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Direct measurements of memory effects in single-molecule kinetics
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Statistics and correlations of single-molecule sequences of modulated reactions are explicitly
evaluated in the stochastic rate representation. The memory function, introduced through the
Gaussian approximation of the stochastic rate expression, characterizes the correlation in
single-molecule rate processes in a formalism similar to the stochastic line shape theory. Within this
formalism, the on-time correlation is shown to approximate the memory function of the fluctuating
rate at discretized effective time separations. A new measurement, the two-event number density, is
proposed as a means to map out the memory function over the complete time range. Confirmed by
numerical calculations, these relations quantify dynamic disorder caused by conformational
fluctuations and hence are useful for analyzing single-molecule kinetics. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1521155#
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I. INTRODUCTION

Single-molecule spectroscopy allows us to observe r
time single-molecule trajectories, which consist of a chain
correlated reaction events of various lifetimes and con
rich information about microscopic mechanisms.1–7 An ad-
vantage of single-molecule techniques is the direct obse
tion of variations in reaction kinetics, which are often limite
by the spectral resolution in conventional bulk expe
ments.8–15 In single-molecule experiments, the observed m
lecular system interconverts between the dark and br
states so that the fluorescence turns on and off intermitte
The on/off waiting time corresponds to the duration tha
single molecule spends in the bright/dark state, and a tra
tory of on–off events records the history of the single re
tive system. Since only the bright state is monitored throu
fluorescence emission, conformational dynamics is not
rectly accessible, and dynamic disorder is ahiddenmecha-
nism that requires statistical analysis of single-molecule
action events.10–12,16–21In a recent calculation of the two
conformational-channel model, we observed the cross
behavior~i.e., the focal time! in the single-event distribution
function and the recurrent behavior~i.e., the echo time! in
the two-event distribution function.18 Many issues remain to
be addressed, such as the generality of the two-event e
the quantitative description of conformational fluctuations
single-molecule kinetics, and the plausibility of direct me
surements of memory effects from on–off sequences. In
paper, we use the stochastic rate model to derive exp
expressions for the reported event-averaged quantities
introduce two quantitative measurements of the mem
function.

The kinetics considered here is more complicated t
direct single-molecule measurements of conformational fl

a!Electronic mail: jianshu@mit.edu
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tuations. Using single-molecule fluorescence resonant en
transfer~FRET!, Edmanet al. and Jiaet al. studied lifetimes
of a TMR fluorophore attached to biomolecules and fou
double exponential decays.4,5 Geva and Skinner analyze
these measurements10 and successfully extracted the inte
conversion rate between the conformational states.
FRET experiments and the subsequence analysis are b
on the fact that the FRET rate is much faster than conform
tional relaxation so that the lifetime of a single event is d
tated by the transient conformation. In fact, the average l
times of the two channels are so disparate in th
experiments that one can assign a decay event to a co
mational channel and thus directly monitor the interconv
sion between the two channels. As shown in Appendix A a
in a recent paper, single-molecule FRET signals are be
expressed as an inhomogeneous average over transient
figurations. The interpretation of single-molecule kinetics
less obvious when the average lifetimes are not so dispa
and the conformational fluctuation rate is comparable to
decay rate. This complication arises when the decay pro
has a competing time scale such as the environmental
scale. Wolynes and co-workers have explored the possib
of using intermittency to extract information about confo
mational effects from single-molecule sequences.12,13,22An
important example of single-molecule kinetics is the sing
molecule enzymatic turnover experiment by Lu, Sun, a
Xie.16 Analyzing single-molecule reaction sequences, th
authors demonstrated slow fluctuations in the turn-over
of cholesterol oxidation and the dependence of enzym
turnovers on previous events. Another interesting exampl
the fluorescence characteristics of single dye molecules
sorbed on a glass surface. Westonet al.11 proposed that the
emission spectrum and efficiency are modulated by the in
conversion between two ground state potential minima. T
purpose of this paper is to quantify single-molecule d
6 © 2002 American Institute of Physics
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10997J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 Measurements of memory effects in single-molecule kinetics
analysis in a unified framework and to propose more eff
tive measurements of memory effects.

Single reaction events are often modulated by conform
tional distribution and fluctuations which cannot be d
scribed by conventional chemical kinetics. Phenomenolo
cal chemical kinetics quantify a first-order rate process w
the equilibrium constant measured by the ratio of equi
rium reactant and product concentrations, and with the t
rate constant obtained from exponential relaxation to
equilibrium configuration. The phenomenological chemi
reaction is a Poisson process, reaction events are stoch
cally independent, and the nonequilibrium concentration
cays exponentially. In a realistic situation, the decay rate
not a constant but modulated by the evolving conformatio
configuration. ~Solvent interactions, intramolecular cou
plings, electrostatic potentials, geometric effects of mac
molecules, etc.!23–29 Single-molecule experiments monito
rate fluctuations occurring during single decay events, wh
cannot be easily detected using ensemble-averaged ex
mental techniques. In Sec. II, we introduce the modula
reaction model as the generic scheme to incorporate eff
of environmental modulation on rate processes, and de
related single-molecule quantities to elucidate the differe
between single-molecule and ensemble averaged mea
ments.

Single-molecule sequences can be analyzed with sev
methods,2 including fluorescence intensity correlation fun
tion, on-time histogram, joint probability of two on-tim
events, on-time correlation function, etc. It is not clear h
to relate these different quantities and how to quantify mo
lation effects on reactions. In Sec. VI, we introduce a diff
ent but equivalent representation of modulated reactions:
stochastic rate model, where the evolution of the tim
dependent rate is treated as a stochastic process. Simi
Kubo–Anderson’s stochastic rate theory,30,31 the stochastic
process of the rate is described by the average rate, us
conventional chemical kinetics, and the memory functi
which characterizes memory effects due to the coupling
the reaction to its environments. As a result, all sing
molecule quantities can be explicitly evaluated in terms
the average rate and the memory function. As shown in S
III A, the memory function directly gives the interconversio
rate for the two-channel model, but cannot be decompo
into reaction and modulation factors for a multiple-chan
model. In general, the memory function is a convolution
reactions and conformational fluctuations, but decays asy
totically to the fundamental mode of conformational rela
ation. With these developments in Sec. III, we can expr
single-molecule measurements in terms of the memory fu
tion ~e.g., the two-event echo in Appendix B! and model
experimental observations of stretched exponential
power-law decay.

In Sec. IV, we establish the relation between the mem
function and the on-time correlation function. With the st
chastic rate formalism, we should distinguish two stocha
quantities of different nature: the on-state waiting time d
tated by the time-dependent rate and the reaction rate
tated by the conformational dynamics. Thus, we observ
short decay event from a slow channel and a long de
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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event from a fast channel. It is also possible that becaus
conformational changes the system which enters the br
state from the slow channel may react from the fast chan
Instead of associating an on-state event with a specific c
formational channel, we correlate two on-time events to
veal the correlation hidden under stochastic fluctuatio
There are two ways to register the on-time correlation a
function of the number of events in between, or as a funct
of the time separation. The first kind of on-time correlati
function is the focus of our discussion. It has the advant
of having an equal number of data points for different se
rations of events and the disadvantage of using discret
variables. It is shown in Sec. IV that the on-time correlati
function is equal to the memory function evaluated at
average time separation between two on-time events. T
approximate relation is proved under two conditions: t
Gaussian limit, where the second cumulant contribution
much smaller than the constant rate term, and the s
modulation limit, where conformational fluctuation tim
scale is much slower than the reaction process time sc
The second kind of on-time correlation function is discuss
in Appendix C and is related to the two-event number d
sity discussed in the following.

In Sec. V, we introduce a new single-molecule measu
ment: the two-event number density. Along single-molec
kinetics sequences, the decay events are evenly and
domly distributed, so the number density of events is a c
stant. Now let us take two events along a sequence and
ister the two events with the time separation from t
beginning of one event to the end of another event. Are t
events randomly distributed? Yes, if the reaction events
not correlated, the two-event number density is a constan
the presence of memory, events of similar lengths are lik
to group, so that the deviation from the constant num
density is a new measure of memory effects. We can sh
that the deviation from the constant number density is
actly proportional to the memory function for a reaction wi
infinite fast backreaction rate, and is approximately prop
tional to the memory function for a general reaction. In co
parison, the on-time correlation functions are recorded at
cretized time separations and are thus less accurate, whil
two-event number density are recorded continuously and
thus more reliable. Our main results are confirmed by

FIG. 1. An illustration of ~a! the two-channel model and~b! the linear
three-channel model.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10998 J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 S. Yang and J. Cao
merical simulations in Secs. IV and V, and are summari
in Sec. VI.

II. MODULATED REACTION MODEL

The influence of conformational fluctuations on chem
cal kinetics is described by the modulated reaction mo
illustrated in Figs. 1 and 2~a!.17–20,23,29,32,33In this model, the
reaction rate constant depends on environments which
represented by conformational channels, and different ch
nels interconvert according to conformational dynamics. T
conformational channels refer to complex environments
influence the reaction process, and arise from various
lecular mechanisms including intramolecular structures,
termolecular interactions, solvent configurations, etc. T
specific examples of the generic modulated model, the t
channel model and the three-channel model, are illustrate
Fig. 1 and will be used later in explicit calculations. Mod
lated reaction model has been extended to the analys
single-molecule quantum waiting time distributio
functions14,22,34,35and heterogeneous diffusion process.36–41

The kinetics of the generic modulated reaction model f
lows:

S ṙa~ t !

ṙb~ t !
D 52S Ga1Ka 2Kb

2Ka Gb1Kb
D S ra~ t !

rb~ t !
D , ~1!

whereGa governs the conformational dynamics in the brig
stateA ~i.e., the on-state!, Gb governs the conformationa
dynamics in the dark stateB ~i.e., the off-state!, Ka is the
forward rate from the bright state to the dark state, andKb is
the backward rate from the dark state to the bright state.
a multiple channel model with a discretized distribution
conformational channels,r is a vector,K and G are rate
matrices. For a continuous model with a set of conform
tional coordinates,r and K are functions of the conforma
tional coordinates, andG is a differential operator which gov
erns the evolution of these coordinates. The modula
reaction model can be regarded as a hidden Markov
scheme, whereK dictates the reaction directly andG charac-
terizes the hidden mechanism which affects the reaction
cess indirectly.

Although introduced in the context of single-molecu
reactions, the modulated reaction model is general enoug
represent a broad class of kinetic processes with dyna
disorder. In complex chemical processes, chemical react
are usually modulated by geometric constraints, slow str
tural relaxation, and hydrogen bonding and network in aq
ous systems. In the presence of these slow environme
fluctuations, the competition between the reaction dynam
and the conformational dynamics leads to nonexponen

FIG. 2. An illustration of~a! the modulated reaction scheme and~b! the
stochastic rate model.
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kinetics and memory effects.23–29In a paper titled ‘‘Rate pro-
cesses with dynamical disorder,’’42 Zwanzig listed examples
of such processes which include self-diffusion in wat
gated diffusion, protein dynamics, fluorescence depolar
tion, dynamical percolation, barrierless relaxation, etc.
sentially, any sequence composed of two distinct meas
ments can be mapped to two-state kinetics, where the s
refer to chemical states, fluorescence states, charge tra
states, binding sites, different modes of hopping, differ
regions of diffusion, etc.

The modulated reaction model is discussed in details
Refs. 18 and 21. For convenience of further calculations,
summarize these discussions and elaborate on the phy
meanings where necessary.

~1! The reversible full reaction in Eq.~1! can be decom-
posed into the forward half-reaction described by the s
vival probability Ga(t)5exp@2t(Ga1Ka)# and the backward
half-reaction by the survival probabilityGb(t)5exp@2t(Gb

1Kb)#. The Green’s function solution to Eq.~1! can be ex-
panded into a series of half-reactions linked by the forw
rate constant matrixKa and the backward rate constant m
trix Kb . For example, the bright state Green’s function as
ciated with the fluorescence correlation function is equi
lent to an infinite series of half-reaction sequences

Gaa5Ga1Ga•KbGb•KaGa

1Ga•KbGb•KaGa•KbGb•KaGa1¯ , ~2!

where the dot represents a time convolution. For an ergo
system, the population evolution measured in bulk exp
ments is equivalent to the summation of all possible
quences of half-reaction events along single-molecule tra
tories, and the equilibrium ensemble-averaged quantitie
the bulk state can be recovered by averaging along sin
molecule trajectories.

~2! The phenomenological rate constant in chemical
netics can be interpreted as the inverse of the average
time at the bright or dark state, giving

t̄ a5E
0

`

( Ga~ t !Fadt5
(ra

(Kara
5

1

ka
~3!

and, similarly,t̄ b51/kb . In Eq. ~3!, Fa is the stationary flux
defined in Eq.~6!. Evidently, the macroscopic rate consta
in phenomenological chemical kinetics is simply an inhom
geneous average of the microscopic reaction rate cons
and therefore does not contain any information about
namic disorder. The ratio of the average forward and ba
ward reaction rate constants satisfies the phenomenolo
detailed balance relation

kana5kbnb , ~4!

where na5(ra and nb5(rb are, respectively, the tota
equilibrium populations in the bright state and in the da
state. In the context of single-molecule measurements,
detailed balance relation in Eq.~4! is a result of the long-
time averaging of the waiting time along single-molecu
trajectories, which defines both the average rate constant
the equilibrium distribution. Furthermore, bulk-state rela
ation experiments measure the total rate constantktotal5ka
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10999J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 Measurements of memory effects in single-molecule kinetics
1kb , whereas the forward and backward rate constants
obtained through the detailed balance condition in Eq.~4!. In
contrast, single-molecule experiments separate the forw
and backward half-reactions, and determine the two rate c
stants from the average on and off times.

~3! The time-independent solution to Eq.~1! defines the
equilibrium distribution, (Ga1Ka)ra5Kbrb and (Gb

1Kb)rb5Kbra , which relatera to rb and vice versa. Tak-
ing the trace of both sides of the two equations, we obtain
macroscopic detailed balance relationship,naka5nbkb . The
overall balance condition follows directly from the conserv
tion of the flux, but it does not exclude the possibility of
net current circulating around conformational channels.
fact, this kind of net current can lead to the intriguing ph
nomenon of Brownian ratchets. For example, differe
modes of diffusion lead to a net motion driven by the co
pling of random Brownian motions and chemical reactio
The possibility of a net current can be excluded by equa
the microscopic fluxes of the forward and backward re
tions

Kara5Kbrb , ~5!

which leads to the equilibrium conformational distributio
Gara5Gbrb . With the same conformational dynamics f
the two states,Ga5Gb , we havera}rb andKa}Kb , which
are useful for further calculations.

~4! To formulate event-averaged quantities, it is nec
sary to introduce the stationary occurrence probability flu

S Fa

Fb
D5N S Kbrb

Kara
D , ~6!

whereFa is the stationary flux from the bright state to th
dark state, andFb is the stationary flux from the dark state
the bright state. It follows that(Kara5(Kbrb5N21, im-
plying the conservation of the flux.18 Given the stationary
fluxes, we define the distribution function of on-time even
as f a(t)5(KaGa(t)Fa and the joint distribution function o
on-off events asf ab(t2 ,t1)5(KbGb(t2)KaGa(t1)Fa , which
will be evaluated explicitly. These event-averaged quanti
cannot be obtained directly from bulk experiments and m
be collected along single-molecule trajectories.

III. STOCHASTIC RATE MODEL

As demonstrated in Ref. 21, given a specific model,
single-molecule quantities can be computed and the feat
such as the focal time and the echo time can be identified
this paper, we will show the generality of these features
virtue of the stochastic rate model. The environmental fl
tuations introduces a time dependence on the rate cons
which can now be treated as a stochastic variable. Simila
Kubo’s stochastic line-shape theory,30,31 each realization of
the stochastic rate defines a rate process, and single mo
lar measurements can be obtained by taking a stochastic
erage of rate fluctuations. The modulated reaction mode
analogous to the Schro¨dinger picture in quantum mechanic
as the occupancy in each conformational channel chan
with time but the rate constant for each channel rema
constant. The stochastic reaction rate model is analogou
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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the Heisenberg picture in quantum mechanics, as the
evolves with time. As illustrated in Fig. 2, though in differe
pictures, these two models are equivalent.

To begin, we write the kinetics of the generic modulat
reaction model in a compact form

ṙ~ t !52~G1K !r~ t !, ~7!

where G characterizes the conformational dynamics andK
characterizes the reaction kinetics. In general,G can be any
dynamic operator@e.g.,G52lu]x(]x1x/u) is the Fokker–
Planck operator for normal diffusion in a harmonic pote
tial#, andK can be any form of kinetic processes, includin
discretized multichannel rate and coordinate-dependent
We introduce the stochastic representation for modulated
actions by rewriting the Green’s function solution to Eq.~7!
in the interaction picture as

G~ t !5e2~G1K !t5e2Gt expS 2E
0

t

K~t!dt D . ~8!

The time-dependent rate is defined through a matrix trans
mation K(t)5eGtKe2Gt so that conformational modulatio
is incorporated into the time dependence of the rate.

With the time-dependence rate, all single-molecu
quantities can be evaluated explicitly in the stochastic r
model. For example, using the identity(Ga50, the average
survival probability in the bright state can be written
S(t)5^Ga(t)&5^exp(2*0

t Ka(t)dt)&, where the average is
taken with respect to the equilibrium conformational dist
bution ^A&5(Ara /(ra . Cumulant expansion ofS(t) leads
to

S~ t !5expF (
n51

`
~21!n

n! E
0

t

dt1¯E
0

t

dtnxn~t1 ,...,tn!G ,

~9!

wherexn(t1 ,...,tn) is thenth order cumulant function. As a
result of the detailed balance condition,Gara50, the average
rate and correlation functions are stationary. Thus, we ha

x1~ t !5^Ka~ t !&5^Ka&5ka , ~10!

which is the phenomenological rate constant, and

x2~ t1 ,t2!5^dKa~ t1!dKa~ t2!&5^dKae2Ga~ t12t2!dKa&

5xaa~ t12t2!, ~11!

which rigorously defines the memory function for the st
chastic rate. The initial value of the memory function giv
the variance of the reactive ratex(0)5^dk2&5kd

2. By trun-
cating the expansion in Eq.~9! to second order, we obtain th
Gaussian stochastic rate model

S~ t !5exp@2kat1Maa~ t !# ~12!

with Maa(t)5*0
t (t2t)xaa(t)dt. Similar expressions can

be obtained for the backward half-reaction as well as for
reversible full-reaction. Since the survival probability d
creases with time,ka@*0

t (12t/t)xaa(t)dt has to be satis-
fied, which implies a small variance of reaction rates an
finite correlation time for conformational fluctuations. W
emphasize that the stochastic model and the memory fu
tion are completely general whereas the Gaussian stoch
rate model is approximate.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The kinetic problem considered here is more gene
than conformational kinetics probed by single-molecule flu
rescence resonant energy transfer~FRET! or other related
techniques. With these techniques, the decay process is m
faster than conformational fluctuations so that the variat
of the rate during a single decay event can be ignored. T
the single-molecule sequence consists of a large numbe
forward half-reaction events, where the on-time duration c
responds a specific conformational state, and the evolutio
the decay time directly records conformational dynamics
comparison, for single-molecule kinetics, we have to pr
erly treat the convolution of reaction and modulation, i.e.,
time dependence of the rate during a single decay ev
Evidently, the reaction limit of our results here will be usef
for analyzing FRET. In Appendix A, we discuss the statist
and correlation of FRET measurements and show that
memory function remains a useful tool.

The importance of the memory function in singl
molecule kinetics can be better appreciated by the comp
son with the memory function in condensed pha
spectroscopy.30,31 Stochastic line-shape theory describes s
chastic fluctuations of the transition frequency using the
ergy gap correlation function and thus provides a unive
language to unify and quantify different optical spectrosco
measurements. The specific form of the energy gap mem
function depends on environmental dynamics and the c
pling between the quantum transition and its environme
The evaluation of this phenomenological memory funct
has motivated microscopic theories of solvation dynam
and solution spectroscopy. In a similar fashion, the introd
tion of the memory function in this paper provides a unifi
framework to quantify memory effects in single-molecu
kinetics and to explicitly evaluate single-molecule measu
ments. The memory kernel is the key quantity we extr
from single-molecule sequences and use to characte
modulated reactions. For example, in Appendix B, we der
the expression for the two-event distribution function with
the framework of the Gaussian stochastic rate approxi
tion. Several forms of the memory function are discussed
the following.

A. Discretized conformational states: Two-channel
and multichannel models

The simplest example of modulated reactions is the tw
conformational-channel model illustrated in Fig. 1~a! For
the forward half-reaction, we haveka5r1k11r2k2 ,
kd

25r1r2(k12k2)2, and

xaa~ t !5kd
2 exp@2~g11g2!t#, ~13!

wherer15g2 /(g11g2) andr25g1 /(g11g2) are the equi-
librium populations of the two conformational channe
From the memory function, we will be able to determine t
total interconversion rate between the two channels. Fo
multichannel model, we will not be able to find such
simple interpretation for the memory function except for sp
cial cases as in Fig. 1~b!. In general, the memory function i
a summation of many exponential functions and charac
izes the average effects of conformational modulation on
reactive rate process.
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B. Continuous conformational states: Coordinate
dependence

Our definition of the memory function provides a po
sible interpretation of the recent finding of stretched exp
nential relaxation in single-molecule experiments.43 In a gen-
eral situation where the rate constant is coupled to a se
conformational degrees of freedom with the coordinate
pendencek(x), the memory function becomes

x~ t !5
1

~2p!2 E dz1dz2k̃~z1!k̃~z2!$^exp@ i z1x~0!

1 i z2x~ t !#&2^exp@ i z1x~0!#&^exp@ i z2x~0!#&%,

~14!

wherek̃(z)5*k(y)exp(iyz)dy is the Fourier transform of the
rate functionk(x) and the stochastic average is carried o
with respect to the conformational dynamics ofy(t). Assum-
ing a Gaussian stochastic process for the conformational
ordinate Eq.~14! can be evaluated with the second-ord
cumulant expansion. This expression incorporates a la
class of modulated rate processes and leads to a stret
exponential with a proper choice of the coordinate dep
dence in the rate function.

C. Long-time behavior

We note that the memory function measures modulat
effects of environments on two-state kinetics, but does
directly probe environmental fluctuations. Nevertheless,
asymptotic behavior of the memory function reveals the
ture of the long-time relaxation of environmental fluctu
tions. To demonstrate this, we expand conformational fl
tuations as G(t)5uwn&En(t)^wnu where the eigenstate
satisfy ^wnuwm&5dnm , andEn(t) is the characteristic func
tion for the nth eigenstate. In order words,wn(x) are the
normal modes of conformational fluctuations. In this ba
set, we expand the rate constant ask(x)5(cnwn(x) so that
^k(x)&5c0 , and

x~ t !5 (
n51

`

cn
2En~ t !. ~15!

The smallest nonzero eigenvalue has the slowest decay
thus dominates the asymptotic behavior, i.e.,

lim
t→`

x~ t !}E1~ t ! ~16!

which directly probes the fundamental mode of conform
tional fluctuations. As an important example, we demonstr
this aspect of the memory kernel using the example of s
diffusive environments.

D. Memory function for subdiffusive environments

To illustrate the generality of memory effects, we here
consider a single-molecule experiment in a disordered
dium where the conformational dynamics is modeled by s
diffusive motion in a harmonic potential. Subdiffusive tran
port is widely observed in diverse fields, including char
transport in amorphous semiconductors, Nuclear magn
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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resonance diffusometry in disordered materials, and bead
namics in polymer networks. Metzler, Barkai, and Klaft
proposed a generalized fractional Fokker–Planck equa
for anomalous diffusion, and later justified the approa
from a continuous time random walk model.44 Unlike linear
Brownian motion in the diffusive regime, the mean squa
displacement in the free subdiffusive space follows

^~Dx!2&5
2Kg

G~11g!
tg with 0,g,1, ~17!

where Kg is the generalized diffusion coefficient, and th
Stokes–Einstein relation is generalized asKg5kBT/mhg ,
where hg is the generalized friction coefficient. The su
diffusive motion in a potential is described by the corr
sponding Fokker–Planck operator2LFP5]x@V8(x)/mhg#
1Kg]x

2. In a harmonic potential,V(x)5mv2x2/2, the
Green’s function for the subdiffusive motion is

G~x,x8,t !5A mv2

2pkBT (
n50

`
1

2nn!
Eg~2n t̃g!

3HnS x̃8

&
D HnS x̃

&
D expF2

x̃2

2 G , ~18!

where the characteristic time unitt is defined by t2g

5v2/hg , t̃ 5t/t andx̃5xAmv2/kBT are temporal and spa
tial coordinates in reduced units,Hn(x)5(21)n

3exp@x2#]x
n exp@2x2# is the Hermite polynomial, andEg(z)

5(m50
` zm/@G(11gm)# is the Mittag–Leffler function. For

g51, the Mittag–Leffler function becomes the exponent
function, E1(z)5exp(z). The equilibrium distribution is de-
duced from the long time limit of the Green’s functio
r(x)5Amv2/2pkBT exp@2x̃2/2#.

In general, a coordinate-dependent rate function can
expanded ask(x)5(n50

` cnHn( x̃/&) so that the average
stochastic rate and the correlation function of the stocha
rate becomêk(x)&5c0 and

x~ t !5^dk~x!G~x,x8,t !dk~x8!&

5 (
n51

`

cn
22nn!Eg~2n t̃g!. ~19!

In the long time limit, the memory function of the fluctuatin
ratex(t) follows a power law decay according to the pro
erties of the Mittag–Leffler function.

As a special case, we assume a quadratic form of
coordinate dependence, i.e.,k(x)5kx2, so that the correla-
tion function of the stochastic rate is given byx(t)
5x(0)Eg(22 t̃ g). In the short time regime, whent!t,

Eg~22 t̃ g!;122 t̃ g/G~11g!;exp@22 t̃ g/G~11g!#
~20!

is a stretched exponential; while in the long time regimet
@t,

Eg~22 t̃ g!;
t̃ 2g

2G~12g!
2

t̃ 22g

4G~122g!
~21!

is a power law decay. Numerical calculations ofEg(22 t̃ g)
are shown in Fig. 3 for different values ofg. As g approaches
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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1, the Mittag–Leffler function becomes close to a single e
ponential function; while for smallg, it clearly deviates from
exponential decay and shows the power-law behavior in
long time regime.

IV. ON-TIME CORRELATION FUNCTION

One direct measure of the memory function is the o
time correlation function illustrated in Fig. 4, which was fir
used in Xie’s experiment as a measure of memory effe
With the introduction of the stochastic rate model a
memory function, we are now able to explicitly show th
relation between the memory function and the on-time c
relation function. Here, this relationship is proved within t
slow modulation limit and the small variance limit. Thoug
both are derived for the small variance limit, the first pro
invokes the second cumulant approximation but does not
quire the slow modulation assumption; and the second p
does not involve any assumptions about the convergenc
the memory function but requires the slow modulation
sumption.

A. Second cumulant expansion

The on-time correlation function is defined as

Cor~n!5
t1tn112 t̄ 2

t̄ 22 t̄ 2
, ~22!

FIG. 3. Numerical calculation ofEg(22tg). For g close to 1,Eg(22tg) is
similar to exponential decay; while for smallg, it deviates from exponentia
decay and exhibits stretched exponential in the short time regime
power-law behavior in the long time regime.

FIG. 4. Two on-time events separated byn off-events along a typical single-
molecule trajectory.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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which is the cross-correlation function of two on-time eve
separated byn off-events. From Eq.~5! of Ref. 18, the joint
probability distribution is given as

f ~ t1 ,tn11!5( KaGa~ tn11!KbG̃b@KaG̃aKbG̃b#n21

3KaGa~ t1!Fa , ~23!

so that

t1tn115E dt1E dtn11f ~ t1 ,tn11!t1tn11

5^@G̃aKaG̃bKa#nG̃a&/ka ~24!

with G̃5*0
`G(t)dt. Here, the stochastic average is defin

as ^A&5(Ara /(ra . To evaluate the on-time correlatio
function, we introduce a generating functionH(x)
5(n50

` t1tn11xn, where then50 term is included for con-
venience andx<1 is assumed for convergence. Thus,
have

kaH~x!5 (
n50

xn^@G̃aKbG̃bKa#nG̃a&

5^G̃aa~x!&5E
0

`

^Gaa~ t,x!&dt, ~25!

where the resummation similar to Eq.~2! is used. As illus-
trated in Fig. 5, the Green’s functionGaa(t,x) corresponds to
the following kinetics:

S ṙa~ t !

ṙb~ t !
D 52S Ga1Ka 2Kb

2xKa Gb1Kb
D S ra~ t !

rb~ t !
D , ~26!

which describes the forward reaction with ratexKa , the
backward reaction with rateKb , and the population deple
tion at the bright state with rate (12x)Ka . For symmetric
reactions withKa5Kb5K, Eq.~26! is solved explicitly for a
stochastic rate processK(t), giving

kH~x!5E
0

`

dt 1
2 K expS 2~12Ax!E

0

t

K~t!dt D
1expS 2~11Ax!E

0

t

K~t!dt D L
' 1

2 E
0

`

dt$exp@2~12Ax!kt1~12Ax!2M ~ t !#

1exp@2~11Ax!kt1~11Ax!2M ~ t !#%, ~27!

FIG. 5. An illustration of the reaction scheme for the evaluation of
generating functionH(x).
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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where the second cumulant truncation is applied andM (t) is
given asM (t)5*0

t x(t)(t2t)dt. Under the small variance
condition, Eq.~27! is expanded to the leading order ofM (t),
giving

kH~x!5E
0

`

$@11M ~ t !1xM~ t !#cosh~ktAx!

22AxM~ t !sinh~ktAx!%e2ktdt. ~28!

This closed-form expression is then used to generate the
ment in order of xn, leading to k2H(x)5(xn@11I 2n

1I 2n2222I 2n21# where I m5*0
` dtM (t)(kt)me2kt/m!.

Assuming that the memory function of the rate varies mu
slower than the rate process, the integral ofM (t) can be
approximated by the value of the first momenttm5(m
11)/k, that isI m'M (tm). Then, the difference function be
comes

I 2n1I 2n2222I 2n21'M S 2n11

k D1M S 2n21

k D22M S 2n

k D
'

1

k2 xS 2n

k D , ~29!

where the continuous limit is taken under the slow relaxat
assumption. Combining Eqs.~22!–~29!, we finally arrive at
an approximate expression

Cor~n!5
x~2n/k!

x~0!
5

x~ teff!

x~0!
, ~30!

indicating that the on-time correlation function is propo
tional to the memory function of the rate at the discrete ti
separation. The number of off-events in Cor(n) is translated
into the average time separation between two events inx(t).
For asymmetric reactions, Eq.~30! can be generalized to
Cor(n)5x(n/kf1n/kb)/x(0), with the effective time sepa
ration teff5n/kf 1n/kb . Although the final result in Eq.~30! is
obtained approximately under the slow modulation limit, E
~29! is derived without this approximation and is therefo
more general.

The generating function in Eq.~25! can be evaluated
explicitly for the symmetric two-channel model illustrated
Fig. 1~a!, giving

H~x!5
8gk21~12x!~k22kd

2!k22gkd
2~11x!

~12x!k@~2gk1k22kd
2!22x~k22kd

2!2#
, ~31!

wherek5(k11k2)/2 andkd5(k12k2)/2. Expansion of the
above-given expression in terms ofx results in

Cor~n!5S k22kd
2

k22kd
212kg D 2n

'S k

k12g D 2n

, ~32!

where the approximation is introduced forkd!k. In the slow
relaxation limit, Eq. ~32! reduces to Cor(n)'exp(24g/k)
5exp(22gteff), which agrees with the memory function fo
the two-channel modelx(t)5x(0)exp(22gt).

B. Slow modulation limit

When conformational kinetics is much slower than rea
tion kinetics, each event can be approximated by a Pois
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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process with a probability to jump from one channel to a
other. Since the on-time duration measures the rate con
for one event within this approximation, the on-time corr
lation function directly measures the correlation of the re
tion rate. This simple reasoning leads to the following de
vation.

For Eq. ~7! in Ref. 21, the on-time correlation functio
t1tn11 is given by

t1tn115
1

ka
K F 1

Ka1Ga
Kb

1

Kb1Gb
KaGn 1

Ka1Ga
L , ~33!

wheret1 andtn11 are the time durations for the two on-tim
events separated byn off-time events. For simplicity, we
consider the case whenGa5Gb5G such that the equilibrium
distribution satisfiesGra5Grb50. Under this condition,
two rate matricesKa andKb are proportional to each other21

and we have (Ka1G)(21)ra5Ka
(21)ra . Second-order ex-

pansion in terms ofdKa5Ka2ka leads to

1

Ka1G
5

1

ka1G1dKa

'
1

ka1G S 12dKa

1

ka1G
1dKa

1

ka1G
dKa

1

ka1G D
~34!

and a similar expression forKa(Ka1G)(21). In the slow
modulation limit, when the eigenvalues ofG are much
smaller thanka , Eq. ~33! can be evaluated with above-give
approximations to give

t1tn11'
1

ka
2 F11 K dKa

ka

ka

ka1G

dKa

ka
L

2K dKa

ka

ka

ka1G (
m50

n21 S kb

kb1G

ka

ka1G D m

3S 12
kb

kb1G

ka

ka1G D dKa

ka
L G

'
1

ka
2 1

1

ka
2 K dKa

ka
expFGS n

ka
1

n

kb
D G dKa

ka
L , ~35!

wherex(t)5^dKaG(t)dKa& is the memory function for rate
fluctuations, and only the leading order correlation ofdK is
retained approximately. Thus, the cross-correlation func
of two on-time events separated byn off-time events is re-
lated tox(t) as

Cor~n!5
t1tn112 t̄ 2

t22 t̄ 2 5
x~ teff!
x~0! ~36!

with teff5n/ka1n/kb . In conclusion, in the slow modulatio
limit, the on-time correlation function is proportional to th
memory function of rate fluctuations due to conformation
dynamics.

C. Examples

As a numerical example, we study the linear thre
channel model illustrated in Fig. 1~b! with
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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ant
-
-
-

n

l

-

Ga5Gb5S g 2g 0

2g 2g 2g

0 2g g
D ,

~37!

Ka5hKb5S k1A3/2kd 0 0

0 k 0

0 0 k2A3/2kd

D ,

which has a memory functionx(t)5kd
2 exp(2gt). The con-

formational dynamics are the same for the two states, and
equilibrium coefficienth is the ratio between the backwar
and forward rate constants. We first consider a symme
reaction withh51.0. In Fig. 6, Cor(n) is plotted for the
three-conformational-channel model defined in Eq.~9! with
several values ofkd but with fixed k and g. Evidently, the
equivalence relation is approximately obeyed and the de
tion from the theoretical prediction increases with the va
ance. In Fig. 7, the on-time correlation function is plotted f
the same values ofk andkd but for three different values o
g. The agreement between the discrete Cor(n) and the
memory function exp(22gn/k) is reasonably accurate an
improves asg decreases. As an example of the asymme
reaction, we take the ratio between the forward and ba
ward rate constants ash52.0. The on-time correlation func
tion of the asymmetric linear three-channel model is plot
in Fig. 8 and is compared favorably with the memory fun
tion.

V. TWO-EVENT NUMBER DENSITY
Time trajectories in single-molecule experiments prov

detailed records of single-molecule events; therefore, sta
tical analysis of single-molecule trajectories can provide r
information of conformational dynamics. In addition to th
on-time correlation function, we introduce here a new sing
molecule measurement: the number density of sing
molecule sequences. In a special experimental setup, s
laser pulses are constantly applied on the reactant at a

FIG. 6. A comparison of the on-time correlation function Cor(n) with the
normalized memory function for the linear three-channel mod
exp(22gn/k), for several values of rate variancex(0)5kd

2. The three-
channel model is defined in Eq.~37! with k53.0, h51.0, andg50.5.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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high frequency so that the single reactive system is quic
pumped back to the bright state once oxidized to the d
state. As a result, a trajectory of on events are collected w
instantaneous interuptions of dark events. Figure 9 illustra
a typical trajectory with a sequence of lengtht. The number
density of on-time events is the probability distribution fun
tion of two events along a single-molecule sequence a
function of their time separationt regardless of the numbe
of events in between. Here, a sequence is defined from
beginning of one event to the end of the same or ano
event. The two-event number density thus defined will
shown to be proportional to the memory function of the s
chastic rate.

The reaction from the bright state to the dark state
denoted by the rate operatorK, the conformational dynamic
is governed by the operatorG, and the stationary populatio
distribution satisfiesGr50. The number densityN(t) with
the time durationt is formulated in Laplace space as

FIG. 7. A plot of the on-time correlation function Cor(n) for the same
model as in Fig. 6 for several values ofg, along with the normalized
memory function exp(22gn/k).

FIG. 8. A comparison of the on-time correlation function Cor(n) with the
effective memory function for an asymmetric reaction. The three-chan
model is defined in Eq.~37! with the forward rateska53.0, the variance
kd51/A6.0, and the equilibrium ratioh52.0. The modulation kinetics is the
same for both the bright and dark states.
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Ñ~u!5 K K
1

u1K1G F12K
1

u1K1GG21

K L Y k

5
1

k K K
1

u1G
K L 5kF1

u
1

1

k2 K dK
1

u1G
dK L G ,

~38!

wherek5^K& is the average rate anddK5K2k is the fluc-
tuation of the rate. Thus, in the time domain, we have

N~ t !5kF11
1

k2 x~ t !G , ~39!

where x(t)5^dK exp@2Gt#dK& is the memory function of
the stochastic rate. It is important to note that the abo
given relation is obtained without any approximation a
thus provides an exact relation between the two-event n
ber densityN(t) and the memory functionx(t) under this
experimental setup. A related but approximate relation is d
cussed in Appendix C.

Similar quantities are defined in single-molecule expe
ments with both on and off times, as illustrated in Fig. 1
For simplicity, we consider the case with the same conf
mational dynamics for both bright and dark states, and
sume detailed balance conditionGra5Grb50. Under this
condition,Ka andKb must be proportional to each other
order to exclude nonstationary effects or net current am
different conformational channels. Then,Naa(t) in Laplace
space is

Ñaa~u!5
1

ka
K Ka

1

u1Ka1G

3F12Kb

1

u1Kb1G
Ka

1

u1Ka1GG21

KaL
5^Ka~u1Ka1Kb1G!21~u1Kb1G!

3~u1G!21Ka&/ka , ~40!

el

FIG. 9. A sequence of on-events interrupted by instantaneous dark ev
for the case where the system is constantly pumped back to the bright

FIG. 10. A sequence of on–off events with lengtht that starts and ends with
on-time events along a typical single-molecule trajectory.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whereka5^Ka& andkb5^Kb& are the average forward and backward rates. In the slow modulation limit, when the ch
teristic time inG is much greater than 1/ka and 1/kb , we have

@u1Ka1Kb1G#21~u1Kb1G!'H kb /~ka1kb! when u!ka ,kb

~u1Ka1Kb!21~u1Kb! when u>ka ,kb ,
~41!

whereKa}Kb is applied andG is ignored due to the separation of conformational and reaction time scales. Combinin
above two equations, we have

Ñaa~u!'H kb^Ka~u1G!21Ka&/@ka~ka1kb!# when u!ka ,kb

^Ka@kbu211ka~u1Ka1Kb!21#Ka&/@ka~ka1kb!# when u>ka ,kb ,
~42!

or, in the time domain,

Naa~ t !'H kakb

ka1kb
F11

1

ka
2 xaa~ t !G , kat,kbt@1

kb

ka~ka1kb!
^KaKa&1

1

ka1kb
^Ka exp@2~Ka1Kb!t#Ka&, kat,kbt<1,

~43!
w
e
o
th

ory

on.
e

nel
q.
m-

ark
wherexaa(t)5^dKa exp@2Gt#dKa& is the memory function
of the stochastic rate.

The central result of this section, Eqs.~40! and ~43!,
leads to several observations:

~1! In a Poisson process, there is no memory, i.e.,x(t)
50 anddKa5dKb50, the number densityNaa(t) is given
by the Eq.~43! as

Naa~ t !5
kakb

ka1kb
1

ka
2

ka1kb
exp@2~ka1kb!t#, ~44!

which decays to the constant plateaukakb /(ka1kb) in the
long time limit.

~2! With a separation of time scales implied by the slo
modulation condition, the initial fast decay of the numb
density is followed by the slow decay. The plateau value
the slow decay in the number density is the constant for
Poisson process: limt→` Naa(t)5kakb /(ka1kb). Hence, the
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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slow decay to this constant allows us to map out the mem
function

Naa~ t !2Naa~`!

Naa~`!
'

xaa~ t !

ka
2 , ~45!

which is more accurate than the on-time correlation functi
~3! In the short time limit, the rate fluctuates on a tim

scale much greater than the measurement timet under the
slow modulation condition so that each reaction chan
evolves independently. As a result, the short time limit in E
~43! is equivalent to the inhomogenous evarage of the nu
ber density associated with each reaction channel.

~4! In the limit of kb→`, Naa(t)→ka@11xaa(t)/ka
2#

recovers exactly the previous result in Eq.~39! when laser
pulses constantly pump the single molecule from the d
state back to the bright state.

Following the same derivation,Nbb(t), Nba(t), and
Nab(t) can be obtained as
Nbb~ t !'H kakb

ka1kb
F11

1

kb
2 xbb~ t !G , kat,kbt@1

ka

kb~ka1kb!
~^KbKb&1^Kb exp@2~Ka1Kb!t#Kb&!, kat,kbt<1,

~46!

Nab~ t !'H kakb

ka1kb
F11

1

kakb
xab~ t !G , kat,kbt@1

1

ka1kb
~^KaKb&2^Ka exp@2~Ka1Kb!t#Kb&!, kat,kbt<1.

~47!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Note thatNab(t)5Nba(t) reflects the time reversal symme
try in the counting. From Eq.~47!, the short time limit of
Nab(t) equals zero, which is due to the zero probability f
finding a zero length duration starting with an on-time ev
and ending with an off-time event. In contrast, the init
value of the on–on number density isNaa(0)5^Ka

2&/ka ,
which is proportional to the mean square of the forward ra

As a numerical example, we calculate the quantit
Naa(t) andxaa(t) for the linear three-channel model as w
used for Cor(n) with Kb5hKa . Under these parameters, th
memory functionxaa(t)/ka

25kd
2 exp(2gt)/k2, and kakb /(ka

1kb)5hk/(h11). The approximate expression in Eq.~43!
and the exact expression in Eq.~40! are calculated and com
pared in Fig. 11~a! for the short time regime and in Fig. 11~b!
for the long time regime, respectively. As shown in the fi
ures,Naa(t) calculated with Eq.~40! decays sharply within a
short time scale. The initial value ofNaa(t) can be deduced
from Eq. ~43! in the limit t→0, giving Naa(t→0)
5^KbKb&/kb5hk(11kd

2/k2), which agrees well with the
calculated value. The predictions from Eq.~43! fit the curve
of theNaa(t) from Eq.~40! over a wide range of time scale

FIG. 11. Comparison betweenNaa(t) from Eqs.~40! and ~43! for a linear
three-channel reaction withk53.0, kd51/A6, g50.1, andh52.0. ~a! The
short-time approximationNaa(t) given in Eq. ~43! agrees well with the
result calculated from Eq.~40! in the short time regime.~b! The long-time
approximationNaa(t) given in Eq.~43! agrees with the result from Eq.~40!
over a wide range of time scales except for the short short time period
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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Similar observation can be made forNab(t) in Fig. 12, which
has a zero initial value. The only difference is that the init
value ofNab is zero, because the on–off sequence involv
at least one on event and one off event.

VI. CONCLUSION

In summary, we have rigorously established the stoch
tic rate approach in the interaction representation of
modulated reaction model. The cross correlation of the s
chastic rate defines the memory function and character
the rate process. The memory function can be decompo
into the normal modes of conformational fluctuations a
directly probes the fundamental mode of environments in
long time limit.

Within this formalism, we study two direct single
molecule measurements of the memory function of the fl
tuating rate. The correlation of two on-time events separa
by a given number of off events is shown to be proportio
to the memory function evaluated at the discretized aver
time separation between the two on-time events. The re
ation to the asympototic value of the two-event number d

FIG. 12. Density probability distribution function of on–off sequen
Nab(t) for the same model used in Fig. 11.~a! The short-time approximation
Nab(t) given in Eq.~47! agrees well with the exact result in the short tim
regime.~b! The long-time approximationNab(t) given in Eq.~47! agrees
with the exact result over a wide range of time scales except for the s
short time period.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sity is shown to be proportional to the memory function, th
allowing us to obtain the memory function over the compl
time domain except for the initial time. The on-time corre
tion function has been used in analyzing single-molec
data, whereas the number density proposed here is a
quantity that has not been used yet. The same formalism
leads to the explicit derivation of the echo in the two-eve
joint probability distribution function~see Appendix A!. The
three complementary measurements~two-event echo, on-
time correlation, and number density! are experimentally
feasible and will help to quantify conformational dynami
in single-molecule kinetics.
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APPENDIX A: FRET MEASUREMENTS
OF CONFORMATIONAL KINETICS

The fine time resolution of single-molecule fluorescen
resonant energy transfer~FRET! leads to snapshots of con
formation kinetics. To see this point, we write the surviv
probability as

S~ t !5E dr0 exp@2~G1K !t#r~r 0!

5E dr0K expF2E
0

t

K~t!dtG L
0

r~r 0!, ~A1!

wherer 0 represents the initial conformational configurati
and the average is a conditional average for a given in
condition. Here,K governs the decay lifetime used to pro
conformational kinetics and depends on conformational c
figurations ask(r ). Depending on the probing process,k(r )
can be the energy transfer rate or the electron transfer rat
the second expression,K(t)5k@r (t)# is determined by the
conformational trajectory starting from the initial conditio
r 0 . To first order in cumulant expansion, we have

S~ t !'E dr0 expF2E
0

t

^k@r ~t!#&0dtGr~r 0!, ~A2!

where^k@r (t)#&0 is the average of all conformational traje
tories starting fromr 0 . Let us assume that the conform
tional coordinate follows Gaussian dynamics^r (t)&50 and
^r (t)r (0)&5^r 2&f(t). Then, the average rate at timet in Eq.
~A2! is given by

^k@r ~t!#&05
1

A2pD
E djk@r 0f~ t !1j#exp@2j2/2D#,

~A3!

wherej is the Gaussian variable andD5^r 2&@12f2(t)# is
the Gaussian width. Evidently, if the decay rate is mu
faster than the conformational relaxation time scale, we
proximately writeS(t)5*r(r 0)exp@2tk(r0)#dr0, which is an
inhomogeneous average of the equilibrium distribution.
this case, we obtain both fine time and spatial resolution
the decay rate is slow in comparison to conformational
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
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ordinates, then the trajectory average in Eq.~A2! reduces the
spatial resolution while still maintaining the temporal res
lution.

We now consider the correlation of two lifetimes sep
rated by timet. Assuming the fast decay limit, we write th
lifetime correlation function as

Cor~ t !5 K d
1

K
exp~2Gt !d

1

K L Y K S d
1

K D 2L , ~A4!

where the ensemble average is defined for the equilibr
conformation distribution. If the variance of the ratedK is
much smaller than the average rate^k&, we have

Cor~ t !'
^dK exp~2Gt !dK&

^dK2&
5

x~ t !

x~0!
, ~A5!

where the memory functionx(t) is defined similarly as in
Eq. ~11!. Evidently, the general relation between the on-tim
correlation function and the memory function remains va
for the simpler case discussed in this appendix.

APPENDIX B: TWO-EVENT JOINT PROBABILITY
DISTRIBUTION FUNCTION

The two-event echo was explored extensively in a rec
publication, where an expression for the echo is obtain
through the Gaussian approximation.21 However, the Gauss
ian rate model is determined by mapping the survival pr
ability computed from the modulated reaction model. T
rigorous definition of the stochastic rate in Sec. III quantifi
the mapping and allows us to establish the two-event e
phenomena in a broad context.

Without loss of generality, our analysis is carried out f
symmetric reactions withGa5Gb5G andKa5Kb5K. Nu-
merical calculations of the asymmetric reaction in Sec.
suggest that the conclusions drawn for symmetric reacti
hold for asymmetric reactions. The symmetric reaction c
be understood as the limiting case of fast backward rate
cesses. Applying the Gaussian stochastic approximatio
symmetric reactions, we obtain the single-event distribut
function

k f~ t !5^K exp~2Kt2Gt !K&

'$@k2L~ t !#21x~ t !%exp@2kt1M ~ t !# ~B1!

and the joint distribution function for adjacent on–off even

k f~ t1 ,t2!5^K exp~2Kt12Gt1!K exp~2Kt22Gt2!K&

'$@x~ t1!1x~ t2!#@k2L~ t11t2!#

1@k2L~ t1!2L~ t2!#x~ t11t2!

1@k2L~ t11t2!#2@k2L~ t1!2L~ t2!#%

3exp@2k~ t11t2!1M ~ t11t2!#, ~B2!

whereL(t)5*0
t x(t)dt. Under the small variance condition

the difference functiond(t1 ,t2)5 f (t1 ,t2)2 f (t1) f (t2) is ap-
proximated by
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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d~ t1 ,t2!'x~0!exp@2k~ t11t2!#$x~ t11t2!1k@L~ t1!

1L~ t2!22L~ t11t2!#2k2@M ~ t1!1M ~ t2!

2M ~ t11t2!#%, ~B3!

which is in the linear order ofx~0!. For further analysis, we
assume a single exponential decay form,x(t)5x(0)
3exp(2lt), so that

d~ t1 ,t2!'x~0!
exp@2~k1l!~ t11t2!#

l2 ~k1l2ke2lt1!

3~k1l2ke2lt2!. ~B4!

Then, the difference function has a maximum at the e
time

te5
2

l
ln

k1l

k
, ~B5!

and a minimum at the focal time, which is half the echo tim
2t f5te . The difference function also has a minimum alo
the t1 axis and thet2 axis at the focal timete . The small
variance expansion implies that the echo amplitude is p
portional to the variance of the reaction rate. These featu
have been confirmed in Ref. 21 with an extensive calcula
of multiple channel models and the continuous diffusion c
trolled reaction model. The prediction of the focal time in t
single-event distribution function and of the recurrent beh
ior in the two-event distribution function helps reveal t
nature of conformational landscapes. Similar to the pho
echo phenomenon, the recurrence can be understood a
echo signal due to the inhomogeneous distribution of en
ronments, and the conformational modulation can be un
stood as dephasing.21 Analogous to motional narrowing, in
the fast modulation limit, the echo signal vanishes, and
single exponential law is recovered. The height of the e
signal and its position vary with the modulation rate and c
be a sensitive probe of the dynamics disorder resulting fr
conformational fluctuations.

APPENDIX C: ON-TIME CORRELATION FUNCTION
AS A FUNCTION OF TEMPORAL SEPARATION

The moments of on-time events associated with num
counting also provide a direct measure of the correlat
function of the stochastic rate. As an example, we cons
the experimental setup where laser pumping from dark st
is constantly applied. In the ensemble of sequences w
lengtht, as shown in Fig. 9, the joint distribution function o
the first and last on-time events can be expressed as

f ~ t1 ,t,t2!5@ksN~ t !#21K (
n50

`

KG~ t2!

3E dt1¯E dtnKG~ t2t12¯

2tn!KG~ t1!¯KG~ tn!KG~ t1!KL , ~C1!
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where G(t)5exp@2(K1G)t# denotes the evolution of a
single on-time event andN(t) is the number density of suc
sequences. In this ensemble of these sequences, the av
on-time of the first event is given as

t2~ t !5E
0

`

dt1E
0

`

t2dt2f ~ t1 ,t,t2!

'
1

N~ t !
1OS uGu

ks
D x~ t !

ks
2 , ~C2!

where 1/uGu is defined as the slowest time scale of the co
formation dynamics and the small variance of rate fluct
tions is assumed in the calculation. Sot2(t) is approximately
1/N(t) to the zeroth order of the slow modulation limit whe
uGu!ks , and t1(t) can be shown as the same. The cro
moment of these two on-time events is

t1t2~ t !5E
0

`

t1dt1E
0

`

t2dt2f ~ t1 ,t,t2!

'
1

ksN~ t !
1OS uGu

ks
D 2 x~ t !

ks
2 , ~C3!

so thatt1t2(t)'1/ksN(t) to the zeroth order ofuGu/ks . Ap-
plying the expression of the number density of such
quencesN(t) in Eq. ~39!, the correlation between these tw
on-time events Cor(t) is

Cor~ t !5
t1t2~ t !2t1~ t !t2~ t !

t1t2~0!2t1~0!t2~0!

5
1/@ksN~ t !#2@1/N~ t !#2

1/@ksN~0!#2@1/N~0!#2 'x~ t !/ks
4, ~C4!

which provides another way to measure the memory func
of the stochastic rate. The correlation function Cor(t) defined
here is different from the Cor(n) discussed in Sec. IV. First
Cor(n) is a disrectized function of the number of even
while Cor(t) is a continuous function of time. Secon
Cor(n) is an event-averaged quantity, which is averaged o
all time separations with a given number of intermedia
events. Evidently, Cor(t) and N(t) are mixed average o
events and time, whereas the average of Cor(t) is performed
over all the sequences with lengtht.

1T. Bache, W. E. Moerner, M. Orrit, and U. P. Wild,Single-molecule Op-
tical Detection, Imaging and Spectroscopy~VCH, Berlin, 1996!.

2X. S. Xie and J. K. Trautman, Annu. Rev. Phys. Chem.49, 441 ~1998!.
3W. E. Moerner and M. Orrit, Science283, 1670~1999!.
4L. Edman, U. Mets, and R. Rigler, Proc. Natl. Acad. Sci. U.S.A.93, 6710
~1996!.

5Y. Jia, A. Sytnik, L. Li, S. Vladimirov, B. S. Cooperman, and R. M
Hochstrasser, Proc. Natl. Acad. Sci. U.S.A.94, 7932~1997!.

6T. Ha, A. Y. Ting, J. Liang, A. A. Deniz, D. S. Chemla, P. G. Schultz, a
S. Weiss, Chem. Phys.247, 107 ~1999!.

7C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustanmante, M.
Wang, and S. M. Block, Biophys. J.78, 1965~2000!.

8P. Reilly and J. L. Skinner, Phys. Rev. Lett.71, 4257~1993!.
9F. L. H. Brown and R. J. Silbey, J. Chem. Phys.108, 7434~1998!.

10E. Geva and J. L. Skinner, Chem. Phys. Lett.288, 225 ~1998!.
11K. Weston, P. J. Carson, H. Metiu, and S. K. Buratto, J. Chem. Phys.109,

7474 ~1998!.
12J. Wang and P. Wolynes, J. Phys. Chem.100, 1129~1996!.
13J. N. Onuchic, J. Wang, and P. G. Wolynes, Chem. Phys.247, 89 ~1999!.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



hy

Lett.

, J.

11009J. Chem. Phys., Vol. 117, No. 24, 22 December 2002 Measurements of memory effects in single-molecule kinetics
14V. Chernyak, M. Schuls, and S. Mukamel, J. Chem. Phys.111, 7416
~1999!.

15E. Barkai, Y. Jung, and R. Silbey, Phys. Rev. Lett.87, 207403~2001!.
16H. P. Lu, L. Xun, and X. S. Xie, Science282, 1877~1998!.
17G. K. Schenter, H. P. Lu, and X. S. Xie, J. Phys. Chem. A103, 10499

~1999!.
18J. Cao, Chem. Phys. Lett.327, 38 ~2000!.
19N. Agmon, J. Phys. Chem. B104, 7830~2000!.
20G. H. Weiss and J. Masoliver, Physica A296, 75 ~2001!.
21S. Yang and J. Cao, J. Phys. Chem.103, 0330~2001!.
22S. Okazaki, J. Wang, S. A. Schofield, and P. G. Wolynes, Chem. P

222, 175 ~1997!.
23N. Agmon and J. J. Hopfield, J. Chem. Phys.79, 2042~1983!.
24R. I. Cukier and J. M. Deutch, Phys. Rev.177, 240 ~1969!.
25J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys.84, 1788

~1986!.
26H. Tang, S. Jang, M. Zhou, and S. A. Rice, J. Chem. Phys.101, 8737

~1994!.
27M. Zhou and S. A. Rice, Int. J. Quantum Chem.58, 593 ~1996!.
28E. J. Heller, J. Phys. Chem.99, 2625~1995!.
29P. Pechukas and J. Ankerhold, J. Chem. Phys.107, 2444~1997!.
Downloaded 18 Aug 2003 to 18.60.5.104. Redistribution subject to AIP
s.

30R. Kubo, N. Toda, and N. Hashitsume,Statistical Physics II~Springer-
Verlag, Berlin, 1985!.

31S. Mukamel,The Principles of Nonlinear Optical Spectroscopy~Oxford
University Press, London, 1995!.

32J. Wang and P. Wolynes, Phys. Rev. Lett.74, 4317~1995!.
33A. M. Berezhkovskii, A. Szabo, and G. H. Weiss, J. Chem. Phys.110,

9145 ~1999!.
34D. Makarov and H. Metiu, J. Chem. Phys.111, 10126~1999!.
35J. Cao, J. Chem. Phys.114, 5137~2001!.
36R. M. Dickson, D. J. Norris, Y. L. Tzeng, and W. E. Moerner, Science274,

966 ~1996!.
37G. J. Schutz, H. Schindler, and T. Schmidt, Biophys. J.73, 1073~1997!.
38X. Xu and E. S. Yeung, Science275, 1106~1997!.
39T. Ha, J. Glass, T. Enderle, D. S. Chemla, and S. Weiss, Phys. Rev.

80, 2093~1998!.
40M. A. Osborne, S. Balasubramanian, W. S. Futey, and D. Klenerman

Phys. Chem. B102, 3160~1998!.
41J. Cao, Phys. Rev. E63, 041101~2001!.
42R. Zwanzig, Acc. Chem. Res.23, 148 ~1990!.
43H. Yang, P. Karnchanaphanurach, and X. Xie~preprint!.
44R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett.82, 3563~1999!.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


