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ABSTRACT: We investigate the reaction event counting statistics (RECS) of an elementary biopolymer reaction in which the
rate coefficient is dependent on states of the biopolymer and the surrounding environment and discover a universal kinetic phase
transition in the RECS of the reaction system with dynamic heterogeneity. From an exact analysis for a general model of
elementary biopolymer reactions, we find that the variance in the number of reaction events is dependent on the square of the
mean number of the reaction events when the size of measurement time is small on the relaxation time scale of rate coefficient
fluctuations, which does not conform to renewal statistics. On the other hand, when the size of the measurement time interval is
much greater than the relaxation time of rate coefficient fluctuations, the variance becomes linearly proportional to the mean
reaction number in accordance with renewal statistics. Gillespie’s stochastic simulation method is generalized for the reaction
system with a rate coefficient fluctuation. The simulation results confirm the correctness of the analytic results for the time
dependent mean and variance of the reaction event number distribution. On the basis of the obtained results, we propose a
method of quantitative analysis for the reaction event counting statistics of reaction systems with rate coefficient fluctuations,
which enables one to extract information about the magnitude and the relaxation times of the fluctuating reaction rate coefficient,
without a bias that can be introduced by assuming a particular kinetic model of conformational dynamics and the conformation
dependent reactivity. An exact relationship is established between a higher moment of the reaction event number distribution and
the multitime correlation of the reaction rate for the reaction system with a nonequilibrium initial state distribution as well as for

the system with the equilibrium initial state distribution.

B INTRODUCTION

A chemical reaction is, in principle, a stochastic process and the
number of chemical reaction events occurring in a time interval
or the number of the product molecules generated in the time
interval is a random variable with a time-dependent probability
distribution. While being negligible in a macroscopic reaction
system, the stochastic nature of chemical reactions in such a
small reactor as a biological cell has important consequences on
cell-to-cell variation in the level of important biomolecules
including m-RNA and regulatory proteins that control a cell’s
biological function, its decision making, and its ultimate fate.! 3
One of the goals in modern network biology is to understand
how a lifeform can achieve a systematic development or a
precise control over its function in spite of the stochastic nature
of those chemical reactions comprising a cell's reaction
network, and how a lifeform takes advantage of the noise or
the randomness in chemical reactions occurring in itself.*> To
achieve this goal, it is desirable to have a quantitative de-
scription of the probabilistic outcome of biological chemical re-
actions and their networks in small and heterogeneous reaction
environments posed by cells.

The master equation approach or Gillespie’s stochastic
simulation approach has been one of the most popular
approaches in the investigation of the number fluctuation of
reaction events or product molecules.”” One of the crucial
assumptions in the conventional master equation approach or
Gillespie’s stochastic simulation approach is that rate co-
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efficients of elementary reactions are time-independent constants.
However, it is not clear whether the conventional master equation
approach or Gillespie’s stochastic simulation approach is applicable
to biological reaction systems in which reaction rate coefficients
are dynamically heterogeneous. Modern single molecule exper-
imental studies tell us that the reaction rate coefficient of a
biopolymer keeps fluctuating in line with the conformational
dynamics of the biopolymer even in a highly controlled
homogeneous reaction environment.*” For biopolymer reactions
occurring in cells, reaction rates are different from cell to cell due
to heterogeneous reaction environments posed by the cells, which
adds additional complexity in quantitative description for the prob-
abilistic outcome of reactions in cells."’

With advances in single molecule experimental techniques,
the observations of individual reaction trajectories have been
made possible for various biopolymer reactions including the
stepping of a single molecular motor,"" the catalytic turnover of
a single enzyme,®® the gene expression from a DNA,'® and
single molecule DNA sequencing.'>"* Individual reaction tra-
jectories recorded in these experiments constitute ideal data for
the investigation of probabilistic dynamics of the biopolymer
reaction systems. As far as the average behavior of those re-
action trajectories is concerned, the conventional chemical kinetics
founded on the law of mass action provides a satisfactory
description. For example, the average velocity of kinesin motors
and the mean enzymatic turnover time of f-galactosidase are
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consistent with the Michaelis—Menten (MM) relation derived
from the conventional chemical kinetics for the simple MM
enzyme reaction scheme.”'* It is now known that the average
enzymatic turnover time obeys the MM relation for a variety of
different models of enzyme reactions with fluctuating rate
coefficients.">™"” Recently, a generalized MM relation is
established for the mean turnover time of a general multistate
enzyme reaction model, which reduces to the MM relation
whenever the detailed balance condition between different
conformational states is satisfied.'® However, the conventional
chemical kinetics is not so satisfactory in the description of
statistical fluctuations in biopolymer reaction trajectories.*’
For example, the enzymatic turnover time distribution of a
single f-galactosidase enzyme and the waiting time distribution
of kinesin motors look inconsistent with the prediction of the
conventional chemical kinetics for the simple MM reaction
scheme.”'" A while ago, the variance in the time-dependent
positions of a kinesin motor could be successfully explained by
assuming multiple intermediate biochemical states in each step
of the kinesin motor, which shows that the statistical distri-
bution of waiting times between steps of a kinesin motor is a
nonexponential function."® Recently, a general quantitative
description of statistical fluctuations in single enzymatic turn-
over times was also achieved,'”'®*° for which a generalization
of chemical kinetics had to be made in the description of non-
Poisson reaction processes of the enzyme—substrate (ES) com-
plex.'®*" Another interesting statistical property of the reac-
tion trajectories of biomolecules, which cannot be explained within
the conventional chemical kinetics, is the correlation between
individual reaction times,”>*> from which direct information about
dynamics of reactivity fluctuation can be extracted.**

Among various statistical properties of biopolymer reaction
trajectories, the probability distribution of the number of the re-
action events or the number of product molecules has arguably
the greatest biological relevance.”*™>” There are elegant theo-
ries for counting statistics of photons emitted from a chromo-
phore with a few optically relevant discrete states;**>* how-
ever, most of these theories are not directly applicable to
reaction event counting statistics (RECS) of a biopolymer
reaction whose rate is dependent on a number of continuous
conformational state variables of the biopolymer and the
surrounding environment. The rate coefficient of the bio-
polymer reaction is a stochastic process of which the statistical
property is most of the time beyond direct measurement and
hence unknown. There have been a few general theories of
RECS applicable to the biopolymer reaction with rate co-
efficient fluctuations. Brown introduced the generating function
approach to counting statistics of transitions between a bright
state and a dark state for a single molecule chromophore of
which transition processes are generalized Poisson processes
with rate coefficients being stationary Markov processes of any
kind.** Sung and Silbey presented a formally exact form for
RECS of a non-Poisson reaction process with an arbitrary con-
formation dependent reaction time distribution,* and applied
it to an investigation of the RECS of the enzyme reaction
model in which the rate determining step is the product release
process through a fluctuating channel of the enzyme.** Cao
presented a general theory of photon emission statistics for a
single molecule chromophore with a conformation dependent
emission rate. On the other hand, Gopich and Szabo investi-
gated the RECS for kinetic networks composed of several
Poisson reaction processes.27

1416

These theories reduce to Cox’s renewal theory when the
fluctuation of the reaction rate occurs on a time scale far less
than the time scale of individual reaction events.>® However,
recent single biopolymer experiments show that correlations
between individual reaction events of a single biopolymer can
persist on time scales much longer than the time scale of
individual reaction events.” In this case, the reaction time
distribution of a single biopolymer at one time interval can be
significantly different from that of the single biopolymer at
another time interval, and the RECS does not obey simple
renewal theory.”> Also, the reaction rate coefficient of a single
biopolymer can be persistently different from that of another
biopolymer throughout an observation time even though the
two molecules are the same kind of chemical species, whenever
the observation time scale is not longer than the time scale of
the conformation relaxation of the biopolymer system. The
RECS of such heterogeneous reaction system can be quali-
tatively different from the prediction of renewal theory.>>*

Although the rate coefficient fluctuation is ubiquitous in a
small biopolymer system, still missing is the general relationship
between the statistical properties of the rate coefficient and the
number distribution of the reaction events even for the simplest
elementary biopolymer reaction. In this work, we focus on the
number fluctuation of the product molecules or RECS for the

elementary biopolymer reaction, S + E(r) @» P + E(r),
where S, P, E(r), and k(r) respectively denote the substrate,
the product, the biopolymer, and the reaction rate of the
biopolymer when our system, including the biopolymer
molecules and the surrounding environment, is in state r.

In the present work, we generalize the counting statistics of
the Poisson reaction process, presenting the exact expressions
of the RECS for a general biopolymer reaction model in which the
reaction rate coefficient k(r) can be any function of system state
variable r that undergoes arbitrary multidimensional Markov
dynamics. Exact results obtained for the general model predict a
universal kinetic phase transition in the fluctuation of reaction
event statistics of the dynamically heterogeneous reaction
system; the difference A(t) of the variance 6,%(t) from the
mean (n(t)) of the number of reaction events occurring in time
t is proportional to £ or (n(t))* at short times, but it becomes
proportional to t or {(n(t)) on time scales much longer than the
time scale of the rate coefficient fluctuation of the biopolymer.
We also generalize Gillespie’s stochastic simulation method for
the numerical investigation of RECS of a reaction with slow
reactivity fluctuation and confirm that the simulation results for
RECS are in good agreement with the prediction of the analytic
results obtained for the general biopolymer reaction model. On
the basis of the results, we propose a method of quantitative
analysis for the first two moments of the RECS of a biopolymer
reaction. The new analysis method enables one to extract
information about the magnitude of equilibrium fluctuation and
the relaxation of the conformation dependent reaction rate of
the biopolymer, without a bias that can be introduced by
assuming a particular model of conformational dynamics and
the conformation dependent reactivity. Our new stochastic
simulation method developed for investigation of chemical
fluctuations in reaction systems with rate coefficient
fluctuations is particularly useful when the propagator of
the system state is available; it gives the numerical results for
the RECS of a reaction system with a state-dependent rate
coefficient much more efficiently compared to the stochastic
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simulation method involving an explicit simulation of the
system dynamics in the state space.

To begin, we briefly review RECS for several important
models of stochastic reaction processes, including Poisson
reaction process, renewal reaction process, and the bottleneck
enzyme reaction, an exactly solvable model of a nonrenewal
reaction process. We demonstrate the emergence of the kinetic
phase transition in the RECS of the bottleneck enzyme model,
which results from dynamic fluctuation of the heterogeneous
rate coefficient in the enzyme model. Next, we present the exact
analytic expressions for the mean and the variance in RECS for
a general model of the elementary biopolymer catalytic reaction
and show that the kinetic phase transition in the RECS is
universal for any reaction system with conformation dependent
reactivity and Markov conformational dynamics. The correct-
ness of the analytic results is confirmed by our stochastic
simulation results. In the subsequent section, we discuss the
RECS of the reaction system in which the rate coefficient
fluctuations have multiple relaxation time scales and
establish the general relationship between the higher order
moment of the reaction event number distribution and the
multitime autocorrelation function of the rate coefficient. In
the beginning of this work, we assume that the initial state
distribution of the reaction system composed of a number of
molecules obeys the equilibrium distribution. Nevertheless,
in the Discussion, we also discuss the RECS of a system with
a nonequilibrium initial state distribution that is relevant to
modern single molecule experiments. Particular emphasis is
laid on the RECS of the single molecule system under the
nonequilibrium initial state distribution attained by sampling
the initial measurement time only at the moment at which
each individual single molecule reaction event begins. In the
Conclusion section, we conclude the present work. A detailed
account of our stochastic simulation method is appended in
the Appendix.

B BRIEF REVIEW ON RECS

Poisson Reaction Process. Let us consider a hypothetical
single enzyme E° with a single state, at which the enzyme con-

secutively performs the catalytic reaction, S + E° —k> P+ EO,
with steady-state reaction rate k. The steady-state reaction rate
k of the single enzyme is constant in time but may be
dependent on substrate concentration [S], i.e., k = k([S]). For
the well-known Michaelis—Menten (MM) enzyme reaction
scheme, k([S]) is given by k([S]) = knulS]/([S] + Ky),
where k.. and K, respectively denote the steady-state
catalytic turnover frequency of the single enzyme E° in the
high substrate concentration limit and the MM constant. We
note that the enzyme reaction is, in reality, a non-Poisson
process that involves an intermediate enzyme—substrate
complex with a fluctuating reactivity.'” However, the hypo-
thetical enzyme considered here performs the -catalytic
reaction in a single elementary reaction step without any
reactivity fluctuation. The probability distribution p,®(t) of
the number, n, of the reaction events catalyzed by the single
hypothetical enzyme E© in time t satisfies the following
master equation:

2590 = k%0 - 100)

with the initial condition, lim,_, p"(o) (t) = 8,0. Given that the
substrate concentration [S] is so high that its change during our

1417

observation time is negligible, the solution of the above partial
differential equation can be obtained as
kt)"
500 = e~ k) (12 0)
n! (1)
pn(o) given in eq 1 is well-known as Poisson distribution. The
first two moments of the Poisson distribution are given by
(n(t)) = kt and (n*(t)) = (n(t)) + (n(t))? so that the variance
6,2(t) (= (n*(t)) — (n(t))*) of the Poisson distribution is the
same as its mean, {n(t)).

The reaction-free probability, P,(t), designates the proba-
bility that the reaction has not occurred until time ¢ given that
the reaction begins at time 0. The reaction-free probability
po(o)(t) of the Poisson reaction process decays as a single
exponential function, po(o)(t) = exp(—kt) according to eq 1 with
n being equal to 0. An important related quantity is the reaction
time distribution, y(t), defined by w(t) =— dP,(t)/dt; w(t)dt is
the probability that the reaction event is completed in time
interval (¢, t + dt) given that the reaction event begins at time 0.
The reaction time distribution y®(£) of the Poisson reaction
process is given by yO) = k exp(—kt), whose first two
moments are (t) = 1/k and (#*) = 2/, satisfying () = 2(t)>.
The latter relation may not hold for stochastic reaction
processes other than the Poisson process. One example of such
stochastic reaction process more general than the Poisson
process is the renewal reaction process discussed next.

Renewal Reaction Process. When our enzyme reaction
involves multiple transition states or when it has multiple
reaction channels, the reaction time distribution y(t) associated
with the single enzymatic turnover can be an arbitrary
nonexponential function, and the RECS of the enzyme reaction
deviates from the Poisson distribution. If individual enzy-
matic turnover reaction events are statistically identical and
uncorrelated with each other, the RECS of the enzymatic
reactions can be described by renewal theory.*® The expression
for the probability distribution p;™(t) of the number, n, of the
renewal reaction events occurring in time ¢ is simpler in the
Laplace domain:

Aren 1L =) .n
B () 4 (u) @
From here on, J‘(u) denotes the Laplace transform of f(t), ie.,
flu) = f & e f(t) dt. In the Laplace domain, the first two
moments of pi™ are given by (A(u)) = {/(u)/(u[1 — §(u)]) and
() = (A(w) + 2u(i(u))’, where (#(u)) and (A(u))*
denote /&> dt €™ (n*()) and [ /& dt € (n(t))]", respectively.
These results for the renewal reaction process reduce to those
of the Poisson reaction process when the reaction time dis-
tribution w(t) is chosen to be the single exponential function,
ie, when w(t) = k exp(—kt).

As long as the mean (f)[= /° dt ty(t)] of reaction time
distribution w(t) exists, the mean reaction number (n(t)) of
pi(t) exhibits the following asymptotic behavior:

(n(t)) = t/{t) (t/{t) > 1) (3)

irrespective of the functional form of y(t), which is qualitatively
the same as the mean reaction number of the Poisson reaction
process with k being given by (¢)~". In comparison, the reaction
time fluctuation, () — (t)%, and the reaction number
fluctuation, {(n*) — (n)? of a renewal reaction process can be
qualitatively different from those of the Poisson reaction
process. One of the quantities that measures the non-Poisson

dx.doi.org/10.1021/ct200785q | J. Chem. TheoryComput. 2012, 8, 1415—1425



Journal of Chemical Theory and Computation

character of a stochastic process is randomness parameter R,

defined by

_ -

(t)? (4)
where (f*) denotes the kth moment of the reaction time
distribution w(t) of the stochastic process. Another quantity
that characterizes the deviation of a stochastic process from the
Poisson process is Mandel’s Q parameter, defined by

op(t) — (n(t))
(n(t)) ()

where 0,%(t) denotes the variance, 6,%(t) = (n*(t)) — (n(t))?
in RECS. Both R and Q(t) vanish for a Poisson reaction
process; however, neither R nor Q(t) vanishes for a non-
Poisson reaction process. One can show that Mandel's Q
parameter defined in eq 5 becomes approximately the same as
randomness parameter R for a renewal process at a time ¢ much
longer than the mean reaction time, (t), which means that

AWM = op(t) — (n(t))] = R(n(t)) (t/{t) > 1) 6)

for a renewal reaction process with randomness parameter R.
The linear dependence of A(t) on (n(t)) or t given in eq 6
holds for any renewal reaction process as long as the first two
moments of reaction time distribution w(t) exist. When our
reaction process is a nonrenewal process, however, eq 6 may
not hold even if the first two moments of the reaction time
distribution exist. An exactly solvable model of such a non-
renewal reaction process is discussed next.

Bottleneck Enzyme Reaction. In ref 35, Zwanzig
introduced the bottleneck enzyme model, whose catalytic
reaction rate is controlled by the product escape process out
of the enzyme’s active site through a dynamically fluctuating
channel,*” and investigated the effects of rate coefficient
fluctuation on the time dependence of the reaction free
probability for the enzyme reaction. In the bottleneck enzyme
model, the catalytic reaction rate of the enzyme is proportional to
the square of the radius Ir(t)| of the product escape channel with
the time series constructed by r(t) being the Ornstein—Uhlenbeck
(OU) process, which is statistically equivalent to the time series
constructed by the position of a Brownian particle under harmonic
potential in the high friction limit.**

In this section, we review the RECS of the bottleneck enzyme.*
If p,(r,t)dr denotes the joint probability that the value of r(¢) is in
interval (r, r + dr) and the number of the reaction events catalyzed
by the bottleneck enzyme in time internal (0, t) is n, then p,(r,t)
satisfies the following generalized master equation:

-1

Q(t) =

25,0 =%, ) — 0]

d| o r
+ DE[;P,,(V, t) + b—zpn(f; f)] o

In eq 7, k%, D, and b* respectively denote the reaction rate
coefficient proportional to the area of the product escape channel,
the diffusion constant governing the relaxation rate of
stochastic variable r(t), and the variance of r at equilibrium.
We assume that the initial value rn[= r(t)] of r(t) is
distributed according to the equilibrium distribution. From
eq 7, one can obtain the exact expression for the characteri-
stic function, F(q,t), also called the moment generating
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function, defined by F(q,t) = 222, q" p,(t), with p,(t) being
the probability that the number of catalytic turnovers occur-

red in time t is n, ie, p,(t) = [% dr p,(rt):>*
D(S — 1)t
F( ,t)=ex[—7:|
q P e
-1/2
(8)

(S+1)* = (s = 1)’x(¥)
48
Here, S and y(t) are defined by S = (1 + 4x(1 — q)b4/D)1/2,
and y(t) = exp(—2DSt/b?), respectively. Making use of the
well-known property of the characteristic function, (n(t)) =
[0F(q,1)/0q),.1, and (n(n — 1)()) = [0°F(g1)/0g").,, one
can obtain the exact expressions for (n(t)) and A(t) (=

n2(1)y — (n(t))> — (n(t))) as follows:
(n(t)) = kbt ©

A(B)( = op(t) — (n(1))) = 2(xb*t)*g(Me) (10)
with g(x) = 2[x — 1 + exp(—x)]/+* and 4 = 2D/b*. The

mean reaction number (n(t)) increases linearly in measure-
ment time f, which is qualitatively the same as that given
in eq 3 for the renewal process with the mean reaction
time being given by () = (xb*)™". In comparison, the time
dependence of A(t) given in eq 10 exhibits a kinetic phase
transition:

2(kb%)? = 2(n(t))?  (t< XY (1l1a)

At) = (kb?)? <b?
4Lt =

—1
4 . (n(t)y (t>X") (11b) (11)
which is qualitatively different from the time dependence of
A(t) given in eq 6 for the renewal process. Note that the
kinetic phase transition in A(t) from the short time behavior
proportional to £ or (n(t))* to the long time behavior linear
in t or {n(t)) occurs near t = ™!, which is the characteristic
relaxation time of the bottleneck enzyme’s configuration
variable, r(t).

For the OU process, r(t), the probability density Goy(rt + ¢
rt;) that the value of r(t + t,) is r, given that the value of r(t,)
is r, is given by Goy(nt + tlrt) = (2ab*[1 — ¢*(t)])">
exp(—([r = (¢(t) r)]")/(26°[1 — ¢*(£)])) where ¢5(t) denotes
the normalized time correlation function of r(t), ie., ¢(t) =
(r(t + t)r(t))eg/b* = exp(—At/2) with 1 = D/c>. At a time t far
smaller than A7, we have ¢*(t) = ¢p(t) = 1 and Goy(r,t + tir,t)
=~ 5(r — r;); in other words, conformational relaxation of the
enzyme does not occur significantly and the conformation, r(t +
t;), of the enzyme at time ¢ + ¢, is nearly the same as the initial
conformation, r(t;) (= r;). In the latter case, the dynamic
fluctuation of rate coefficient kr*(t) is negligible so that the
RECS of the single bottleneck enzyme with initial configuration
r; can well be approximated by the Poisson distribution p,”(t)
given in eq 1 with rate coefficient k being equal to xr?, and
the first two moments of the Poisson distribution are given
by (n(tlr,)) = kr’t and (n*(tlr)) = (n(dr))* + (n(tlr))). By
taking the average of the latter results over the equilibrium
distribution, (27b*)™" exp(—27'r?/b*), for an initial config-
uration 7; of the bottleneck enzymes, we obtain (n(t)) = xb*,
(r*(t)) = 3*b* + kb*, and A(t) = 2(xkb’t)?, which is in agree-
ment with the asymptotic short time behavior given in eq 11a.

The behavior of A(t) at a time t longer than A" given in eq
11b for the bottleneck enzyme is linear in (n(t)), qualitatively
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L ) 6
the same as that given in eq 6 for a renewal reaction process.”

Making a comparison between eq 6 and eq 11b, one can see
that, at a time t longer than A7, the first two moments, (n(t))
and (n*(t)), of the RECS of the bottleneck enzyme become the
same as those of the renewal process with a reaction time
distribution w(t) of which mean reaction time (t) and random-
ness parameter R are given by (7) = (kb*)™" and R = 4kb*/A. In
the fast fluctuation limit where A > kb? randomness parameter
R for the reaction of the bottleneck enzyme vanishes, which
indicates that the reaction of the enzyme with a fluctuating
bottleneck reduces to a simple Poisson process in the fast
fluctuation limit. In the slow fluctuation limit, or in the small
A limit, R diverges. These limiting behaviors of R for the
bottleneck enzyme are consistent with Zwanzig’s result for the
reaction free probability po(t), which is the same as F(q = 0,t).%°
According to Zwanzig, po(t) = exp(—kb*) in the fast
fluctuation limit, but po(t) = (1 + 2kb’t)"? in the slow
fluctuation limit. Noting that the reaction time distribution y(t)
is related to py(t) by w(t) = —0po(t)/0t, one can show that
lim, R = 0 and lim,_oR = limy_(1+(2k6?T))"? - oo.
However, one cannot obtain eq 11b, correct asymptotic RECS
of the bottleneck enzyme model, in the framework of simple
renewal theory with the use of the exact reaction time dis-
tribution given by W..«(t) = —0F(q = 0,t)/0t. This is because
the reaction process of the bottleneck enzyme is not really a
simple renewal process.

RECS of Biopolymer Undergoing Non-Renewal Ele-
mentary Reactions. The kinetic phase transition of A(t)[=
6,2(t) — (n(t))] found for the bottleneck enzyme model is not
limited to the model; instead, it is universal for any reaction
system with a state dependent rate coefficient and Markovian
state dynamics. To show this, we investigate the RECS of a
general reaction model in which catalytic rate coefficient k(r) is
an arbitrary function of the system state vector r. The reaction
event counting statistics of such enzyme can be described by
the followmg generalized master equation:*®

a_p" (r, t) = k(n)lp,_,(r, t) — p (r, )] + L(x) p,(r, ¢)

(12)
Here, p,(r,t) denotes the probability density that the dynamic
state vector r(t) of the system state is given by r and the
number of reaction events catalyzed by the biopolymer in a
time interval (0,t) is n, which satisfies the following normal-
ization condition, Y52, /dr p,(r,t) = 1. L(r) denotes an evolu-
tion operator describing the Markov dynamics of state vector
r(t). The only restriction on the mathematical form of operator
L(r) is that it should not contain any explicit time dependence.
Representative examples of state dynamics that can be
described by the time independent operator L(r) in-
clude diffusive dynamics, Langevin dynamics, Newtonian dyna-
mics, Nose—Hoover dynamics, and Monte Carlo dynamics,
under time-independent external potential. The initial con-
dition associated with eq 12 is chosen as lim,_, p,(r,t) = &,
feq(r), where £, (r) denotes the equilibrium distribution of r,
satisfying L(r) feq(r) 0. From eq 12 with this initial condition,

one can obtain exact expressions for {(n(t)) and A(f):*>*
<”(t)> = keqt (13)
t
A= oX(t) = (n(0)) = 2 /0 de(t - 7)(8k(1) 6k(0)>eq (14)

where k., and (5k(t) 6k(0)),, denote the equilibrium reaction
rate coefficient and the time correlation function of the rate
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coefficient fluctuation 5k(t)[= k(x(t)) — k.q),
J dr fi(x) k(x) and (5k(t) 5k(0)).q = / dr dr, Sk(r) G(r,tlro)
Ok(rg) foq(ro), respectively. G(r,tlrgs denotes the propagator
defined by exp[tL(r)] 6(r — r,). It satisfies 0G(r,Hr,)/0t = L(r)
G(rtlry) with the initial condition G(r,lr,) = 6(r — rp).
Mandel’s Q calculated from eq 14 is obtained as

at =282 [ S a1 [ o)

with ¢,(t) being the normalized autocorrelation function (5k(t)
k(0))eq/ (6k?)oq of the rate coefficient fluctuation.

From eq 14, we obtain the following asymptotic behaviors
for A(t):

], defined by k.

2
2= O oy

eq

(8Kk2)t (t< &) (152)
At) =

2
2860 > 9 asw)

€q

28kt =
(15)

where £ is the characteristic time of rate coefficient fluctuations
defined by £ = [§° dt ¢ (t) with ¢ (t) being the normalized
autocorrelation function of the rate coefficient fluctuation 6k,
ie., ¢(t) = (5k(t) 5k(0))/(5k*). Equation 15 clearly shows the
kinetic phase transition in A(t) for the general model of the
elementary biomolecule reaction. Equations 13—15 correctly reduce
to eqs 9—11 for the bottleneck enzyme model, for which (5k2)
R(( — () = 202, (1) = exp(—2t), and & = 7

Comparlng eqs 13 and 1Sb to eqs 3 and 6 obtained for the
renewal process, one can see that, when the size t of the
measurement time bin is much greater than the characteristic
relaxation time & of rate coefficient fluctuations, the first two
moments of the nonrenewal RECS of the general enzyme model
satisfying eq 12 can be approximated by the RECS of the renewal
reaction process with a reaction time distribution y(7) of which
mean (7) and randomness parameter R are given by

(t) = key

and

R = 2((8k*)/k) (keg) (17)

In contrast, when the size t of the measurement time bin is
smaller than &, A(t) given in eq 15a for a system of biomolecules
with reactivity fluctuation is proportional to £ or (n(t))?
qualitatively different from the prediction, eq 6, of renewal
theory. In the latter case, renewal theory is inapplicable to the
RECS of the system. More details on this issue are presented in
the Discussion section.

Note that the mean reaction number {n(t)) in eq 13 provides
information about the equilibrium reaction rate coefficient, keq,
only. By analyzing the behavior of fluctuations in RECS further,
one can extract quantitative information about the magnitude
and the dynamics of the rate coefficient fluctuation of the
biopolymer reaction. From eqs 13 and 15, we get

(16)

In A(t) = 21In {n(t)) + In((8k*)/k2

eq) (18a)
at the short time (t < &) and
In A(£) = In (n()) + In((5k>)/ke)
+ 1n(2keq§) (18b)
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Figure 1. Comparison of predictions of eqs 13 and 14 to the stochastic simulation results for a model of rate coefficient fluctuation, k(t) = k, + kr*(t)
with r(t) being a Gaussian random variable with time correlation function (r(t + to) r(ty))eq = b* exp(—At/2). A(t) denotes 6,7(t) — (n(t)) where
6,(t) and (n(t)) are the variance and the mean of the number of reaction events occurring in time t. Values of k,, k, and b are set equal to unity. (a)
The mean reaction number (n(t)) is given by k,qt, independent of the time scale, & = 71, of the rate coefficient fluctuation; keq is given by k + Kb? for
this model. (b) A(¢) is proportional to (n(t))? at short times, but it becomes linear in (n(t)) at long times. The phase transition in the counting
statistics occurs at time ¢ & & = 17\, The intercepts (#) of the curve at short times represents In (5k%)/ keqz, whereas the intercepts (*) of the lines
extrapolated from the curves at long times represent In((5k>)/ky”) + In(2k.&).

at the long time (t > &). Therefore, in the plot showing the
dependence of InA(t) on In(n(t)), the slop of the data curve
would change from 2 to 1 as the size t of the measurement time
bin increases from a value much smaller than the characteristic
relaxation time & of the rate coefficient fluctuation to a value
much greater than £. From the values of the intercepts of the
two lines, one in the short time regime and the other in the
long time regime, one can separately measure the values of
(6k%)/ keq2 and &, which respectively measure the magnitude and
the relaxation time of the rate coefficient fluctuation.

Comparison to Stochastic Simulation Result. Gillespie’s
stochastic simulation method provides the numerical solu-
tion of the master equation, which provides numerical results
for the RECS of a reaction with a constant reaction rate.” In this
work, we generalize Gillespie’s stochastic simulation method to
investigate the RECS of a biopolymer reaction with rate
coefficient fluctuation, which is described by the generalized
master equation given in eq 12. Our simulation method is
particularly useful when the propagator G(r,tir,) of the system
state is available, and it gives the numerical results for the RECS
of a reaction system with a state-dependent reaction rate
coefficient much more efficiently compared to the
stochastic simulation method involving an explicit simu-
lation of the system dynamics in the state space. A detailed
account of our stochastic simulation method is postponed
to the Appendix.

In Figure 1, direct comparison is made between the analytic
results, eqs 13 and 14, and our stochastic simulation results for
a model of rate coefficient fluctuation, k(t) = ko + kr*(t), where
r(t) is assumed to be the OU process with the time correlation
function being given by (r(t + t) r(ty))eq = b exp(—4t/2).
ky and k are time-independent constants. As shown in Figure 1,
the predictions of eqs 13 and 14 are in good agreement with
the stochastic simulation results. The simulation results confirm
that (n(t)) increases linearly in time, independent of the time
scale, £(= A7), of the rate coefficient fluctuation but A(t)
exhibits the kinetic phase transition predicted by eq 15. In
Figure 1, the values of k, and kb* are chosen to be unity in a
frequency unit. In accordance with eq 16, intercepts of curves at

1420

short times are given by In (5k*)/ keqz, marked by diamonds in
Figure 1b, whereas intercepts of the lines extrapolated from the
curves at times much longer than & are given by In((6k)/k.,") +
ln(Zkeqéj) , marked by stars. This example demonstrates that one
can estimate k,, from the time dependence of the mean reaction
number, ie, k., = (n(t))/t; furthermore, one can separately esti-
mate the variance (5k*) and the relaxation time scale & of rate
coefficient fluctuations from the dependence of In A(t) on In (n(t)).

We note that the time dependence of A(t) is independent of
the value of equilibrium rate coefficient k., or the constant part
ko of the fluctuating rate coefficient, k(r3 =k, + Kkr*, in the
reaction model. This is because 5(t) depends only on the
fluctuation &k of the rate coefficient around its mean value, as
given in eq 14. For this reason, the time dependence of A(t) for
the model considered in Figure 1 is the same as that for the
fluctuating bottleneck enzyme for which k; = 0. In contrast, the
mean reaction number (n(t)) is dependent on ky, as k., is given
by ko + xb* and eq 13 yields (n(t)) = (ko + kb*)t.

eq

B DISCUSSION

In the previous section, we showed that the relationship, eq 15,
between the mean and the variance of the number of
biopolymer reaction events can be qualitatively different from
eq 6 of a renewal process when the size, ¢, of measurement
time is smaller than characteristic relaxation time & of rate
coefficient fluctuations. Care must be taken in applying renewal
statistics to an analysis of RECS for a biopolymer reaction with
a fluctuating rate coefficient, as renewal theory is applicable
only when the measurement time, t, is much greater than the
characteristic relaxation time, &£, of the rate coefficient
fluctuation.® In Figure 2, we display simulated single molecule
reaction trajectories and the time dependence of Mandel's Q
parameter both at a short time regime and at a long time
regime for the model considered in Figure 1. In the model, the
reaction rate coefficient k is dependent on the conformational
state variable, r(t), of which relaxation to the equilibrium
distribution occurs on time scale £. In the short time regime,
where measurement time, ¢, is far smaller than the characteristic
relaxation time scale, &, the distribution of conformational state

dx.doi.org/10.1021/ct200785q | J. Chem. TheoryComput. 2012, 8, 1415—1425
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Figure 2. (Upper panels) Typical reaction event trajectories showing the number n(t) of reaction events performed by an individual single
biopolymer (a) in a short time regime with ¢t < £ and (b) the same trajectories but in a long time regime with ¢ >> £. In the short time regime, single
biopolymer reaction trajectories exhibit strong heterogeneity among the single biopolymers; in contrast, the single biopolymer reaction trajectories
become statistically equivalent in time scales much longer than £ (Lower panels) Time dependence Q(t) of Mandel’s Q parameter [= —1 +
{(n* (D)) — (n(£))*)/{(n(t))] (c) in the short time regime and (d) in the long time regime. Mandel’s Q parameter is linearly proportional to the
measurement time t in the short time regime, but it assumes a constant value at long times. Displayed are stochastic simulation results for the
elementary biopolymer reaction model considered in Figure 1, with characteristic time scale £(= A™") of the rate coefficient fluctuation being 500k, ™.

The unit of time, ¢, is ky ' as in Figure 1.

r(t) of each single biopolymer can hardly span the entire
conformational space of the biopolymer; instead, it is highly
localized around its initial value (0) for each single biopolymer.
In this sense, the single biopolymer system is a strongly
nonergodic and heterogeneous system at the short time regime,
where the value of rate coefficient k(t) is nearly time-
independent constant, approximately given by k, + kr*(0),
with the value of 7(0) being heterogeneous and distributed over
single biopolymers. This is why each single molecule reaction
trajectory has a seemingly different mean reaction number from
the others in the short time regime shown in Figure 2a. In the
latter heterogeneous and nonergodic reaction system, Mandel’s
Q defined by eq S or by A(t)/{n(t)) is linearly proportional to
measurement time ¢, Q(t) « (n(t)) o t, according to eq 15a,
but it does not approach a constant value, in contrast to the
prediction, eq 6, of renewal theory. Such deviation from
renewal statistics would emerge for any biological reaction
system with a heterogeneous rate coefficient distribution when
our measurement time is shorter than the relaxation time scale
of the rate coefficient fluctuation of the system.
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On the other hand, when our measurement time, ¢, is much
greater than the relaxation time scale, &, of the rate coefficient
fluctuation, the value of Mandel's Q becomes constant ac-
cording to eq 15b, as shown in Figure 2d, which conforms to
eq 6 obtained from renewal theory. In the long time regime where
t > £, the distribution of the conformational state variable, r(t),
of each single biopolymer spans the entire conformational space
of the single biopolymer and relaxes to the same equilibrium
distribution irrespective of the initial state of the single bio-
polymer; consequently, the distribution of the conformation-
dependent rate coefficient fluctuation becomes the equivalent
for every single molecule in the system. In the long time region
where single biopolymers become an ergodic and homoge-
neous system, heterogeneity among single biopolymer reaction
trajectories becomes insignificant, as shown in Figure 2b, so
that RECS extracted from one single molecule reaction trajec-
tory should be equivalent to that extracted from another.

Relaxation of the reactivity fluctuation of biomolecules can
occur in a wide range of time scales.” When the biopolymer re-
action is coupled to a number of dynamic degrees of freedom,

dx.doi.org/10.1021/ct200785q | J. Chem. TheoryComput. 2012, 8, 1415—1425
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Figure 3. Time dependence of A(t)/# and A(t)/t. The displayed results and data are the same as those shown in Figure 1b. The short time
asymptotic value of A(f)/* coincides with the variance (5k%) of the rate coefficient fluctuation, marked by diamonds in Figure 1b. The long time
asymptotic value of A(t)/t is the same as that of 2 (5k*)(&) with (£) the mean relaxation time of the rate coefficient fluctuation.

the relaxation of the rate coefficient fluctuation can occur on
multiple time scales and the time correlation function ¢(¢)[=
(6k(t) 6k(0))eq/(6K*)eq] of the rate coefficient fluctuation is
given by a multiexponential function: ¢ (t) = Z]Afl fi exp(—/ljt) ,
where M is the number of the rate coefficient fluctuation modes
and f; accounts for the relative contribution of the jth rate
coefficient fluctuation mode with relaxation rate 4; to the
variance of the rate coefficient fluctuation, &k. f; satisfies the
normalization condition, fol fj = 1. When the reactivity
fluctuation occurs on multiple time scales, the expression for
A(t) in eq 14 becomes

A(r) = 8k 37 fg(ht)
j (19)

Noting that g(x) = 1 for x < 1 but g(x) = 2/x for x > 1, we
obtain the following expression for A(t) from eq 19:

Sk (t< )

A(t) = )
26(8k7)(€) (t>€))

(20)

Here, &; denotes the characteristic relaxation time /'Lj_1 of the jth rate
coefficient fluctuation mode (4, < 4, < .. < 4,), and (&) denotes
the average relaxation time defined by (£) = YV, f¢. Equation
20 tells us that (5k?) can be estimated from the initial value of A(t)/£,
ie, lim,_o A(t)/#* = (5k*), and (&) can be estimated by the long time
limit value of A(¢)/t, ie, lim,_ o, A(£)/t =2 (SKPWE).

In Figure 3, we display the time dependence of A(t)/# and
A(t)/t for the same model considered in Figure 1. As shown in
Figure 3a, the value of (5k®) is the same as the intercept of the
curves showing the time dependence of A(t)/f%. In addition,
the long-time asymptotic value of A(t)/t coincides with the
value of 2 (5k*){&) as shown in Figure 3b. We note that, in the
presence of time scale separation between rate relaxation
modes, A(t)/£[ =F(t)] can be interpreted as the fraction of
the rate coefficient fluctuation modes in which relaxation occurs
at times longer than ¢. In this case, eq 19 can be approximated as
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F(t)/F(0) = 3 f(t/5)
j=1
1 (t< g
m* M
MAX LT XSG G <t<E,)
j=1 j=mF+1
0 (t>¢) (21)

where m* denotes the number of rate coefficient fluctuation
modes of which the relaxation time constant is greater than the
size t of measurement time. Equation 20 indicates, given that t is
much greater than &,+,, but much smaller than &, F(t)/F(0)
becomes a good approximation for zj'f; fj the fraction of the
rate coefficient fluctuation modes of which relaxation does not
occur significantly in time t. We also note that the time
dependence of the rate—rate autocorrelation function (5k(t)
8k(0)).q can be obtained from the variance, 6,(t), in the RECS:

<6k(t) 6k(0)> =27 1PA(t)/dt*
€q

=2"1d%c2(t) /dt* (22)

which follows from eq 14.

Up to now, we have focused on the first two moments of the
RECS of the elementary biopolymer reaction. For a higher
moment of the RECS, we obtain the following exgression from

. S 23,26
the generalized master equation given in eq 12:

(nln = e = 1+ DOg = [ " dxC(b)

(23)
where
Colt) = keg
6 = [ dntkmkOh,
a= | " / . (1>2)
L7 dmn) Kk KO o)
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Here, (k(7;) k(7j_;)..k(;) k(0))., designates the multitime rate
autocorrelation function defined by

(k1) k(- 1)--k(71) k(0))eq

1
- / drp.dry [ [T k() Gl 7 — 7y )] k(r) Beg(ro)
j=1

(25)

with 7, being equal to O.

The result of the present work is exact only when the reaction
process of biopolymers in system state r is a rate process or a
Poisson process with conformation dependent reaction rate k(r).
When the reaction process of the biopolymer in a given system
state r involves multiple reaction channels or multiple transition
states, its stochastic property can be different from that of the
Poisson process. In this case, the results of the present work are
only approximate.”® The approximation would work better
when the time scale of the conformational dynamics of the
biopolymer is longer than that of the individual reaction event.
Generalization of the present work for the non-Poisson
biopolymer reaction involving reversible binding of substrate
molecules is currently undergoing.

So far, we have assumed that the initial distribution f,(r) of
the system state r is the equilibrium distribution f,,(r) that
satisfies L(r) f,(r) = 0, so the results presented above are
applicable to the RECS of a reaction system composed of a
number of catalytic biopolymers in the equilibrium state. They
are also applicable to the RECS of a single biopolymer
reaction system if the initial state of the single biopolymer
reaction system is sampled according to the equilibrium
distribution. Upon the analysis of RECS of a single molecule
reactlon trajectory, (n*(t)) should be identified as limy_, N

N, n*(t; t) where N and n(t;t;) respectively denote the
number of the measurement intervals and the number of
single molecule reaction events occurring in the ith measure-
ment interval (t,t; + t). If the single molecule system is ergodic
and we sample initial measurement time ¢ uniformly over a
sufficiently long reaction trajectory, the system state at initial
measurement time t; would distribute according to the equili-
brium distribution.

Upon analysis of a single molecule reaction trajectory,
distribution fo(r) of the system state at initial measurement
time ¢; can deviate from the equilibrium distribution, unless ¢ is
sampled uniformly in time. For the reaction system with a
nonequilibrium initial state distribution f,(r), the following
expression for the moments of reaction event number distribu-
tion can be obtained from the generalized master equation
given in eq 12:%

(n(n = Dol = 1+ 1)(O)

1
ff{ﬁf ded ey T K Gty i l”f"‘“)}
j=1

(26)

Here, L7 denotes the inverse Laplace transform operator, and
G(r,ul _1) denotes the Laplace transform of propagator G(r;t
T, 1$ deﬁned below eq 14. A particularly important non-
equilibrium initial state distribution is the distribution f(;(r) of
the single molecule system state at time ¢; with ¢; being sampled
only at the moment where each single molecule reaction
begins. The expression for fo(r) is given by”**

INCELOTROTN RISTOTNCS

(27)
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For the latter initial condition, eq 26 yields
* —_—
(nn = Dln = 14 D(O) = k&gl G (28)

where C(t) is given in eq 24. Comparing eq 23 and eq 28, we
obtain the following remarkable relation

(n(n — 1).(n = 14+ 1)(t))g
— k(1 = Do = D0 )

e (29)

between the RECS of the elementary biopolymer reaction with
two different initial state distributions, f¥,(r) and f,o(r). Equa-
tion 29 with | being equal to 1 indicates that the infor-
mation about the rate—rate autocorrelation function contained
in (n(n — 1)(t))eq can be obtained directly from the mean
reaction number (n(t))§ of RECS for the case with non-
equilibrium initial state distribution f*(r):

* —1d
<n(t)>0 =keqla<n(n - 1)(t)>eq

=k t dT(k(r) k(0)>

€q

=keg(t + kog fo t dr<6k(r)6k(0) >eq)

(30)

Note that (n(t))% is nonlinear in time in contrast to the mean
reaction number (n(t))eq given in eq 13; the time derivative of
(n(t))% is a monotonically decreasing function of the size t of
measurement time:

<6k(t) 6k(0)>

€q

d{n(t))g

dt k2

“ (1)
which varies from the initial value, k., + (5k*)/k.q, to the final
value, k,q the equilibrium reaction rate. The time derivative of
(n(t))¥ is the same as the exact result for a two reaction event

density, previously reported by Yang and Cao.”*
H CONCLUSION

We present the exact expression for the mean and the higher
moments of the reaction event number distribution for a
biomolecule reaction in which rate coefficient k(r) fluctuates in
line with its conformational dynamics, r(t). We also generalize
Gillespie’s stochastic simulation method for numerical inves-
tigation of RECS of a reaction with slow reactivity fluctuation
and confirm that the simulation results for RECS are in good
agreement with the prediction of the analytic results obtained
for a general biopolymer reaction model. It is found that the
difference A(t) of the variance 6,%(t) from the mean (n(t)) of
the reaction event number occurred in measurement time ¢ can
serve as a useful probe of the conformation dependent rate
coefficient fluctuation of a biopolymer. Our results predict a
universal kinetic phase transition in the fluctuation of reaction
event statistics of a biopolymer. Given that the initial state
distribution of the reaction system is the equilibrium
distribution, difference A(t) of the variance 6,%(t) from the
mean (n(t)) of the number of reaction events occurring in time
t is proportional to £ or (n(t))* at short times, which does not
conform to renewal theory. However, it becomes proportional
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to t or (n(t)) at time scale much longer than the time scale of
the rate coefficient fluctuation. The long time asymptotic
behavior of the mean and the variance in the reaction event
counting statistics for the reaction with fluctuating rate k(x(t))
is the same as that of the mean and the variance of the renewal
reaction process whose mean reaction time (7) and the
randomness parameter R = ((7%) — 2(z)?)/()* are given by
ke ! and 2k, ' [5°dt(5k(t) 6k(0)), respectively. From the
short time behavior of A(t), one can extract the variance <5k2)eq
of the rate coefficient fluctuation; in comparison, one can
obtain the relaxation time é(= / oo dt (5k(t) 6k(0))/{6K?)) of
the rate coefficient fluctuations from the long time behavior of
A(t). The time profile of the time correlation function (5k(t)
5k(0)>eq of the rate coefficient fluctuation can be obtained from
A(t) with use of the following relation: (6k(t) 6k(0))eq =
27'd*A(t)/d. The value of A(t)/t* scaled by its initial value
estimates the fraction of the rate coefficient fluctuation modes
of which relaxation does not occur in time t. On the basis of the
obtained results, we propose a method of quantitative analysis
for the first two moments of the RECS of a reaction system
with an arbitrary rate coefficient fluctuation, which enables one
to extract object information about the magnitude of fluc-
tuation and the relaxation times of the fluctuating reaction rate,
without a bias that can be introduced by assuming a particular
model of conformational dynamics and the conformation de-
pendent reactivity. The general relationship between the higher
moments of RECS and the time correlation function of the
reaction rate coefficient is also established for a nonequilibrium
initial state.

B APPENDIX

Here, we present an account of our stochastic simulation
method for a reaction system of which the reaction rate
coefficient is a function, k(r), of system state r. In general,
system state r is a vector in multidimensional state space so that
an explicit simulation of the system state dynamics in addition
to the reaction process costs a lot of computation time.
However, when the knowledge about the propagator G(r,tir,)
of the system state is available, one can circumvent the problem
by focusing on the reaction process of the system with the time
sequence of the system state being generated from the
conditional probability, G(x,tlr,). The following is the algorithm

of our stochastic simulation method.

1. Sample the initial system state r, according to initial
distribution f,(r,).

2. Calculate the rate coefficient k(r,) at time 0.

3. Sample the reaction time ¢, for the first reaction event
from the reaction time distribution ¢,(t) with rate
coefficient k(r,), ie, ¢,(t;) = k(xy) exp[—k(ry)t;].

4. Sample the system state r; at time t; according to the
conditional probability G(r,tlr,).

5. Calculate the reaction rate k(r,) at time t,.

6. Sample the reaction time f; for the jth reaction event
from the reaction time distribution ¢.(t) with rate
coefficient k(r;_,), i.e., ¢;(t) = k(r;_,) exp [/—k(rj,l)t] (for
j>2).

7. Sample the system state r; at time t; + t, + .. + ¢
according to the conditional probability G(rj,tjlrj -

8. Calculate the reaction rate coefficient k(rj) at time t; + &,

R o q

From the above-mentioned algorithm, we obtain a sequence
of stochastic reaction times series, {t,t,, ..., t ...}, from which
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the number n(t) of reaction events occurring in measurement
time interval (0, t) can be determined, i.e.,, n(t) = jif t; <t <.
Then, the Ith moment of the number of reaction events
occurring in time interval (0, £) can be estimated by performing
average of nl(t) over the different reaction time trajectories.
This algorithm allows one to investigate the RECS of a
reaction system with a state-dependent rate coefficient
efficiently, without having to spend much computational time
in direct simulation of system state dynamics, r. However, the
simulation algorithm is applicable to the case where the time
scale of the rate coefficient fluctuation is much longer than that
of the individual reaction event. For the case where the time
scale of the rate coefficient fluctuation is comparable to that of
the individual reaction event, one has to generalize the present
simulation method by employing the suitable reaction time
distribution ¢;(;) for the jth reaction process, different from
the Poisson reaction time distribution k(r;_;) exp[—k(rj_l)t]
used in the above algorithm, which should be dependent not
only on the system state r;_, at the time the jth reaction begins
but also on the system dynamics during the reaction event.
Generalization of the present simulation algorithm to a state-
dependent non-Poisson reaction process is underway.
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