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Direct measurements of memory effects in single-molecule kinetics
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Statistics and correlations of single-molecule sequences of modulated reactions are explicitly
evaluated in the stochastic rate representation. The memory function, introduced through the
Gaussian approximation of the stochastic rate expression, characterizes the correlation in
single-molecule rate processes in a formalism similar to the stochastic line shape theory. Within this
formalism, the on-time correlation is shown to approximate the memory function of the fluctuating
rate at discretized effective time separations. A new measurement, the two-event number density, is
proposed as a means to map out the memory function over the complete time range. Confirmed by
numerical calculations, these relations quantify dynamic disorder caused by conformational
fluctuations and hence are useful for analyzing single-molecule kinetics20@ American
Institute of Physics.[DOI: 10.1063/1.1521155

I. INTRODUCTION tuations. Using single-molecule fluorescence resonant energy
) transfer(FRET), Edmanet al. and Jiaet al. studied lifetimes
Single-molecule spectroscopy allows us to observe realas 5 TR fluorophore attached to biomolecules and found
time single-molecule trajectories, which consist of a chain ofy, e exponential deca$S. Geva and Skinner analyzed
gorrglated rgaction evenFs of var.ious Iifetimes and Contairﬂhese measurememisand successfully extracted the inter-
rich information about microscopic mechanisi$An ad- conversion rate between the conformational states. The

vantage of single-molecule techniques is the direct observ@lafRET experiments and the subsequence analysis are based

tion of variations in reaction kinetics, which are often I|m|te(_j on the fact that the FRET rate is much faster than conforma-

by the spectral resolution in conventional bulk experi-,. . o . o
815 _ . . tional relaxation so that the lifetime of a single event is dic-

ments:~In single-molecule experiments, the observed mo- . . .
ted by the transient conformation. In fact, the average life-

lecular system interconverts between the dark and brigh&a f the t h | di e in th
states so that the fluorescence turns on and off intermittentl)y.meS 0 € two channeis are so disparate In inese

The on/off waiting time corresponds to the duration that acXPefiments that one can assign a decay event to a confor-

single molecule spends in the bright/dark state, and a traje(ggational channel and thus directly monito_r the inter_conver-
tory of on—off events records the history of the single reacSion between the two channels. As shown in Appendix A and

tive system. Since only the bright state is monitored through @ recent paper, single-molecule FRET signals are better
fluorescence emission, conformational dynamics is not di€xPressed as an inhomogeneous average over transient con-
rectly accessible, and dynamic disorder ibiddenmecha- figurations. The interpretation of single-molecule kinetics is
nism that requires statistical analysis of single-molecule reless obvious when the average lifetimes are not so disparate
action eventd0-1216-211n 4 recent calculation of the two- and the conformational fluctuation rate is comparable to the
conformational-channel model, we observed the crossingecay rate. This complication arises when the decay process
behavior(i.e., the focal timgin the single-event distribution has a competing time scale such as the environmental time
function and the recurrent behavigre., the echo timein scale. Wolynes and co-workers have explored the possibility
the two-event distribution functioff Many issues remain to of using intermittency to extract information about confor-
be addressed, such as the generality of the two-event echmational effects from single-molecule sequent®s:??>An
the gquantitative description of conformational fluctuations inimportant example of single-molecule kinetics is the single-
single-molecule kinetics, and the plausibility of direct mea-molecule enzymatic turnover experiment by Lu, Sun, and
surements of memory effects from on—off sequences. In thixie.'® Analyzing single-molecule reaction sequences, these
paper, we use the stochastic rate model to derive explicuthors demonstrated slow fluctuations in the turn-over rate
expressions for the reported event-averaged quantities arfl cholesterol oxidation and the dependence of enzymatic
introduce two quantitative measurements of the memoryymovers on previous events. Another interesting example is
function. the fluorescence characteristics of single dye molecules ad-
~ The kinetics considered here is more complicated thagorhed on a glass surface. Westtral 1! proposed that the
direct single-molecule measurements of conformational flucgmission spectrum and efficiency are modulated by the inter-
conversion between two ground state potential minima. The
3Electronic mail: jianshu@mit.edu purpose of this paper is to quantify single-molecule data
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analysis in a unified framework and to propose more effec- k

1
tive measurements of memory effects. k Aj«—B,
. . 1
Single reaction events are often modulated by conforma- A, «—— B,
tional distribution and fluctuations which cannot be de- r K r
2

scribed by conventional chemical kinetics. Phenomenologi- r

cal chemical kinetics quantify a first-order rate process with r A, — B,
the equilibrium constant measured by the ratio of equilib- r

rium reactant and product concentrations, and with the total A ¢————» B k, r
rate constant obtained from exponential relaxation to the 2 k, 2 A
equilibrium configuration. The phenomenological chemical 3 B,
reaction is a Poisson process, reaction events are stochasti- =\ o hannel model (b) three-channel model

cally independent, and the nonequilibrium concentration de-

cays exponentia"y_ In a realistic situation, the decay rate i€!G. 1. An illustration of(a) the two-channel model antb) the linear
not a constant but modulated by the evolving conformationaé-channel model.

configuration. (Solvent interactions, intramolecular cou-

plings, electrostatic potentials, geometric effects of macro-

molecules, et¢?*~** Single-molecule experiments monitor eyent from a fast channel. It is also possible that because of
rate fluctuationg occurring duri.ng single decay events, Whic'&pnformational changes the system which enters the bright
cannot be easily detected using ensemble-averaged expegtate from the slow channel may react from the fast channel.
mental techniques. In Sec. Il, we introduce the modulatednstead of associating an on-state event with a specific con-
reaction model as the generic scheme to incorporate effectgrmational channel, we correlate two on-time events to re-
of environmental modulation on rate processes, and defingea| the correlation hidden under stochastic fluctuations.
related single-molecule quantities to elucidate the differencghere are two ways to register the on-time correlation as a
between single-molecule and ensemble averaged measukgnction of the number of events in between, or as a function
ments. of the time separation. The first kind of on-time correlation
Single-molecule sequences can be analyzed with severfilnction is the focus of our discussion. It has the advantage
methOdSZ, inCIUding fluorescence intenSity correlation func- of having an equa| number of data points for different sepa-
tion, on-time histogram, joint probability of two on-time rations of events and the disadvantage of using discretized
events, on-time correlation function, etc. It is not clear howyariables. It is shown in Sec. IV that the on-time correlation
to relate these different quantities and how to quantify modufynction is equal to the memory function evaluated at the
lation effects on reactions. In Sec. VI, we introduce a differ-ayerage time separation between two on-time events. This
ent but equivalent representation of modulated reactions: thgpproximate relation is proved under two conditions: the
stochastic rate model, where the evolution of the time-Gaussian limit, where the second cumulant contribution is
dependent rate is treated as a stochastic process. Similariguch smaller than the constant rate term, and the slow
Kubo—Anderson’s stochastic rate thed?' the stochastic modulation limit, where conformational fluctuation time
process of the rate is described by the average rate, used dgale is much slower than the reaction process time scale.
conventional chemical kinetics, and the memory function,The second kind of on-time correlation function is discussed
which characterizes memory effects due to the coupling ofn Appendix C and is related to the two-event number den-
the reaction to its environments. As a result, all single-sity discussed in the following.
molecule quantities can be explicitly evaluated in terms of  In Sec. V, we introduce a new single-molecule measure-
the average rate and the memory function. As shown in Segnent: the two-event number density. Along single-molecule
[I1 A, the memory function directly gives the interconversion kinetics sequences, the decay events are evenly and ran-
rate for the two-channel model, but cannot be decomposedomly distributed, so the number density of events is a con-
into reaction and modulation factors for a multiple-channelstant. Now let us take two events along a sequence and reg-
model. In general, the memory function is a convolution ofister the two events with the time separation from the
reactions and conformational fluctuations, but decays asymgpeginning of one event to the end of another event. Are two
totically to the fundamental mode of conformational relax-events randomly distributed? Yes, if the reaction events are
ation. With these developments in Sec. Ill, we can expressot correlated, the two-event number density is a constant. In
single-molecule measurements in terms of the memory fundhe presence of memory, events of similar lengths are likely
tion (e.g., the two-event echo in Appendix) Bnd model to group, so that the deviation from the constant number
experimental observations of stretched exponential andensity is a new measure of memory effects. We can show
power-law decay. that the deviation from the constant number density is ex-
In Sec. IV, we establish the relation between the memonactly proportional to the memory function for a reaction with
function and the on-time correlation function. With the sto-infinite fast backreaction rate, and is approximately propor-
chastic rate formalism, we should distinguish two stochastitional to the memory function for a general reaction. In com-
quantities of different nature: the on-state waiting time dic-parison, the on-time correlation functions are recorded at dis-
tated by the time-dependent rate and the reaction rate dicretized time separations and are thus less accurate, while the
tated by the conformational dynamics. Thus, we observe &vo-event number density are recorded continuously and are
short decay event from a slow channel and a long decathus more reliable. Our main results are confirmed by nu-
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Arightstate) B (dark state) A (bright state) B (dark state) kinetics and memory effect8-2°In a paper titled “Rate pro-
k(1) cesses with dynamical disordef? Zwanzig listed examples
K @ \/\’ ’ of such processes which include self-diffusion in water,

@ Ks G k.0 gated diffusion, protein Qynamicg fluorescencg depolariza-
b tion, dynamical percolation, barrierless relaxation, etc. Es-

(2) modulated reaction scheme (b) stochastic rate model sentially, any sequence composed of two distinct measure-

ments can be mapped to two-state kinetics, where the states

refer to chemical states, fluorescence states, charge transfer

states, binding sites, different modes of hopping, different

regions of diffusion, etc.

merical simulations in Secs. IV and V, and are summarized The modulated reaction model is discussed in details in

FIG. 2. An illustration of(a) the modulated reaction scheme aftdl the
stochastic rate model.

in Sec. VI. Refs. 18 and 21. For convenience of further calculations, we
summarize these discussions and elaborate on the physical
Il. MODULATED REACTION MODEL meanings where necessary.

The influence of conformational fluctuations on chemi- (1) The reversible full reaction in Eq1) can be decom-

S . : osed into the forward half-reaction described by the sur-
cal kinetics is described by the modulated reaction mode. - _
. - {7-20.23.29 32 3 . vival probability G,(t) =exd —t(I';+K,)] and the backward
illustrated in Figs. 1 and(2). 123,29.32.34n this model, the . ) v

. . . half-reaction by the survival probabilité,(t) =exd —t(I',
reaction rate constant depends on environments which ar ) . .

: . Kp)]- The Green's function solution to E¢l) can be ex-

represented by conformational channels, and different chan-

. . . . anded into a series of half-reactions linked by the forward
nels interconvert according to conformational dynamics. Th .

. . fate constant matrik, and the backward rate constant ma-
conformational channels refer to complex environments thatt. . ) .
. ) : . rix K, . For example, the bright state Green’s function asso-
influence the reaction process, and arise from various mo-. . . o .

i . SR . ciated with the fluorescence correlation function is equiva-

lecular mechanisms including intramolecular structures, in- o . .
. . ; . lent to an infinite series of half-reaction sequences

termolecular interactions, solvent configurations, etc. Two

specific examples of the generic modulated model, the two- G,,=G,+G,-K,G,-K,G,

channel model and the three-channel model, are illustrated in

Fig. 1 and will be used later in explicit calculations. Modu- +Ga KpGp KaGa KpGp- KaGat -+, @
lated reaction model has been extended to the analysis Qfhere the dot represents a time convolution. For an ergodic
single-molecule  quantum  waiting time  distribution system, the population evolution measured in bulk experi-

functions*#2**and heterogeneous diffusion procéss™™  ments is equivalent to the summation of all possible se-
The kinetics of the generic modulated reaction model fol-quences of half-reaction events along single-molecule trajec-
lows: tories, and the equilibrium ensemble-averaged quantities in
(pa(t)) r,+K, -K, pa(t)) the bulk state can be recovered by averaging along single-
. =— : (1) molecule trajectories.
pp(t) —Ka Tp+Kp/ | pp(t) J

) o ) (2) The phenomenological rate constant in chemical ki-
wherel’, governs the conformational dynamics in the brighthetics can be interpreted as the inverse of the average life-
stateA (i.e., the on-state I', governs the conformational (ime at the bright or dark state, giving

dynamics in the dark statB (i.e., the off-statg K, is the

forward rate from the bright state to the dark state, Kpds t—:f“E G.(F.dt= 2pa _ 1 3

the backward rate from the dark state to the bright state. For "2 |, a e SKapa ki

a multiple channel model with a discretized distribution of _

conformational channels, is a vector,K andI' are rate and, similarly,t,=1/k;. In Eq.(3), F, is the stationary flux
matrices. For a continuous model with a set of conformadefined in Eq.(6). Evidently, the macroscopic rate constant
tional coordinatesp and K are functions of the conforma- in phenomenological chemical kinetics is simply an inhomo-
tional coordinates, anBl is a differential operator which gov- geneous average of the microscopic reaction rate constants
erns the evolution of these coordinates. The modulate@nd therefore does not contain any information about dy-
reaction model can be regarded as a hidden Markoviafnamic disorder. The ratio of the average forward and back-
scheme, wher& dictates the reaction directly aiticharac- Wward reaction rate constants satisfies the phenomenological
terizes the hidden mechanism which affects the reaction pradetailed balance relation

cess indirectly. _

Although introduced in the context of single-molecule KaMa =KMo, @
reactions, the modulated reaction model is general enough twhere n,=>=p, and n,=Xp, are, respectively, the total
represent a broad class of kinetic processes with dynamiequilibrium populations in the bright state and in the dark
disorder. In complex chemical processes, chemical reactiorstate. In the context of single-molecule measurements, the
are usually modulated by geometric constraints, slow struceletailed balance relation in E¢4) is a result of the long-
tural relaxation, and hydrogen bonding and network in aquetime averaging of the waiting time along single-molecule
ous systems. In the presence of these slow environmenttdjectories, which defines both the average rate constant and
fluctuations, the competition between the reaction dynamicthe equilibrium distribution. Furthermore, bulk-state relax-
and the conformational dynamics leads to nonexponentiadtion experiments measure the total rate constapi= Ky
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+ky,, Whereas the forward and backward rate constants afée Heisenberg picture in quantum mechanics, as the rate
obtained through the detailed balance condition in(&y.In evolves with time. As illustrated in Fig. 2, though in different
contrast, single-molecule experiments separate the forwar@ictures, these two models are equivalent.
and backward half-reactions, and determine the two rate con-  To begin, we write the kinetics of the generic modulated
stants from the average on and off times. reaction model in a compact form
_(3) The tim_e-ir_1de_pendent solution to E{) defines the p()=—(T+K)p(t), @)
equilibrium distribution, T[,+Ky)p.=Kppp and ([ . . ]
+Ky) pp=Kppa, Which relatep, to p, and vice versa. Tak- where I’ qharactenzes 'the qonfprmatlonal dynamics &nd
ing the trace of both sides of the two equations, we obtain th€haracterizes the reaction kinetics. In genefatan be any
macroscopic detailed balance relationstrigk, = npk,. The ~ dynamic operatofe.g.,I'= — X 0d,(dx+x/ 6) is the Fokker—
overall balance condition follows directly from the conserva-Planck operator for normal diffusion in a harmonic poten-
tion of the flux, but it does not exclude the possibility of a fiall, andK can be any form of kinetic processes, including
net current circulating around conformational channels. IrfliScretized multichannel rate and coordinate-dependent rate.
fact, this kind of net current can lead to the intriguing phe-We. introduce thg stochastic representation for_ modulated re-
nomenon of Brownian ratchets. For example, differentaCtions by rewriting the Green's function solution to Eq)
modes of diffusion lead to a net motion driven by the cou-in the interaction picture as
pling of random Brownian motions and chemical reactions. t
The possibility of a net current can be excluded by equating G(t)=e~ " Ti=e™" exp( —f K(T)df)- (8)
the microscopic fluxes of the forward and backward reac- 0
tions The time-dependent rate is defined through a matrix transfor-
mation K(t)=e''Ke I so that conformational modulation
Kapa=Kopp, ® s incorporated into the time dependence of the rate.
which leads to the equilibrium conformational distribution With the time-dependence rate, all single-molecule
I'.pa=Tppp. With the same conformational dynamics for quantities can be evaluated explicitly in the stochastic rate
the two statesl’,=T",,, we havep,xp, andK, «<K,, which  model. For example, using the identiBI",= 0, the average
are useful for further calculations. survival probability in the bright state can be written as
(4) To formulate event-averaged quantities, it is necesS(t) =(G,(t))=(exp( [{Ki(nd7), where the average is
sary to introduce the stationary occurrence probability flux taken with respect to the equilibrium conformational distri-
Fa) N(Kbpb) bution{A)=XAp,/=p,. Cumulant expansion &(t) leads

6 to
Fp Kapa ® " .
(-1

whereF, is the stationary flux from the bright state to the S(t)zexr{ P — fthl‘“fthan(le---,Tn)
dark state, ané, is the stationary flux from the dark state to n-1 Nl 0 0

the bright state. It follows thaEK p,==Kppp=N"1, im- 9
plying the conservation of the fluf. Given the stationary wherey,(7y,...,,) is thenth order cumulant function. As a
fluxes, we define the distribution function of on-time eventsresult of the detailed balance conditidiyp,=0, the average
asf,(t)=2K,G,(t)F, and the joint distribution function of rate and correlation functions are stationary. Thus, we have
on-off events as p(t5,t1) = ZKpGy(t5) KaGa(t1) Fa, which

will be evaluated explicitly. These event-averaged quantities XD =(Ka(1))=(Ka)=ka, (10
cannot be obtained directly from bulk experiments and mustvhich is the phenomenological rate constant, and

be collected along single-molecule trajectories. Xz(tlytz):<5Ka(t1)5Ka(t2)>:<5Kaeira(tlit2)5Ka>

= Xaa(t1—12), (11

which rigorously defines the memory function for the sto-

As demonstrated in Ref. 21, given a specific model, thechastic rate. The initial value of the memory function gives
single-molecule quantities can be computed and the featurege variance of the reactive ra}@(0)=(5k2>=k§. By trun-
such as the focal time and the echo time can be identified. Igating the expansion in E¢9) to second order, we obtain the
this paper, we will show the generality of these features byGaussian stochastic rate model
virtue of the stochastic rate model. The environmental fluc-
tuations introduces a time dependence on the rate constant, St(t) = €XH ~Kal*+Maa(t)] (12)
which can now be treated as a stochastic variable. Similar taith Maa(t)=fg(t— T)Xaa(7)d7. Similar expressions can
Kubo’s stochastic line-shape thedfy?! each realization of be obtained for the backward half-reaction as well as for the
the stochastic rate defines a rate process, and single moleaeversible full-reaction. Since the survival probability de-
lar measurements can be obtained by taking a stochastic agreases with timek,> [{(1— 7/t) xaa(7)d7 has to be satis-
erage of rate fluctuations. The modulated reaction model ified, which implies a small variance of reaction rates and a
analogous to the Schdnger picture in quantum mechanics, finite correlation time for conformational fluctuations. We
as the occupancy in each conformational channel changesnphasize that the stochastic model and the memory func-
with time but the rate constant for each channel remaingion are completely general whereas the Gaussian stochastic
constant. The stochastic reaction rate model is analogous tate model is approximate.

IIl. STOCHASTIC RATE MODEL
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The kinetic problem considered here is more generaB. Continuous conformational states: Coordinate
than conformational kinetics probed by single-molecule fluo-dependence

rescence resonant energy transfeRET) or other related Our definition of the memory function provides a pos-
techniques. With these techniques, the decay process is mugfhe interpretation of the recent finding of stretched expo-
faster than conformational fluctuations so that the variation,antial relaxation in single-molecule experimetitin a gen-

of the rate during a single decay event can be ignored. Thug,,; situation where the rate constant is coupled to a set of

the single-molecule sequence consists of a large number @fnformational degrees of freedom with the coordinate de-
forward half-reaction events, where the on-time duration cor;

- X - ““'pendence&(x), the memory function becomes
responds a specific conformational state, and the evolution of
the decay time directly records conformational dynamics. In
comparison, for single-molecule kinetics, we have to prop-
erly treat the convolution of reaction and modulation, i.e., the _ . .
time dependence of the rate during a single decay event. FiEx(0)]) —(exrli£1x(0)){exdi{ox(0) [},
Evidently, the reaction limit of our results here will be useful (14

for analyzing FRET. In Appendix A, we discuss the statistics ~ N . .
and correlation of FRET measurements and show that th\é/f;erfk(g;)—If(k(y)exgqt);]g)d%ls thhe Founertrangform c.)f ghe "
memory function remains a useful tool. ra_tt:] unc 'O?t ()t(f)1 an f €s ?C als(;c averagefls ;\arne ou
The importance of the memory function in single- with respect to the conformationa ynamicsygt). ssum-
ing a Gaussian stochastic process for the conformational co-

molecule kinetics can be better appreciated by the comparl-

son with the memory function in condensed phaseordinate Eqg.(14) can be evaluated with the second-order

spectroscopd®*L Stochastic line-shape theory describes sto.cumulant expansion. This expression incorporates a large

chastic fluctuations of the transition frequency using the englass of r_nodu_lated rate Processes and leads _to a stretched
xponential with a proper choice of the coordinate depen-

ergy gap correlation function and thus provides a universaf . .
language to unify and quantify different optical spectroscopydence in the rate function.
measurements. The specific form of the energy gap memory

function depends on environmental dynamics and the couc. Long-time behavior
pling between the quantum transition and its environment.

Th luati f this oh logical functi We note that the memory function measures modulating
€ evaluation ot this phenomenological memory TUNCliONgfto ts of environments on two-state kinetics, but does not

has motlyated microscopic theo_ne; of sol.vat|on d_ynam'csdirectly probe environmental fluctuations. Nevertheless, the
and solution spectroscopy. In a similar fashion, the introduc-

. A . . ... asymptotic behavior of the memaory function reveals the na-
tion of the memory function in this paper provides a unified

f K t i ffects in sinal lecul ture of the long-time relaxation of environmental fluctua-
ramework 1o quan.|f.y memory €flects in SiNgle-MoIeCUl€ s 1o demonstrate this, we expand conformational fluc-
kinetics and to explicitly evaluate single-molecule measure

tuations as G(t)=|¢,)En(t){®,] where the eigenstates

ments._The memory kernel is the key quantity we extra(_:tsatisfy<%|(pm>:5nm’ andE (1) is the characteristic func-
from single-molecule sequences and use to characte_rlz[On for the nth eigenstate. In order words,(x) are the

tmhodulated r_eac;lont?]. Ft(\)/\: examptlz,_ T@pgeno}lm B{.We d_(tarr]'_v%ormal modes of conformational fluctuations. In this basis
€ expression for the two-event distribution function witt Inset, we expand the rate constantk@s) =>c,¢,(X) so that
the framework of the Gaussian stochastic rate approxim k(x))=co, and
=Co,

tion. Several forms of the memory function are discussed i
the following.

1 -~
X(0= iz [ dEdERKERE (et £ax(0)

x<t>=n21 C2Eq(D). (15)

A. Discretized conformational states: Two-channel

: The smallest nonzero eigenvalue has the slowest decay and
and multichannel models

thus dominates the asymptotic behavior, i.e.,

The simplest example of modulated reactions is the two-  ;
conformational-channel model illustrated in Fig(al For tlm X(O=Ea(t) (16)
the forward half-reaction, we havek,=p.k;+ poks, ) i
k§=p1p2(k1—kz)2, and Whlch dlrectly probes thg fundamental mode of conforma-
2 tional fluctuations. As an important example, we demonstrate
Xaa(t) =Ky exd = (y1+ 2)tl, 13 this aspect of the memory kernel using the example of sub-

wherep;=y,/(y1+ v2) andp,= y1/(y1+ v2) are the equi-  diffusive environments.
librium populations of the two conformational channels.

From the memory function, we will be able to determine the
total interconversion rate between the two channels. For
multichannel model, we will not be able to find such a To illustrate the generality of memory effects, we hereby
simple interpretation for the memory function except for spe-consider a single-molecule experiment in a disordered me-
cial cases as in Fig.(h). In general, the memory function is dium where the conformational dynamics is modeled by sub-
a summation of many exponential functions and characterdiffusive motion in a harmonic potential. Subdiffusive trans-
izes the average effects of conformational modulation on theort is widely observed in diverse fields, including charge
reactive rate process. transport in amorphous semiconductors, Nuclear magnetic

Q. Memory function for subdiffusive environments
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resonance diffusometry in disordered materials, and bead dy- 1.0 . :
namics in polymer networks. Metzler, Barkai, and Klafter — =03

proposed a generalized fractional Fokker—Planck equation \ ----- v=0.5
for anomalous diffusion, and later justified the approach 1 ——— =07
from a continuous time random walk mod&lUnlike linear \ e =09
Brownian motion in the diffusive regime, the mean square ‘.‘\‘\\

displacement in the free subdiffusive space follows

. 2K, |
<(AX) >:F(1—+’y)t7 with 0<y<1, a7

where K, is the generalized diffusion coefficient, and the
Stokes—Einstein relation is generalized Ks=kgT/m7,,,
where 7, is the generalized friction coefficient. The sub-

—— .
- ———

diffusive motion in a potential is described by the corre- 0.0 s .
sponding Fokker—Planck operater Lrp=dy[ V' (X)/m7, ] 0.0 1.0 2.0 3.0
+K,dZ. In a harmonic potentialV(x) =mw?x?/2, the t
Green's function for the subdiffusive motion is FIG. 3. Numerical calculation d,(—2t?). For y close to 1E,(—2t?) is
— similar to exponential decay; while for smal] it deviates from exponential
G 't Mw 2 1 E .fy decay and exhibits stretched exponential in the short time regime and
X, X", t)= 1 / -n ) o i .
( ) 27TkBT - 2nnl 'y( ) power-law behavior in the long time regime.
X' X %2 . . .
XHp| —|Hp —|exp — > (18 1, the Mittag—Leffler function becomes close to a single ex-
V2 V2 ponential function; while for smal, it clearly deviates from

where the characteristic time unit is defined by 7 7 exponential decay and shows the power-law behavior in the

= w?/7n,, T=t/7 andX=x\mw?/ksT are temporal and spa- long time regime.

tial coordinates in reduced units,H,(x)=(—1)"

X exfx°]d; exd —x°] is the Hermite polynomial, an&,(z)  IV. ON-TIME CORRELATION FUNCTION
=37 _0Z"[T(1+ym)] is the Mittag—Leffler function. For
]?:jzcltlot;] eEI\/g;a_g;)I(_ eg)le_rr;‘]ténguiirl\ié)r ?lf;n;?sstrtigﬁ tii );p;nsgt'altime correlation function illustrated in Fig. 4, which was first
duced f,ror; the IoF;lg.time Ii?nit of the Green’s function used in Xie's experiment as a measure of memory effects.

' With the introduction of the stochastic rate model and
_ 2
p(X) =Vmao*/2mkgT exf —X7/2]. memory function, we are now able to explicitly show the

In general, anoocrdinate-dEp‘e[ndent rate function can b|ation petween the memory function and the on-time cor-
expande_d aSk(X)_E“:OC“H”(X( 2) so _that the average relation function. Here, this relationship is proved within the
stochastic rate and the correlation function of the stochastig|,\\ modulation limit and the small variance limit Though
rate becomék(x))=c, and

One direct measure of the memory function is the on-

both are derived for the small variance limit, the first proof
x(1)={K(X)G(x,x",t) k(x")) invokes the second cumulant approximation but does not re-
quire the slow modulation assumption; and the second proof
does not involve any assumptions about the convergence of
the memory function but requires the slow modulation as-

) o ) ~ sumption.
In the long time limit, the memory function of the fluctuating

rate y(t) follows a power law decay according to the prop-A- Second cumulant expansion

erties of the Mittag—Leffler function. The on-time correlation function is defined as
As a special case, we assume a quadratic form of the

oo

=n§=)l c22"lE(—nt?). (19)

coordinate dependence, i.&(x)= kx?, so that the correla- tltnﬂ—t_2
tion function of the stochastic rate is given by(t) Cor(n)= o (22)
=X(O)Ey(—2"fy). In the short time regime, whenR< 7,

E(—21")~1—-21"T(1+y)~exd — 2T (1+ )]

(20) 4 tha
is a stretched exponential; while in the long time regimne, |
>,
- T T2 |
E (—2t")~ - (21 e N
Y 2I'(1—y) 4I'(1-2y) | Cor(n)

is a power _laW_ decay. Numerical calculationsEof( —2t?) FIG. 4. Two on-time events separatedrbgff-events along a typical single-
are shown in Fig. 3 for different values ¢f As y approaches molecule trajectory.
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(1 _ X)K where the second cumulant truncation is applied lér{t)) is
a given asM(t) = ftx(7)(t— r)dr. Under the small variance

condition, Eq.(27) is expanded to the leading orderMf(t),

giving

xK, kH(x)=J {[1+M(t) +xM(t)]coskiktx)
> 0
I I
a b —2XxM(t)sinh ktyx)le*dt. (29)
Kb

This closed-form expression is then used to generate the mo-

FIG. 5. An illustration of the reaction scheme for the evaluation of the ment in order ofx", Ieadlng 030 k*H (X)=EX”EJI.(:-|2n
generating functior (x). +|2n72_2|2n71] where Im:fO d’TM(T)(kT)me /m!.
Assuming that the memory function of the rate varies much
slower than the rate process, the integralM7) can be
approximated by the value of the first momet=(m

which is the cross-correlation function of two on-time events+ 1)/k, that isl, ~M(t,.). Then, the difference function be-

separated by off-events. From Eq(5) of Ref. 18, the joint

probability distribution is given as comes
I+ | 21 ] i VA Rt PPV (sl
f(ts 1) =2 KaGaltns 1)KpGp[KaGaKpGp]" ™ 2nti2n-2 et k k | "7k
XKaGa(ty)Fa, (23 1 (Zn)
~ -— 29
so that i2X| & (29

B where the continuous limit is taken under the slow relaxation
tatn+a= | Ay | bty thr)tatnsy assumption. Combining Eq§22)—(29), we finally arrive at
an approximate expression

- x(2n/k) — x(ter)
with G=[5G(t)dt. Here, the stochastic average is defined ~ Cor(n)= MORETOR (30
as (A)=XAp,/Zp,. To evaluate the on-time correlation
function, we introduce a generating functiom(x) indicating that the on-time correlation function is propor-
=3%_,titns X", Where then=0 term is included for con- tional to the memory function of the rate at the discrete time

venience andk<1 is assumed for convergence. Thus, weSeparation. The number of off-events in Qur(s translated

:<[éaKaébKa]néa>/ka (24

have into the average time separation between two evenigtin
o _ For asymmetric reactions, E¢30) can be generalized to
kaH(x) = ngo X([GaKpGpKa]"Ga) Cor(n) = x(n/k¢+n/kp)/ x(0), with the effective time sepa-

rationtes=n/k; +n/k,. Although the final result in E¢30) is

_ R _ (" obtained approximately under the slow modulation limit, Eq.
(Gaal)) fo (Gaalt))dt, (25) (29) is derived without this approximation and is therefore
where the resummation similar to E) is used. As illus- more general.
trated in Fig. 5, the Green'’s functid@b,,(t,x) corresponds to The generating function in Eq25) can be evaluated
the following kinetics: explicitly for the symmetric two-channel model illustrated in
. Fig. 1(a), givin
paD)  (TatKa =Ky | (pal® oy elguine. o
pp(t) - —xKa  Tp+Kp/ | py(t) ' B 8yke+ (1—x)(k“—kgjk—2vk§(1+x)

H(x) (31

T 1_ 2 122 (k2 _k2\27"
which describes the forward reaction with rat&,, the (L=0KL(2yk+ K —kg) "= x(k" k)]
backward reaction with rat&,, and the population deple- wherek=(k;+k,)/2 andky=(k;—k,)/2. Expansion of the
tion at the bright state with rate (1x)K,. For symmetric above-given expression in termsfesults in

reactions withK ;= K,=K, Eq.(26) is solved explicitly for a

. N k2— k2 2n k \2n
stochastic rate proce$§t), giving Cor(n)= d %( (32)
_ L (11—
KH(x)= J’O dt> < exp( (1=3%) fOK(T)dT) where the approximation is introduced fqy<k. In the slow
. relaxation limit, Eq.(32) reduces to Cor()~exp(—4y/k)
+exp< —(1+ \/Q)f K(T)d7)> =exp(—2tqx), which agrees with the memory function for
0 the two-channel mode}(t) = x(0)exp(2t).

~ %f dt{exq — (1— &)kt+(1— &)ZM(t)] B. Slow modulation limit
0 When conformational kinetics is much slower than reac-
+exd —(1+ &)kt+(1+ &)ZM(t)]}, (27) tion kinetics, each event can be approximated by a Poisson
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process with a probability to jump from one channel to an- 10 . ‘ -
other. Since the on-time duration measures the rate constal \ = Cor()=Expl—2m/k]
for one event within this approximation, the on-time corre- \ mEk,=2.00
lation function directly measures the correlation of the reac- ©os| ®l,’=150
tion rate. This simple reasoning leads to the following deri- \i *k,’=1.00
vation. \ =05
For Eq.(7) in Ref. 21, the on-time correlation function _ oo T b
tith. iS given by ] §\
1 1 1 no1 04 f \i\
tatna= Ko \|Ka+T Kbe+rbKa Ko+D,/’ (33 - \*
wheret; andt,, ; are the time durations for the two on-time o2 | \\*\
events separated by off-time events. For simplicity, we T\T
consider the case whdi,=TI",=TI" such that the equilibrium ‘i\t\"_‘__ o
distribution satisfiesI'p,=I'p,=0. Under this condition, %2 ) 100 “ 150
two rate matrice, andK, are proportional to each ottfér u
and we have K,+TI')"1p,= Kg— 1)Pa- Second-order €X- FiG, 6. A comparison of the on-time correlation function Gorgvith the
pansion in terms obK,=K,—k, leads to normalized memory function for the linear three-channel model,
exp(—2y/k), for several values of rate varianqe(O):kﬁ. The three-
1 1 channel model is defined in E€B7) with k=3.0, =1.0, andy=0.5.
KatT kgt T+ 5K,
1 1 — 0
Y Y
1-6K, + 6K 4 oKy
k +T ko+T ka+T kot T =Ty=| v 2v -],
(34) 0O —-v v
and a similar expression fak,(K,+ )Y, In the slow (37
. - . k++3/2ky, O 0
modulation limit, when the eigenvalues df are much 3124
smaller thark,, Eqg.(33) can be evaluated with above-given Ka= 7Kp= 0 k 0
approximations to give 0 0 k—v3/2ky
SK, k, K, which has a memory functiom(t)=k§ exp(—+t). The con-
tith=~ P 1 ko, kotT ki, formational dynamics are the same for the two states, and the
a equilibrium coefficienty is the ratio between the backward
oKy ka n-1 Ky ka and forward rate constants. We first consider a symmetric
"\ k. Ko+l A kot T Kyt reaction with »=1.0. In Fig. 6, Corfl) is plotted for the
@ three-conformational-channel model defined in Ej.with
Ky K, several values oky but with fixed k and y. Evidently, the
X|1- kot T K, +F equivalence relation is approximately obeyed and the devia-

tion from the theoretical prediction increases with the vari-
1 1/68K, n n\ldK, ance. In Fig. 7, the on-time correlation function is plotted for
~ k2 k2< K exp{l“ PR k_b) K > (39 the same values dandk, but for three different values of
v. The agreement between the discrete @prand the
wherey(t) = (K ,G(t) 5K,) is the memory function for rate memory function expt2yn/k) is reasonably accurate and
fluctuations, and only the leading order correlationséf is improves asy decreases. As an example of the asymmetric
retained approximately. Thus, the cross-correlation functioneaction, we take the ratio between the forward and back-
of two on-time events separated byoff-time events is re-  ward rate constants ag=2.0. The on-time correlation func-
lated tox(t) as tion of the asymmetric linear three-channel model is plotted
—_ in Fig. 8 and is compared favorably with the memory func-
tithea—t°  x(ten)

Cortn) = —5——="70) (36)  tion.

with teg=n/ky+n/ky. In conclusion, in the slow modulation v TV\_/O'EVE_NT N_UM_BER DENSITY _ _
limit, the on-time correlation function is proportional to the Time trajectories in single-molecule experiments provide

memory function of rate fluctuations due to conformationaldetailed records of single-molecule events; therefore, statis-
dynamics. tical analysis of single-molecule trajectories can provide rich

information of conformational dynamics. In addition to the
on-time correlation function, we introduce here a new single-
molecule measurement: the number density of single-
As a numerical example, we study the linear three-molecule sequences. In a special experimental setup, short
channel model illustrated in Fig(l) with laser pulses are constantly applied on the reactant at a very

C. Examples
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1.0
\ @ modulation 7=0.5 I > :I :{ :{ » :I
‘.\\\ ® modulation y=1.0
0.8 Vll\\\\ H modulation y=2.0 1
n\
iy X < >
e\
0.6 | || \ \ ] t
g LY
S \ AN FIG. 9. A sequence of on-events interrupted by instantaneous dark events
04} “ \ \Q for the case where the system is constantly pumped back to the bright state.
\ \
N K ! 1-K ! _lK k
u)= -
(u) u+K+T u+K+TI"
1KlK k1 15K16K
n = — R = — _|_ - ,
k u+T u k? u+T
FIG. 7. A plot of the on-time correlation function Cor( for the same

model as in Fig. 6 for several values of along with the normalized

(38)
memory function expf2y/k).

wherek=(K) is the average rate aniK =K —k is the fluc-
tuation of the rate. Thus, in the time domain, we have
high frequency so that the single reactive system is quickly
pumped back to the bright state once oxidized to the dark
state. As a result, a trajectory of on events are collected with
instantaneous interuptions of dark events. Figure 9 illustrates
a typical trajectory with a sequence of lengtifhe number where x(t) = (K exd —T'tJ5K) is the memory function of
d_ensity of on-time events is thg probability distribution func- the stochastic rate. It is important to note that the above-
tion 9f two evgnt.s along a glngle—molecule Sequence as aiven relation is obtained without any approximation and
function Of. their time separaﬂo’nregardles$ of the number g provides an exact relation between the two-event num-
of e_ver_lts in between. Here, a sequence is defined from tr\ger densityN(t) and the memory function(t) under this
beginning of one event to the end .Of the same or aqothe xperimental setup. A related but approximate relation is dis-
event. The two-ever_n number density thus d_eflned will beCussed in Appendix C.
shown to be proportional to the memory function of the sto- g jjar quantities are defined in single-molecule experi-
chastic rate. ) ) . ments with both on and off times, as illustrated in Fig. 10.
The reaction from the bright state to the dark state is- gimyjicity, we consider the case with the same confor-
denoted by the rate operatdr the conformational dynamics

N(t)=k

1
1+ PX(t) , (39

is governed by the operatdl, and the stationary population

distribution satisfied"p=0. The number densit}(t) with
the time duratiort is formulated in Laplace space as

4 modulation y=0.5
"\ @® modulation y=1.0
0.8 H\ \‘
|l\\ \ B modulation y=2.0
\\‘ \\
\
\® \\
06 |\ \
_ v\ \
£ (A \
g L
&} > \
A \
\
\
\

FIG. 8. A comparison of the on-time correlation function Gorfvith the
effective memory function for an asymmetric reaction. The three-channel
model is defined in Eq(37) with the forward ratek,=3.0, the variance

kq=1/1/6.0, and the equilibrium ratig=2.0. The modulation kinetics is the
same for both the bright and dark states.

mational dynamics for both bright and dark states, and as-
sume detailed balance conditidip,=1 p,=0. Under this
condition,K, andK, must be proportional to each other in
order to exclude nonstationary effects or net current among

different conformational channels. TheN,,(t) in Laplace
space is

N _ 1 K 1
ad W=\ Kay e 51
1-K ! K ! _1K
X T R T KT e

=(K (Ut Ka+Ky+T) " Hu+Kp+T)

X (u+T) K )/ Ky, (40

t

FIG. 10. A sequence of on—off events with lengithat starts and ends with
on-time events along a typical single-molecule trajectory.
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wherek,=(K,) andk,=(K}) are the average forward and backward rates. In the slow modulation limit, when the charac-
teristic time inI" is much greater than B4 and 1k,, we have

ko/(kat+ky) when u<k,, kg

+KatKp+ T Hu+Kp+1)~
[u+Ka+Kp+T ] (u+Kp+I') (U+Ka+Kp) Hu+Kp)  when u=kg Ky,

(42)

whereK <K, is applied and" is ignored due to the separation of conformational and reaction time scales. Combining the
above two equations, we have

Ko(Ka(U+T) 2K ) [Ka(katkp)] when u<kg,k

Naa(u>%‘<Ka[kbUl+ ka(U+Ka+ Kb)il]Ka>/[ka(ka+ kb)] when u= kavkb!

(42

or, in the time domain,

Kok 1 "
Kot K 1+ k—g)(aa(t) , Al Kpt>1

Naa(t)~ 1 (43)
b
m(KaKa>+ m(Kaexq—(KaJer)t]Ka), Kt kpt=1,

where x,a(t) = (5K exd —Tt]K,) is the memory function slow decay to this constant allows us to map out the memory
of the stochastic rate. function

The central result of this section, Eqel0) and (43),
leads to several observations:

(1) In a Poisson process, there is no memory, jt) Naa() = Nao(*2) X"‘aét),
=0 and 6K = 6K,=0, the number densiti,,(t) is given Naa(>) Ka
by the Eq.(43) as

(45

which is more accurate than the on-time correlation function.
(3) In the short time limit, the rate fluctuates on a time
KaKp k2 scale much greater than the measurement tiraeder the
Kot kb+ Kot Kp exfl — (katkp)t], (44 slow modulation condition so that each reaction channel
evolves independently. As a result, the short time limit in Eq.
(43) is equivalent to the inhomogenous evarage of the num-
which decays to the constant platelagk,/(ka+kp) in the  ber density associated with each reaction channel.
long time limit. (4) In the limit of ky—o, Naa(t)—Ka[1+ xaa(t)/K2]
(2) With a separation of time scales implied by the slowrecovers exactly the previous result in E§9) when laser

modulation condition, the initial fast decay of the I’lumberpulses constantly pump the single molecule from the dark
density is followed by the slow decay. The plateau value ofstate back to the bright state.

the slow decay in the number density is the constant for the  Following the same derivationN,(t), Npa(t), and
Poisson process: lim., N 4(t) =k.k,/ (K, +kp). Hence, the  N,u(t) can be obtained as

Naa(t):

Kako | k.t kot>1
PR +E§Xbb(t) v Kat kpt>
Npp(t)~ (46)

Ka
m((Kbe>+(Kbexq—(Ka+ Kb)t]Kb>), kat,kbt$1,

Kako |, 1 ], Kkt ket>1
Kot kg mXab()v al,Kp

Nas()~=) (7
k—(<KaKb>_<KanF[_(Ka+ Kb)t]Kb>)v I(atakbtgl-
a+kb
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Note thatN,,(t) =Np,(t) reflects the time reversal symme-
try in the counting. From Eq(47), the short time limit of
N.p(t) equals zero, which is due to the zero probability for
finding a zero length duration starting with an on-time event
and ending with an off-time event. In contrast, the initial
value of the on—on number density b, .(0)=(K2)/k,,

which is proportional to the mean square of the forward rate.

As a numerical example, we calculate the quantities
N,a(t) and x,4(t) for the linear three-channel model as we
used for Corf) with K,= 7K, . Under these parameters, the
memory functiony.(t)/k2=k3 exp(—y)/k?, and kky/ (K,
+ky) = 7k/(n+1). The approximate expression in Ed3)
and the exact expression in E40) are calculated and com-
pared in Fig. 1(a) for the short time regime and in Fig. ()
for the long time regime, respectively. As shown in the fig-
ures,N, (1) calculated with Eq(40) decays sharply within a
short time scale. The initial value &f,,(t) can be deduced
from Eq. (43) in the limit t—0, giving N,,(t—0)
=(KKp)/k,=7k(1+Kk3/k?), which agrees well with the
calculated value. The predictions from E43) fit the curve
of theN_,(t) from Eq.(40) over a wide range of time scales.

7.0

Exact N_,(t) (short time)
o —-+ Approximated N_ (t) (short time)
6.0 1

507F

N.®

40 |

3.0

20

N,

2.030 |

2.020

N,,®

2.010

2.000

(b)
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Exact N, (t) (short time)
+—-¢ Approximated N,,(t) (short time)

0.0 0.2 0.4 0.6

0.8

1.0

Exact N, (t) (long time)
+—-¢ Approximated N_, () (long time)

0.0 10.0 20.0 30.0

40.0

50.0

30

2.0

0.0

(a)

2.060

2.040

N.(®

2.020 |

2.000

(b)

FIG. 11. Comparison betweéh,,(t) from Egs.(40) and(43) for a linear
three-channel reaction witk=3.0, ky=1/\/6, y=0.1, andy=2.0. (a) The
short-time approximatiorN,,(t) given in Eq. (43) agrees well with the
result calculated from Eq40) in the short time regimeb) The long-time
approximationN,,(t) given in Eq.(43) agrees with the result from E0)
over a wide range of time scales except for the short short time period.

0.2

0.4 0.6 0.8 1.0

Exact N, (t) (long time)
+—-+ Approximated N, (t) (long time)

0.0

10.0

20.0 30.0 40.0 50.0
t

FIG. 12. Density probability distribution function of on-off sequence
N,p(t) for the same model used in Fig. X&) The short-time approximation
Nap(t) given in Eq.(47) agrees well with the exact result in the short time
regime.(b) The long-time approximatioiN,(t) given in Eq.(47) agrees
with the exact result over a wide range of time scales except for the short
short time period.

Similar observation can be made fdg,(t) in Fig. 12, which
has a zero initial value. The only difference is that the initial
value ofN,, is zero, because the on—off sequence involves
at least one on event and one off event.

VI. CONCLUSION

In summary, we have rigorously established the stochas-
tic rate approach in the interaction representation of the
modulated reaction model. The cross correlation of the sto-
chastic rate defines the memory function and characterizes
the rate process. The memory function can be decomposed
into the normal modes of conformational fluctuations and
directly probes the fundamental mode of environments in the
long time limit.

Within this formalism, we study two direct single-
molecule measurements of the memory function of the fluc-
tuating rate. The correlation of two on-time events separated
by a given number of off events is shown to be proportional
to the memory function evaluated at the discretized average
time separation between the two on-time events. The relax-
ation to the asympototic value of the two-event number den-
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sity is shown to be proportional to the memory function, thusordinates, then the trajectory average in E&R) reduces the
allowing us to obtain the memory function over the completespatial resolution while still maintaining the temporal reso-
time domain except for the initial time. The on-time correla- lution.

tion function has been used in analyzing single-molecule  We now consider the correlation of two lifetimes sepa-
data, whereas the number density proposed here is a nawated by timet. Assuming the fast decay limit, we write the
guantity that has not been used yet. The same formalism aldifetime correlation function as

leads to the explicit derivation of the echo in the two-event 5

joint probability distribution functior(see Appendix A The Cor(t)= < 5£exp(—1“t)5£> / < ( 5&) > (Ad)
three complementary measuremefitso-event echo, on- K K K

time correlation, and number dengitare experimentally

feasible and will help to quantify conformational dynamicsWhere the ensemble average is defined for the equilibrium
in single-molecule kinetics. conformation distribution. If the variance of the raf& is

much smaller than the average rgk we have
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Xie and his group for discussions and suggestions. where the memory functio(t) is defined similarly as in
Eqg. (11). Evidently, the general relation between the on-time
APPENDIX A: FRET MEASUREMENTS correlation function and the memory function remains valid
OF CONFORMATIONAL KINETICS for the simpler case discussed in this appendix.

The fine time resolution of single-molecule fluorescence
resonant energy transf@FRET) leads to snapshots of con-
formation kinetics. To see this point, we write the survival APPENDIX B: TWO-EVENT JOINT PROBABILITY

probability as DISTRIBUTION FUNCTION
_ The two-event echo was explored extensively in a recent
St—fdrex—l"+Kt r L ! . )
(® 0 €XH. Jtp(ro) publication, where an expression for the echo is obtained

through the Gaussian approximatidrHowever, the Gauss-
> p(ro), (A1) ian rate model is determined by mapping the survival prob-
0 ability computed from the modulated reaction model. The

wherer , represents the initial conformational configuration rigorous dgfinition of the stochastic ra_te in Sec. Il quantifies
and the average is a conditional average for a given initial"® MaPPing and allows us to establish the two-event echo

condition. HereK governs the decay lifetime used to probe phenqrﬂenalin a bfroad co?text. vsis | ) ‘
conformational kinetics and depends on conformational con-  Without loss o geneﬂlta E}/fogrranag3|s_ls ca_rrled out for
figurations a(r). Depending on the probing procekg¢r) ~ SYMmetric reactions with',=1",=1" and K, =K, =K. Nu-

can be the energy transfer rate or the electron transfer rate. [R€rical calculations of the asymmetric reaction in Sec. IV
the second expressiol(r)=k[r(7)] is determined by the suggest that the conclusions drawn for symmetric reactions

conformational trajectory starting from the initial condition Eold fgr asyn:jmetnﬁ r?ac_:t!ons. The fs%’mmbet“li ree:jcuon can
ro. To first order in cumulant expansion, we have e understood as the limiting case of fast backward rate pro-

cesses. Applying the Gaussian stochastic approximation to
symmetric reactions, we obtain the single-event distribution
function

=f dr0<ex;{—f0tK(r)dr

t
S(U*f dfoexr{—ﬁ)(k[r(r)])odT p(ro), (A2)

where(k[r(7)])o is the average of all conformational trajec- kf(t)=(K exp(—Kt—Tt)K)
tories starting fromry. Let us assume that the conforma- 5
tional coordinate follows Gaussian dynamiggt))=0 and ~{[k=L() ]+ x(O)}exd —kt+M(t)] (B1)
_ 2 . .

<r(t)r_(0)_) =(r")¢(1). Then, the average rate at timin Eq. and the joint distribution function for adjacent on—off events
(A2) is given by

1 ) kf(tl,tz):<K eXF(_ Ktl—Ftl)K eX[i— Ktz_rtz)K>
K[r = dék[rod(t)+ Elexd — E/2A1,
1o | oetrostt +erent €2 ~{lx(t) + XK= L(t +t)]

(A3) k=L (t) — L(t) Tty o)
where ¢ is the Gaussian variable ang=(r?)[1— ¢%(t)] is 5
the Gaussian width. Evidently, if the decay rate is much k=Lt + ) 1Tk L(t) —L(t) I}
faster than the conformational relaxation time scale, we ap- xexf —K(t;+ty) +M(t;+1,)], (B2)
proximately writeS(t) = [ p(rq)exd —tk(ro)]drg, which is an
inhomogeneous average of the equilibrium distribution. InwhereL (t)= [{ x(7)dr. Under the small variance condition,
this case, we obtain both fine time and spatial resolution. Ithe difference functiod(t,,t,)=f(t{,t5) —f(t;1)f(t,) is ap-
the decay rate is slow in comparison to conformational coproximated by
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S(ty,t)~x(0)exd —k(t;+ty) [ x(t +1t2) +K[L(ty) where G(t)=exd —(K+I)t] denotes the evolution of a
5 single on-time event and(t) is the number density of such
+TL(t) —2L(ty + 1) |- K IM(ty) + M(t) sequences. In this ensemble of these sequences, the average
—M(ty+t,)], (B3) on-time of the first event is given as
which is in the linear order of(0). For further analysis, we E(t): fwdtljoctzdtzf(tl,t,tz)
assume a single exponential decay form(t)= x(0) 0 0
X —
exp(—At), so that 1 @(m) (b .
exd —(k+N)(ty+t - k. 2
5ty 1)~ x(0) i ( )\2)( 11+t2)] (k) — kM) N(t) ks k2
where 1|I'| is defined as the slowest time scale of the con-
X(k+\—ke?M2), (B4)  formation dynamics and the small variance of rate fluctua-

. , . tions is assumed in the calculation. é()t) is approximately
Then, the difference function has a maximum at the echq \() to the zeroth order of the slow modulation limit when

time IT|<ks, andt,(t) can be shown as the same. The cross
moment of these two on-time events is
te=yIn—— (BS) tty(t) = fo tldt1JO todt,f(ty t,ty)
and a minimum at the focal time, which is half the echo time, 1 IT[\2 x(t)
2t;=t,. The difference function also has a minimum along ~ —+O(—) —, (C3
ksN(t) ks ) K&

the t; axis and thet, axis at the focal timé,. The small
variance expansion implies that the echo amplitude is prosop thatt;t,(t)~ 1/kN(t) to the zeroth order of"|/ks. Ap-
portional to the variance of the reaction rate. These featureslying the expression of the number density of such se-

have been confirmed in Ref. 21 with an extensive calculatiouencesN(t) in Eq. (39), the correlation between these two
of multiple channel models and the continuous diffusion conpn-time events Cotj is

trolled reaction model. The prediction of the focal time in the - _
single-event distribution function and of the recurrent behav- tyto(t) =t (Dta(1)

ior in the two-event distribution function helps reveal the Cor(t) = - 1.(0)—t.(0)(0

nature of conformational landscapes. Similar to the photon 1t2(0) ~12(0)1>(0)

echo phenomenon, the recurrence can be understood as the kN(t)]—[1/N(t)]? 4

echo signal due to the inhomogeneous distribution of envi- = 1/[kSN(O)]—[1/N(0)]2~X(t)/k3’ (C4

ronments, and the conformational modulation can be under-

stood as dephasirfg.Analogous to motional narrowing, in Which provides another way to measure the memory function
the fast modulation limit, the echo signal vanishes, and th@f the stochastic rate. The correlation function Gpuefined
single exponential law is recovered. The height of the echdere is different from the Con| discussed in Sec. IV. First,
signal and its position vary with the modulation rate and carfcor(n) is a disrectized function of the number of events
be a sensitive probe of the dynamics disorder resulting fronwhile Cor(t) is a continuous function of time. Second,

conformational fluctuations. Cor(n) is an event-averaged quantity, which is averaged over

all time separations with a given number of intermediate
APPENDIX C: ON-TIME CORRELATION FUNCTION events. Evidently, Cotj and N(t) are mixed average of
AS A FUNCTION OF TEMPORAL SEPARATION events and time, whereas the average of §agperformed

. . . over all the sequences with length
The moments of on-time events associated with number q gt

counting also provide a direct measure of the correlation, , -
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