we divide p into two sets: population pp = {p,,} and coher-
ence pc = { Pmn(m) } - Bach element, p,,, or p,,,, is a quantum
operator of bath and implicitly includes information of the
entangled system and bath, i.e., p,, = Zb’b, Pn.bn.br |DY (P
and p,,, = Zb,b, POm.bn.b |D) (D], In this paper, we will derive
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our theory using both Hilbert and Liouville frameworks. To
distinguish notations in these two frameworks, we will use
“state” to specify a density state (population and coherence)
in the Liouville space, unless otherwise explained. The wave-
function basis of the Hilbert space will be referred as “site,”
consistent with the single-excitation manifold in the multi-site
exciton network. The original Liouville equation is divided
into two coupled equations,

pp = —iLppp — iLpcpc, (2a)

pc = —iLcpc — iLcppp, (2b)

where the two subscripts P and C denote population and co-
herence of the system, respectively. The total Liouville super-
operator is expressed in a block matrix form,

L L
. P Lec) 3)
Lcer Lc

Next the coherence vector is integrated to yield

pc(t) = Uc(t)pc(0)
i / i / 180,40, Uc(T) Lepop()), ()
0 0

where Uc(t) = exp(—iLct) is the time evolution matrix of
coherence in the Liouville space. For simplicity, we assume
zero initial coherence, pc(0) = 0, so that the first term
on the right hand side of Eq. (4) vanishes. More compli-
cated initial conditions will be left in the future. In the two-
“site” system, L¢ and Uc are diagonal in the system ba-
sis, i.e., EC;|2.21 =0 and UC;]Q,Q] = 0. In the N(>2)-“site”
systems, L¢ is no longer diagonal, but diagonal and off-
diagonal elements might be distinguished by their orders of
magnitude, e.g., |Lcumn,mnl 3> 1LComnmm'mml, in the strong
damping limit. We express L¢ as a sum of the diagonal
matrix Eg)mn!m,n, = LComn.mnOm' .mOn' n, and the remaining
term, £ = Lc — Eg)). As shown in Sec. III D, the sepa-
ration of /.Zg)) and L',(é) is equivalent to the separation of H,
and J,,,.

Expanding the coherence vector p¢ in the order of Eg)
and substituting the result into Eq. (2a), we obtain a closed
time evolution equation of population,

pp(t) = —iLppp(t) + Y / (=) Locll: (ve)
k=2

X ES)UéO)(kal) e £8>ué0)(72)£CPPP(TI)- )

Equation (5) shows that a population flow always passes in-
termediate quantum coherence states in the Liouville space
of density states. In the two-site system, population and co-
herence states appear subsequently, since the direct intercon-
version is not allowed between the two coherence states, pi;
and p2; (Lci221 = 0).? In the N(>2)-site system, the direct
interconversion between different coherence states is allowed
by a nonzero “interaction,” Eg), from the multi-site quantum
coherence. The interactions responsible for the transition be-
tween coherence and population states are Lpc and Lcp. All
the three terms, (E(é), Lpc, Lcp), arise from the off-diagonal
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elements J,,, of the bare system Hamiltonian, and will be
counted together in the expansion order of the final quantum
kinetic equation. For conciseness, we introduce the kth order
time-nonlocal population transition matrix,

WO = (i) LpclhD (@) LU (1) - - LOUS () L,
(6)

where k is the total number of L terms, including
(C(é),ﬁpc,ﬁcp). Using the complete transition matrix,
W=W? 4+ WO 4L WH ... we formally rewrite the
time evolution equation of population as

Pp(t) = —iLppp(t) — W x pp, @)

where the symbol * represents a general time convolution
form,

t
X*xY :/ d'L'] "'d‘L’,‘dT,’H "'d'L'jX(T], ...,T,‘)
0

X Y(Ti.H, ey Tj)ar|+---+r,-+r,-+1+-~+rj,t’ (8)

for two arbitrary functions X(z,..., t;) and ¥(7;41,..., 7j) of
time. Equation (7) is equivalent to the projection of the orig-
inal Liouville equation onto the population subspace without
averaging over bath. A practical computation of the reduced
system population dynamics relies on further simplifications
introduced in Sec. III.

lll. NON-MARKOVIAN HIGHER-ORDER QUANTUM
KINETIC EQUATION

A. Local Born approximation and multi-site
gquantum coherence

In microscopic quantum systems, a useful physical ob-
servation is the time scale separation between different
degrees of freedom. In this subsection, we assume that each
local bath b, can instantaneously relax to its Boltzmann equi-
librium density state, p,' = exp(—B8H,)/Tr,{exp(—B H,)}, at
any moment. Thus, the nth element of the transient to-
tal population vector is written in a product form, pp., ()
= P,(t)p,..* This locally fast bath (Born) approximation is
different from p() = ps(t)pzq and ,ozq x exp(—p Hp) in the
Redfield equation.>® The time scale separation in many real-
istic systems is not always satisfied, so that we will relax the
above local Born approximation in Sec. III B and systemati-
cally include the contribution of bath relaxation.

In this subsection, we discuss higher-order corrections of
system coherence, i.e., multi-site coherence,!!*2° under the lo-
cal Born approximation. After averaging over bath in Eq. (7),
the time evolution equation of the system population is given
by

P(t) = —Trp{IV? + WO 4 W& 4w p%) 4 P,
©)

where pzq is the vector of the equilibrium bath density state
at each local site, i.e., pzq = (pZ?, pZ?, ...)T. Here the super-
script T denotes matrix transpose, and the symbol » defines a
matrix product, (X x Y),,, = X, Yy, of a matrix X and a vector

Y. To be consistent, each local bath is in equilibrium initially,
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i.e., ppn(0) = P,(0)p, , which belongs to the class-B prepa-
ration in Ref. 52.

For conciseness, we introduce two quantum bath op-
erators, (X = Tr,{X, and X) = X % p,'}. Consequently, we
define the bath average, (X) = Try{X *pj'}, and the
projection onto the bath equilibrium density state,
Y= *pzq}Trb{. Equation (9) is simplified to a time-
convolution form, P(r) = —(W) x P. Compared to the
second-order truncation approaches such as Fermi’s golden
rule rate and NIBA, Eq. (9) systematically includes time-
nonlocal corrections of multi-site quantum coherence,
WS W® 1 resulted from direct interconversion of
coherence in the Liouville space.

B. Bath relaxation effect

Normally, the bath requires a characteristic time scale
to adjust to the system change and relax back to equilib-
rium. The resulting memory kernel can be crucial for long-
lived quantum coherence in light-harvesting systems’? and
solvent-modified electron transfer reactions.® Therefore, we
need a systematic and reliable way to include the contribution
of bath relaxation beyond the Born approximation. To com-
pute higher-order corrections from both quantum coherence
and bath relaxation, we extend an approach previously for the
two-site system*® to the general N-site system.

Integrating the time differential equation in Eq. (7), the
total population vector in a non-equilibrium bath is writ-
ten explicitly as a time-convolution form, pp(#) = Up(t)pp(0)
— Up x W * pp, where Up(?) is the time evolution matrix of
population, Up(t) = exp(—iLpt). For a product initial state,
ppn(0) = P,(0)p,", the bath average leads to the system pop-
ulation in the form of

P(t) = P(0) — [x(W®)%]P(0) — [(W)x] P(0)
+ (WP x Up x WD) — WINKPO0) + - -,
(10)
where the expansion order is the total number of the Liouville
superoperators, including Eg), Lypc, and Lcp. Similar to that
in Ref. 46, the notation of [*X*] defines a time convolution

with the unit function in both the first (1) and final () time
steps, i.e.,

t
[xXx] = / drdry - -- diX(‘L'z, N Tk,1)871+12+...+fk’t.
0
(11)

On the other hand, we can formally assign a time-
nonlocal kinetic equation,

P(t)=—K x P, (12)

to describe the time evolution of system population P, where
KC is the time-nonlocal quantum rate kernel. Similar to W,
the rate kernel K can be expanded as K = K@ + K£® + €&
+ .-+, in the order of the £ terms. The integration of Eq. (12)

J. Chem. Phys. 139, 044102 (2013)

then leads to
P(t) = P(0) — [xKP%]P(0) — [+KPx]P(0)
+ [*(K? « £P — KM PO)+--- . (13)

The term-by-term comparison between Eqgs. (10) and (13) de-
termines the explicit forms of the quantum rate kernels, e.g.,

K® = w®), (14a)
K® = w®), (14b)

K@ = W9y — (W2 (e)lp (1) WP (1))
— KP(t)KP ()] (14c)

C. Higher-order quantum rate kernels
and kinetic mapping

Extending the procedure in Subsection III B to higher
orders, we can straightforwardly derive the general form of
the kth rate kernel, given by

K&, .. )

— (W(k)) _ Z 8k1+k2’k[(w(k1)upw(k2)> _ ’C(kl)K(kZ)]
ki, kry>2

D Stk A VU WU W)
ki,ka k3 =2

. ,C(kl)lc(kz)lc(ks)] R (15)

The right hand side of Eq. (15) is terminated when each in-
dex k; of KLUVICK) ... [C%) ... in the final summation term
is equal to either 2 or 3. The summation terms subsequently
changes between positive and negative signs. The time vari-
able sequence follows the same ordering, {72,..., Tx— 1, Tk},
in each summation term. Comparing Eq. (15) with the expres-
sion in Sec. III A, we observe that in addition to the correc-
tion (W% from multi-site quantum coherence, the bath re-
laxation (system-bath entanglement) also influences quantum
dynamics due to the fluctuation around the reference density
state of the local Born approximation (the local equilibrium
density state of bath). For example, the second term of C*
can be simplified to (W(Z)SMPW(Z)), where §Up = Up—){
represents the deviation from the local Born approximation.
Compared to the expression in Ref. 47, Eq. (15) includes the
odd-k terms from the imaginary accumulated phases.

The non-Markovian quantum kinetic equation in Eq. (12)
together with kinetic rate kernels in Eqgs. (14) and (15) con-
structs a rigorous theoretical framework, i.e., the higher-order
QKE, to compute the time evolution of the system popula-
tion in a quantum network. The quantum dynamics of the
density matrix in the N>-D Liouville space is mapped onto
kinetics in the N-D population space. In the HSR model,
such kinetic mapping was developed based on the station-
ary approximation of coherence.? In our current formalism,
kinetic mapping is generalized for the arbitrary N-D quan-
tum network using the non-Makrovian rate kernel K. The
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leading-order expansion, K, is the same as the rate ker-
nel in the NIBA approach.® The time integration of ® re-
covers Fermi’s golden rule rate, which is often considered
as the “classical” description of kinetics. As corrections to
K®, higher-order rate kernels X* can identify and quan-
tify various nontrivial quantum coherent effects, which will
be demonstrated by examples in Sec. V.

D. Quantum kinetic rate kernels expressed
in Hilbert space

To compute quantum kinetic rate kernels, we express
the superoperators £ and U(¢) as functions of the Hamilto-
nian H and the time evolution operator U(f) in the Hilbert
space. Based on its definition, £LX = [H, X], the Liouville
superoperator £ is expanded to be, L, 1 X = Huk Xxi6n
— Xui Hi 8 1, where the positions of H,; and Hj, are usually
fixed since these two Hamiltonian elements can be quantum
operators of bath, the same for X. In this paper, we ignore the
fluctuation around off-diagonal Hamiltonian elements, which
leads to the following scalar forms:

LPC;m,kl = Jmkam,l - ~]Im8m,ks (163.)
Lepitm = JimOtm — ImiSkms (16b)
1

‘cg;)klll,kzlz = Jk1k2811,12 - lellakl,kz' (16¢)

The other two Liouville superoperators, Lp and LY, are
diagonal in the system basis. Each diagonal element of the
two corresponding time evolution matrices behaves as

Up ()X = U, (1)XU (1), (17a)
U (OX = Un(OXU, (1), (17b)

where U,(f) = exp (—iH,t) is the time evolution operator of
the local site basis |n, b) in the Hilbert space.

Next we substitute Egs. (16) and (17) into the expressions
of quantum kinetic rate kernels derived in Secs. III B and
III C. For example, the second-order kinetic rate kernel be-
comes

Koy = =21 "ReTr, {US (U (0P}, (18)

where “Re” denotes the real part of a complex variable and the
imaginary symbol “Im” will also be used in this paper. The
higher-order kinetic rate kernels can be similarly obtained. So
far our derivation is rigorous and general: The surrounding
bath can be an ensemble of harmonic or anharmonic oscilla-
tors with an arbitrary spectral density. The bath can alterna-
tively be defined by nuclear motion of molecules and atoms,
following quantum or a classical dynamics. The system-bath
coupling Hgp can follow any functional forms in addition to
the regular bilinear form. For complex baths, numerical simu-
lation will be required to calculate the rate kernel of different
orders.

J. Chem. Phys. 139, 044102 (2013)

IV. HIGHER-ORDER QUANTUM KINETIC EXPANSION
FOR A HARMONIC BATH

In the remainder of this paper, we will focus on a bilinear
coupling between the system and a harmonic (Boson) bath. In
this section, we will derive analytical expressions of rate ker-
nels required in the higher-order QKE. With the creation (a;")
and annihilation (a;) operators for the ith harmonic oscillator,
the diagonal Hamiltonian element for each system site |n) is
written as

H, = ¢, + Zwiaj—ai + Zwixni(ai +a), (19)
l 1

where the quantum zero-point energy w;/2 is ignored and the
coefficient x,; is the system-bath coupling strength reduced
by the frequency w; of the ith harmonic oscillator. Quan-
tum operators of different harmonic oscillators are assumed
to commute with each other, i.e., [ai”), a§+)] =0 for i #j.
Equation (19) implicitly assumes a universal environment for
all the system sites, and an alternative approach is to apply
an isolated environment for each site; these two methods can
lead to the same result.

A. Canonical transformation of the
displacement operator

The trace of time-dependent operators over the quan-
tum harmonic bath can be solved by many theoretical tech-
niques, e.g., the path-integral method.'*->? Here we will apply
a canonical transformation method together with the cumu-
lant expansion.

The displacement operator, G, = exp[) _, xm'(al-+ —a;)],
is used to diagonalize the bath-modulated diagonal Hamilto-
nian element, resulting in system-bath decomposition,

G,H,G,' =&, + Hp, (20)

where a shift appears in the diagonal energy, &, =&,
— ¥, wix?,. Although the same canonical operator is applied
in the polaron method, our general quantum kinetic equation
formalism does not rely on the concept of polaron, as stated in
Sec. III. The diagonalization in Eq. (20) allows us to factorize
the local time evolution operator into a product form,

Un(t) = Usn(DIG, ' Up(1)G], ey
and express the local bath equilibrium state operator as
oy =G, 0, G, (22)

where Us;,,(t) = exp(—i&,t) is the time evolution function
of the displaced system, and the other two operators, Up(f)
= exp (—iHpt) and ,o;q x exp(—pB Hp), only depend on bath.
In the Heisenberg picture, the time-dependent displacement
operator is then written as

Gu(t) = Uy (G, Up(t) = exp { > xuila (1) — ai(0)] ¢ ,

1

(23)

where @;(t) = a;e™' and a; (t) = af e’ are time-
dependent annihilation and creation operators, respectively.
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Substituting the above results into the second-order quantum
kinetic rate kernel K@, we arrive at

@
K (1)

_2| Jmn |2Reei5n’”ITr { Gnm (I)Gmn PZq }
= —2[Jyn "R (G ()Gn)p,  (24)

with G, = G, G;1 = exXp [Z, xmn,i(b,‘+ - bi)], Xmn,i = Xmi
— X, and &,, = &, — &,. The average, (X), = Tr;,{X,qu},
is taken over the decoupled bath. By extending this method
to higher-order expressions, we observe that all the quantum
kinetic rate kernels are fully determined by multi-time corre-
lation functions of the canonical operator G,,.

B. Time correlation functions of position
shift operator

In this subsection, we derive the general form of multi-
time correlation functions of G,,, in the harmonic bath.

Applying the quantum thermal average of the harmonic
bath, we obtain the analytical form of the two-time correlation
function,

(sznz(t)Gmln] (O)>b = exp{_gmznz.mlnl (t)}’ (25)

where

Emamnmm (1) = Y Xy i%momy i [(1 — cOs i) coth(Bw; /2)

L

+ i sin w;t]. (26)

In practice, we can assume a ‘“‘spatial” correlation, Xx,;X,;
= cmnxiz, between each pair of system sites, |m) and |n).
In the spin-boson model, a perfect negative correlation,
Con = 28m,n — 1, can be deduced from the Pauli matrix
0.3 In energy transfer systems, a zero spatial correlation,
Cmn = S8, 18 often used.* For a continuous bath, the spec-
tral density is defined by J(w) =), a)zxizé(a) — w;), and
Eq. (26) is simplified to gumyny.my.n, (&) = Smyny.myn, &(t) With

(27a)

Smni,man, — [C1n|m2 + Cnyny — Cmyny — sznl]a

g(t) = / b dwlJ(w)/o*][(1 — cos wt) coth(Bw/2)
0

+ isinwt]. (27b)

The above procedure can be straightforwardly extended to
multi-time correlation functions following the cumulant ex-
pansion of the Gaussian distributed noise. In general, the kth-
order time correlation function reads

(Gmknk(tk)Gmk,lnk,l (tk—l) e Gm;m (t1)>b

k-1

=eXpy— Zzgmjnj,m,/n,»/(tj_tj’) ) (28)

j=2 j'=1

where the index set, {my, m;_1,..., my}, is the permutation
of the original set of indices, {#n, nx—1, ..., n;}. An additional
constraint, m; = np, is needed to close the index loop, as re-
quired by taking the trace.

J. Chem. Phys. 139, 044102 (2013)

C. Three leading-order quantum rate kernels
in the harmonic bath

Through a tedious but straightforward derivation, we ob-
tain the analytical forms of quantum rate kernels in the har-
monic limit. Here we summarize and discuss the result of the
three leading order rate kernels, which will be applied to ex-
amples in Sec. V.

In the second-order quantum rate kernel, i.e., the NIBA
rate kernel, each off-diagonal element is written as

Ko iy(12) = =2 n "Re exp (—[ipn T2 + smn (221} .
(29)

With Sy = Spnmn = 2(1 — Cn). The diagonal element K2
is calculated by a summation, ) = — 3~ ) K. Follow-
ing the original equation of the total density matrix in Eq. (5),
we can interpret each term of the time convolution, K * P, as
a dynamic trajectory of density states in the Liouville space,
which determines the population evolution of system at the
next moment. The diagrammatic representation of dynamic
trajectories can clarify the effects of quantum coherence and
bath relaxation in each term of K. Figure 1(a) presents such
a dynamic transition, P, 0,5, —> Omn — PPy, accounted in
K2). Here different circles of density states (population and
coherence) are connected by arrowed lines, representing the
direction of the dynamic transition. Each arrowed line is as-
sociated with a coupling J, which is the interaction responsi-
ble for the transition from one density state to the next one.
Our diagrammatic representation resembles the pathways in
Ref. 47, but emphasizes the topology of the system Hamilto-
nian so that it is closer to kinetic mapping representation in
Ref. 29 and easier to extract different dynamic behaviors in
terms of expansion order. In addition, the factorized and un-
factorized population states are plotted together to highlight
the reduced kinetics in the population subspace.

The higher-order rate kernels are corrections to K2,
related to the multi-site quantum coherence and the bath

(b) @

FIG. 1. The diagrammatic representation of dynamic trajectories in the
second- (a) and third-order (b) quantum rate kernels. Each circle with a
single letter denotes a decoupled population state, e.g., P, (t)p;g; each cir-
cle with two letters denotes a system-bath entangled coherence state, e.g.,
Pmn(t) = D4 i Pmb,npy (D)|D)(H'|. The duration time, e.g., 71,2,..., spanned
at each density state (population or coherence) is given beneath its circle.
Each dashed line between a pair of single-letter circles represents a nonzero
interaction J between these two sites in Hg. Each directed curve represents
a transition from one density state to the subsequent one, where the induc-
ing interaction, e.g., J,,,, is provided. Each integrated diagram composed of
circles and connected curves describes one trajectory in the quantum rate ker-
nels: (a) a typical term in K@ of Eq. (29) and (b) a typical term in K@ of
Eq. (30).
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relaxation. In detail, the third-order rate kernel is given by

©)
K:mn(yrém)(‘l:27 13)
= 21m{ T I T €' Crm @2 Em @)= F5
— Jum Ik Jin [ei(g"* T2+ Emk ™) = F3 i 4 o k7248 T3)— F;_rmk] }
(30)

with F;:abc = sca,cbg(IZ) + sab,acg(:tt?a) + Sba,bcg(fz + 7:3)-
The summation over the extra system basis index k is implied
in Eq. (30), and the same notation is applied to the other
higher-order rate kernels. A typical dynamic transition,
P, pZ?n — Opm —> Pim —> P pZ?m, from the RHS of Eq. (30)
is plotted in Fig. 1(b). The nonzero prefactor, J,,Jnidim,
requires a closed interaction loop in the system, so that
K® does not appear in a 1D chain model under the nearest
neighbor interaction.*’->° For complex interactions, quantum
phase interference can be significant in K@, which will
be demonstrated by an example of the three-site system
in Sec. V D.

The fourth-order quantum rate kernel can be divided into
two terms depending on the time evolution operator in the
intermediate step: Icv(;)m due to the bath relaxation (5Up) and

IC(4)

ci)herence
KD is explicitly written as

due to the multi-site coherence (L{((:O) ). The first term

(4)
ICmn(#m);balh

— 2Re{ | Jun |2 [ Tk |2 [ei(gnm T2 +Ein T4) o~ [Smn 8 (T2)+smk 8 (= 4)]

x (E*SnmkmF& _ 1)
+ei(gnmT2+§mkf4)e*lSmng(Tz)+Smkg(T4)](esnm,kmF[ _ 1)]

+ |Jmn|2|Jnk|2[el(snktz+snmu)e—[snkg(rz)-i—smng(u)]

« (e—smknFZ; _ 1)
+ei(g‘nk72+§mnT4)e7[Snkg(72)+smng(7r4)] (esmn,knF::Q _ 1)]

_ |Jmk|2|Jkn|2[ei(énkfz+5mkT4)e—[Snkg(fz)ﬂmkg(—u)]

X (e“”"-’”kF;A — 1)

4 ei(g‘nk ©2+Em 14)67[3):1(8(72)+5mkg(f4)] (eSnk.mk Fyu

=Dl
3D

with Fj =g(+13) — g(n + ) — g(H(m + w) + g + 13
+ 74). As shown in Fig. 2, the dynamic transitions in ICS;{h can
be categorized into three types of diagrams: (a) The interac-
tion prefactor is |J,,,|*, and the dynamic transition is within
the sub-Liouville space of the starting and ending system
sites, |n) and |m). A typical transitions is P, 0, = Pun —> Pn
— Pmn —> PmpZ?m, where an intermediate population fluc-
tuation occurs at site n because the non-equilibrium
bath is entangled with the system. (b) The interaction
prefactor is |Jm,,|2|Jm(,,)k|2. In the dynamic transition, a
coherent state between |m)(|n)) and an additional site
|k)(#£|m), |n)) is involved but the intermediate popula-
tion fluctuation is still caused by the bath entangled with

J. Chem. Phys. 139, 044102 (2013)

FIG. 2. Three typical dynamic trajectories of density states in the fourth-
(4)

N ? bgilh;mn'
havior of the bath relaxation in Eq. (31) (see text). Here all the symbols,
circles, and lines have been explained explicitly in Fig. 1, except for the
dashed circles that represent system-bath entangled population states, e.g.,

Pun(®) = 3 1y Pub,iy (D1B) (D]

order quantum rate kernel, K Each diagram represents a distinct be-

site |m) or |n). A typical transition is P,pu — Pmn
— Pm = Pk — P p;’?m. (c) The interaction prefactor is
|| 2 1Tk, so that the intermediate population fluctuation is
caused by the bath entangled with the additional site |k). A
typical transition is P, 0y, —> Puk = Pk —> Pkm —> Pufyoy-
In the two-site system, only the first type of trajectories can
appear.*® In the N-site system, the bath relaxation can also in-
duce a long-range transport from the second and third types of
trajectories in Figs. 2(b) and 2(c), in addition to the multi-site
coherence.

The other fourth-order term, C
site coherence is explicitly given by

4)

coherence;mn(#m)

“4)

coherence’ due to the multi-

= 2Re{ Sk Tkt Jim T’ 7 En T Em T Fan

+ Jmk Jkl Jln Jnm [ei(é"’r2+g”k T3+Eum T4)_F$3;An1m

+ei(énlfz+§m:rs+§,,1kf4)fF4}:m,nk + ei(g”,r2+§”k13+§"’]‘r4)7FIC;knlm]

— Imk Jkn Jnl Jlm [ei(g"kzz+g"”’ T3+Eim ’4)—F4+c;nmu

4 (ei(énkerrélk T3+Em )= Ficqimm + ei(é”" r2+5“‘T3+é’"’<r4)*F@;lkm)] }!
(32)

with
F4iB;abcd = Sac,bcg(.CZ) + Sac,adg(:l:rii) + Sad,hdg(:tr4)
+ Sad,cs&(T2 + T3) + Sac,ap8(£ (13 + 14))

+ Spe,ba8(T2 + T3 + T4), (33a)

Féljé;abcd = Sas,bcg(TZ) + de,cag(:l:t3) + sbd,adg(:Ft4)
+ Sbd,pc8(T2 + T3) + Sda,ca8(E(T3 + 7))

+ Sda,be8(T2 + T3 + T4). (33b)

Notice that the site indices, m; and n;, for an arbitrary
oscillation frequency, &,,,,, cannot be identical in Eq. (32).
Based on the number of additional system sites in Kiﬁ)herence,
we identify two types of multi-site coherence behaviors in

Downloaded 23 Jul 2013 to 18.74.5.79. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



044102-8

J. Wu and J. Cao

‘s
.
‘ Jin*s
T .

FIG. 3. Four typical dynamic trajectories of density states in the fourth-order

quantum rate kernel, ]Cf:i)herence'mn' Each diagram represents a distinct behav-

ior of the multi-site quantum coherence in Eq. (32) (see text). Here all the
symbols, circles, and lines have been explained explicitly in Fig. 1.

the fourth order, and each type is further divided into two
transition structures. As shown in Figs. 3(a) and 3(b), the first
type of ICi?herence;mn involves one additional system site: (a)
The site k interacts with either the starting (|n)) or the end-
ing (Jm)) site, and the interaction prefactor is [/l | ugm|*-
One example dynamic transition is P, 0,0 —> Pun —> Ok
— Pun —> Pupyy,- (b) The site k) interacts with both |m) and
|n), and the interaction prefactor is |J,|?|/.x|>. One exam-
ple transition is P, o0, — otn —> Pmn —> Pmk —> Py AS

shown in Figs. 3(c) and 3(d), the second type of Kiﬁ)}lerence;mn

involves two additional system sites, |k) and |/), which inter-
act with both |m) and |n) and form a closed loop: (c) The
starting and ending sites, |m) and |n), are interacted. One ex-
ample transition is P, 0, = Pmn —> Pmk —> Pmi —> Py,
with the interaction prefactor J,,,J i JiJim- (d) The two sites,
|m) and |n), are not interacted. One example transition is
Popyy = Pin = Pun —> Pmi — Pupyey, ith the interaction
prefactor J,,JiuJimJ - The long-range quantum transport in
the linear chain system is explained by the first type of
trajectories,*’->" whereas the four-site quantum interference
is described by the second type of trajectories.

The physical spirit of the higher-order QKE in our paper
is to project the total dynamics into kinetics in the popula-
tion subspace, which has been applied in different approaches
previously.*47-3 Instead of using the projection operator
directly, we apply an indirect approach beginning with a
formal block matrix manipulation to remove the coherence
dynamics. After the standard expansion, we further use a
term-by-term comparison with a designed kinetic equation to
extract all the rate kernels. This approach originates from an
early paper for the spin-boson model.*® Besides, for the har-
monic bath, we introduce the concept of “spatial correlation”
to unify different models. For example, the spatial correlation,
CmCm+1 = —1, can recover a generalized spin-boson model,
while the §-correlation, ¢,,c, = 8,5, is consistent with the in-
dividual bath approximation for the energy transfer.

J. Chem. Phys. 139, 044102 (2013)

V. EXAMPLES OF THE HIGHER-ORDER QUANTUM
KINETIC EQUATION

In this section, we apply the higher-order QKE to four
model systems, examining its validity and reliability. To re-
duce the computation cost, we introduce the Markovian ap-
proximation in the rate kernels. The time evolution of the pop-
ulation of system is changed to P = —K P, where K = K®
+ K® 4 K® 4 ... is the effective rate matrix defined by the
time integration of the rate kernel,

oo k
K®© — / l‘[dr,./dk)(zz, T3, ..., T (34)
0

i=2

The second-order effective rate, K®, recovers Fermi’s golden
rule rate. The Markovian approximation ignores the short-
time quantum oscillation but can reliably describe the overall
population dynamics.

A. Kinetic mapping in the Haken-Strobl-Reineker
model

The first example is the HSR model,?62° where the
bath is a Gaussian classical white noise. Without bath relax-
ation terms, only multi-site quantum coherence contributes to
higher-order corrections, i.e., K®O = ov®y. A stationary co-
herence approximation was applied to derive kinetic mapping
of the HSR model.”” Here we will demonstrate that higher-
order QKE leads to the exactly same result.

The spectral density of white noise, J(w) = I'Bw/2r,
together with the high-temperature approximation,
coth(Bw/2) ~ 2/Bw, yields the time correlation func-
tion, g(f) = ['|¢|/2, where the imaginary part is omitted
under the consideration of the classical noise. Without spatial
correlation, ¢, = d&,.,, the second-order kinetic rate (i.e.,
Fermi’s golden rule rate) is obtained as

2an
r2, +&,’

mn

Ko = Ko = =’ (35)
which is the same as that derived in Ref. 29.

All the higher-order corrections can be straightforwardly
calculated by substituting the linear function of g(¢) into ex-
pressions of K®. To demonstrate the validity, we examine the
closed-looped three-site model. Following Egs. (30) and (34),
the third-order correction from site 2 to site 1 is given by

JizJndor | JizInda | Jizdnda }
IEEY [l [l |7
(36)

KY = —ZIrn{

where [, = Dy + 18 is the complex dephasing rate.
Equation (36) is identical to the result derived in Ref. 29, and
the same conclusion is applied to all the other HSR systems.

B. The bath relaxation effect in a two-site system

The second example is a two-site system in a quantum
bath (see Fig. 4(a)). This model is widely applied in the study
of quantum transport and quantum phase transition. Without
the coherence-coherence transition (Eg) = 0), all the terms
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FIG. 4. The schematic Hamiltonian diagrams of the three example quantum
networks studied in Sec. V: (a) the two-site system, (b) the bridged three-site
system, and (c) the closed-looped three-site system. Here each circle with a
number represents a “site” (basis) of the system. Each dashed line denotes a
nonzero site-site coupling J,,,. The height of each circle denotes the relative
energy &, at each site. The closed-looped three-site system in (c) actually
forms a triangle network geometrically.

with W*>2) disappear and higher-order corrections only arise
from the bath relaxation effect, differing from the pure multi-
site coherence effect in the HSR model. In Ref. 46, The bath
relaxation effect in the spin-boson model has been studied
following the short-time asymptotic expression of g(f). We
will extend the calculation to the donor-acceptor pair with the
zero spatial correlation, ¢, = 8,,,. To compare with the exact
quantum dynamics, we consider a quantum bath described by
the Debye spectral density, which can be alternatively solved
by the hierarchy equation.®*3
The Debye spectral density is given by

2
J(w) = O(w) <;)

where ®(w) is the Heaviside step function of w, A is the reor-
ganization energy, and wp is the Debye frequency. The inverse
of wp represents the characteristic time scale of bath relax-
ation, and the quantum coherence can be largely preserved as
wp decreases. To reduce the computation cost in the hierar-
chy equation, the high-temperature approximation is applied
to the time correlation function, resulting in

&, (37)
w? + w3,

21 ——— , Y
gy~ —— [Itl - —} + iSign(HA————,
Bwp wp wp

(38)

where Sign(#) is the sign function of ¢. In the short-time limit
(|lt| = 0), g(r) asymptotically follows g(f) ~ A* /B + iAt,
which is applied in the study of electron transfer.*>" In the
long-time limit (|#| — o0), the asymptotic time dependence
becomes g(f) ~ 2A|t|//Bwp + iSign(f)\/wp, which resembles
the result in the HSR model. To be consistent, the high tem-
perature approximation is also used in our higher-order QKE
approach.

The parameters of our numerical calculation, &),
= 100 cm™!, a)Bl =100 fs, and T = 300 K, are taken
from Ref. 41. Two different site-site couplings, Ji» = 20 and
100 cm™!, are chosen to test the reliability of the higher-order
QKE. The results of the effective forward rate (k4. p) from

J. Chem. Phys. 139, 044102 (2013)
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FIG. 5. The effective forward rate (k4p) from the donor to the acceptor in
the two-site system (Fig. 4(a)) calculated using the higher-order QKE and the
hierarchy equation. The detailed parameters are provided in Sec. V B. Among
them, the site-site coupling is different in the two panels: J = 20 cm™! in
(a) andJ = 100 cm™~! in (b). The dashed line denotes the Forster rate (i.e., the
second-order rate of QKE). Both the dot-dashed and the solid lines include
the fourth-order correction of bath relaxation, whereas the solid lines include
the additional Pade approximation (see text). As a comparison, the data from
the hierarchy equation are plotted as the solid dots.

the donor to the acceptor from the higher-order QKE and
the hierarchy equation are plotted in Fig. 5. Here, the effec-
tive rate is defined based on the time integration over a non-
Markovian kinetic equation, representing the overall transfer
behavior even though the detailed population evolution can
be oscillatory with time. For the small site-site coupling (J
= 20 cm™'), with the change of the reorganization energy
A, a difference up to <40% can be resolved between k. p
calculated from the hierarchy equation and from the second-
order kinetic rate k% (i.e., the Forster rate). As a comparison,
kaep ~ k@ + k¥ after the leading order correction k™ con-
verges to the result of the hierarchy equation. With the Pade
approximation,*®*’ we apply the partial resummation tech-
nique, kyp ~ [kP]/[k® — k™). This improved prediction
agrees perfectly with the result of hierarchy equation for an
arbitrary A. To further demonstrate that the higher-order QKE
is not limited in the regime of small site-site coupling, we
test a much larger value, Jj, = 100 cm™!, where the trans-
portation does not follow the simple hopping picture and the
Forster rate k2 can be three times larger than the exact result.
Although k™ causes an unphysical overcorrection to k¥, the
prediction after the Pade approximation compares very well
with the result of the hierarchy equation in the whole regime
of X, especially in both coherent (A < 20 cm~') and incoher-
ent limits (A ~ 1000 cm~!). By combining the higher-order
QKE method with the Pade approximation, the higher-order
QKE can thus improve the theoretical prediction of quantum
dissipative dynamics with a tolerable increased computation
cost.

C. Long-range energy transfer in a three-site
bridge system

In one model Hamiltonian of the seven-site Fenna-
Matthews-Olson (FMO) protein complex,” '+3:54 the first en-
ergy transfer pathway (sites 1 — 2 — 3) carries a barrier
crossing event at site 2, and sites 1 and 3 are weakly cou-
pled to each due to their long distance. In classical kinetics,
such a pathway is hindered by the barrier crossing from site
1 to site 2, becoming less favorable compared to the alterna-
tive downhill pathway, 6 — (5, 7) — 4 — 3. However, our
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previous quantum-classical comparison'! has showed that the
first pathway can dominate even at the room temperature
(T = 300 K) when the electronic excitation is initialized at site
1. The adjustment of the energy transfer pathway is mainly
caused by the direct energy transfer from site 1 to site 3
through multi-site quantum coherence.

To demonstrate the long-range energy transfer phe-
nomenon in a simple but transparent manner, we select the
sub-system of the first energy transfer path in our seven-site
FMO model. We further set zero dipole-dipole coupling be-
tween site 1 and site 3 (see Fig. 4(b)) to neglect the irrelevant
third-order correction K® but focus on the leading-order cor-
rections: the multi-site quantum coherence K éiﬂlmnce and the
bath relaxation Ké:t)h. Following our previous papers,”!! the
Hamiltonian of our three-site system is given by

280 —106 O
Hg=| —106 420 28 |cm™'. (39)
0 28 0

The Debye bath with the physiological condition is consid-
ered: L = 35 cm™!, wgl =50 fs, and T = 300 K, together
with the zero spatial correlation, ¢,,, = 8-

The population dynamics predicted by the higher-order
QKE are plotted in Fig. 6(a), together with the result of the
hierarchy equation. We find that in the second order, the quan-
tum kinetic equation using the Forster rate is unable to re-
liably predict both the short-time quantum oscillations and
the long-time kinetics. Following the Pade approximation, the
fourth-order corrections Kézt)h and K gimnoe are included in
the rate matrix. With these leading-order corrections, the pre-
diction of the higher-order QKE is significantly improved,
compared with that of the hierarchy equation. To avoid the
overcorrection of these two terms, the Pade approximation is
used for each correction term in our calculation. The overall
higher-order corrections can be extracted by the comparison
between the second-order equation and the exact solutions,
e.g., the hierarchy equation'' and the path integral Monte

e oo K2
- - )
K+ Ky,
@, g «
K+ Ky + K,
—eo— hierarchy equati
oo o
™ = aves o oo

Population
Population

20 0.0 0.1 0.2 0.3 0.4

FIG. 6. The population dynamics for the three-site bridge model (Fig. 4(b))
with the Hamiltonian in Eq. (39) calculated by the higher-order QKE with
three different rate matrices and by the hierarchy equation, respectively. The
time evolution over (a) 2 ps and (b) 0.4 ps. The bath parameters are provided
in Sec. V C. From the top to the bottom, three distinct sets of curves repre-
sent the time evolution of P (), P»(t), and P3(¢). Here the dotted lines are the
results from K@ ; the dashed lines are the results from K@ + K, @ . and the

bath”
solid lines are results from K@ + Kf:l)h + K C(iilerence. The Pade approxima-

tion is applied to all the fourth-order corrections. As a comparison, the results
of the hierarchy equation are plotted in the solid lines highlighted by the solid
dots.

J. Chem. Phys. 139, 044102 (2013)

Carlo.” The term-by-term expansion in the QKE can system-
atically distinguish the detailed contributions from different
higher-order corrections. One advantage of the kinetic expan-
sion is the possibility to treat large quantum networks without
exponential scaling. As shown in Fig. 6(b), we find that Kéifh
can quantitatively describe the profile of slow-down (<400 fs)
in the time evolution of populations at sites 1 and 2, although
the exact quantum dynamics behaves as an under-damped
oscillator. Further improvement requires the non-Markovian
form of the time-nonlocal rate kernel K. Our comparison also
determines that the bath relaxation does not affect the long-
time dynamics (>400 fs), possibly due to the fact that the
bath relaxation time (50 fs) is still much shorter than the over-
all energy transfer time (~ ps). The more relevant multi-site
coherence correction K (Eil)lerence is shown to describe long-time
population dynamics in a quantitatively reliable way. We find
that population accumulation at the trap site 3 is doubled com-
pared to the prediction using the Forster rate in 2 ps. More
importantly, we observe a direct evidence of the long-range
energy transfer: The majority of the fast increase in P3(f)
after r > 200 fs arises from the decrease of P;(¢) instead of
P>(¢), which is consistent with the calculation of the flux net-
work in the seven-site FMO model.!' Overall, the nontriv-
ial quantum coherent effect and the bath relaxation effect are
identified and distinguished through Kéit)h and K%

coherence*

D. Quantum phase interference in a closed
three-site loop model

In addition to quantum tunneling, another unique and
nontrivial quantum effect is the interference of quantum
phases. In this subsection, we use a closed three-site loop
model as our last example (see Fig. 4(c)) to demonstrate
the quantum phase interference successfully predicted by the
higher-order QKE. The result of the classical white noise in
Eq. (36) is extended to the quantum Debye noise, and the
fourth-order corrections are also included as a comparison.

For simplicity, we consider a degenerate three-site sys-
tem with the following Hamiltonian:

0 Ji Jiz
He=|J5 0 Isl|. (40)
Jz Ji 0

All the site-site couplings are further assumed to be the same
in the amplitude, |J15| = /23| = /13| = 20 cm™~!. We assume
all the other couplings are real positive and check two phases
for the coupling between sites 1 and 3: (a) J;3 =20 cm™!, and
(b) J13 = 20i cm™!. The imaginary phase in the second case
might be generated by a coherent laser pulse. As shown in the
study of the HSR model,”” the quantum phase interference
can cause a significant difference in quantum dynamics, lead-
ing to the optimization of energy transfer with the variation of
quantum phase.

Here we apply the Debye spectral density (A = 50 cm™
and a)Bl =10 fs) together with a high temperature (T
= 300 K) approximation to model the bath. The initial sys-
tem is populated at site 1. Under this particular reorganiza-
tion (A = 2.5|J]), it is expected that the short-time quantum

1
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FIG. 7. The population dynamics for the closed-looped three-site model
(Fig. 4(c)) with the Hamiltonian in Eq. (40) calculated by the higher-order
QKE with rate matrices of three orders and by the hierarchy equation.
The bath parameters are provided in Sec. V D. The left panel (a) presents
the results of Ji3 = 20 cm~!; the right panel (b) presents the results of
J13 =20icm™'. In each panel, the time evolution curves are labeled by P 2, 3
for the three sites. For the higher-order QKE, the dotted lines are the results
from K®; the dashed lines are the results from K® + K®; and the solid lines
are results from K@ + K@ 4 K®_ The Pade approximation is applied to all
the higher-order corrections. As a comparison, the results of the hierarchy
equation are highlighted by symbols (circles, diamonds, and rectangles for
Py, Py, and P3, respectively).

oscillation is suppressed. However, the nontrivial interference
effect of quantum phase is still crucial for the incoherent
dynamics. The numerical results of population dynamics us-
ing the higher-order QKE and the hierarchy equation are plot-
ted in Fig. 7 for both conditions of Ji3. In the second-order,
Fermi’s golden rule rate cannot distinguish the phase of J3
and predicts the exactly same time evolution of population at
sites 2 and 3. As shown in Fig. 7, the higher-order QKE clar-
ifies the effect of quantum phase interference. Similarly, the
Pade approximation is applied to every higher-order correc-
tion term. For the real positive value of Jy3 in Fig. 7(a), K®
is nearly negligible and the dynamics of the sites 2 and 3 re-
mains degenerate, P»(f) = P5(¢), after including K® and K®
in the quantum kinetic equation. For the the imaginary value
of Ji3 in Fig. 7(b), the third-order correction, K®, causes
a significant change in dynamics: (1) the population trans-
fer out of the initial site 1 is accelerated; (2) the increase of
P5(%) is much faster than P,(#) in the short time regime; and
(3) a short-time uni-directional energy transfer, | — 3 — 2,
is determined. The above phenomena can be attributed to the
constructive interference for site 3 and the destructive inter-
ference for site 2. If site 3 is connected to a population sinker,
the imaginary coupling of J;3 can yield a higher energy trans-
fer efficiency, implying the optimization on quantum phase
accumulation.”” The fourth-order correction in this second
condition is much less relevant. In addition, the predictions
of the higher-order QKE agrees well with the results of the
hierarchy equation for both conditions, which again confirms
the reliability of our methodology.

VI. SUMMARY AND DISCUSSIONS
A. Summary

In this paper, we have applied a new formalism to derive
a higher-order QKE approach to study quantum dissipative
dynamics for a multi-“site” system. After the integration of
quantum coherence and the average over the local equilibrium

J. Chem. Phys. 139, 044102 (2013)

bath, we derived a closed non-Markovian quantum kinetic
equation to describe the time evolution of system popula-
tions. In this time-convolution equation, the kinetic rate kernel
IC is rigorously and systematically expanded in the order of
the site-site coupling J, i.e., off-diagonal elements of the sys-
tem Hamiltonian. The second-order rate kernel X® recovers
the result of the NIBA method, and its time integration gives
Fermi’s golden rule rate. The higher-order corrections, *>2,
include the contribution from the multi-site quantum coher-
ence (the direct coherence-coherence transition) and the bath
relaxation (the system-bath entangled population state). For a
harmonic bath, the analytical expression of the kinetic kernel
KC is obtained using the displacement operator and the Gaus-
sian cumulant expansion. Our higher-order QKE approach is
examined in four model systems to demonstrate its reliability.
In the HSR model, the higher-order QKE leads to the identical
kinetic mapping previously derived by the stationary approx-
imation of coherence.?” Under a quantum Debye noise, the
prediction of the higher-order QKE together with the Pade
approximation agrees very well with the exact result of the
hierarchy equation.

Compared to many other theoretical approaches of quan-
tum dissipative dynamics, the higher-order QKE can quan-
tify higher-order corrections to the second-order prediction,
i.e., the Fermi’s golden-rule expansion. For example, the bath
relaxation can slow down the direct transfer from donor to
acceptor, and the exact quantum transfer rate is consistently
smaller than the Forster rate (see Fig. 5). For the three-site
bridge model in Sec. V C, the higher-order QKE predicts
that the bath relaxation slows down the short-time dynam-
ics (<200 fs) whereas the multi-site coherence speeds up the
long-range transfer process afterwards (see Fig. 6). For the
closed three-site loop model in Sec. V D, the quantum inter-
ference described by K® breaks the symmetry in the “classi-
cally” incoherent dynamics (see Fig. 7). All these examples
have confirmed that our higher-order QKE can clarify dis-
tinct nontrivial effects of multi-site quantum coherence and
bath relaxation, which are crucial for understanding nontriv-
ial quantum effects.

The theoretical studies in this paper and our previous two
papers'-?? form a self-consistent methodology of quantum-
classical comparison and kinetic mapping for quantum dissi-
pative dynamics. Compared to kinetic mapping of the HSR
model in Ref. 29, the expansion technique in this paper has
been extended from a classically white noise to an arbitrary
quantum bath. As a result, the bath relaxation and the multi-
site coherence are unified in the same theoretical framework.
Consistent with the quantum-classical comparison in Ref. 11,
the long-range energy transfer is now quantified in the de-
tailed time evolution and isolated from the short-time bath re-
laxation. In principle, the higher-order QKE can be applied
to an arbitrary quantum dissipative dynamic system for the
investigation of the nontrivial quantum effects.

B. Discussions

The calculation of the four examples in this paper shows
the numerical accuracy from the higher-order QKE. Using the
hierarchy equation as the benchmark for the quantum Debye
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noise, the higher-order QKE can provide reliable, sometime
accurate, description for both the average transfer rate and the
detailed time evolution. The quantum dynamics of the N-site
system is described by the time evolution of the reduced den-
sity matrix in the N?-D Liouville space. The dimensionality
of the rate matrix for the hierarchy equation grows roughly
~N"+2 with the hierarchy expansion order 4 under the high-
temperature approximation for the Debye noise. On the other
hand, the rate kernel X in the higher-order QKE is always re-
stricted in the N-D population subspace. Although the compu-
tation time in our method increases with the expansion order
similarly, the Markovian approximation dramatically reduces
the cost by changing the time-nonlocal kernels into the av-
erage rate matrix. The Markovian higher-order QKE can pre-
dict the overall features of time evolution. In addition, the par-
tial re-summation technique based on the Pade approximation
further accelerates the convergence of the rate matrix K®. For
example, with a large site-site coupling (J1» = |€12]), the re-
summation of the leading-order correction, K“, has already
resulted in an almost quantitative prediction of the transfer
rate. Thus, the higher-order QKE promises the potential of
predicting the quantum dissipative dynamics with an accept-
able computational cost.

In the higher-order QKE, the quantum dynamic system
is defined as a general N-“site” network form. The so-called
“site” can be further generalized as any basis set of the system
Hilbert space. Thus, the higher-order QKE is not restricted in
energy transfer and electron transfer, but can be extended to
other quantum dynamic processes. The surrounding bath is
also defined generally in the higher-order QKE. Many sophis-
ticated deterministic or stochastic methods, such as the hier-
archy equation, the SC-IVR, the QUAPI, the polaron-based
methods, the path integral Monte Carlo, etc., are based on a
presumed harmonic bath, which is in general a good approx-
imation under many conditions. However, theoretical meth-
ods for the anharmonic environments is also highly required.
Since the expressions of the time-nonlocal rate kernels *) in
Egs. (14) and (15) are independent of the bath model, the for-
mulation in the Hilbert space, e.g., Eq. (24), can work as the
starting point of studying quantum dissipative dynamics in a
complicated environment. Numerical implementation will be
worth in the higher-order QKE along this direction.

Our current derivation needs an incoherent preparation
for the initial product state, which can be a strong assumption
considering the experimental designs, e.g., a coherent laser
pulse can generate different initial states. With an additional
expansion, the improvement of including the initial quantum
coherence can be derived in the future. Together, the time evo-
lution of quantum coherence needs to be derived after the
higher-order QKE. A more important question is about the
expansion parameter of the higher-order QKE, i.e., the site-
site coupling J,,,. The different site-site couplings are also
not necessarily on the same order of magnitude. To solve
this difficulty, we can introduce the sub-system concept and
construct the expansion based on the weak coupling between
sub-systems. For example, the multichromophore Forster res-
onance energy transfer (MC-FRET) rate theory®®>’ can serve
as the second-order prediction in the extended higher-order
QKE of multiple sub-systems instead of multiple sites. The

J. Chem. Phys. 139, 044102 (2013)

higher-order corrections then help reveal nontrivial quantum
effects beyond the MC-FRET result. Overall, the higher-order
QKE requires future improvements to solidify its construction
and extend its applications.
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