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Abstract

The semiclassical expression for the momentum autocorrelation function of a particle in a one-dimensional box is analyzed. The
classical autocorrelation function is shown to be the first term of the semiclassical series. Systematical inclusion of all the terms
restores quantum recurrence of the momentum autocorrelation function.
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In an early paper, Deutch et al. [1] compared classical
and quantum momentum autocorrelation functions of a
particle in a one-dimensional box. They found that the
classical autocorrelation function decays irreversibly
whereas the quantum function displays recurrence, a sig-
nature of phase coherence. The classical autocorrelation
function is the simple 7 — 0 limit of the quantum result,
however, an analytic expansion of the quantum autocor-
relation function in terms of 7% has not been obtained.
The non-analytic nature of the quantum correlation
function is related to the time-divergence in classical re-
sponse theory [2-6]. Specifically, the reported divergence
arises from the interchange of non-commuting limits of
7 — 0 and ¢ — oco. A semiclassical analysis of microca-
nonical response functions leads to the phase-space
quantization [3], which removes the classical divergence
and results in a correspondence between quantum tran-
sitions and classical trajectories. In this paper, we derive
a semiclassical % expansion of the canonical correlation
function using the Weyl-Wigner symbol-calculus
approach and resum the expansion to obtain non-
perturbative expression which captures the quantum
recurrence in canonical correlation functions.
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Following [1] we adopt the symmetrized quantum
mechanical correlation function

C(1) = 5 Trlpg (b0 + 2 (1)) (1

where p,, is the Boltzmann operator. ((7) is often used
in literature because of its Fourier relation with the
imaginary part y"(w) of the response function, C(w) =
hcoth(Bhw/2)y"(w). For a particle in one-dimensional
box, the autocorrelation function (1) is given by [1]

C(t) = (?L\{D kf: f: exp [— ((2k+1)§—%)2]
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where T =t\/2m2/upL?, { = hv/pr2/2uL? and Z =

S exp(—n2{?) is the partition function. The quantum
correlation functions (2) plotted on Fig. 1 for two differ-
ent temperatures show the recurrence, a characteristic of
the quantum autocorrelation function. However, as
shown in [1], the simple classical limit of ()
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Fig. 1. Quantum momentum autocorrelation functions for (a) { = 0.5
and (b) {=0.2.
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has a monotonically decaying profile (Fig. 2).

To systematically examine the classical limit of Eq.
(1) we use the Weyl-Wigner symbol-calculus approach
[7-10], which allows an alternative representation of
quantum mechanics in terms of scalar functions a(p, q)

symb(4) = a;(p,q) = /dve(i/h)p'”<q - ﬂ)‘A‘q—i— v>

(4)
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Fig. 2. Classical momentum autocorrelation function (which is inde-
pendent of temperature in scaled time coordinates).

where ‘symb’ represents the Weyl-Wigner symbolic
function. The product of two operators corresponds to
a non-commutative Moyal product of Weyl symbols
in|oa oo
)Eah*bh—ahexp E ————— bh,

AB
symb( dq Op Op Oq

(5)
where the arrows indicate the directigl} of action of the
derivatives. Using the property Tr(4B) = (2n#) ™" [dp
dqga,(p, q)bs(p, q), the expression (1) takes the form

= / dp dqp,(p,q)

X (p,q,t)cos f 5 8 55

(6)
The Weyl symbol pu(p,q) in coordinates {p,q} is the
phase space momentum p, which follows directly from
the expression (4) written in |p) basis. However,
Pr(p,q,t) does not have a simple classical correspon-
dence [11]. For this reason we switch to action-angle
variables {J, ¢} and express the Weyl transform (4) in
|) basis using the semiclassical wave function

(@ | n) = (2m) "% ()
corresponding to eigenvalue E, = H(J, = nh). We thus
have
" e Vo sy i) o, 1
ah(‘]nvq)at): déerh 90__5677 Aem €0+§§
Z (| A | mebmoehBetns oo, (8)
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The above semiclassical analysis assumes that [k — m|<
k [9,12], therefore the matrix element (k|4 | m) that
satisfies the Hermitian property is given by [9]

p L™ I+ i i(m—
Alm)=— m -4
k| 4| m) 2n/na( : ,(p)e do ()
and
OF
Ex—Ep=E,n—E, in=~] (k-
k m n+ n— aJJn(k m)h
= o)k — m)h, (10)

where o = 0E/dJ = d¢/dt is the rotational frequency
of the angle variable. Substituting (9), (10) and the
Fourier decomposition of the classical function a(J, ¢),
ie. a(J,p)=>,a;(J)e", into the expression (8), we
get
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which is just the Fourier expansion of the classical func-
tion a(t). The Weyl symbols pi(J, @,t) and px(J, @) are
thus classical functions:

2o, @) = plJu, @ t)}
— Z J ik(wt-+@q) (12)
k
Pu(Ju, @) = ( ,0)
- *ﬁE(Jm)
2nZ Z e S (13)

where Z is the partition function. Substituting (12) and
(13) into (6) we get the semiclassical expression

x {pu, o(1))cos {2 (62 e aZ) ]pu, @(0))}
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0
where D = (a% 9—%6(0) and the average (---)o is
taken over the phase density (13) with quantized actions.
The phase space averaging (- - -)¢ is related to the aver-
aging (---) over continuous phase space. Indeed, the
summation over the discrete variable can be converted
to an integration over the continuous variable using
delta-functions [1]

i:/wiau—nh). (15)

We know that for J>0

i& J —nh) ié J —nh)

n=1 n=—0o00
1,25 (2nmJ /). 16
—h+ ;cos nmJ /1) (16)

Combining (15) with (16) we have

(=2 () + 2o <chos<2nm/h>>7 (17)

m=1

where 4= [“e ) dJ. The WKB approximation
[8,13,14] (7) assumes that motion occurs mainly in the
region of J>> & implying that the temperature is suffi-
ciently high 1/f > h*n*/2uL?. Thus A/Zh ~ 1 as shown
in [1] and we may skip the overall factor (4/Z#) from
further considerations.

The momentum autocorrelation function (6) thus

reads
C(1) = (p(1)p(0)) +2 i <p(’)p (0) cos <2n;u ) >
_ %2 <p(t)f)2p(0)> - hzz

X i <(p(t)l52p(0)) cos (%TmJ>> +--- (18)

The first term in the expression (18) is the classical cor-
relation function C.(#) and the remaining terms are
quantum corrections expressed as phase space averages
of classical functions. We note that in the usual classical
limit, the A*"-terms in Eqs. (18) or (14) are omitted.
However, every /°"-term in (14) has time-divergent
derivatives (stability matrix) Op(7)/0J, which grows line-
arly in time for integrable systems and exponentially for
chaotic systems. The small value of the factor #*" can be
always compensated by the large value of 7. Thus the
omission of these terms is not justified and leads to the
well-known problem of time-divergence of the classical
response functions [4-6].

The above argument can be supported by calculating
C(t) with #*"-terms omitted. The results from the evalu-
ation of the first two terms in Eq. (18): Cy(¢) and its cor-
rection for phase space quantization, are plotted in
Fig. 3. Comparing Figs. 1 and 3 one can see that phase
space quantization alone is not sufficient to restore
quantum beatings and higher-order terms in 7% are
needed.
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Fig. 3. Classical momentum autocorrelation functions with averaging
over continuous (solid line) and quantized (dashed line) phase space
for (a) {=0.5 and (b) {=0.2.
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The convergence of series (18) can be shown analyti-
cally for the system under consideration. Substituting
(12), (13) and (16), we have
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Since exp (AJ Z)f(J)
C(r) = % /dJ<1 + Zi cos(2nmJ/h)>eﬁE<J)

<3 (1, cos(nan)) | (20)

n=—0o0

= f(J + AJ), then

For a particle in one-dimensional box pa + 1(J) = 2J/
(2k + 1)L, = 0E/0J = n°J/uL? and

() =% /dJ<1 +22 cos 2nmJ/h)> b

=1

i 2k + 1) (J - h(2k2+ 1))
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The straightforward integration of the expression (21)
gives the semiclassical expression

() = (?L—@ f f exp {—((%H)g—’"{)z
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The semiclassical result (22) reproduces the quantum
expression (2) almost exactly except for a constant term
{* = Br*n?/2L%u, which is negligible in the high temper-
ature regime required for the semiclassical analysis lead-
ing to Eq. (22).

In this article we have studied the classical limit of the
quantum autocorrelation function. The semiclassical
expression for the momentum autocorrelation function
of a particle in a one-dimensional box is obtained. The
Weyl-Wigner symbol-calculus approach allows to find
the explicit expressions for the semiclassical corrections
to the classical momentum correlation function. Resum-
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Fig. 4. Semiclassical momentum autocorrelation functions calculated
from Eq. (22) for (a) {=0.5 and (b) { =0.2.

mation of the derived semiclassical series results in an
almost exact quantum formula. Because of the semiclas-
sical nature of the analysis, the agreement between
quantum and semiclassical results improves at higher
temperatures (compare Fig. 4 with Fig. 1).
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