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The authors explore aging in a general semi-Markov process with arbitrary waiting time
distributions and discuss the role of trapping phenomenon in glasses in determining the waiting time
distributions. In certain limits, they obtain a two-time propagator for the fractional Fokker-Planck
equation through coordination, but one can generalize the construction to incorporate cutoffs in the
aging of the system, i.e., the interrupted aging. The construction allows the incorporation of cutoffs
in the aging of the system, and the exploration of signatures of aging effects in systems that
eventually achieve equilibrium. Cutoffs in aging effects are illustrated for interrupted fractional
diffusion in a harmonic potential and for the on-time probability of a quantum dot system. © 2006
American Institute of Physics. �DOI: 10.1063/1.2403874�

INTRODUCTION

Dispersive transport has been observed in experiments
as diverse as conduction in amorphous semiconductors, dif-
fusion in glasses and on surfaces, and motions in cells and
proteins.1–7 The general feature of dispersive transport is
complex nonexponential temporal relaxation, which can be
numerically fit with a power-law tail or a stretched exponen-
tial. Phenomenological dispersive transport models often in-
corporate the nonexponential relaxation into diffusion prob-
lems by replacing the exponential waiting time distribution
of traditional diffusion processes with a more complex wait-
ing time distribution through subordination, which results in
a continuous time random walk �CTRW� or the related frac-
tional Fokker-Planck equation �FFPE� for subdiffusion.8–10

The origin of the complex waiting time has be extensively
explored in glassy systems,11 and attributed to activation pro-
cesses with randomly distributed energy barriers.12–14 The
power-law waiting time distribution functions have also been
observed in quantum dots, proteins, and other biological sys-
tems. However, these systems appear to obey power-law sta-
tistics over several decades before achieving an equilibrium
state where the time correlation becomes stationary.15,16 Ex-
amples include quantum dot blinking experiments that show
a laser power dependent cutoff in the blinking statistics,15

and photon emission statistics in proteins, when complex
correlation function shows non-power-law long time
relaxation.16 Since aging would cause the system behavior to
change over time, additional processes that can truncate the
aging in the system must always be present. It is therefore
not surprising to see a cutoff in the power-law correlations
observed in experiments.15,16 To extend applications of FFPE
to real systems, where aging processes are interrupted, re-
quires us to develop a general description of trapping pro-
cesses and to examine signatures in aging measure-
ments.12–14,17

GENERAL TWO-TIME SEMI-MARKOV
CONSTRUCTION

A semi-Markov process is the most general description
of trapping models with complex waiting times. In a semi-
Markov process, the probability distributions of making a
transition from a state j to state i at a time t is given by the
matrix element Qij�t�dt with Qij�t��0 for t�0 and
�i�dtQij�t��1 for all j.8 If �i�dtQij�t��1 the particle may
stay at site i permanently, i.e., i is a trap. The single time
propagator for this process in the Laplace domain, t→s, is

Gij�s� =
1 − �kQki�s�

s
�I − Q�s��ij

−1, �1�

where I is the identity matrix and Q is the complete matrix
of Qij�s�. The �I−Q�s��ij

−1 is the Laplace transform of the
probability of jumping into the state i at time t given the
initial state at j and �1−�kQki�s�� /s is the probability of not
jumping out of the final state.8 In Eq. �1�, the hopping pro-
cess begins at t=0, so the beginning of the hopping process
is well defined, e.g., the temperature quenching time in glass
forming experiments. More generally, the measurement does
not begin at quenching time. In order to explore this sce-
nario, we examine a two-time propagator in double Laplace
space t1→s1 and t2→s2,8

Gijk�s1,s2�

=
1 − �lQli�s2�

s2

��m
�I − Q�s2��im

−1 �Qmj�s1� − Qmj�s2��
s2 − s1

��I − Q�s1�� jk
−1

+ �ij

���1 − �lQlj�s1�� � s1� − ��1 − �lQlj�s2�� � s2��
s2 − s1

��I − Q�s1�� jk
−1. �2�
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In the first term on the right hand side of the above equation,
�1−�lQli�s�� /s and �I−Q�s��−1 correspond to the same pro-
cesses in Eq. �1�, but �Qmj�s1�−Qmj�s2�� / �s2−s1� corre-
sponds to the jump that spans both time intervals t1 and t2. In
the second term, the coefficient before the matrix element
corresponds to failing to make a jump during the second time
interval.

A MICROSCOPIC TRAPPING PICTURE FOR Q„s…

A possible origin of Q�s� is the trapping process ob-
served in glassy systems.11,13,14 If the experiment monitors a
few labeled tracer particles in a glassy matrix, the tracers
spend most of their time trapped in cages formed by the
matrix and can only move when a trap rearranges through an
activation process. If the rearrangements are large enough,
we would not expect correlations between the trapping times
and/or displacements.13,14 The process described above vio-
lates the fluctuation dissipation theorem on short time scales
�high frequency�. The traps arrest the motions of the particles
so any force applied on time scales shorter than the trapping
time will not result in any response. For forces applied on
time scales longer than the trapping time and for length-
scales larger than the typical tracer particle displacement, the
fluctuation dissipation theory �FDT� is valid. The FDT vio-
lations of many CTRW processes come from making the
mean time larger than the observation time so that the FDT
never becomes valid.10

The trapping times would be site specific with no direc-
tional dependence, Qij�t�=Wij� j�t�. The matrix W controls
the directional aspects of the particle motions and can be
approximated as W	eLFP	t, where 	t is a small time step
and LFP can be a kinetic matrix or an operator, i.e.,

LFP
�x,t� = � · �D�x� � 
�x,t�� + � · �
�x,t� � V�x�� ,

with diffusion constant D�x� and potential V�x�. Bouchaud
and Georges13 and Mothus and Bouchaud14 introduced a
waiting time through an activated process with possibly site
specific random energy barriers, � j�t�=�dEj��t 
Ej�P�Ej�
with ��t 
Ej�	�0j

−1e−
Ej exp��0j
−1e−
Ejt� and � j0 is a weakly

temperature dependent prefactor.13,14 If the energy barriers
are exponentially distributed for each site P�Ej�=� je

−�jEj the
waiting time has an asymptotic power-law tail � j�t�
��0j

−1�� j /
���1+ �� j /
���t /�0j�−�1+�j/
�. The distribution of
barrier heights P�Ej� is phenomenologically based on ex-
treme value arguments, which are not easily justified due to
the sensitivity of the waiting time distribution to the nonuni-
versal tails of the barrier distribution.18

The sensitivity to the nonuniversal barrier height distri-
bution function suggests that the tail of the waiting time
distribution should be modified. Xia and Wolynes introduced
a cutoff in the free energy barriers of glasses because there
are competing processes resulting in a rearrangement with a
finite sized barrier height.12 We introduce a similar cutoff by
adding a competing pathway of fixed energy barrier height,
i.e., take the fastest times between an exponential process,
kje

−kjt and � j�t�. This approach is similar to the coupling
scheme of first order and power-law dynamics discussed
elsewhere.19,20 Having only two such pathways is a simplifi-

cation that follows if there are two possible classes of rear-
rangements to the system, � corresponding to a broad distri-
bution of energy barriers and ke−kt corresponding to a narrow
distribution of deep energy barriers. For the case of an expo-
nential process competing with power-law waiting time dis-
tribution, the interrupted waiting time is20

� j�t� = � j�t�e−kit + kje
−kjt�

t

�

� j���d� .

If � j =�, �0j =�0, and kj =k for all lattice sites, we can write
an equation for the time evolution of the distribution of en-
ergy barrier,13,14

�tP�E� = − �k + �0
−1e−
E�P�E�

+ �e−�E� dE��k + �0
−1e−
E��P�E�� . �3�

The high energy cutoff introduced by k creates a microscopic
equilibrium for the distribution of energy barriers and the
system achieves equilibrium in a finite amount of time, t
	k−1. The equilibrium distribution for barrier heights, �t
eq

=0 is 
eq�E�=��e−�E / �k+�0
−1e−
E�, where � is the normal-

ization. On these long time scales we expect the system to be
diffusive. For 
�� and k=0 we recover the trapping result
for a lack of equilibrium distribution.13 The system is micro-
scopically far away from equilibrium for time less than k−1

so the system is not in a linear regime for t�k−1 and short
time violations of the FDT should not be surprising. The
traps arrest the motions on these short time scales and the
system cannot respond, but the FDT becomes valid for time
scales longer than the trapping time �t�k−1�.

SINGLE TIME PROPAGATOR

In order to study the properties and effects of the modi-
fied waiting time distribution, we perform a Laplace trans-
form on the waiting time distribution,20

� j�s� = � j�s + kj� + kj
1 − � j�s + kj�

s + kj
. �4�

In long time limit, we approximate � j�s� with a Lévy distri-
bution, � j�s�=e−��js�� j, where � j =� j /
 is the power-law ex-
ponent of the original waiting time distribution and � j is a
constant that defines the tail amplitude. Equation �4� allows
us to write Q�s�=W��s� and

G�s� =
I − ��s�

s
· �I − W��s��−1. �5�

Substituting W=eLFP	t and taking the limit 	t, � j→0, such
that 	t /� j

�j→Dj
� lead to Green’s function for an anomalous

diffusion process competing with a first order process,

G�s� 	 �s − LFPD��s + k�1−��−1, �6�

where D��s+k�1−�=�ijDj
��s+kj�1−�j. If � j =� and Dj

�=D� are
the same for all sites, Green’s function becomes G�s�	�s
−D�LFP�s+k�1−��−1 with corresponding Green’s function
equation, sG−I=D�LFP�s+k�1−�G. Notice that LFP is ap-
plied to the interrupted fractional derivative, �s+k�1−� of
Green’s function, so spatial inhomogeneities in the interrup-
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tion rate k result in a change in the equilibrium population.
An extensively studied example of this effect on the

equilibrium is the quantum dot, which has two states, on and
off. The on time cutoff is experimental verified to be shorter
than the off time cutoff.15 If �on=�off=� the quantum dot
Green’s function is

GQD = 
s + Don
� �s + kon�1−� − Doff

� �s + koff�1−�

− Don
� �s + kon�1−� s + Doff

� �s + koff�1−��−1

�7�

and the equilibrium on population is pon�t→��
= �Doff

� koff
1−�� / �Doff

� koff
1−�+Don

� kon
1−��. The Don/off

� term plays the
role of determining the amplitude of the power-law tails ver-
sus the short time dynamics. When �=1 the intensity of the
quantum dot �QD� monotonically approaches equilibrium,
but for ��1, the QD can show an initial rise to an interme-
diate plateau before monotonic decay to equilibrium, as
shown in Fig. 1 for Don/off=1, �=1/2, kon

−1=100, and koff
−1

=10 000.15 The short time dynamics sufficiently scrambles
the on and off probabilities and leads to the transient steady
state, whereas the long time asymptotics cause the decay to
the equilibrium value. The transient steady state has been
observed in experiments and simulations.21

Unlike the QD example, if kj =k is the same for all j, the
interrupted fractional derivative commutes with LFP, and we
recover the equilibrium distribution of the normal diffusion
process as the equilibrium distribution of the interrupted pro-
cess. For kj =k, Green’s function in Eq. �5� can also be reex-
pressed as

G�s� =� d�

2�i

�s + k��−1

s�s + k��−1 + D�i�
GFP�− �� , �8�

where GFP���= �−i�+LFP�−1 is Green’s function for the nor-
mal Fokker-Planck equation. This expression is the standard
subordination result and can be rewritten in real time as8

G�t� = �
0

�

dt�g�t�,t�GFP�t�� �9�

where g�t� , t� is the inverse Laplace transform, s→ t, of

g�t�,t� = L−1��D��−1�s + k��−1e−s�s + k��−1�D��−1t�� .

The interrupted fractional Green function is simply an aver-
age of normal diffusion Fokker-Planck Green’s function over
a stochastic distribution for t� determined by g�t� , t�.

INTERRUPTED AGING AND THE TWO-TIME
PROPAGATOR

The single time propagator assumes that the trapping
process begins at t=0. More generally, the trapping process
will begin at an earlier time than the observation time. Start-
ing from Eq. �2� for the two-time semi-Markov propagator
and following the single time propagator derivation gives the
two-time propagator,

Gijk�s1,s2� =
1 − �i�s2�

s2
�
m

�I − W��s2��im
−1�Wmj�� j�s1�

− � j�s2��/�s2 − s1���I − W��s1�� jk
−1

+ �ij
���− � j�s1��/s1� − ��1 − � j�s2��/s2��

s2 − s1

��I − W��s1�� jk
−1. �10�

After performing the same limits as in Eq. �6�, we have

Gijk�s1,s2� 	 �s2 − LFPD��s2 + k�1−��ij
−1

�
�s2 + kj��j − �s1 + kj��j

s2 − s1
�s1 + kj�1−�j

��s1 − LFPD��s1 + k�1−�� jk
−1

+ �ij
�s1 + kj��j−1 − �s2 + kj��j−1

s2 − s1
�s1 + kj�1−�j

��s1 − LFPD��s1 + k�1−��−1. �11�

The �s−LFPD��s+k�1−�� terms are simply the single time
interrupted fractional diffusion Green’s functions. The
�s+k�1−� term is the interrupted version of the fractional de-
rivative operator. The first s1 vs s2 difference term
��s2+k��− �s1+k��� / �s2−s1� corresponds to the first jump
made during the second time interval, and the second term
��s1+k��−1− �s2+k��−1� / �s2−s1� corresponds to the failure to
make a jump during the second time interval. After the first
jump, the particle resumes normal interrupted fractional dif-
fusion. We will discuss further details about these two terms
after we introduce a memory kernel expression for these
terms. Similar to the derivation of the single time propagator,
if kj =k, Dj

�=D�, and � j =� are independent of the lattice
position, the two-time propagator can be rewritten as

FIG. 1. The on probability for a quantum dot �QD� modeled by the inter-
rupted fractional diffusion propagator. The initial condition assumes the re-
newal process begins at t=0 and the dot is off. Unlike a simple two state
kinetic scheme that monotonically approaches equilibrium, the on probabil-
ity shows a fast rise to an initial transient steady state before decaying to the
long time equilibrium distribution.
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G2�s1,s2� =� d�1

2�

d�2

2�
c1��1,�2
s1,s2�G̃FP�− �2�

�GFP�− �1� +� d�1

2�

d�2

2�
c0��1,�2
s1,s2�

�G̃FP�− �2�GFP�− �1� , �12�

where

c1 =
�s2 + k��−1

s2�s2 + k��−1 + iD��2

�s2 + k�� − �s1 + k��

s2 − s1

�
1

s1�s1 + k��−1 + iD��1

and

c0 =
�s1 + k��−1 − �s2 + k��−1

s2 − s1

1

s1�s1 + k��−1 + iD��1
.

The expression can be used to measure the response to a step

potential applied at t1 by choosing GFP�G̃FP. For the aging
correlation function applied to the harmonic oscillator below,

GFP=G̃FP. If we set k=0, we recover two-time anomalous
diffusion, which coincides with expressions previously de-
rived for translationally invariant systems and harmonic
oscillators.22,23

A few comments about Eq. �12� are necessary.24 Con-
sider the evolution during the second time period �t1 , t1+ t2�
for fixed t1. The propagator corresponds to a random hopping
process, where most hops are fast with the occasional long
lived trap. The longer the particle hops, the more likely it
will find a long lived cage. The expression for c0 represents
the probability that a particle is still in the cage that it found
during the first time interval, which results in c0 being inde-
pendent of �2, while c1 corresponds to all processes that
made at least one hop during the second time interval. If t1 is
short �s1→��, the c0 term goes to zero because the particle
did not find a long lived trap. If t1 is long, but t2 is short
�s1→0, s2→�� the c0 term dominates since the particle
found a long lived trap and has not hopped out of it during
the second time interval. Eventually, the particle will hop out
of the trap found during the first time interval and resume its
random walk so the c0 term decays and the c1 term domi-
nates for t2�k−1. The truncation of the c0 term is the major
contrast between interrupted and uninterrupted fractional dif-
fusions.

APPLICATION TO THE HARMONIC OSCILLATOR

As a simple application of Eq. �12�, consider fractional
diffusion in a one-dimensional harmonic well with unit dif-
fusion constant, viscosity, and force constant. The resulting
Green function for normal diffusion is

GFP�x,x�,t� = G̃FP�x,x�,t�

=
1

�2��1 − e−2t�
exp
− �x − x�e−t�2

2�1 − e−2t� � . �13�

For simplicity, the initial condition is �1/�2��e−x2/2, and the

system is always in macroscopic equilibrium, but not in mi-
croscopic equilibrium with respect to the distribution of ac-
tivation barriers. We are concerned with the correlation func-
tion C�t2 
 t1�= �x�t1+ t2�x�t1��. Setting D�=1 �i.e., time and
space are unitless� and integrating over �i gives the aging
correlation function,

C�s2
s1� =
�s2 + k��−1

s2�s2 + k��−1 + 1

�s2 + k�� − �s1 + k��

s2 − s1

1

s1�s1 + k��−1

+
�s1 + k��−1 − �s2 + k��−1

s2 − s1

1

s1�s1 + k��−1 , �14�

which recovers the FFPE in the limit of h→0. Setting k=0
recovers the FFPE result.23 This correlation function is rig-
orously unity at t2=0. In the limit of no aging, t1→0, one
recovers an interrupted version of the correlation function,

lim
s1→�

s1C�s2
s1� =
1

s2 + �k + s2�1−� . �15�

Another important feature is the existence of a stationary
correlation function in the limit of t1→�,

lim
s1→0

s1C�s2
s1� =
k1−�

s2

k�−1 − �k + s2��−1

+
�k + s2���k� − �k + s2���

k + s2 + s2�k + s2�� � . �16�

As a specific example we choose �=1/2 and k=1/1000. The
solutions for several aging times t1=0 ,1 ,10,100,� are plot-
ted in Fig. 2. If the system has not aged, t1=0, the correlation
function demonstrates relaxation on many timescales before
approaching exponential behavior at the interruption time
k−1=1000. If the system is allowed to age for a short time,

FIG. 2. The correlation function for the interrupted fractional diffusion with
�=1/2, k=1/1000 in a harmonic oscillator with induction times �from bot-
tom to top�, t1=0 ,1 ,10,100,�. The t1=0 solution shows approximately
power-law behavior for 1� t2�1000, before switching over to exponential
behavior in the long time limit. This is in contrast to the nearly exponential
behavior �on a log scale� shown by the longer induction times. Aging re-
moves many of the features that one tries to incorporate in the model
through a complicated waiting time.
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the correlation function remains approximately equal to unity
for a short period of time before the onset of the distributed
relaxation. The long time exponential behavior is not delayed
so one observes a smaller region of multiple time scale re-
laxation. In the long time limit, t1→�, the multiple time
scale relaxation is absent, and only approximate exponential
relaxation is observed. The FDT becomes valid on these
longer time scales, and we recover the traditional exponential
relaxation associated with the limit.

EXPERIMENTAL MEASUREMENTS

The validity of the FDT at low frequencies and related
aging effects must be explored in any experimental system
modeled by waiting time processes. If the time of the trap-
ping process cannot be determined, the aged correlation
function in Eq. �16� should be used. The longer the first time
interval, the longer the c0 term dominates the correlation
function, and the particle does not move. The result is an
essential system arrest for periods of time shorter than the
characteristic relaxation time determined by the cutoff k−1.
This construction of interrupted fractional diffusion makes it
apparent that certain quantities are not affected by aging,
such as the ordering of events. If the particle is at position
x=0 at time t1 and we measure the probability of reaching
position x=1 before x=−1, this probability will not depend
on t1. These invariant measurements should be examined in
single molecule experiments where interrupted fractional dif-
fusion appears to fit the correlation function. The measure-
ments may differentiate the simple fractional diffusion
memory from a more complex memory effect, such as those
expected for the end-to-end distribution of a polymer
chain.25

Interrupted aging processes are more realistic scenarios
for modeling biological systems than the infinite aging of
fractional diffusion. Although the stretched exponential ap-
proximation to the short time behavior of the nonaged FFPE
and a long time power-law have been fit to the correlation

functions of several different measurements on single room
temperature biomolecules, the systems do not exhibit long
time aging processes and appear to achieve equilibrium in a
finite amount of time.16 Similarly, the interruption of aging
has been observed in quantum dot blinking statistics and in
the aging relaxation of glassy systems, and may prove to be
the rule rather than the exception.15
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