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Abstract

An analytical theory is developed for the quantum activated rate constant in general systems. The theory relies on a
variationally determined effective quadratic potential and is valid at all temperatures. The formalism extends previously
developed theoretical approaches based on the parabolic barrier /linear response approximation.

1. Introduction

In an upcoming publication [1], it will be shown
that most existing quantum theories for activated rate
processes can be unified within a single mathemati-
cal framework (see Ref. [2] for a review of activated
dynamics). These theories include the high-tempera-
ture parabolic barrier approximation [3], the instan-
ton solution {4-6], and the path integral quantum
transition state theory [7—-10] (PI-QTST). Within this
unified framework, the quantum reactive flux can be
expressed as

F=vIm Z,, (1)

where Im Z, is the imaginary part of the barrier
partition function, itself corresponding to the steepest
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descent solution of the partition function in the bar-
rier region in various limits {1], and v is a simple
prefactor which can be interpreted as the frequency
of the stationary trajectory [1]. In the case of a
parabolic barrier reaction coordinate coupled to a
multidimensional Gaussian (dissipative) bath, the ex-
pression for the prefactor is known to be given by
[1,3]
Ab

YT o (2)
where A} is the classical Grote—Hynes frequency
[11], given by

wp
A+ A(A)/m
Here, m is the effective mass of the reaction coordi-
nate and %( z) is the Laplace transform of the classi-
cal friction kernel at the top of the barrier [11] (i.e.
the frequency-dependent friction). The crossover

temperature is the point at which the parabolic bar-
rier solution breaks down if the barrier frequency is

A

O+

(3)
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taken as the classical value. Crossover is defined by
# By Al =21 (see, e.g., Ref. [2] for a discussion).
The expressions above provide the required frame-
work for the theory developed in the following pages.

One of the most important features of the frame-
work outlined in Ref. [1] is that the imaginary time
Feynman path centroid mode was shown to arise
naturally within the steepest descent picture for the
imaginary part of the barrier partition function (see
also Ref. [12]). In the present Letter, this perspective
is used in conjunction with the optimal quadratic
approximation (OQA) of Ref. [13] to derive a gen-
eral closed-form variational expression for the quan-
tum activated rate constant which encompasses, and
extends, the quantum variational PI-QTST theory of
Voth [8] and, in the classical limit, the Kramers—
Grote—Hynes theory [11,14].

Before proceeding to the present theoretical for-
mulation, it should be noted that other variational
approximations have been developed based on PI-
QTST in order to treat activated rate processes in
general multidimensional systems [8,15—-19). In these
cases, the term ‘variational’ refers to a rotation of
the centroid dividing surface, as first described in
Ref. [8], to minimize the reduced Feynman centroid
density [9] defined for that hypersurface in the transi-
tion state region. Since it gives the exact Wolynes
expression [3] for the activated rate in the case of a
parabolic barrier coupled to a Gaussian bath, such a
variational procedure can be rigorously justified in
that limit [8). However, for general (non-quadratic)
systems a variational rotation of the centroid divid-
ing surface cannot be completely justified because of
the lack of a rigorous bound on the PI-QTST rate
constant versus the exact one, in contrast to the
classical TST limit. Nonetheless, such variational
PI-QTST approaches have exhibited remarkably good
quantitative behavior [17,18], so there remains con-
siderable motivation to find their underlying funda-
mental justification. In the present work, however,
the phrase ‘variational’ refers primarily to a varia-
tional mapping of a real non-quadratic barrier system
onto a completely quadratic one so that, in turn, the
rotation of the centroid dividing surface is fully
justified (actually the identification of the steepest
descent path [1]). In doing so, a new closed-form
expression for the quantum activated rate constant in
non-linear dissipative systems is derived.

2. Theory

To begin, we briefly review the multidimensional
saddle point approximation for the path centroid
mode from our earlier paper [1]. The key idea is to
evaluate the imaginary part of the barrier partition
function in Eq. (1) by a steepest descent approxima-
tion to the integral over the centroid mode Z;, of a
rotated coordinate z, the former being defined as

1
%= ZEthB dr z(7), (4)

where the latter variable is the rotated coordinate
N

z= Y Ug;. (5)

i=1
Here, |U; [ =1 is a unit vector and the coordinates
{g,} are the original system coordinates. Using the
above definitions, one can write the reduced centroid
density along the z coordinate as the Feynman path
integral {1,8,9]

plz)= [ [2a(r)8(z ~ %)
xexp{—S[q(7)]/A}. (6)

where S[g(7)] is the imaginary time action func-

tional for all system coordinates g. The system
partition function can then be defined as [1]

z= [ dz, exp[ - BVi(2)], (7

where the centroid potential of mean force (CPMF)
along z is given by [1]
Vc( Zc) = _kBT ]Il[ pc( Zc)]‘ (8)

As outlined in Ref. [1], the CPMF along z can be
used to evaluate the barrier partition function within
the steepest descent approximation by first expand-
ing it about the maximum as denoted by z¥, giving

Vi(zo) = Vi(28) + V() (2 - 2F)
+1V2(H) (2.~ ) (9)

Note that the second term on the right-hand-side of
this equation is zero by definition of the maximum.
The derivatives above are given by

VO(2t) ={pV(2%)) =0, (10)
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and
V(z%) = 92V (%)) = B[ V()0 V(2F))e
— V(2. (11)

where the symbol p denotes the derivative along the
reaction path, ie. p =YY Ud, and V=
J&8 dr V[g(r)]/h B. Also, in Egs. (10) and (11) the
general centroid-constrained averages are given by

]
SN[+ [oat)rlalo(2 - 7)

Xexv{—S[q(T)]/ﬁ}]
X [[ e j‘,@q(f)(s(zi ~ %)

xes(-sla(l/m)] . (1)

From the above equations, the transition state z*
is defined to be the position of the centroid-con-
strained free energy maximum along the rotated
reactive barrier coordinate, while the rotated dividing
surface is chosen to be normal to the direction of the
eigenvector corresponding to the negative eigenvalue
of the centroid-constrained force constant matrix.
This procedure insures that the absolute value of the
curvature V.2(z*) is maximized. Also, from Eq. (8)
in terms of the rotated coordinates the centroid den-
sity can be evaluated using the saddle point expres-
sion

pu(z) = () exp| BV () (2~ 1))
(13)

If V?(z%) <0, as it is under normal circumstances,
then the imaginary part of the barrier partition func-
tion can be evaluated from Egs. (7) and (13) using
the steepest descent approach and the analytical con-
tinuation z, — iz, thus yielding the reactive flux
from Eq. (1) as

2

- 1/2 )
Eree "

The general procedure for determining the divid-
ing surface outlined in the previous paragraphs is

F=y

difficult to implement for realistic non-linear many-
body systems. This situation is partly because the
evaluation of the centroid-constrained multidimen-
sional path integral in Eq. (6) has to be iterated until
the optimized dividing surface is found from the
conditions on Egs. (10) and Eq. (11). An alternative
to the brute force numerical approach is the effective
quadratic approximation [13] which replaces the real
potential surface by a variationally optimized
quadratic potential surface so that the centroid-con-
strained averages of Egs. (10) and (11) reduce to
multidimensional Gaussian averages. (A related, but
somewhat different approach to this problem was
taken in Ref. [8] which we will return to later.) For
brevity, only the key results of this derivation will be
given here without the explicit mathematical steps.
Interested readers can find more details in previous
papers [1,13,20].

To start, only reactive systems which are coupled
to Gaussian (linearly responding) dissipative baths
will be considered. The effective Hamiltonian for
such a system can be written as [21]

2
Py

H=——+V
2m ()

2
Pi | 2
— +omw; | x; —

<« X 15
— . (15)

where {x;, p;} are the effective bath variables and
{m;, w,, c;} are the corresponding masses, frequen-
cies, and coupling constants, respectively. Despite its
simplicity, this Hamiltonian is capable of providing a
physical description of many dynamical processes in
the condensed-phase environment. The above Hamil-
tonian gives rise to a friction kernel for the motion
along the coordinate ¢, the Laplace transform of
which is given by

N C2

A(s)= ¥ —s (16)

2 7
im) M@ $"+ o

Within the context of Eq. (16), the goal is to map
the activated barrier crossing problem onto an effec-
tive multidimensional quadratic system so that a
closed-form expression for the rate constant can be
obtained from Eq. (14). In this context, the Gaussian
bath, the unstable mode, and the linear couplings can
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be solved from the extended optimal quadratic ap-
proximation (OQA) equations [13]:

(VV(G+§))c=0, (17)
(V:VV(F+§))c=K, (18)
VeV(§+d))c=c¢; (19)

where K is the optimized effective force constant
matrix, V is the partial derivative vector V, =3/dg,,
and g is the derivative along the reaction path as
defined in Eq. (11). Here, vectors and matrices are
denoted by bold fonts, and optimized quantities are
denoted by bars. The notation ¢ --- )¢ above de-
notes a multidimensional Gaussian average centered
at g with a centroid constraint on the reactive coor-
dinate z. For example,

Va+ane-foae v+ e)o(s-2)
xexp(~ £4,-C;! -q,,/z))

X

[2a(r)8(z - 1)

-1
xexp( - £4,-C;! -(7,,/2))
(20)
where §, is a Fourier mode of §(7), defined as

g(7) = Xg, exp(if2,7) (21)

and {2, = 2mrn/# B. The Gaussian width factor ma-
trix C in this case, can be formally expressed as

C;! = Bm021 + BK, (22)

where | is the N-dimensional identity matrix. The
centroid-constrained form of the OQA equations in
Eqgs. (17)—(22) are quite similar to the variational
effective quadratic equations developed in Refs.
[22-24] for other purposes, the key difference being
that the centroid dividing surface is simultaneously
optimized along with the variational parameters as
described below.

A unitary matrix U can be found to diagonalize
the mass-scaled force constant matrix K, giving the
eigenfrequencies and the corresponding thermal

Gaussian widths. According to the criterion implied
from the rate theory of the previous paper [1], i.e.
Egs. (10) and (11), the planar dividing surface of Eq.
(5) is determined by the direction of the unstable
eigenvalue, which in this case is the eigenvector
corresponding to the negative eigenvalue of the force
constant matrix K. Thus, the optimized average posi-
tions {g}, the optimized force constant matrix K and
the unitary matrix U are variationally obtained as the
self-consistent solution to the transcendental matrix
equations Egs. (17)-(22) in N-dimensional space.
Subsequently, the reactive flux can be approximately
obtained for the optimized quadratic reference frame
of an unstable parabolic barrier coupled to a set of
linear harmonic oscillators.

More explicitly, when the self-consistent quadratic
approximation is applied to the Gaussian bath model
described by Eq. (15), a direct substitution into Egs.
(17-22) leads to the following expressions:

V'(gp+G))a+coq,=0 (23)
and
-moltc, ¢ S Cy
2
c m,w e 0
K= 190 ,
2
Cy 0 my wy
(24)

where the renormalized barrier frequency w,, is given
by

<V”(qb+‘7)>a= _mafw (25)

and the bath-induced coefficient ¢, is given by
N2

=3 : 5 (26)

j=1 M;;

In Eq. (25), the notation {...), stands for the
constrained one-dimensional Gaussian average de-
fined below in Eq. (33). Eq. (23) defines the effec-
tive barrier top, while Eq. (24) leads to the effective
friction kernel.

The unitary transformation which diagonalizes the
mass-scaled force constant matrix K yields

UKU' =[12?], (27)

with a negative eigenvalue A} identified with the
reactive barrier frequency, i.e. —A3 = AZ. Thus, the
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rotated coordinates can be related to the mass-scaled
version of the old ones by the transformation

{z, )’1""’)’N}=U{‘7, Xl"“sx}v}o (28)
where the eigenvector corresponding to the negative
eigenvalue Ay, z, is identified as the reactive barrier
coordinate, and the eigenvectors corresponding to the
positive eigenvalues, {y,,- -+, yy}, are identified as
the stable-mode coordinates perpendicular to the re-
active barrier coordinate. Therefore, the projection of
the centroid-constrained Gaussian average in Eg.
(20) onto the original barrier coordinate g defines a
set of Gaussian widths for the Fourier path modes in
the quadratic reference system, i.e. [13]
1

0T B0 + Ky
1

= 29
mB(.Qz—wb+.()m(.Q)/m) (29)
and
1 (U3 1 1
o=l e T H T B—z(X—l) (30)

The zero-component of the Gaussian width «, in
Eq. (30) results from the classical thermal fluctua-
tions coming from the degrees-of-freedom other than
the reactive barrier. The parameter y in that equa-
tion is explicitly given by [25-27]

~ (A(A) /A~ dR(A,) /dA,) /2m
T+ (B(A) /A, +dR(A,) /dA,) /2m

(31)
and A, is related to @, by the Grote—Hynes relation

[11], but now for the effective parameters, i.e.

by,

M A

With these definitions in hand, it is straightfor-
ward to explicitly express the averages appearing in
Egs. (23) and (25) as

(32)

1
V(g +§))a= ‘[—2—-—;[ dgVv(q,+4)
xexp(—g°/2a), (33)
where the Gaussian width « is given here by
a= ) a,. (34)

After solving the transcendental equations in Egs.
(23)—(25) self-consistently, and substituting the re-
sult into Eq. (14) with the prefactor v also deter-
mined from the effective quadratic parameters, one
arrives at the final expression for the quantum reac-
tive flux

1A, = 1
"B oy =i |1 -2/ 07 +0(0,)/mA,
X ZynG( @y, ) exp(—BV,)., (35)

where G(w,, «) is the non-linearity correction,
given by

G(w,, a) = exp[——B(AV(qb +g) — %mwbcf)ﬂ],

(36)

and Z,, is the bath partition function, given by
N 1

Zown = U 2 sinh( % Bw,/2)
In the above equations, the effective Kramers—
Grote—Hynes factor A,/w, represents the modifica-
tion of the reactive barrier frequency due to the
coupling to the Gaussian bath, the quantum effects,
and the non-linearity of the potential barrier, while
the term in the square bracket represents an effective
multi-dimensional quadratic quantum correction [3].
The term V,, in Eq. (35) is the value of the potential
at the classical barrier top, while AV in Eq. (36)
equals V(g) -V,

(37)

3. Discussion

The equation derived in Eq. (35) has several
appealing characteristics, four of which we will now
describe. First, the result is valid for all tempera-
tures, both above and below crossover, as long as the
second derivative V.?(z%) in Eq. (11) is negative [1].
This property arises from the variational principle
implicit in the OQA equations [13] which, in turn,
insures that the variational parameters will adjust
themselves to yield a finite result for the rate. Sec-
ond, in the highly quantum mechanical limit of Eq.
(35), the classical contribution a, of Eq. (30) can be
ignored compared to the purely quantum contribu-
tions «,. Thus, a =X, ., «a, in Egs. (23), (25), (33)
and (35), and, as a result, the variational PI-QTST
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theory of Voth [8] is recovered. Third, in the classi-
cal limit, @ = a, and Eq. (35) becomes an effective
Kramers—Grote—Hynes equation which includes the
influence of the barrier non-linearity. The fourth
characteristic, and perhaps the most appealing, is the
fact that Eq. (35) has a relatively simple form,
keeping in the spirit of both the classical Kramers—
Grote—Hynes [11,14] and quantum Wolynes [3] re-
sults for a parabolic barrier coupled to a Gaussian
bath, while at the same time extending those theories
to include the effects of barrier non-linearity and
tunneling.
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