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Abstract

A modulated N-conformational-channel reactive system is used to model the recent single-molecule enzymatic experi-
w Ž . xment Science 282 1998 1877 . Kinetic analysis of the model system clearly demonstrates the essential difference between

ensemble-averaged bulk measurements associated with the population dynamics of full-reactions and event-averaged
single-molecule measurements associated with a sequence of half-reactions. Example calculations of a two-conformational-
channel system support the principal findings of the reported experiment. In particular, the observation of the focal time in
the single-event distribution function and the echo signal in the two-event distribution function reveals the nature of
conformational landscapes. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The rate process in a reactive system is usually
assumed to be the slowest timescale such that the
reaction dynamics can be treated as a Markovian
process. Then, the phenomenological exponential de-
cay law predicts the average behavior of a bulk
system, and Poisson statistics describes decay events
of a finite system. However, in the presence of slow
environmental fluctuations, such as in proteins and
glassy systems, the simple rate prediction breaks
down and the population may not decay exponen-
tially. Yet, such environmental modulation may not
be completely reflected in the phenomenological ki-
netics and is often smeared in bulk measurements.
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w xAdvances in single-molecule spectroscopy 1–3
allow one to observe real-time single-molecule tra-
jectories, which consist of a chain of correlated

w xreaction events of various lifetimes 4,5 and contain
w xrich information of microscopic mechanisms 6–10 .

For example, in a recent experiment by Lu et al.
w x11 , enzymatic turnover events of single cholesterol
oxidase molecules were monitored through the emis-
sion from the enzyme’s fluorescence active site,

Ž .flavin adenine dinucleotide FAD . The statistical
analysis of the single-molecule trajectories clearly
demonstrated slow fluctuations in the turn-over rate
of cholesterol oxidation and the dependence of the
enzymatic turnovers on previous history. Xie and
coworkers attributed these phenomena to slow fluc-
tuations of protein environments and suggested a
simple mechanism involving different conforma-
tional states of the enzyme. Such structural fluctua-
tions are an essential feature of low-temperature
glass systems, proteins, water and other hydrogen-
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w xbonded systems 6–8,12 . In this Letter we present
theoretical analysis of a modulated reaction model to
interpret event-averaged single-molecule observa-
tions of conformational fluctuations.

2. Experiment

As illustrated in Fig. 1, the fluctuating environ-
ments are described by N discretized conformational
states, with inter-conversion rate g from the jtha, i j

state to the ith state when the system is in reactant
‘A’, and with inter-conversion rate g from the jthb, i j

state to the ith state when the system is in product
‘B’. Each conformational state defines a reversible
reaction channel between reactants and products,
with forward rate k and backward rate k . Thisa, i b, i

model can be viewed as a discretized version of the
w xcelebrated Agmon–Hopfield model 13 . Agmon re-

cently extended the original model to account for the
physical process in the reported enzyme turnover

w xreaction 14 . In the fast modulation limit, the modu-
lated reaction model reduces to a single-channel
reaction with an effective rate constant and, in the
slow modulation limit, it reduces to an inhomoge-
neous average of N channels The different confor-
mational channels are not directly detectable since
only the reactant or product is monitored by fluores-
cence emission. In Xie’s experiment, the single FAD

Ž .emission turns on in the oxidized state reactant A
Ž .and off in the reduced state product B , so the

onroff time measures the duration that a single
molecule spends in reactantrproduct.

We begin by studying the forward half-reaction.
The master equation for the N-conformational states
in reactants is written as

Ṗ t sy G qK P t , 1Ž . Ž . Ž . Ž .a a a a

where the vector P is the probability of being ina, i

the ith conformational state at time t, the matrix
G sd g yg , with g sÝ g , describesa, i j i j a, i i a, i j a, i i j a, ji

the conformational kinetics in reactants, and the
matrix K sd k describes the decay processa, i j i j a, i

from reactants to products. The Green’s function,
Ž .G t , is formally solved via the Laplace transforma-a

tion,

y1G̃ z s zIqG qK , 2Ž . Ž . Ž .a a a

where I is the identity matrix. Because the ex-
perimental data is averaged along single-molecule
trajectories over long durations, we introduce the

� 4stationary flux F s F , which will be evaluateda a, i

explicitly later. Now, given the vector F , the distri-a

bution function of on-time events is expressed as

f t s K G t F s k G t F , 3Ž . Ž . Ž . Ž .Ý Ýa a a a , i a , i j a , j
i , j

where the summation is carried over all the indices.
² : ` Ž .The average on-time is given by t sH f t t d t,0

² :which then determines the rate constant ks1r t
used in the phenomenological kinetic description.
Higher order moments of the on-time distribution

² n: ` Ž . ncan also be calculated from t sH f t t d t. Sim-0

ilar expressions can be found for the product state.
Thus, the measurement of on-time or off-time clearly
separates the forward and backward half-reactions,

Fig. 1. The decomposition of the N conformational-channel reaction model into the forward and backward half-reactions.
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and uniquely determines the statistics of single reac-
tion events. These measurements are carried out for
an ensemble of reaction events along single-mole-
cule trajectories without keeping track of the se-
quence of these events.

The ingenuity of the reported experiment is to go
beyond the single-event statistics to measure the
correlation of a pair of on-time events along single-
molecule trajectories. To couple the two half-reac-
tions, the reactant decays to the product via rate
constant k and the product decays to the reactanta

via rate constant k . Thus, the joint probabilityb

distribution function of two adjacent on-time events
is given as

˜f t ,t s K G t K G 0 K G t F , 4Ž . Ž . Ž . Ž . Ž .Ý1 2 a a 2 b b a a 1 a

˜ `Ž . Ž .where G 0 sH G t d t results from the off-timeb 0 b

integration. In addition, the joint probability of two
separate on-time events can be expressed as

˜f t ,t s K G t K G 0Ž . Ž . Ž .Ý1 mq1 a a mq1 b b

=
my 1˜ ˜K G 0 K G 0Ž . Ž .a a b b

=K G t F , 5Ž . Ž .a a 1 a

where m is the separation between two on-time
w xevents on single-molecule trajectories. In Ref. 11 ,

an on-time correlation function is employed to quan-
titatively measure the memory effect,

² : ² :2t t y t1 mq1
Cor m s , 6Ž . Ž .22² : ² :t y t

² :where t t can be expressed in the matrix1 mq1

notation as

˜² :t t s K T K G 0Ž .Ý1 mq1 a a b b

=
my 1˜ ˜K G 0 K G 0 K T F ,Ž . Ž .a a b b a a a

7Ž .

Ž .with T sHtG t d t. Similar expressions can be de-a a

rived for off-time events and for the cross-correlation
between on-time and off-time events. These quanti-
ties directly measure the non-Markovian behavior,
which cannot be obtained directly in bulk experi-
ments and must be observed along a sequence of
reaction events along single-molecule trajectories.

To relate single-molecule experiments to bulk
experiments, we now write the master equation for
the full reaction

r t r tyG yK KŽ . Ž .˙a aa a bs ,ž /K yG yKž / ž /r t r tŽ . Ž .˙ a b bb b

8Ž .

where G and K are defined for the product, andb b
w Ž . Ž .xr t ,r t are the population distribution in reac-a b

tants and products, respectively. The Green’s func-
tion solution is given by

y1y1˜ ˜ ˜G z s IyGyK s IyG z K G z ,Ž . Ž . Ž . Ž .Ž .0 0

9Ž .

G̃ z 0Ž .a˜ Ž .where G z s is the single-0 ˜ž /0 G zŽ .b

molecule Green’s function matrix for two decoupled
0 Kb

half-reactions, and Ks is the rate con-ž /K 0a

stant matrix between the two half-reactions. Pertur-
Ž .bation expansion of Eq. 9 yields a series of terms

in the sequence of single-molecule events, e.g.,

˜ ˜ ˜ ˜ ˜G z sG z qG z K G z K G zŽ . Ž . Ž . Ž . Ž .aa a a b b a a

q PPP , 10Ž .
where the first term represents a single-molecule
reactant without reaction, the second term represents
one sojourn to product, and so on. In a sense, the
time history forms a correlated random walk as a

w xfunction of the number of turn-over events 15,16 .
Thus, the population evolution in bulk experiments is
equivalent to the summation of all the possible reac-
tion events along single-molecule trajectories, and
the equilibrium population distribution in the bulk
state can be realized by time-averaging single-mole-
cule trajectories over long durations. Consequently,
single-molecule spectroscopy associated with a se-
quence of half-reaction events described by G anda

G inherently contains more detailed informationb

about microscopic reaction mechanisms than conven-
tional spectroscopy associated with the population
dynamics described by G. Further, it is useful to
distinguish two complementary measurements: the
fluorescence intensity correlation function and two-
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time correlation functions discussed by Schenter et
w xal. 17 , which describe the evolution of single-mole-

cule occupancy, and the single-molecule observables
w xdiscussed in Xie’s original paper 11 and here,

which describe the statistics of the occurrence of
half-reaction events.

If conformational fluctuations are ergodic, averag-
ing reaction events along single-molecule trajectories
over long durations leads to a stationary flux, i.e., Fa

Ž . Ž . Ž . Ž .or F used in Eqs. 3 , 4 , 6 and 7 . To evaluateb

these event-averaged quantities, we first solve the
equilibrium distribution of the full kinetics, rs
w x Ž .r ,r , by setting Eq. 8 to zero. Since the fluxa b

into reactant A from product B is K r and the fluxb b

into product B from reactant A is K r , we havea a

F K ra b bsNN , 11Ž .ž / ž /F K rb a a

where the normalization factor is the same for the
reactant and the product, i.e., NNy1 sÝK r sb b

ÝK r . Further, we can evaluate the off-time fluxa a

by averaging the on-time event in reactant A,

` y1K G t F d tsK G qK NNK rŽ . Ž .H a a a a a a b b
0

sNNK r sF , 12Ž .a a b

thus confirming that the occurrence flux is indeed
stationary on average. Although presented in the
context of the two-state model, the above analysis is
general and provides a prescription for calculating
the statistics of single-molecule half-reaction events.

As the two half-reactions are coupled through Fa

and F , we discuss three possible scenarios for theb

forward reaction according to the relative timescale
of the backward reaction.

2.1. Constant backward reaction

In the first scenario, we set the backward reaction
rate to a constant, k sk , and make no distinctioni,b b

between the conformational kinetics in products and
reactants, G sG sG . This scenario is similar toa b

w xthe enzymatic turnover experiment 11 by Xie and
coworkers, where no fluctuations were found in the
FAD oxidation half-reaction, and where both the
statistics of single events and the correlation of

multiple events were measured for the FAD reduc-
tion half-reaction. Though the backward half-reac-
tion is independent of conformational fluctuations,
k does affect the forward half-reaction through Fb a

and can be used as an active control parameter to
reveal the underlying conformational kinetics.

2.2. Slow backward reaction

In the limit of k ™0, the backward reaction isb

the rate-limiting step and is not distributed. From Eq.
Ž .11 , the reactant is prepared according to the distri-
bution of the conformation state, F sr , where ri g , i g

is the equilibrium solution to the modulation matrix
Gr s0. A well-studied example is ligand binding tog

w xhemoglobin under constant illumination 8 . Of par-
ticular relevance is the recent work by Wang and

w x ŽWolynes 8 , where non-Poisson statistics intermit-
.tency is explored in single-molecule reaction dy-

namics modulated by diffusive environments. Exper-
imentally, after the product is formed, the system is
slowly pumped back to the reactant, the cycle is
repeated on single molecules, and only the single-
event distribution information is collected.

2.3. Fast backward reaction

In the limit of k ™`, the forward reaction isb

rate-limiting, whereas the backward reaction is in-
stantaneous and not sensitive to the environmental
fluctuations. In this limit, the stationary flux takes
the value of FsK r rÝK r and the macro-a g a g

scopic first-order rate constant becomes

1
ks s K r , 13Ž .Ý a g² :t

which is an inhomogeneous average of conforma-
tional channels. Hence, in this scenario, the bulk
measurement does not reveal the dynamic nature of
environmental fluctuations, and one has to resort to
single-molecule experiments to resolve the confor-
mational dynamics. Phenomenologically, one can
treat the backward reaction as a constant source of
the reactant such that the average distribution of
reactive molecules is maintained at equilibrium with
each conformation state. This scenario is also equiva-
lent to the case of symmetric reactions with K sK ,a b
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where the on-time distribution is identical to the
off-time distribution.

3. Calculations

In the rest of the Letter, we present detailed
calculations of the forward half-reaction for a two-
conformational-channel model, with g sg sg .12 21

Ž .The Green’s function in Eq. 2 is explicitly ex-
pressed as

1
Ž .G t sa

D

=
Ž . Ž . Ž .D E t y k E t g E tc d s s

, 14Ž .ž /Ž . Ž . Ž .g E t D E t q k E ts c d s

where the subscript a refers to a for the product or
b for the reactant, and the other parameters are
defined accordingly. Here, 2k sk yk , 2k sd a 1 a 2 s

Ž . Ž yzyt yzqt . Ž .k q k , E t s e q e r2, E t sa 2 a 1 c s
Ž yzyt yzqt .e ye r2, and the pair of eigenvalues are

2 2(z sk qg"D with Ds g qk . The corre-" s d

˜Ž . Ž .sponding Laplace transform G z in Eq. 2 and the
Ž .time average T in Eq. 7 can be evaluated accord-

Ž .ingly. Next, solving r from Eq. 8 , we obtain the
stationary flux

Fa1

Fa2

Fb1� 0
Fb2

k k k qk qg k k qkŽ . Ž .a1 b1 a2 b2 b1 a1 a2

k k k qk qg k k qkŽ . Ž .a2 b2 a1 b1 b2 a1 a2
sNN ,

k k k qk qg k k qkŽ . Ž .a1 b1 a2 b2 a1 b1 b2� 0
k k k qk qg k k qkŽ . Ž .a2 b2 a1 b1 a2 b1 b2

15Ž .

y1 Žwith the normalization factor NN sk k k qa1 b1 a2
. Ž . Ž .Ž .k qk k k qk qg k qk k qk .b2 a2 b2 a1 b1 a1 a2 b1 b2

With the above expressions, all single-molecule ob-
servables can be calculated for the model.

As an illustrative example, we present results for
a two-conformational-channel system with a constant
backward rate k . Fig. 2 shows the on-time distribu-b

Ž .tion function f t , which decays non-exponentially
and depends on the choice of k . Interestingly, allb

the curves focus at t regardless of the backwardf

rate. To understand this, we separate the contribution
to the on-time distribution from state 1 and state 2 as

f t k G t qk G tŽ . Ž . Ž .1 a ,1 a ,11 a ,2 a ,21
s , 16Ž .ž / ž /f t k G t qk G tŽ . Ž . Ž .2 a ,1 a ,12 a ,2 a ,22

Ž . Ž . Ž .such that f t s f t F q f t F . Then, the focal1 1 2 2

time t can be determined fromf

f t s f t , 17Ž .Ž . Ž .1 f 2 f

Ž . Ž .which yields tanh t D sDr k qg . Thereby, atf s

t , the two channels of the forward reaction becomef

indistinguishable, and thus the forward reaction is
decoupled from the backward reaction.

Perhaps, the most visual demonstration of the
w xnon-Markovian behavior in Ref. 11 is the 2-D

Ž .contour plot of f t ,t . If the two events are not1 mq1

correlated, the joint distribution becomes the product
of two single-event distribution functions, i.e.,

Fig. 2. A plot of the single on-time event distribution function
Ž . Ž .f t defined in Eq. 3 for the two-conformational-channel model

with modulation rate g s0.2 and with forward rate constants
k s5 and k s1. For simplicity, all the time and rate variables1 2

are scaled with k . The three curves correspond the three scenario2

discussed in the text.
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Ž .Fig. 3. A plot of the same-time difference function d t definedm
Ž .in Eq. 19 for the same model as in Fig. 2 with several values of

m and k .b

Ž . Ž . Ž .f t ,t ™ f t f t . Thus, as a probe of the1 mq1 1 mq1

memory effect, we calculate the difference distribu-
tion function

d t ,t s f t ,t y f t f t 18Ž . Ž . Ž . Ž . Ž .m 1 mq1 1 mq1 1 mq1

Ž .and plot the same time difference function d t sm
Ž .d t,t in Fig. 3. As expected, the correlation de-m

creases with time and has a larger amplitude for a
smaller values of g . In addition to the peak value at
ts0, we also observe an echo at a later time tmax

and a valley with zero correlation at t . The valuesmin

of t and t are invariant to the backward reac-min max

tion and the number of the separation between events.
In fact, if normalized by the initial value at ts0, all
the curves in Fig. 3 are nearly the same.

To analyze this recurrent behavior, we explicitly
evaluate the difference function for the third scenario
Ž .k s` , givingb

d t ,t sx x H t H t , 19Ž . Ž . Ž . Ž .1 2 1 2 1 2

Ž . w Ž . Ž . Ž .xwhere H t s2k D E t y gqk E t rD andd c s s

the subscript ms1 is implied. Of particular interest
Ž .is the same-time difference function, d t s

Ž .2x x H t G0, which indicates the bunching of1 2

reaction events of the same lifetime. By virtue of the

˙Ž .extreme condition d t s0, we find the location of
the valley from

D
tanh t D s , 20Ž . Ž .min

gqs

and the location of the echo from

D
tanh t Dr2 s . 21Ž . Ž .max

gqs

In fact, t is the same as the focal time t in Eq.min f
Ž .17 , when the two channels become identical and
the two adjacent events are stochastically indepen-

˙ ˙Ž . Ž .dent. Further, t satisfies f t s f t , which im-max 1 2

plies that the difference between the two channels
reaches maximum and hence two adjacent events are
strongly correlated.

Ž .The same-time difference function d t corre-m

sponds to the diagonal value of the contour plots in
w xRef. 11 by Xie and coworkers. Indeed, from the

subtle diagonal feature of the contours, we can ob-
serve possible structures that suggest underlying
molecular environments with more than two confor-
mational channels. In reality, the relatively small
amplitudes of the recurrences make it difficult to
resolve peaks and valleys from experimental noise
and may lead to ambiguity in identifying the number

Ž .Fig. 4. A plot of the correlation function Cor m defined in
Ž .Eq. 6 for the same model as in Fig. 2 with several values of g

and k .b
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of distinctive conformational channels. Nevertheless,
Ž .it is conceivable that f t ,t and other related1 mq1

event-averaged quantities contain the essential infor-
mation about the nature of conformational fluctua-
tions.

Finally, the normalized correlation function
Ž . Ž .Cor m is plotted in Fig. 4. Since Cor m sdm0

holds for a Markovian process, the non-vanishing
Ž .value of Cor m for m/0 is a clear signature of the

non-Markovian behavior. However, the decay of
Ž .Cor m is sensitive to the backward reaction and

thus is not necessarily an accurate measure of the
modulation rate.

4. Summary

The primary results of this study can be summa-
Ž .rized as follows: 1 clarification of the differences

between half and full reactions, between ensemble
and event averages, and between bulk and single-

Ž .molecule measurements; 2 Formulation of a
general procedure for calculating the statistics of

Ž .single-molecule half-reaction events; 3 explicit cal-
culations of the two-conformational-channel model
to help understand the principal features of the re-

Ž .ported enzymatic turnover experiment; 4 identifica-
tion of the focal time in the single-event distribution
and the echo signal in the two-event distribution,
which allow for the preliminary characterization of

w xconformational landscapes 18 . More elaborate stud-
ies are being carried out to improve the accuracy in
modeling single-molecule kinetics.
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