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In recent experiments, the light-matter interaction has reached the ultrastrong coupling limit, which can
give rise to dynamical generalizations of spatial symmetries in periodically driven systems. Here, we
present a unified framework of dynamical-symmetry-protected selection rules based on Floquet response
theory. Within this framework, we study rotational, parity, particle-hole, chiral, and time-reversal
symmetries and the resulting selection rules in spectroscopy, including symmetry-protected dark states
(spDS), symmetry-protected dark bands, and symmetry-induced transparency. Specifically, dynamical
rotational and parity symmetries establish spDS and symmetry-protected dark band conditions. A particle-
hole symmetry introduces spDSs for symmetry-related Floquet states and also a symmetry-induced
transparency at quasienergy crossings. Chiral symmetry and time-reversal symmetry alone do not imply
spDS conditions but can be combined to define a particle-hole symmetry. These symmetry conditions arise
from destructive interference due to the synchronization of symmetric quantum systems with the periodic
driving. Our predictions reveal new physical phenomena when a quantum system reaches the strong light-
matter coupling regime, which is important for superconducting qubits, atoms and molecules in optical or
plasmonic field cavities, and optomechanical systems.

DOI: 10.1103/PhysRevLett.126.090601

Introduction.—Over the last few decades, the light-
matter interaction strength has been pushed to the ultra-
strong coupling regime in optomechanical systems [1],
quantum dots, atoms and molecules in optical or plasmonic
cavities [2–6], and superconducting quantum circuits [7–9].
As standard nonlinear perturbation theory [10] becomes
unfeasible under these conditions, Floquet response theory
has been developed recently, describing systems that
are subject to a strong but time-periodic driving field
(of frequency Ω), and a weak but arbitrary probe field
[11–14]. For a monochromatic probe of frequency ωp,
system observables generate response frequencies ωp þ
nΩ termed “Floquet bands” [15].
Spatial symmetries give rise to appealing physical

properties. Inversion symmetry results in selection rules
for dipole transitions; particle-hole, chiral, and time-rever-
sal symmetries establish the so-called periodic table, a
classification scheme for topological insulators [16–18],
and symmetries have an essential impact on transport
properties [19–25]. For periodically driven systems, these
spatial symmetries can be generalized to dynamical sym-
metries that can give rise to a generalized periodic table for
topological insulators [26,27] and a new control mecha-
nism [28–35]. Dynamical symmetries have been used to
control the coherent destruction of tunneling [36] and
induce selection rules for high harmonic generation
[37–40].

In this Letter, we introduce a unified conceptual frame-
work of selection rules based on general dynamical sym-
metries of periodically driven quantum systems as described
by Floquet response theory [41]. Physically, the synchroni-
zation of symmetric quantum systems with the periodic
driving gives rise to destructive interference effects in
Floquet space and thus to forbidden transitions between
Floquet states. This set of forbidden transitions defines the
symmetry-protected selection rules that are robust against
symmetry-preserving parameter variations. Specifically,
there are four types of forbidden transitions ordered in
increasing degree of complexity: (i) accidental dark states
(aDSs) appearing for a specific combination of system
parameters; (ii) symmetry-protected dark states (spDSs),
which refer to the symmetry-protected absence of a complete
transition line similar to symmetry-protected excitations of
topological band structures; (iii) symmetry-protected dark
bands (spDBs), which refer to the absence of a complete
Floquet band due to a combination of spDSs; and (iv) sym-
metry-induced transparency (siT), which refers to the
vanishing transition intensity at the degeneracy of quasie-
nergies. Except for the aDS, which is not symmetry related,
we establish symmetry-protected selection rules for impor-
tant dynamical symmetries, which are classified in Table I.
Floquet response theory.—We apply a semiclassical

approach based on the general Hamiltonian
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ĤðtÞ ¼ Ĥ0ðtÞ þ
Z

∞

0

dω½λV̂ðâω þ â†ωÞ þ ωâ†ωâω�; ð1Þ

where Ĥ0ðtÞ ¼ Ĥ0ðtþ τÞ describes a system driven by a
periodic classical electromagnetic field of frequency
Ω ¼ 2π=τ. The probe field is given by a continuum of
photonic operators a†ω with frequencies ω, which are
coupled via the dipole transition operator V̂ with strength
λ to the driven system. The physical properties of Ĥ0ðtÞ are
determined by the Floquet equation

�
Ĥ0ðtÞ − i

d
dt

�
juμðtÞi ¼ ϵμjuμðtÞi; ð2Þ

where juμðtÞi ¼ juμðtþ τÞi and ϵμ are the corresponding
Floquet states and quasienergies that generalize the concept
of eigenstates and eigenenergies of time-independent sys-
tems. It is implicitly assumed that the driven system is
weakly dissipative such that, for long times, it approaches
the stationary state

ρðtÞ ¼
X
μ

pμjuμðtÞihuμðtÞj; ð3Þ

which is diagonal in the Floquet basis and thus synchro-
nizes with the driving ρðtÞ ¼ ρðtþ τÞ. Equation (3) is
consistent with the Floquet-Redfield equation [42–45]
describing periodically driven open quantum systems. In
the model calculations, we assume the special distribution
pμ ∝ e−βϵμ , i.e., a Floquet-Gibbs distribution, but all our
predictions hold even if the Floquet-Gibbs distribution
breaks down [45]. Strongly dissipative systems could be
addressed by generalizing our approach to non-Hermitian
Hamiltonians [18] or via the polaron transformation [46].
The interaction of Ĥ0ðtÞ with the probe field is treated

using the input-output formalism and a perturbation

expansion for small λ. The input field consists of a
bichromatic probe field (of frequencies ωp;1 and
ωp;2 ¼ ωp;1 þ nΩ, integer n). As shown separately [14],
the intensity change of the output field at frequency ωp;2
proportional to the coherence hâ†ωp;2 âωp;1

i is given by
ΔIcohðωp;2Þ ¼ −iχ̃nðωp;1Þhâ†ωp;2 âωp;1

i þ c:c:, where the
susceptibility χ̃nðωp;1Þ can be evaluated using Floquet
response theory and reads

χ̃nðωp;1Þ ¼ iλ2
X
ν;μ;m

Vð−n−mÞ
ν;μ VðmÞ

μ;ν ðpν − pμÞ
ϵμ − ϵν þmΩ − ωp;1 − iγðmÞ

ν;μ

: ð4Þ

The index n denotes the Floquet band, which describes
nonelastic scattering of the probe field, and the dynamical
dipole matrix elements read

VðnÞ
λ;μ ¼ 1

τ

Z
τ

0

huλðtÞjV̂juμðtÞie−inΩtdt: ð5Þ

The parameters γðmÞ
ν;μ have been added phenomenologically

and denote dephasing rates.
Unified conceptual framework of dynamical-symmetry-

protected selection rules.—We consider the following class
of symmetry operations [26]:

Σ̂
�
Ĥ0ðtS þ βStÞ − i

d
dt

�
Σ̂−1 ¼ αS

�
Ĥ0ðtÞ − i

d
dt

�
; ð6Þ

where Σ̂ is a time-independent spatial operator. By speci-
fying Σ̂, tS, and ðαS; βs ¼ �1Þ, one can define a set of
dynamical symmetries. Applying Eq. (6) to the Floquet
equation Eq. (2), one can identify relations between
Floquet states μ and μ0:

juμ0 ðtÞi ¼ πðSÞμ Σ̂juμðtS þ βStÞi: ð7Þ
These relations can be used to evaluate the dynamical
dipole elements in Eq. (5). Imposing an invariance con-
dition for the transition dipole operator Σ̂†V̂ Σ̂ ¼ αðSÞV V̂ and
using Eq. (7), we investigate symmetry-protected selection
rules for rotational, parity, particle-hole, chiral, and time-
reversal symmetries.
Within the unified framework, we can establish sym-

metry-protected selection rules that are robust against
symmetry-conserved variations and unique for strong
light-matter interactions. Among others, we investigate
dark states, which are defined by the condition
VðmÞ
ν;μ ¼ 0, such that the corresponding resonances in

Eq. (4) vanish. This condition not only generalizes the
dark state condition in the standard response theory to the
strong-coupling regime for n ¼ 0 but also introduces
distinct dark states effects for n ≠ 0. All selection rules
are a consequence of destructive interference due to the
synchronization of the system state with the periodic
driving. The dark state condition can be fulfilled by special
combinations of parameters, which we denote as an aDS, or

TABLE I. Overview of the spectroscopic signatures of dynami-
cal rotational symmetry (RS), particle-hole symmetry (PHS),
parity symmetry (PS), chiral symmetry (CS), and time-reversal
symmetry (TRS). The signatures include symmetry-protected
dark states (spDSs), symmetry-protected dark bands (spDBs),
symmetry-induced transparency (siT), and accidental dark states
(aDS). The rightmost column lists example models.

Symmetry Effect Example

RS spDS Benzene ring (Fig. 1)
spDB

PS spDS Two-level system (Fig. 3)
spDB

PHS spDS Dimer (Fig. 2)
2 × PHS siT Two-level system (Fig. 3)
TRS None
CS None
None aDS All (Figs. 1, 2, 3)
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as a consequence of a symmetry, which we denote as an
spDS. An entire Floquet band can vanish because
χ̃nðωpÞ ¼ 0 for specific n, which we denote as an spDB.
By analyzing the susceptibility in terms of Eq. (7), we
establish the condition for the siT, which is due to a
destructive interference of two transitions with VðmÞ

ν;μ ≠ 0.
Rotational symmetry.—With αS ¼ βS ¼ 1, a unitary

Σ̂ ¼ R̂, and tS ¼ tR ¼ ðτ=NÞ with a positive integer N,
Eq. (6) defines a dynamical rotational symmetry [47] that

gives rise to the eigen equation juμðtÞi ¼ πðRÞμ R̂juμðtþ tRÞi
with eigenvalues πðRÞμ ¼ ei2πmμ=N and integer mμ ¼
f0; N − 1g. As shown in detail in the Supplemental

Material [48], for a dipole transition operator with R̂†V̂ R̂ ¼
αðRÞV V̂ with αðRÞV ¼ �1, the dynamical rotational symmetry
establishes a sufficient condition for spDSs:

V̂ðmÞ
ν;μ ∝

�
1 if ei

2π
N ðmμ−mνþmÞαðRÞV ¼ 1;

0 else:
ð8Þ

Applying Eq. (8) to evaluate the susceptibility in Eq. (4),
we find

χ̃nðωpÞ ¼
�
1 if ei

2π
Nn ¼ 1;

0 else;
ð9Þ

which is the condition for the complete disappearance of
Floquet band n, i.e., an spDB. Physically, this effect
appears as the stationary state Eq. (3) synchronizes with
the driving field such that the density matrix adopts
the dynamical rotational symmetry, i.e., ρðtþ n=NτÞ ¼
R̂nρðtÞR̂†n.
As an example, we consider a benzene ring driven by

circularly polarized light sketched in Fig. 1(a), which is
described by a tight-binding Hamiltonian:

Ĥ0ðtÞ ¼
X6
j;j0¼1

Jj;j0 jejihej0 j þ
X6
j¼1

½ifjðtÞjejihejþ1j þ H:c:�;

where jeji denotes the excitation on site j (defined modulo
6), Jj;j ¼ E0 is the on-site energy, Jj;j0 ¼ δj;j0�1J0 is the
tunneling constant, and fjðtÞ ¼ fΩ cosðΩtþ 2πj=6Þ is the
time-dependent tunneling strength with the driving ampli-
tude fΩ. The driving terms are motivated by the Peierls
substitution describing a vectorial current-gauge-field cou-
pling j · AðtÞ [49] with a circularly rotating vector potential
AðtÞ. The dipole transition operator V̂ ¼ P

N
j¼1 d0jejihgj

excites the ground state jgi to the single-excitation
manifold, whose quasienergies are depicted in Fig. 1(b).
The stationary state is ρsðtÞ ¼ jgihgj in agreement
with Eq. (3), i.e., a Floquet-Gibbs state for low tempera-
tures. A rotational symmetry is fulfilled for N ¼ 6
and R̂ ¼ P

n
j¼1 jejþ1ihejj.

In Fig. 1(c), we depict the susceptibility χ̃0ðωpÞ of the
benzene model. The resonances of the dark states
defined by Eq. (8) are marked by dashed lines (optically

invisible), and only two transitions, V̂ð0Þ
0;1V̂

ð0Þ
1;0 and V̂

ð1Þ
3;0V̂

ð−1Þ
0;3 ,

are visible. An aDS can be found for V̂ð0Þ
0;1V̂

ð0Þ
1;0 at

fΩ ¼ 1.5Ω. As a consequence of the spDB in Eq. (9),
only Floquet bands χ̃nðωpÞ with n mod 6 ¼ 0 appear.
Parity symmetry.—A dynamical parity symmetry is a

specification of the dynamical rotational symmetry with
N ¼ 2 and a Hermitian operator R† ¼ R such that the spDS
condition Eq. (8) and the spDB condition Eq. (9) are
equally valid. The spDSs will be illustrated for the two-
level system (TLS) in Eq. (13) along with the siT
discussed below.
Particle-hole symmetry.—A particle-hole symmetry is

defined for −αS ¼ βS ¼ 1, tS ¼ tP ¼ τN1=2N2 with inte-
gers N1 ∈ f0; 1g, N2 ≥ 1, and Σ̂ ¼ P̂ κ̂ with a unitary
operator P̂ and the complex conjugation operator κ̂,
such that P̂Ĥ�ðtþ tPÞP̂ ¼ −ĤðtÞ. The particle-hole sym-
metry establishes a symmetry between the excitation and
deexcitation processes and has its origin in fermionic
systems, where adding and removing quasiparticles results
in physically equivalent behaviors. Here we use the
particle-hole symmetry in a general context. Using the
particle-hole symmetry in Eq. (2), we find that each Floquet

FIG. 1. (a) Benzene driven by circularly polarized light propa-
gating perpendicular to the ring plane. The probe field is
polarized perpendicular to the plane so that it does not destroy
the sixfold dynamical rotational symmetry. (b) Quasienergies of
benzene for the tunneling constant J0 ¼ 0.05Ω and on-site
energy E0 ¼ 0.45Ω. (c) Susceptibility χ̃0ðωpÞ (color gradient).
Rotational spDSs are marked by dashed lines. One transition
vanishes at the location of the aDS. The dephasing rates in all
figures are γðmÞ

ν;μ ¼ 0.001Ω.
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state juμðtÞ > with quasienergy ϵμ has its symmetry-

related partner juμ0 ðtÞi ¼ πðPÞμ P̂juμðtþ tPÞi� with energy

ϵμ0 ¼ −ϵμ and a gauge-dependent πðPÞμ . For tP ¼ τ=ð2N2Þ,
the particle-hole symmetry gives rise to a rotational
symmetry defined by R̂ ¼ P̂ P̂ and tR ¼ τ=N2 such that
the dark state selection rules of the rotational symmetry
apply. The particle-hole symmetry can give rise to a distinct
dark state condition. For a dipole transition operator with

P̂†V̂�P̂ ¼ αðPÞV V̂, αðPÞV ¼ �1, tP ¼ 0, τ=2, and P̂�P̂ ¼ 1, the

particle-hole symmetry results in VðmÞ
μ;μ0 ¼ αðPÞV eimΩtPVðmÞ

μ;μ0

for the symmetry-related states μ; μ0, so that

V̂ðmÞ
μ;μ0 ∝

�
0 if αðPÞV eimΩtP ¼ −1; μ; μ0 sym: rel:

1 else:
ð10Þ

as shown in detail in the Supplemental Material [48]. In
contrast to Eq. (8), where each transition can vanish for an
appropriate m, only transitions between symmetry-related
states are affected by Eq. (10).
To illustrate Eq. (10), we use the dimer model sketched

in Fig. 2(a), with the Hamiltonian given by

H0ðtÞ ¼ ΔðÂf;f − Âg;gÞ þ J0Âe1;e2

þ h1ðtÞ½Âe1;f þ Âg;e1 þ rÂe1;e2 �; ð11Þ

where Âα;β ≡ jαihβj þ H:c:, and g, e1, e2, and f label
the ground state, two single-excitation states, and the

double-excitation state, respectively. Δ is the excitation
gap, J0 is the tunneling constant, and h1ðtÞ ¼ fΩ cosðΩtÞ is
the driving field. The r term enhances higher-order dipole
elements Vm≠0

μ;μ0 . The particle-hole symmetry is defined

by P̂ ¼ Âg;f þ Âe1;e1 − Âe2;e2 and tP ¼ 0. The quasienergy
spectrum in Fig. 2(b) is symmetric with respect to E ¼ 0.
The dipole transition operator is V̂ ¼ Âe1;f þ Âg;e1 , such
that P̂†V̂�P̂ ¼ −V̂. In Fig. 2(c), we depict the susceptibility
in Eq. (4). According to the above considerations, the
transitions between the particle-hole symmetry-related

pairs vanish, i.e., VðmÞ
1;4 ¼ VðmÞ

4;1 ¼ VðmÞ
2;3 ¼ VðmÞ

3;2 ¼ 0 for all
m. These resonances are marked by dashed lines. The other
transitions not affected by the symmetry constrain remain
visible in Fig. 2(c).
Symmetry-induced transparency.—The particle-hole

symmetry can also give rise to a siT at the quasienergy
crossing ϵμ ¼ ϵμ0 ¼ 0 of the symmetry-related Floquet
states μ; μ0. While an spDS is generated by a vanishing
dipole element, VðnÞ

λ;μ ¼ 0, the siT is generated by a
destructive interference of two transitions with VðnÞ

λ;μ ≠ 0.
As shown in the Supplemental Material [48] in detail, for
two distinct particle-hole symmetries P̂1 ≠ �P̂2, P̂

2
i ¼ 1,

and ½P̂1; P̂2� ¼ 0, the siT condition reads

χ̃nðmΩÞ ∝
�
0 if eimΩðtP1−tP2 Þ ¼ 1; ϵμ ¼ ϵμ0 ¼ 0

1 else;
ð12Þ

where tPi
denote the reference times related to P̂i.

For illustration, we consider an ac-driven TLS sketched
in Fig. 3(a) and described by the Hamiltonian

FIG. 2. (a) Sketch of the dimer model Eq. (11) with
h1ðtÞ ¼ fΩ cosðΩtÞ. (b) Quasienergy spectrum for
J0=Ω ¼ 0.05, r ¼ 2, and Δ ¼ 0.2Ω. (c) The susceptibility
jχ̃0ðωpÞj is depicted as a color gradient. The spDSs (marked
by dashed lines) are generated by a particle-hole symmetry.

FIG. 3. (a) Sketch of the ac-driven TLS. (b) Quasienergy
spectrum for hx=Ω ¼ 0.05. (c) Spectrum of the susceptibility
χ̃0ðωpÞ exhibits a siT and spDSs. Here, p0 ¼ 0.6 and p1 ¼ 0.4 in
Eq. (3) to highlight the siT.
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Ĥ0ðtÞ ¼
hx
2
σ̂x þ

fΩ
2
cos ðΩtÞσ̂z; ð13Þ

where σ̂x, σ̂z are the Pauli matrices, hx is the tunneling
amplitude, and fΩ the driving strength. The TLS is weakly
dissipative, as in the spin-boson model, such that it reaches
the stationary state in Eq. (3). The dipole transition operator
in Eq. (1) is V̂ ¼ σ̂x. For R̂ ¼ σ̂x and tR ¼ τ=2, the TLS
exhibits a dynamical parity symmetry defined above, which
gives rise to the coherent destruction of tunneling effect at
an exact quasienergy crossing, depicted in Fig. 3(b) at fΩ ≈
2.4Ω [36,50], and enables the siT in the current context.
Additionally, the TLS exhibits spDSs and spDBs according
to Eq. (8) and Eq. (9) as VðmÞ

μ;ν0 ¼ 0 for evenm because of the
dynamical parity symmetry.
For the TLS, a particle-hole symmetry is defined for

P̂1 ¼ σ̂z and tP1
¼ τ=2. For hx ¼ 0, a second particle-hole

symmetry is given for P̂2 ¼ 1 and tP2
¼ τ=2. As in this

case ϵμ ¼ 0 and P̂iσ̂
�
xP̂i ¼ ð−1Þiσ̂x, siT with χ̃nðmΩÞ ¼ 0

appears according to Eq. (12), and the response χ̃nðωpÞ is
complete suppressed for all n. In Fig. 3(c), we consider
χ̃0ðωpÞ for a finite but small hx ≪ Ω such that the
quasienergy degeneracy is lifted except of the crossing,
and the particle-hole symmetry P̂2 is slightly broken. As a
consequence, the siT is not complete but scales as
χ̃nðmΩÞ ∝ hx=Ω at the crossing.
Time-reversal and chiral symmetries.—A time-reversal

symmetry (chiral symmetry) is defined by Eq. (6) for
αS ¼ −βS ¼ 1 (αS ¼ βS ¼ −1), arbitrary tS, and Σ̂ ¼ T̂ κ̂,
(Σ̂ ¼ Ĉ), where T̂ (Ĉ) is a unitary operator. As shown
in the Supplemental Material [48], neither time-reversal
symmetry nor chiral symmetry alone implies spDSs.
However, the combination of time-reversal symmetry
and chiral symmetry defines a particle-hole symmetry with
P̂ ¼ Ĉ T̂ and tP ¼ tT − tC. When they further fulfill
tT − tC ∈ f0; τ=2g, Ĉ�Ĉ ¼ 1, T̂�T̂ ¼ 1, and ½Ĉ; T̂� ¼ 0

such that P̂�P̂ ¼ 1, spDSs appear because of the par-
ticle-hole symmetry. In general, the presence of any two
symmetries out of particle-hole symmetry, chiral symmetry,
and time-reversal symmetry implies the existence of the
third one.
Conclusions.—Using a unified conceptional framework

based on Floquet response theory, we have predicted
selection rules in periodically driven quantum systems,
namely accidental dark states, symmetry-protected dark
states, symmetry-protected dark bands, and symmetry-
induced transparency. The latter three effects are protected
by symmetries such that variations of symmetry preserving
parameters do not destroy them. These symmetry-induced
selection rules result from the destructive interference of a
driven system synchronized to the periodic driving. The
different effects have been illustrated in three example
systems fulfilling different symmetries, demonstrating
the flexibility and generality of our unified framework.
The predicted selection rules are valid even for more

complicated and realistic systems as long as the corre-
sponding dynamical symmetries are fulfilled.
Our theoretical results are experimentally observable in

systems that can reach the strong light-matter coupling
regime such as cold-atom experiments [2] and super-
conducting circuits [51–54]. For experiments with mole-
cules, strong driving fields are necessary to generate high-
order Floquet bands, but in cavity QED or plasmonic fields,
the strong driving interaction condition can be relaxed for
molecule ensembles interacting collectively with the light
field [55,56].
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