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A semiclassical reactive flux algorithm for calculating thermally activated rate constants is presented which is based on a semi- 
classical transition state theory due to Chapman, Garrett and Miller [J. Chem. Phys. 63 (1975) 27101. This reactive flux tech- 
nique, when combined with the semiclassical TST, enables one to describe dynamical recrossings of the transition state on the 
same footing as tunneling effects. Most importantly, the method is readily applied to nonlinear multidimensional systems over a 
wide range of temperatures. It will be shown that the method works very well for a variety of existing models. 

1. Introduction 

It is highly desirable to have computational methods which allow for the efficient and accurate numerical 
evaluation of activated rate constants in complex systems. It is perhaps no surprise, therefore, that the preemi- 
nent theory of this sort - classical transition state theory (TST) - is one of the central theoretical tools in modem 
chemistry ( [ 11, for a review see ref. [ 21). Yet, classical transition state theory is lacking on at least two ac- 
counts. First, the fundamental assumption of classical TST is based on the notion that the recrossings of trajec- 
tories through the transition state can be neglected. Second, the classical TST formulation neglects quantum 
mechanical effects such as tunneling and mode quantization. Fortunately, the influence of classical recrossings 
can be accounted for by analytic approaches (for reviews see ref. [ 3 ] ) or with the reactive flux correlation 
function methodology [ 41, while quantum effects can be described by semiclassical [ 5-101 or quantum me- 
chanical ( [ 11,12 1, for a recent feature article see ref. [ 13 ] ) TST-like approaches (QTST). One of the latter 
QTST approaches, path integral QTST [ 11,13 1, has also recently been combined by an ansatz with a reactive 
flux-like formulation so that both recrossing and quantum effects in activated rate processes can be estimated 
( [ 141, for a combined trajectory/semiclassical TST approach suited for gas phase reactions, see ref. [ 15 ] ). A 
different approach within the path integral QTST is based on an analytic theory [ 16 ] for the recrossing correc- 
tions (i.e., the “transmission coefficient” problem), but the full numerical implementation of the path integral 
QTST expression is used to determine the quantum corrections to the classical TST rate. 

In the present paper, a different semiclassical TST (SCTST) formulation proposed nearly 20 years ago by 
Chapman, Garrett and Miller (CGM) [ 91 is revisited. As it turns out, it is quite illuminating to re-examine this 
SCTST formulation in the light of several more recent developments in the field of condensed phase activated 
dynamics [ 3,4]. To be specific, it will be shown that the CGM semiclassical theory is continuously accurate and 
stable at temperatures both above and below the so-called “crossover” temperature (i.e., the temperature below 
which the dynamics becomes dominated by tunneling). Moreover, the accuracy of the CGM formula will be 
shown to be improved by rotation of the TST dividing surface. Finally, and most importantly, the SCTST for- 
mula is shown to form the basis for a semiclassical reactive flux algorithm [ 41 which allows one to estimate both 
the quantum and dynamical corrections to the classical TST rate constant on the same footing. 

The present paper is organized as follows: in section 2, the basic CGM formulation of a SCTST expression is 
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reviewed and the attributes of the formula are discussed. The semiclassical reactive flux algorithm based on the 
SCTST formula will also be described. Next, in section 3 several applications of the method will be presented 
which are designed to test the theory against known results. Concluding remarks are then given in section 4. 

2. Theory. Semiclassical TST of Chapman, Garrett and Miller 

The basis for the SCTST formulation of CGM [ 91 is the semiclassical perspective on Boltzmann statistical 
mechanics developed by Miller [ 171. For example, the diagonal matrix elements of the Boltzmann density 
matrix (i.e., the particle density) are given by 

A4)=(4lexp(-&WIq), (1) 

where /I= (k&)-l. By splitting the Boltzmann operator into a product of two equal parts, and by inserting a 
complete set of states between those parts, the particle density can be re-written as [ 17 ] 

P(40) = f de I (qole-BHi21ql > 1'. (2) 

Upon introduction of the semiclassical limit for the imaginary time propagator elements (q. I e--BH'2 I q1 >, the 
particle density then takes the form [ 17 ] 

p(%)=h-N s dq, iwaPoi-lexP (3) 

where I aqr /ape I is the Jacobian relating the coordinate at imaginary time r , = #r/I/Z to its momentum at imagi- 
nary time 70= 0, H[p( z), q( 7) ] is the value of the Hamiltonian, and N is the dimensionality of the system. The 
trajectories which are used to calculate the value of the Hamiltonian in eq. (3) are generated by the differential 
equations 

aH 
i(t)= - 

ap(7)' 
d(r)=$g (4) 

subject to the initial conditions q( 0) =qo andp(0) =po. From eq. (4), it is seen that the trajectories are propa- 
gated on the upside-down potential, - V(q) , and thereby have excursions into the classically forbidden regions 
of the potential. 

An insightful trick due to Miller [ 17 ] is to perform a change of variables from the differential final position 
elements dq, to the differental initial momentum elements dpo. The Jacobian factor from this transformation 
cancels the Jacobian factor in eq. (3) and one is left with only an integration over initial momenta. This step in 
itself is a simplifying feature since the calculation of the semiclassical canonical density no longer requires the 
solution of a classical trajectory problem having double ended boundary conditions. For example, the semiclas- 
sical partition function in Miller’s theory is given by [ 17 ] 

u/2 

Qsc = I dqo/dqo’o)=h-“” II dp, dqo em 
( J 

- i drH[p(7), q(7) 1 . 
0 

> 
(5) 

Stratt and Miller [ 18 ] have noted that the underlying semiclassical phase space distribution function in this 
theory is given by 

Ws&o, 40) =hmNexp drH[p(r), g(r) 1 . 
> 

(6) 
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Actually, since Liouville’s theory implies the conservation of phase space differential element (i.e., 
dqO dp,=dq( r) dp( T) ), then eq. (6 ) can be rewritten for an arbitrary time shift ~~ to give the more general 
semiclassical phase space distribution function [ 9 ] 

fl/3/2--ro 

~~&0,470)=h-~ew 
2 

( I 
- z drHk(r), q(r) 1 . 

> 
(7) 

-m 

The trajectories used to calculate H[p( r), q( 7) ] in this distribution function begin with values (PO, qo) at time 
r= 0, then are propagated on the upside-down potential (cf. eq. (4) ) backward in time to r= - r. and forward 
in time to r= fifi- ro. 

The optimal choice of 7. in eq. ( 7 ) will depend on the quantity which is being averaged. (The semiclassical 
partition function Qso in eq. (5), however, is independent of the choice of ~~ [ 91. ) For example, if one calcu- 
lates the semiclassical average ( q2) with the distribution in eq. (7) for a simple harmonic oscillator of fre- 
quency w, one finds 

For this example, only the choice of r. - -0 or fi/I/2 gives the correct answer. 
In general, one does not know the optimal choice of to, except for certain analytically solvable models. Based 

on such information, however, one can u,r.sume a certain value for r. when using the semiclassical distribution 
function for non-trivial systems. It is in this same spirit that CGM suggested an approximate SCTST expression 
for the rate constant [ 9 1. That expression for the forward rate constant of a general system is given by 

ks -QE1hvNj . . . I @dQdpdq&q*-q) p h(p) exp( - ~*“~” drH[p(r), q(r), P(r), Q(r) ]) , Cl-ST_ 
m 

-ul 

(9) 

where QR is the partition function of the system in the reactant state, q and p are, respectively, the reaction 
coordinate and its conjugate momentum, q= q* defines the dividing surface along the reaction coordinate, h ( ) 
is the unit step function, and Q and P are all other coordinates and conjugate momenta of the system, respec- 
tively. The subscript “0” on the momenta and coordinates in the integrals have been dropped here, but it should 
be remembered that these variables provide the initial conditions for the trajectories which are propagated 
forward and backward in time on the upside-down potential in order to calculate H[p( r), q(T), P( 7), Q(7) ] in 
eq. (9). 

Based on their analysis of the simple parabolic barrier, CGM concluded that the most reasonable choice of r. 
in eq. (9) is ro=fi/3/4. More specifically, this choice of r. is the only one that gives the exact rate constant for 
the parabolic barrier model. Interestingly, this result for the parabolic barrier coincides with the minimum of 
the flux in eq. (9) with respect to the choice of ro. We therefore suggest, without proof, that the best choice of z. 
in the SCTST formula (eq. (9) ) is the one that minimizes the imaginary time action in the exponential of eq. 
(9). For example, at any initial point in the reaction coordinate phase space (p, q), the imaginary time action 
for a one-dimensional barrier problem is given by 

rip/z-?tl flJ9/2-70 

S(~o) = j. H(r)dr=E+2 1 drI&[q(r)] , (10) 
-To -au 

where E is the conserved energy of the particle moving on the inverted barrier potential - VI (4). If the extre- 
mum of the action is taken, one obtains the condition for T,: 

~b[~(-~O)l=vb[q(~~/2-70)l. (11) 
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Thus, the condition of rO = #i/3/4 can be derived from eq. ( 11) for a symmetric barrier uncoupled to a bath. In 
view of the additional complications in solving eq. ( 11) for the most general case, the choice of ?O = fi8/4 would 
seem to be a reasonable, or at least an expedient, choice for r. for more complicated unsymmetrical, many- 
dimensional systems. 

Before preceding to the reactive flux formulation based on eq. (9), some consideration should be given to 
actual evaluation of the SCTST rate constant for a general condensed phase activated rate process. Clearly, the 
direct numerical evaluation of the phase space integral in eq. (9) is prohibitively time-consuming for a many- 
dimensional system. Fortunately, the standard techniques of computer simulation in statistical mechanics can 
be used. For example one can formulate the evaluation of eq. (9) in terms of a Monte Carlo average by using a 
reference Hamiltonian, H,J r). Eq. (9) is then rewritten as 

(12) 

where the average ( ) ref denotes averaging in the semiclassical flux-weighted distribution function for the ref- 

erence system (cf. eq. ( 16) below) and Lw( 7) in eq. ( 12) is given by 

m(r) =fW(7), q(7), J’(7), Q(7) 1 -K&,,(r), qrer(r), prer(~), Qref(7) 1 . (13) 

The subscripted variables here refer to the reference system Hamiltonian and the trajectories on that inverted 
potential (cf. eq. (4) written for the reference system), while the unsubscripted variables refer to the actual 
system. Eq. ( 12) can, of course, be written as a product over a series of intermediate reference states in the form 
of a thermodynamic charging algorithm. As an alternative to the reference state/charging procedure, one could 
instead employ umbrella sampling [ 19 ] to calculate the flux-weighted distribution function relative to the reac- 
tant state. 

As demonstrated by Chapman, Garrett and Miller [ 9 1, the SCTST formula in eq. (9) can describe the tun- 
neling effects in gas phase atom-diatom activated rate processes and, as discussed in the next section, there is 
every reason to expect the same will be true in the condensed phase. Chapman et al. also mentioned that one 
could run classical trajectories to estimate the dynamical recrossing effects. These trajectories would be initiated 
from the top of the barrier with initial conditions weighted by the semiclassical distribution function in eq. ( 7 ). 
Although CGM did not carry out such a calculation, we believe this suggestion has considerable merit, particu- 
larly in light of the more recent development of the classical reactive flux correlation function formalism [ 41. 
The latter formalism, which readily carries over to the semiclassical case, allows one to efficiently calculate the 
dynamical corrections to the classical TST rate constant. 

In order to develop a semiclassical reactive flux correlation function expression, one must first define a dy- 
namical correction factor rcsc to the SCTST rate constant in eq. (9), i.e., 

kc = Ksc kscrsl> (14) 

where ks, is a semiclassical forward rate constant which includes the transition state recrossing effects relative 
to the SCTST value of the rate constant. These dynamical effects are quantified in the value of the semiclassical 
dynamical correction factor ic sc, given as a function of time by 

Icsc(t)=(h[q(t)-q*l),,+,-(h[q(t)-q*l),sc, (15) 

where the symbol ( ),k denotes classical trajectories [p(t), q(t), P(t), Q(t)] which have positive (“+“) or 
negative (“ -“) initial reaction coordinate momenta. The reactive flux trajectories in eq. ( 15) have initial 
conditions generated from a semiclassical flux-weighted distribution function WY’ (p, q, P, Q), given by 

W~c(p,q,P.Q)=(QRh)-N~(q*-q)~exp(-~fiB’~~d~H(r)). (16) 
--ro 
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It should be noted that the classical trace of the semiclassical flux-weighted distribution function yields the 
SCTST rate constant in eq. (9)) i.e., 

ksn==Tr,,[W,~(p,q,P,Q)l. (17) 

The semiclassical reactive flux correlation function in eq. ( 15 ) is calculated (i.e., the trajectories are propa- 
gated) until it reaches a “plateau” value [ 41. After that point, the value of rcsc is essentially constant and can be 
easily determined. It should also be noted that the dividing surface in eq. ( 16) can be optimized to minimize 
the recrossing effects and hence improve the accuracy of the SCTST rate constant in eq. ( 17). However, the 
semiclassical flux through different dividing surfaces may not be invariant with respect to the choice of the 
dividing surface. This inconsistency can be readily eliminated, albeit at some cost in computational effort (see 
the Appendix ) . 

Eqs. ( 14) and ( 15) represent a unified computational methodology for describing tunneling effects (via 
kscrsr) and dynamical recrossing effects (via rcsc) in thermally activated rate processes. There is no doubt that 
much of the CGM formulation, as well as the present reactive flux extension of that theory, has a somewhat ad 
hoc character (i.e., it has not been derived from first principles). To formulate the above equations, or equations 
like them, using a completely systematic semiclassical analysis will require a new and better understanding of 
the quantum-classical correspondence principle. This rather substantial challenge will be reserved for future 
research. However, as will be shown in the next section, the above semiclassical methodology also has many 
appealing characteristics within the context of quantum activated dynamics, not the least of which is its clear 
computational power for studying highly nonlinear, complex systems. In fact, it is the latter feature of the method 
which mitigates to some degree the lack of rigor in its formulation. 

3, Applications 

3. I. One-dimensional barrier crossing problems 

Much about the characteristics of the basic SCTST formula in eq. (9) can be understood by analysis of a 
simple one-dimensional barrier crossing problem. For example, CGM have already demonstrated that eq. (9 ), 
for the choice of r ,=fi/3/4, gives the exact result when the barrier potential V,(q) is approximated to be an 
upside-down parabola (i.e., V,(q) FZ V,- f moz(q-q*)2]. This result, however, is essentially a “higher” tem- 
perature result, being valid only for temperatures such that fi/?~,, < 2x. 

For temperatures below the one-dimensional crossover temperature (i.e., for fipy, > 2~)) the SCTST formula 
in eq. (9) can be tested numerically. Indeed, CGM have presented results for the Eckart barrier and for the 
collinear H + H2 reaction which were in good agreement with the known exact results. But why the good agree- 
ment? In this regard, it proves to be quite instructive to carry out a more in-depth analysis of the dominant 
contributions to the phase space integral in eq. (9) for a non-quadratic barrier potential such as a symmetric 
Eckart barrier ( V,(q) = V, coshm2 ((uq/2) 1. For this (or any) one-dimensional system, the integral over the 
reaction coordinate q in eq. (9) is, of course, fixed at q* by the delta-function. The integral over the momentum 
must be performed, however. These values of momenta provide the initial conditions for the trajectories which 
are propagated on the upside-down barrier potential, - l$ (q), in the calculation of the exponential weighting 
function in eq. (9 ) A In fig. 1, the flux-weighted distribution function is plotted for a symmetric Eckart barrier of 
height 2000 cm- ’ and lengthscale LY= 5.73 A- * at 125 K. It is seen that the distribution function is strongly 
peaked at a certain value of reaction coordinate momentum given by p_. In fig. 2, the imaginary time trajectory 
(cf. eq. (4) ) on the upside-down Eckart barrier potential is plotted for the initial conditions (p,,, q*), where 
q* equals zero in this case. From.this initial condition, the trajectory is propagated backward in time to the time 
-rO= -fi./3/4 and forward in time to r0=fip/4. It is seen from fig. 2 that the trajectory exactly reaches the 
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Fig. 1. A plot of the semiclassical flux-weighted distribution 
function (eq. ( 16) ) as a function of initial momentum for a 
symmetric Eckart barrier at 7’= 125 K. 
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Fig. 2. The imaginary time trajectory on the upside down E&art 
potential corresponding to the initial condition (p,, 0) which 
gives the maximum value of the flux-weighted distribution func- 
tion in fig. 1. The trajectory is propagated forward in time to fip/ 
4 and backward in time to -A/J/4. The dashed lines are the clas- 
sical turning points on the inverted E&art barrier potential for 
this initial condition. 

Table 1 
Comparison of tunneling corrections for the symmetric Eckart barrier 

Temperature SCTST results a) Exact results b, 

125.6 1686.0 1970.0 
150.7 144.4 162.0 
188.3 20.3 22.0 
251.1 4.9 4.2 
301.3 2.9 3.1 
376.7 2.0 2.1 
502.2 1.5 1.5 
753.3 1.2 1.2 

a) Eq. (9). b, From ref. [20]. 

classical turning point (dashed lines) of the inverted barrier potential. Thus, this trajectory is preciseZy the WKB 
trajectory for tunneling through the barrier. Stated differently, the trajectory shown in fig. 2 is exactly one-half of 
the well-known semiclassical periodic orbit, or “kink-pair”, trajectory from instanton theory [ 8,10 1. (It should 
be noted that the SCTST expression in eq. (9) requires only one-half of an instanton periodic orbit because of 
the factor of two in the exponent. ) 

Actually, it is no accident that the instanton dynamics dominates the value of the SCTST formula in eq. (9) 
at low temperatures. In general, a steepest descents analysis of the exponential in eq. (9) below the crossover 
temperature will locate two dominant contributions to that term: the aforementioned instanton trajectory and 
the “trivial” stationary trajectory solution for the initial conditions p= 0, q= q*. However, the latter contribu- 
tion to the exponential, which is quite large, cannot contribute to the flux-weighted distribution function in eq. 
( 16 ) which underlies the SCTST expression (eq. (9 ) ). This feature of the theory arises because the term Ip I in 
the flux-weighted distribution insures a weight of zero for the p = 0, q = q’ contribution to the semiclassical phase 
space integral. As a result of this feature, the basic SCTST formula in eq. (9) will always have a value very close 
to the instanton result for temperatures below crossover. Thus, in view of this low temperature analysis and the 
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higher temperature parabolic barrier analysis [ 9 1, it can be concluded that the SCTST formula can be faithfully 
used at all temperatures, providing a stable, continuous theory for the rate constant above, below, and through 
the crossover region. (This very appealing property is also a characteristic the theory has in common with the 
path integral QTST [ 11,13 ] ) . In order to highlight the accuracy of the SCTST formula in eq. ( 9 ) as a function 
of temperature, table 1 lists results computed with that formula for the symmetric E&art barrier quantum cor- 
rections versus the known exact results [ 201. 

3.2. A two-dimensional test of the reactive&x method 

The previous subsection contains a discussion of the ability of the basic SCTST formula in eq. (9) to accu- 
rately describe tunneling effects. In this subsection, a test of the semiclassical reactive flux formulation in eqs. 
( 14)- ( 16 ) is presented. In order to do this, the reactive flux was studied for a non-quadratic barrier potential 
which is bilinearly coupled to a harmonic oscillator. Exact quantum reactive flux results exist for this system 
[ 2 11, and it has also been studied by other approximate methods. The Hamiltonian used in these studies is 
given by 

+ V,(q) +fwZ(Q-cq12 9 (18) 

where p is a reduced mass, c is the coupling between modes, and w the bath mode frequency. The reaction 
coordinate potential was chosen to be a symmetric Eckart potential 

J%(q) = J~o sech2(w/2) , (19) 

where a is the length parameter, V. is the barrier height, and the frequency of motion on the top of the Eckart 
barrier is defined by wi = -a2Vo/2p. 

The coupling constant c in eq. ( 18 ) was determined by the first term in a cosine Fourier representation of a 
Gaussian friction kernel such that [ 2 1 ] 

2flo,l~2ew[-(N2/21 
dtcos(Wv(O= zbath 

(wa)2 ’ 
(20) 

where d determines the timescale of the friction kernel. The variablefhere is a reduced friction parameter, given 
by qo/p ( cot, I , and q. is the zero time value of the friction. 

In the calculations, the barrier height was taken to be 3425.3 cm-‘, the lengthscale cy to be 3.97 A-‘, the 
reduced mass p equal to 0.672 amu, and the barrier frequency u,, to be 1164.0 cm-‘. For the bath, the decay 
parameter d was chosen to be 86.6 fs and the bath frequency o to be 48 cm-‘. The timescale parameter rbati in 
eq. (20) was set equal to 2~. (This model is referred to as the “slow friction” in ref. [ 2 11. ) In the calculations, 
2000 sets of initial conditions were generated using the SC flux weighted distribution function in eq. ( 16). From 
this set of initial conditions, 2000 trajectories were then run, each for 1 ps, to calculate ~~~ from eq. ( 15 ). The 
calculations were performed at temperatures of 200 and 300 K. 

As can be seen from figs. 3 and 4, the combined semiclassical theory in eqs. ( 14)-( 16) (i.e., SCTST with 
reactive flux corrections) is in very good agreement with the exact quantum results. On the other hand, the 
SCTST rate constant alone is not in good agreement with the exact results. One can conclude, therefore, that the 
inclusion of the semiclassical dynamical correction factor in eq. ( 15 ) is essential for the accuracy of the method 
at large couplings. At intermediate couplings, the semiclassical reactive flux result drops too far below the exact 
results, particularly at 200 K. This regime is due to an interesting, but pathological, feature of this two-mode 
problem which leads to metastable trapped classical trajectories in the transition state region. Such trapping 
regions in phase space are far more pronounced in two-dimensional potentials for which locally integrable clas- 
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Fig. 3. Plots of the reactive flux for the two-dimensional model 

in section 3.2. The results are from the SCTST expression (eq. 

(9) ), the semiclassical expression which includes the semiclas- 
sical transmission coefftcient (eq. (14)), and exact quantum 

wavepacket calculations [ 2 1 ] at 200 K. 

Fig. 4. Same as in fig. 3, but for a temperature of 300 K. 

sical motion can rigorously segment phase space into disjoint regions [ 221. In many-dimensional condensed 
phase systems, this behavior will be far less likely to occur. 

3.3. Parabolic barrier coupled to a multidimensional bath model 

To this point in the present manuscript, the SCTST rate constant and SC reactive flux method have been 
applied to low-dimensional test cases. These models were chosen, of course, because exact results are essentially 
non-existent for many-body quantum activated rate problems. One exception to this rule, however, is the many- 
dimensional parabolic barrier potential. This potential is given by 

V(q,Q)=V,-~mo~q*+ Nr jm,of 
r=l 

(21) 

where ob is the magnitude of the unstable barrier frequency, the constants c, are the coupling constants between 
the reaction coordinate and the bath modes, and the bath mode frequencies and masses are given by o, and m,, 
respectively. The bath modes in the above Hamiltonian are chosen to model the linear force fluctuations from 
a bath on the reaction coordinate [ 23 1. 

For relatively few degrees of freedom, the multidimensional parabolic barrier problem is trivial because a 
normal coordinate rotation can be readily performed to separate the true unstable reactive normal mode p from 
the stable orthogonal vibrations {J+}. However, for an infinite number of bath oscillators as in condensed phase 
problems, the normal mode transformation can only be defined formally. Even so, if such a transformation is 
performed to find the many-dimensional set of normal modes, then the SCTST in eq. (9) can still be applied to 
the Hamiltonian arising from eq. (2 1)) but with the dividing surface chosen to be along the true multidimen- 
sional reactive mode p [ 24,25 ] rather than along the “simple” reaction coordinate q as is written in eq. (9). In 
this case, the result for the rate constant can be obtained analytically and is given by the exact result [ 25 ] : 

k 
k,T A/3$,/2 N0= -- 

ScrST- I-I l hQR sin(fi@fo/2) ,=i 2 sinh(fiPAJ2) c-M--Bb) , (22) 



D.E. Sagnella et al. /Chemical Physics 180 (1994) 167-180 175 

where $, is the magnitude of the frequency of the multidimensional reactive normal mode and the frequencies 
{A,) are the frequencies of the stable modes orthogonal to the reaction coordinate. The continuum (Nosc-+oo) 
limit of the multidimensional parabolic result is given by [ 25,26 ] 

(23) 

where $2, equals 2xn/fi/3, fl( ) is the Laplace transform of the friction kernel along the coordinate q, and 4 is 
given from the solution of the well-known Grote-Hynes relationship [ 271 

(24) 

The result in eq. (23) can be shown [ 261 to provide an accurate description of quantum activated dynamics 
for reactive systems coupled to linearly responding condensed phase environments which are above the multi- 
dimensional crossover temperature (i.e., for fi& < 2~). 

The result in eq. (23) is, of course, the exact result [ 25,261. It is therefore concluded that a rotation of the 
dividing surface in the basic SCTST rate constant expression can improve the accuracy of the theory - at least 
for the parabolic system. The question arises, however, as to whether a calculation using the semiclassical reac- 
tive flux method with a flux-weighted distribution function for an unrututed dividing surface (cf. eq. ( 16) ) will 
achieve the same result. As it turns out, such a calculation will always give the exact rate constant. To prove this, 
one first transforms the multidimensional quadratic Hamiltonian for the potential in eq. ( 2 1) into the separable 
normal mode form [ 24,25 ] 

(25) 
j=l 

where, for convenience, V. in eq. (2 1) is taken to be zero. Since the Hamiltonian is separable in this coordinate 
system, one can readily uncover the initial conditions for the trajectories which will always proceed from reac- 
tants to products. These conditions are represented by the characteristic functionX(Pp, p) =h(p,)h(pz -J$?), 
where h( ) is the unit step function. This function simply states that any trajectory with an initial positive 
momentum along the true multidimensional reaction coordinate p and an energy above the barrier along that 
coordinate will be reactive (i.e., it will contribute a weight of unity). The calculation of the semiclassical reac- 
tion rate from eqs. (14)-( 17) is then equivalent to averaging the characteristic function with the semiclassical 
flux-weighted distribution function in eq. ( 16), A somewhat lengthy, but straightforward, evaluation of Gauss- 
ian integrals then leads to the result that the semiclassical reactive flux calculated with the semiclassical proce- 
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Fig. 5. A plot of the numerically determined semiclassical rate 
constant (eq. ( 14)) for a parabolic barrier potential linearly 
coupled to 100 bath oscillators as a function of the friction. The 
solid line is the exact analytic result. The reactant partition funo 
tion is assumed here to be for a harmonic oscillator potential 
coupled to the same bath as at the barrier. 
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dure specified by eqs. ( 14)-( 17) will be exact for the many-dimensional parabolic model. 
Results are shown in fig. 5 for the numerically determined (exact) transmission coefficient for the parabolic 

barrier model with a barrier frequency of 1000 cm-’ and a 100 discrete oscillator bath [ 281. The bath was 
chosen to model an exponential friction kernel with a decay constant of 4~; ‘. The strength of the friction is 
characterized here by the dimensionless quantity r,~(O)/mw$, where ~(0) is the zero time value of the friction 
kernel. The reactant partition function was assumed to be given by a harmonic oscillator potential along the q 
direction with a frequency of fi o, which is also coupled to the oscillator bath. The numerical stability and 
relative simplicity of this multidimensional calculation bodes well for applications of the semiclassical method 
to other, more complicated, many-body systems - at least above the crossover temperature. 

3.4. Escape from a metastable well in a dissipative medium 

Rips and Pollak [29] have presented a theory for the quantum mechanical escape rate of a particle out a 
metastable well in the presence of a dissipative medium. Their theory is valid in the case of a linearly responding 
bath and for temperatures above the multidimensional crossover temperature. The Rips-Pollak expression for 
the quantum mechanical escape rate is given by [ 291 

(26) 

where I’, is the barrier height, w0 is the well frequency, w is the barrier frequency, and Afo is the Grote-Hynes 
reactive frequency (cf. eq. (24) ). The factor Bin eq. (26) accounts for the particle tunneling in the presence of 
the dissipation and, following the notation in eq. (23)) is given by 

(27) 

The important new feature in the Rips-Pollak expression is the quantum mechanical depopulation factor r, 
given by 

Y=exp /.WJ sinWW2) 
2lt 

(28) 

In this equation, P( T- i/2) is the Fourier transform of the quantum mechanical transition probability, given in 
terms of the set of stable normal mode frequencies {A,} by 

P(r-i/2)=exp 
Nm ~i[COsh(~~i/2)-cos(~~,)] 

- C 
I=1 sinhWdJ2) 

where the quantities v, are given by 
2 

dt, eill’lF(t,) 
-00 

(29) 

(30) 

The term F(t) here is the time-dependent zero-order force acting on the unstable normal mode p such that 

F(t)= -u~m-‘~2 ah,(q) 
34 

3 
q=fn--1/2l4olJ p 

(31) 

where V,,_(q) is the nonlinear part of the barrier potential, defined as V&= V,,(q) + $mo&‘. The projection 
of the barrier coordinate q onto the unstable multidimensional normal modep and the stable normal modes {y,} 
is determined by the transformation [ 24 ] 
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Fig. 6. A comparison of the rate constant for a me.tastable cubic 
well in a dissipative 100 oscillator bath as calculated from the 
Rips-Pollak, PGH, and semiclassical (eq. ( 14) ) theories at 300 
K (see section 3.4). 

ficl=%lOP+ NF %lYi* 
i=l 

The constants gi in eq. (30) are defined by the relation g,r uJuoo. More details about the Rips-Pollak theory 
can be found in ref. [ 29 1. 

The present semiclassical reactive flux formalism was applied to a cubic barrier potential coupled to a linearly 
responding bath with an exponential friction kernel. The potential along q was given by 

K.(q) = v0- tmc&?-fW3 9 (33) 

where a2 = (ww~)~/~V~. In the simulations, the barrier height PO was given a value of 3425.3 cm-’ and the 
relevant particle frequencies were chosen to be w = w. = 1000 cm - l. The linearly responding bath was modeled 
by 100 harmonic oscillators as in our earlier work on classical activated dynamics [ 28 1. The exponential decay 
timescale of the bath friction kernel was chosen to be 40~ l. As in section 3.3, the strength of the friction was 
characterized by the dimensionless quantity q( 0) / mo& where q (0) is the zero time value of the friction kernel. 

The results from the semiclassical reactive flux calculations for the cubic well model are depicted in fig. 6 and 
compared to the analytic results from the Rips-Pollak theory. Also shown for comparison are the analytic clas- 
sical result from the theory of Pollak, Grabert and H%nggi (PGH ) [ 301. As in the classical theory, there are two 
mechanistic pictures required to analyze the escape rate of the particle from the well as a function of friction 
strength [ 3 1. At low friction, the dynamics is determined by the rate of energy exchange between the particle in 
the well and the bath. As the coupling increases in this regime, the rate increases. At high frictions, thermal 
equilibrium is maintained in the well and the rate is determined by passage over (or through) the barrier. 
Therefore, at high frictions, the rate decreases as the coupling increases. This phenomenology is, of course, the 
standard Kramers picture of activated dynamics [ 3 11, and the quantum mechanical modifications of that be- 
havior are evident from fig. 6. The agreement between the SC reactive flux and Rips-Pollak theory is quite 
encouraging and again suggests that the semiclassical theory will be useful for complicated condensed phase 
problems. 

3.5. Double well in a linearly responding dissipative bath 

As a fmal test of the SCTST and the semiclassical reactive flux formalism, the rate constant was calculated in 
the region of the crossover temperature for a double well barrier potential coupled to a linearly responding bath. 
The crossover temperature in this case can be estimated by the usual relationship 
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Table 2 
Rate results for the double well in a dissipative bath 

Temperature KSC a) Rate (s-l) b, 

150 0.91 1.5x lo--* 
125 0.87 7.9x 1o-4 
100 0.40 2.0x lo-* 

‘) Eq. ( 15). The numerical error is 5% on the two higher temperature results and 20% on the lowest. 
b, Eq. (14). 

T,, = M;/2xk, , (34) 

where A’, is the Grote-Hynes reactive frequency in eq. (24). In these calculations, a quartic double well was 
employed of the form 

rn’& 4 

v,(q)= ~o--tm&12+ 161/q . 
0 

(35) 

This quartic double well has the property that the well frequency, wo, is related to the barrier frequency, %, such 
that wo=fiw. 

The speciIic values of the parameters were again u,, = 1000 cm- ’ and V. = 3425.3 5 cm- ‘. The bath was again 
modeled by 100 discrete oscillators [ 28 1, having a friction kernel with timescale 4~; ’ and strength ~o/,u~~ = 1 .O. 
For this value of the friction, the unstable normal mode frequency& is N 530 cm- ‘; the corresponding crossover 
temperature being _ 125 K. Semiclassical calculations were then performed at 100, 125, and 150 K. The results 
for the semiclassical rate constant (eq. ( 14) ) and the semiclassical transmission coefficient (eq. ( 15 ) ) are 
tabulated in table 2. For the sake of comparison, the semiclassical transmission coefficient at 300 K was found 
to have a value of 0.68. There are no exact quantum results here with which to compare the semiclassical cal- 
culations, but the semiclassical transmission coefficient exhibits an interesting drop in value as the temperature 
is lowered through the crossover temperature. This result is in general agreement with the behavior predicted 
by an analytic theory [ 161 for the transmission coefficient in path integral QTST below the crossover temperature. 

4. Concluding remarks 

In the present paper, a semiclassical transition state theory proposed by Chapman, Garrett and Miller [ 91 has 
been “rediscovered” and analyzed within the context of condensed phase reaction rate theory. For the case 
studied, it was found that the basic SCTST formula (eq. (9) ) is capable of accurately treating activated rate 
processes over a wide range of temperatures, including in the strongly tunneling regime. The relationship of the 
theory to the more widely known instanton theory [ 8, lo] has also been elaborated. A significant extension of 
the theory to include dynamical dividing surface recrossing effects has been presented in the form of a semiclas- 
sical reactive flux correlation function formalism (eqs. ( 14 ) - ( 16 ) ). The accuracy of this formalism was tested 
against several model and analytical results and found to be quite good. The great strength of the method is the 
ease with which it can be numerically applied to nonlinear, many-body systems. Moreover, many of the molec- 
ular dynamics and Monte Carlo sampling techniques from statistical mechanics can be combined with the for- 
malism. The method is likely to be broadly applicable to a variety of important problems, including proton 
transfer, adiabatic electron transfer, and the diffusion hydrogen on material surfaces. Some of these applications 
will be reported in future publications. 
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Appendix 

As stated in the main text, one can imagine an optimization of the dividing surface in eq. ( 16) to minimize 
recrossing effects in the calculation of the semiclassical transmission coefficient (eq. ( 15 ) ) . In such a procedure, 
however, the semiclassical flux may not be invariant with respect to the choice of the dividing surface - as it 
must be in an exact calculation. Although this negative aspect of the formulation will probably not introduce 
major errors, one can in fact modify the method to make the flux independent of the dividing surface. In order 
to do this, a semiclassical effective Hamiltonian can be defined as 

(A-1) 

where the semiclassical density W&r, q) is given by eq. (7). This effective Hamiltonian is then used to gener- 
ate the recrossing trajectories in the calculation of the semiclassical transmission coefficient (eq. ( 15 ) ). The 
equations of motion are given in this case by Hamilton’s equations, but with the classical Hamiltonian replaced 
by the semiclassical effective Hamiltonian Herr sc. Clearly, solving these equations will be more computationally 
demanding than the usual classical equations. 
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