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Abstract

We use the worm-like chain as a first-principles model to study single molecule experiments of double stranded DNA

subject to constant plug, elongational, and shear flows. The steady-state configurations of the polymer correspond to a

locally defined potential and result in a path integral description of the canonical partition function. The parameters of

this model are consistent with previous theory and experimental measurements. The time averaged mean extension

reproduces experimental results and compares well with computationally more expensive Brownian dynamics simu-

lations of reduced models.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

The mechanical properties of polymer systems
are important in many applications, including lu-

bricants and plastics. The bulk visco-elastic prop-

erties of these systems result from the microscopic

deformation of the polymer chains when they are

subject to external forces. This microscopic–mac-

roscopic correspondence has generated interest in

studying polymeric solutions at the microscopic

level, including experiments at the single molecule
level. Many single molecule experiments examine

the behavior of single polymers, like DNA, subject

to various stresses, including tensile stress and
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hydrodynamic flow [1–11]. One set of experiments

by Chu�s group monitor fluorescently labeled
DNA subject to the stresses discussed above. The
experiment monitors the entire contour in real

time and gives a complete picture of the polymer

dynamics [5–15]. In this Letter, we model DNA as

a worm-like chain (WLC) with parameters previ-

ously determined in force–extension experiments

and then use this model to examine the ex-

perimental results of Chu for the steady-state

configurations of DNA subject to constant plug,
elongational, and shear flows [4–11]. The ability to

use parameters from one experiment to model

different experiments confirms the validity of the

WLC model for DNA.

This DNA system has also been the subject of

many Brownian dynamics simulations [16–21].

Predicting the properties of a complete contour,
ed.
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requires a large number of long simulations per-

formed on a large number of beads. With carefully

chosen parameters, reasonable agreement between

the experiments and these simulations exists, but

these calculations are phenomenological and

computationally intensive [17]. We propose a less
computationally intensive first-principles path in-

tegral Monte Carlo algorithm based on equilib-

rium theory to study DNA subject to various

hydrodynamic flows. If the relaxation of the

polymer is fast, the experimentally observed con-

figurations correspond to a generalized equilib-

rium distribution, which has an associated

potential. With a reasonable formulation of the
potential, we evaluate time averaged ensemble

quantities with Monte Carlo techniques. Although

this approach will not describe dynamics, it is

computationally more efficient than Brownian

dynamics and allows the prediction of important

time averaged quantities, like the mean extension

of the polymer that we examine in this Letter.

Previously, Larson et al. [22] used similar Monte
Carlo techniques on bead and spring models to

describe time averaged properties of DNA poly-

mers subject to constant plug flow.

DNA is a difficult polymer to model because it

is semi-flexible with a large persistence length of 53

nm, compared to a typical length studied in ex-

periments of 50 lm, and its contour length only
extends under strong forces [17,22]. Bead and
spring simulations require a large number of beads

to account for bending energy and constrained

dynamics to maintain the contour length. We

adopt a more natural model for DNA, the WLC

model of Kratky and Porod [23]. The WLC re-

places the Rouse-like bead and spring model with

a continuous contour of fixed length and includes

an energy associated with bending the polymer.
The bending energy is experimentally measurable,

which removes a fitting parameter. The first ana-

lytic treatment of the WLC model appears in a

1973 paper by Fixman and Kovac [24]. Later work

by Marko and Siggia with improvements by

Bouchiat demonstrate that the WLC model pre-

dictions agree extremely well with the force–ex-

tension experiments on DNA by Bustamante�s
group [25]. The agreement suggests that the WLC

captures the fundamental thermodynamics of
DNA [1,9,26]. The WLC is also the basis for the

force–extension relations used in simulations by

Doyle and in the analytic theory by Zimm [17,27].

Doyle neglects hydrodynamic interactions while

Zimm incorporates the interactions with a length

dependent rescaling of the flow field determined by
the Kirkwood approximation.

In the absence of an external field, the energy of

the WLC is a simple contour integral, bE ¼R L
0
A=2jos t̂tj2 ds, where L is the polymer�s length [24].

The inverse temperature, b makes all quantities
unitless and the tangent vector t̂t of the contour

RðsÞ is normalized to fix the contour length,
ĵttj ¼ 1. An external potential, bUðRðsÞÞ modifies
the energy resulting in a path integral partition

function,

Z ¼
Z

DRðsÞ

� exp
�
�
Z L

0

A
2
jos t̂tj2

�
þbUðRðsÞÞ

�
ds
�
: ð1Þ

We can derive the form of bUðRðsÞÞ for many
experiments. For example, in the experiments of

Smith et al. [9], one end of the DNA strand is at-

tached to a glass surface and magnetic tweezers

stretch the other end of the DNA. The external

potential is

UðRðsÞÞ ¼ �f jRzð0Þ � RzðLÞj ¼ �f
Z L

0

t̂tz ds

����
����;

where f is the force applied to the two ends and
t̂tz is the component of the tangent vector in the
direction of the force. The solution maps into
the trajectory of a quantum rigid-rotor and has

good agreement with experiment [1,24,26]. We

parameterize the bending energy of the WLC

model with the persistence length determined

by these references, A ¼ 53 nm, to remove fitting
parameters and validate the consistency of the

WLC description of DNA in various experi-

ments. We neglect the persistence length�s de-
pendence on various experimental conditions,

such as buffer concentrations and the dye used in

imaging.

The potential is not easily defined for hydro-

dynamic flows because hydrodynamic flows are

dynamic phenomenon, but the flow still performs
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work on each monomer. If we ignore the intra-

chain hydrodynamic interactions of a polymer in a

potential flow, like constant plug flow or elonga-

tional flow, the work is proportional to differences

in the potential. For a free-draining polymer, we

add the potential of all of the monomer units,
which becomes an integral over the contour. A

simple double integral over the contour can in-

corporate the two body potential, but this is not

done here. Removal of the free draining approxi-

mation is more difficult, but previous studies show

that hydrodynamic interactions lead to only

modest corrections to many time averaged quan-

tities [21,22].
2. Constant plug flow

The constant plug flow potential is V ¼ �F � z,
where F is the flow rate, and the polymer�s po-
tential is �F n

R L
0
zðsÞds, where n is the friction per

unit length. Based on the findings of Larson et al.
[22], we assume the friction does not vary with the

flow rate or over the polymer, but we do not know

the friction constant explicitly. Most experiments

report the viscosity of the polymer in the solution,

whose relation to friction has a non-trivial geo-

metric dependence. The friction is the only fitting

parameter, but it is comparable in all simulations

and simply scales the flow rates. The Kirkwood
approximation in Zimm�s calculation for constant
plug flow replaces the bare uniform force on each

segment from the flow field with a dressed force

that is also uniform and justifies a rescaled friction

constant [27].

Perkins et al. [6] performed the constant flow

experiment with optical tweezers. Fluid passes

over the polymer creating a force along the entire
polymer. Integration by parts gives an insightful

formula for the potential, �F � n
R L
0
ðL� sÞt̂tz ds.

The energy of the potential comes from a tension

that scales linearly along the chain. The tension is

the greatest at the end tethered to the bead because

the whole chain pulls on this end, and it lessens

further down the chain until it becomes zero at the

free end. For a strong flow, the polymer is almost
completely extended in the z-direction, and the
components in the x and y directions are small
perturbations of the linear configuration. The

energy of the WLC is approximately

bE 	
Z L

0

A=2jos t̂t?j2
h

þ F nðL� sÞĵtt?j2
i
� F
2
L2;

ð2Þ

where t̂t? is the transverse components of the tan-

gent vector, the x and y directions, and the com-
ponent in the z-direction is approximately
tz ¼ 1� ð1=2Þĵtt?j2 [26]. The action corresponds to
a quantum harmonic oscillator with a linearly

ramped spring constant. The x and y components
act independently and the partition function for

each component is Gaussian

Z
Dðt̂tðx;yÞ? ðsÞÞ exp

 
� A
2
t̂tðx;yÞ? ðsÞ dt̂t

ðx;yÞ
? ðsÞ
ds

�����
L

0

þ
Z L

0

Z L

0

dsds0dðs� s0Þ A
2
t̂tðx;yÞ? ðs0Þ d

2 t̂tðx;yÞ? ðsÞ
ds2

(

� t̂tðx;yÞ? ðs0Þ F n
2

ðL� sÞt̂tðx;yÞ? ðsÞÞ
)!

: ð3Þ

Since the operator in the exponential is Hermitian,

the Green�s function for the average square of the
transverse component, uðs; s0Þ ¼ hðt̂tðx;yÞ? ÞðsÞðt̂tðx;yÞ? Þ
ðs0Þi, is a weighted sum of eigenfunctions, Gðs; s0Þ ¼P

n junðsÞik
�1
n hunðs0Þj, that satisfy the differential

equation

�A
d2unðsÞ
ds2

þ F nðL� sÞunðsÞ ¼ knunðsÞ; ð4Þ

with the boundary conditions u0nð0Þ ¼ u0nðLÞ ¼ 0.
The analytic solutions to the equation are sums

of Bessel functions. The rms of the traverse

displacement is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n k�1

n j
R L
0
unðsÞdsj2

q
, which is

shown in Fig. 1. Since htzi 	 1� ð1=2Þðhðt̂tðxÞ? ðsÞÞ2iþ
hðt̂tðyÞ? ðsÞÞ2iÞ ¼ 1�

P
k�1
n u2nðsÞ, the average exten-

sion in the z-direction is approximately
L�

P
k�1
n

R L
0
dsu2nðsÞ ¼ L�

P
k�1
n . Since the ei-

genvalues change slowly with the flow rate in the

high stretching regime, the width and extension

also change slowly. The rms displacement displays

a trumpet shape that is qualitatively similar to the

shapes observed in experiments, simulations, and

other theories [6,22,28,29].



Fig. 1. The root mean square displacement of the traverse

component of the polymer in a strong constant plug flow. The

displacement is plotted as a function of distance in the direction

of the flow field. Note the resemblance to the trumpet shape

observed in experiment and simulation.

Fig. 2. Comparison of the constant plug flow experiment in [6],

the path-integral Monte Carlo simulation, the path-integral

matrix multiplication method, and the Brownian dynamics

simulation reported in [17]. Inset compares asymptotic behavior

of the simulations for large flow rates.
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Without the the large flow rate approximation,
the action of the tangent vector corresponds to the

imaginary time Schr€oodinger equation for a rigid-
rotor in a time dependent potential

oWðsÞ
os

¼ L̂L2

2A

"
þ F nðL� sÞ cosðhÞ

#
WðsÞ: ð5Þ

In this equation, L̂L is the angular momentum op-

erator, and cosðhÞ is the projection of the tangent
vector onto the direction of the flow field. This

equation resembles the constant force calculations

with a simple time dependence ðL� sÞ [26]. This
equation can be solved by using a spherical har-

monic basis set and numerically propagating the
resulting matrix [1,26]. The only difficulty is the

initial condition of the wavefunction, for which

we use results that are consistent with the high

stretching calculation above, tzð0Þ ¼ 1 and tzð0Þ ¼
tyð0Þ ¼ 0.
Fig. 2 compares the predictions of mean

fractional extension versus flow rate for the rotor

Hamiltonian, the Monte Carlo simulation dis-
cussed below, the experimental results of Perkins

et al. [6,17], and the Brownian dynamic simula-

tions of Doyle. Since the experiment cannot de-

termine the end-to-end distance, the fractional

extension is the maximum distance between any
points on the polymer contour compared against
the contour length. The flow rate is in a dimen-

sionless form, Wi ¼ sF=sp, where sF is the char-
acteristic time of the flow and sp is the longest
relaxation rate of the free polymer, which is

determined by equations in [17–19]. For elonga-

tional and shear flows, the dimensionless form

corresponds to Weissenberg numbers. Both

simulations compare well with experiment. The
mean extension initially increases rapidly with the

flow rate. At about 60% of full extension, the

rate of increase in the extension slows to an

asymptotic approach to full extension in the large

flow rate limit.

A slight discrepancy for moderate flow rates

results from the initial condition, which is cor-

rect in the strong stretching limit and is not
important for weak flows. Monte Carlo tech-

niques correct the discrepancy, as would different

initial conditions, which are not done here to

avoid additional fitting parameters. Although we

do not present these results since they appear

elsewhere, the matrix multiplication method ex-

actly reproduces the constant force results of

Bouchiat, which agrees with the experiments of
Bustamante, since no ambiguity about the initial

conditions exists, and the rigid-rotor equation is

the same [1,9,25,26].



Fig. 3. Comparison of the elongational flow experiment in [7],

the path-integral Monte Carlo simulation, and the Brownian

dynamics simulation reported in [17].
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3. Elongational flow

The quantum rigid-rotor analogy extends to the

elongational flow by changing the form of the

external potential to

�F n
Z L

0

dsðz2ðsÞ � 1=2ðx2ðsÞ þ y2ðsÞÞÞ;

where F is the flow rate over length. The potential
depends on the position instead of the tangent

vector. Unless we know the starting position,

which depends on the steady-state distribution, we
do not know RðsÞ and cannot predict the s de-
pendence of the field. To overcome the difficulties

presented by this potential, we evaluate the path

integral using Monte Carlo techniques.

As a calibration, we analyze the constant plug

flow experiment with Monte Carlo and compare

these results with our previous results. We dis-

cretized the polymer into 844 segments, two seg-
ments per persistence length for a DNA chain that

is 22.4 lm in length. The discretization captures
the rigidity of the polymer without incorporating

phenomenological bending springs. The segments

are fixed in length and only the angles are varied.

We fix one end of the polymer at the origin and

perform 12� 106 Monte Carlo steps with the po-
tential energy defined above. The Monte Carlo
algorithm fits the experiment and Brownian dy-

namic simulation results better than the matrix

multiplication method, as shown in Fig. 2. These

results give us confidence in using this algorithm to

evaluate more complicated flows.

Elongational flow corresponds to the experi-

ments of Smith and Chu and of Perkins et al.

[7,10]. In these experiments, the DNA is freely
flowing with the fluid. Since the forces caused by

this flow are linear, we decompose the motion of

the polymer into center of mass and relative mo-

tion of the polymer segments. The Monte Carlo

procedure is the same as for the constant plug

flow, except that the energy is determined in the

relative coordinate frame. Fig. 3 shows the frac-

tional extension results compared against the ex-
perimental results of Chu and the Brownian

dynamic simulations of Doyle [17].

Even for this more complicated flow, the frac-

tional extensions predicted by both of the simula-
tions agree extremely well with the experimental

results. The fractional extension as a function of

flow rate rises quickly to about 80% before a slow

asymptotic approach to full extension. In the

strong flow limit, the Monte Carlo simulation

slightly overestimates the extension, as compared

to the experiment and Brownian dynamics simu-
lation, but all three results agree extremely well for

weak and moderate flows. The agreement between

the simulations and experiments for the constant

plug and elongational flows demonstrates that the

Monte Carlo technique successfully reproduces the

results for potential flows and that the WLC model

is a good description of DNA and possibly other

semi-flexible biological polymers in potential
flows.
4. Shear flow

Encouraged by the success of the path integral

Monte Carlo method on potential flows, we

investigate the application of these methods to
non-conservative flow fields like shear flow.

The simple shear flow also has an analogous rigid-

rotor Hamiltonian with an electrostatic potential

U / �x � z and a non-conservative B-field, r̂r� ŷy,

where r̂r is the position vector and ŷy is the unit

vector in the y-direction. Similar to the elonga-
tional flow, we avoid the difficulty of the position
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dependence by evaluating the action with Monte

Carlo.

The shear flow experiment that we analyze is

similar to the elongational flow experiment [11,17].

The DNA freely flows with the fluid, and we cal-

culate the forces in the center of mass frame using
the simple shear relations, Fz ¼ F nx and

Fx ¼ Fy ¼ 0, where F is flow rate over length. Al-
though shear flow is not a potential flow, the fluid

still performs work on the system, which allows us

to define a local energy change by integrating the

force along the linear path connecting two con-

figurations. The probability of a transition occur-

ring is proportional to the energy difference in the
local frame. Several authors used this approach to

describe other polymer systems in shear flows

[30–33]. Since the potential changes as the polymer

moves, detailed balance does not hold and the

polymer rotates through space, but this simulation

can be viewed as a Glauber dynamics [34]. The

Monte Carlo algorithm for the shear flow follows

the same steps as the constant plug flow and
elongational flow with the potential defined lo-

cally. A trajectory dependence exists, which may

require a larger number of simulation steps than

the potential flows, but we still only use 12� 106
Monte Carlo steps.

The force–extension relations for shear flow are

plotted in Fig. 4. As with the potential flows, the
Fig. 4. Comparison of the shear flow experiment in [11], the

path-integral Monte Carlo simulation, and the Brownian dy-

namics simulation reported in [17]. To aid the eye, the solid

curve follows the trend of the Monte Carlo data.
path integral Monte Carlo method agrees ex-

tremely well with both experiment and the

Brownian dynamics simulation. Because we only

used 12� 106 Monte Carlo steps, some scatter in
the data exists. We added a trend line in Fig. 4 to

help the eye follow the data. For weak shear rates
there is a fast initial rise in the mean extension.

After the initial rise, the data quickly asymptotes

to about 40% extension. The small asymptotic

value can be understood by examining the de-

composition of the shear flow field into an elon-

gational part and a rotational part. At an angle of

about p=4 in the xz plane, the polymer gets stret-
ched, but at �p=4 the polymer gets compressed
[11,17,35]. The rotational part moves the polymer

between these angles resulting in an averaging over

these angles and a decreased total extension. This

cycling from the extended to the compressed states

has been observed in the experiment, the Brownian

dynamics simulations, and our Monte Carlo sim-

ulations. The correspondence shows that the

Glauber dynamics of a Monte Carlo simulation
does capture some of the real dynamics of the

system.
5. Summary and conclusion

As demonstrated in this Letter, the WLC is a

good model for DNA and possibly other semi-
flexible biopolymers. With a single fitting param-

eter, the friction constant, which linearly scales the

flow rate, the solution to the path integral quan-

titatively agrees with experimental results for

DNA subject to constant plug, elongational, and

shear flows. The model is based on physical prin-

ciples without phenomenological force–extension

relations. Although hydrodynamics are strictly
dynamic phenomenon, time averaged quantities

are quasi-equilibrium phenomenon in an effective

potential. This description is possible because re-

laxation to the steady-state distribution is fast and

contributions from intra-chain hydrodynamics can

often be neglected. The equilibrium partition

function corresponds to an ensemble average,

which demonstrates the correspondence between
time-averages of single molecule trajectories and

ensemble averages for ergodic systems. These
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techniques are computationally inexpensive since

we do not have to run many trajectories to average

over initial distributions. This path integral ap-

proach is applicable to other semi-flexible bio-

polymer systems.
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