A LETTERS JOURNAL EXPLORING - , .
. THE FRONTIERS OF PHYSICS @ St e(J/r)sclences IOP Institute of Physics
di Fisica

LETTER

The stability of spherocyte membranes: Theoretical study

To cite this article: W. Mu et al 2019 EPL 128 38001

View the article online for updates and enhancements.

This content was downloaded from IP address 172.58.222.247 on 08/06/2020 at 19:34


https://doi.org/10.1209/0295-5075/128/38001
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsulQWMTLv8xvsAmqmTXrKT2R82_jHHm1MgqO_I7AODVc2yT3bu7m8PH_-bUxrF38BEbDzGJIeUs_1scI8aR6POksl2vT7k4XB2zSV1_dvyD9bxQR-T3J1qyYm0n_08JXpPfX8Jj-2IzJs6Top_GEnL6VsPTCb-_SF0NNZ_j1thelIBjUGWOYibpyDyYJKemZ8x5gJOKe4NNMIzOBqUE218swTkS5KLyfojkuDHM6qLkdaJ-6Crz&sig=Cg0ArKJSzH-OKAcu0jzU&adurl=http://iopscience.org/books

A LETTERS JOURNAL EXPLORING
THE FRONTIERS OF PHYSICS

November 2019

EPL, 128 (2019) 38001
doi: 10.1209/0295-5075/128/38001

www.epljournal.org

The stability of spherocyte membranes: Theoretical study

W. Mubt23(@) 7_c. Ou-YanGc? and J. CA0®6

L School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering,

Wenzhou Medical University - Wenzhou 325027, China

2 Wenzhou Institute, University of Chinese Academy of Sciences - Wenzhou 325001, China
3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

Cambridge, MA 02139, USA

4 Institute of Theoretical Physics, the Chinese Academy of Sciences - Beijing 100190, China
5 Department of Chemistry, Massachusetts Institute of Technology - Cambridge, MA 02139, USA
6 Singapore-MIT Alliance for Research and Technology (SMART) - Singapore, 138602

received 30 July 2019; accepted in final form 13 November 2019

published online 20 January 2020

PACS 87.16.ad — Analytical theories
PACS 87.16.D- — Membranes, bilayers, and vesicles

PACS 87.16.dm — Mechanical properties and rheology

Abstract — Human red blood cell (RBC) membranes are typically biconcave-shaped under physi-
ological conditions, and membranes of other shapes, such as spherical, are also observed in patho-
logical RBCs. It has been suggested that there is a relationship between the RBC membrane’s
material properties, morphologies and physiological functions. The present work studies how var-
ious factors affect the morphologies of the RBC membrane based on a free energy functional in
continuum elasticity descriptions. In particular, the instability conditions of a diseased sphero-
cyte’s spherical shape is obtained explicitly, which determines the region in the phase diagram
constructed by two dimensionless state variables defined by elastic moduli, osmotic pressure, etc.,
in which the spherocyte’s membrane can exist in a stable form. In this phase diagram, each point
represents the statistical results for a large number of samples observed in recent experiments.
Within this stable region of spherocyte’s membrane, the spherical RBC membrane is in the global
minimal state whereas in the adjacent region on the other side of the boundary, the echinocyte’s
membrane corresponds to the global minimal state. Our results could be used as a theoretical
guide for clinical applications in related diseases, such as malaria, and are in quantitative agree-
ment with recent dynamic optical measurements on the morphological transition of the RBC
membrane (see PARK Y. et al. Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 6731).

Copyright © EPLA, 2020

Red blood cells (RBCs), also called erythrocytes, trans-
port oxygen from the lungs through arteries and capillaries
to the tissues and cells. The RBC’s physiological function
is sensitive to its morphology: a normal healthy RBC
has a biconcave shape under physiological conditions, en-
suring that it will pass through small blood vessels with
reversible deformation, while RBCs with other morpholo-
gies lose their physiological functions, leading to serious
health disorders, such as malaria [1,2]. Identifying and
counting the number of RBCs with the correct morphol-
ogy can be used in the detection of certain diseases [3].
The normal RBC with a biconcave shape, called a dis-
cocyte (DC), is tremendously flexible, while RBCs with
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other morphologies are not. In particular, the membrane
of an RBC that is infected by malaria parasites becomes
more spherical. Moreover, the membrane of this abnormal
RBC is harder than the normal one, with a typical stiffness
50 times greater than that of a normal biconcave RBC,
leading to great difficulty in passing through capillaries by
reversible deformation [1,4,5]. As is well known, malaria
has been a serious threat to human health since ancient
times [4,6] and the disease is still a focus of medical stud-
ies. In particular, the 2015 Nobel Prize was bestowed on
researchers for finding medicines to treat this disease [7].
Obviously, it is highly desirable to explore the relation-
ships between morphologies and mechanical properties of
RBC membranes, in both experimental and theoretical
studies [1,8-35]. The shape of an RBC is governed by its
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mechanical properties, the pressure difference across its
membrane, and its size. In the present work, we will study
the relationship between the equilibrium shapes and the
elastic properties of RBCs in detail. We demonstrate that
an experimentally observed shape of an RBC membrane
corresponds to a stable equilibrium point in the free energy
landscape by the minimum free energy principle in ther-
modynamic theory, which can be determined by the varia-
tional method [36,37]. As an important application of the
present theoretical method, we focus on the stability of the
abnormal spherocyte, and show the condition for its mor-
phological instability. Various efforts have been made to
study the mechanical properties of RBC membranes. At
first, static mechanic responses of RBC membranes were
investigated extensively by micropipette techniques [16],
electric field deformation [12], and optical tweezer tech-
niques [38]. Dynamically, the RBC membrane constantly
fluctuates with an amplitude of the order of hundreds of
angstroms [13]. The fluctuations depend on the membrane
structure and elasticity as well as on the concentration of
adenosine triphosphate (ATP) [14,30]; thus, it is possible
to extract the properties of the RBC membranes from the
dynamical information. The simple intracellular structure
of the RBC with its lack of nuclei and other internal struc-
tures leads to a uniform refractive index of the entire cell
and makes it possible to accurately measure the dynamics
changes of the thickness of RBC membrane by noninvasive
dynamical optical measurement techniques, and to record
the fluctuations of the membrane [24,25]. This paves the
way to extracting mechanical characteristics through the
dynamic undulations of the RBC membrane [10,19,20,29].
Among the efforts to measure RBC membrane fluctua-
tions, Park et al., in particular, achieved a full-field mea-
surement of membrane fluctuations of RBCs up to the
nano-meter scale with morphologies from normal DCs to
echinocytes (ECs, spiculate shape) and spherocytes (SCs,
nearly spherical shape), as shown in fig. 1, using the op-
tical interferometric technique [24,25]. These results have
aroused great interest since they were reported.

The most interesting point of Park et al.’s work is that
these authors directly obtained the properties of a vari-
ety of RBCs in the solution simultaneously, observed the
RBC membranes in cell populations, which made it pos-
sible to study the morphology-mechanical properties of
RBC membrane relationship by investigating the statisti-
cal properties of numbers of RBCs in the three main mor-
phologies. The technique avoids the diversity of reported
properties of RBC membranes that occurs in experiments
focusing on the dynamical morphological evolution of one
selected RBC, owning to the cell’s individual characters.
Their observations revealed that the harder the membrane
is, the more likely it is that the RBC is a spherocyte, a
pathological form that lacks some physiological functions,
such as the ability to carry oxygen. Although this is in-
tuitive, the quantitative theory connecting the mechanical
properties of the RBC membrane and the morphology of
RBCs, in particular, needs to be established. The physical

(a) (b) (c)

Fig. 1: Schematic sketch of the three morphologies. (a) A nor-
mal RBC with a biconcave shape, named a DC; (b) an EC char-
acterized by its stipulate shape; (c) a SC with a nearly spherical
shape. The spherocyte is related to particular diseases.

implication of this quantitative relationship is twofold:
based on it, we may develop a fast and minimally in-
vasive technique to diagnose certain diseases related to
red blood cells; on the other hand, by understanding this
relationship, we may develop a treatment method that in-
volves modulating the lipid/cytoskeleton biological struc-
ture of the membrane of an infected cell by adjusting
the stiffness of the membrane. This may lead to at least
partially recovering of the morphological functions of the
RBCs. To study the physical mechanisms of equilibrium
morphologies and their transitions, first, we briefly in-
troduce the structure of the RBC membrane, since the
mechanical properties of the RBC membrane depend on
the composite structure of the phospholipid bilayer which
is enforced by the cross-linked cytoskeleton [9-11,39,40].
The hexagonal cytoskeleton of the RBC membrane is com-
posed of tetramers of the protein spectrin, which are at-
tached to one another with junction complexes to form
a network tethered to the lipid bilayer by the protein
ankyrin (see ref. [39] and the references therein). The RBC
membrane inherits both fluidity and solid-like mechani-
cal properties from the lipid bilayer and the cytoskeleton,
giving the composite structure advantages over a single
material. The fluidity property of the lipid bilayer deter-
mines the RBC membrane’s bending modulus [36,40,41],
while the spectrin-dominated 2D network both serves as
the scaffold maintaining the RBC’s shape and mechanical
integrity, and dominantly contributes to the elastic mod-
ulus of the membrane [19]. Thus, it is necessary to adopt
an elastic energy description considering the contribution
of both the lipid bilayer and the cytoskeleton [27]. In
the present analytical work on the condition for weaken-
ing the abnormal spherocyte, we use a continuum elastic
body description, and illustrate the basic physics with a
model as simple as possible. The elastic energy of the lipid
bilayer can be described by the well-established Helfrich
energy [41]. This is a functional of the curvatures defined
on a 2D curved surface, based on the theory of surfaces in
classical differential geometry [42]:

Eb = g//dQS(QH—FC())Q—FE//CPSK,

where H and K denote the mean and Gaussian curvatures

of the surface reprenting the membrane, and « (k) denotes

(1)
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Table 1: Properties of RBC membrane at various morphological phases, experimental data taken from ref. [25].

DCs DCs(-ATP) ECs SCs
k(ksT) 5.5+ 1.7 6.7+ 3.3 9.6+32  239+6.7
p(uNm ™) 74409 ~9 104+29 126+2.1
Ka(pNm=1)?  155+25 239483  31.74+100 41.8+10.3

S(pum?)° 139.4 - 143.4 96.3

V/ (AR2)(nm)4 46 - 34 15

“ATP depleted DCs.
bArea modulus, K4 = A + p.
¢Surface area.

dMean squared normal displacement.

the corresponding mean (Gaussian) curvature modulus.
For a closed surface, the latter integral in eq. (1) merely
provides a constant, 2wkY, where ¥ is the Euler character-
istic, according to the Gauss-Bonet theorem [42], implying
that only the term of mean curvature (with a typical mod-
ulus, kK ~ 1 —10kgT) in eq. (1) is nontrivial among the
elastic energy expressions of the RBC membrane. The
Helfrich energy differs from the previous curvature energy
description by including the spontaneous curvature, cg,
which was introduced to describe the effects of the dif-
ferent solution environments inside and outside the mem-
brane [41]. The spectrin-based cytoskeleton in the RBC
membrane is a homogeneous 2D lattice coupled to a lipid
bilayer, which can be modeled as a 2D elastic continuum
with the in-plane strains ¢; ;, (¢, j = 1,2) [43],

K €11 —E22)>
Ee//dzs{;(gnJrEzz)%rﬂ (11222)+2€%2”' (2)

Here, the “inverse of K 4” and p the area compressibility
and shear modulus, respectively [15,44]. Elastic models
with more biological details of RBCs were proposed in
refs. [17,18,22,26,33,35] and the references therein, in or-
der to describe both the static phenomena and dynamic
responses of RBC membranes. We use the present sim-
ple model, instead, since most of the parameters in our
model are observables measured in the related dynamic
optical experiments, and there is no adjustable parame-
ter. For simplicity, the mean values of the observed mod-
uli are used. In ref. [25], the elastic properties of a number
of RBC membranes with certain morphologies, i.e., both
normal and abnormal cells, are reported. The main in-
formation is summarized in table 1, which gives the mean
values of the experimental data (cf. fig. 4 in ref. [25]).
The values presented in table 1 come from the statistics
of the reported experimental data, in order to avoid the
uncertainty of the moduli caused by individual differences
of RBCs.

The total free energy includes Helfrich elasticity, the in-
plane elastic energy and the surface tension energy, as well

as the pressure difference term, taking the form of

F=FE,+ E.+~5+ ApV. (3)

Here, the surface tension coefficient of the RBC mem-
brane, -, is assumed to be a constant at room
temperature [36], and Ap = pout — pin is defined as the
pressure difference across the RBC membrane. This free
energy functional is based on a model with a minimum set
of parameters which gives a clear physical picture of the
formation of the main equilibrium shapes of RBC mem-
branes and quantitatively explains the observed morpho-
logical transitions of SCs-ECs-DCs [25]; thus it is suitable
for the present study. An equilibrium shape of an RBC
membrane corresponds to a minimum of the free energy
described by eq. (3), determined by the variational equa-
tion 8 F = 0. The variation §VF is a function of
the mean curvatures of the curved surface, H, whereas
the mean curvature itself is a function of the coordinates.
Thus the shape equation 6(Y F = 0 is a highly nonlinear
differential equation, usually difficult to solve analytically,
except for some special solutions with certain symme-
tries. Among these highly symmetric cases, the spheri-
cal membrane of a spherocyte gives the simplest solution
of the shape equation (for more information on the de-
tails of mathematical deriving see Supplementary Material
Supplementarymaterial.pdf (SM))

ApR® + (4Kas + 27)R + reo(coR = 2) =0, (4)

where R is the radius. The existence of this spherical
surface solution was confirmed by experimental observa-
tions. Here, we assume isotopic 2D in-plane strains in
the spherical RBC membrane, €11 = €99 = ¢, €12 = 0,
for the consistency of the spherical symmetry of the free
energy, variational equation (shape equation) and the spe-
cial solution. We then focus on the conditions for weak-
ening the pathological spherocyte’s membrane, since this
is closely related to the recovery of its physiological func-
tions. Thus, this investigation into the stability of the
spherocyte’s membrane has implications for both biomed-
ical research and applications. The stability is studied
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(1+2)(1—1) [l +1) — keoR — ApR3 /2] 9
5(2)F:Z{ = +4K 4§ lamm|?, 1=0,1,...,00, m=—l,....l. (5)
ilm
using perturbation analysis for the radial distortion, up ' ' ' '
to O(x?). This distortion along the normal direction of 600l
a spherical surface depends on the polar and azimuthal
angle in the spherical coordinates, # and ¢, which can
be expanded on the basis of the spherical harmonics, &
Vi, 1=0,1,...,00, m=—1,...,1}, X wl \\
00 1 ;; \ — IE——
Tﬁ(@, qb) = Z Z alm)/l’m(aa ¢)7 \ [ --—'—'_'—'_.—.__.
1=0 m=—1 - __________/
with the magnitude a; _,, = aj,, to ensure that the co- 200F . . .
efficients {a;,,} are real. Here the asterisk in superscript 50 100 150 200
indicates the complex conjugation operation. A sphero- y=Il+1)

cyte’s memebrane at thermodynamic equilibrium satisfies
the shape equation in eq. (4). This implies that, at equi-
librium, the isotropic strain € is not independent; thus, in
the second order of the variation of the total free energy,
the isotropic stain can be eliminated, leading to (see SM)

see eq. (5) on top of the page

A spherocyte’s membrane can maintain its spherical
symmetry under the normal distortion (6, ¢), if 62 F >
0, I > 2; otherwise, it may deform to a shape with a lower
symmetry, resulting in instability. The critical condition
for the morphological transition 6 F = 0,1 > 2 gives
a series of possible critical pressure differences across the
membrane,

2k1(1+1)
R3

8K 4

Apy = RI(I+1)—2]

(6)
Then, it convenient to introduce a dimensionless
quantity n K4R?/k, define a new integer variable

y=1(l+1) — 2, and rewrite eq. (6) as

is

2K 4n 4k 2Kco _ BK\M
Ap, = — -1 = _ >
P R3[y+y]+R3 R? = RS
2K

The inequality in eq. (7) originates from the arithmetic
geometric average inequality a + b > 2v/ab, for any two
positive numbers a and b. The inequality is valid since
the (2 — ¢gR) > 0 for the coR ~ —1.618, much close to
the opposite of golden ratio ¢ = (1 + v/5)/2 ~ 1.618 [37].
Although spontaneous curvature ¢y describes the effect of
difference environments inside and outside of the mem-
brane, thus is important to determine the equilibrium
shape of a RBC’s membrane, the fact that coR is nearly
a constant leads to ¢g is not a sensitive parameter of our
present stability analysis.

A spherocyte’s membrane with a certain bend-
ing modulus, spontaneous curvature, and radius is

Fig. 2: Relationship between the reduced pressure (a dimen-
sionless quantity) p1 = Api/ (2/R?) and the integer y =
I(l+1) — 2. Here (coR = —1.618) [37], and we use the ap-
proximate relationship coR = —1 for simplicity. The three
curves are for the typical values of the dimensionless quantity
n = KaR?/k, ranging from 3000 to 8000 [25], with = 3000
for the red line, n = 5000 for the green line, and n = 7000 for
the blue line. The integer y = I(I + 1) — 2 values from 70 to
180 (I = 8-13) are labelled with a series of perpendicular gray
lines, and the minima for the three curves all fall within the
present range 70-80 of integers y = I(1 + 1) — 2.

thermodynamically stable if the osmotic pressure Ap <
Ap1(y). The y dependence of the reduced pressure (a di-
mensionless variable) p; = Ap;/(2k/R?) for three typical
sets of parameter shown in fig. 2 demonstrates a mini-
mum pi, min in each curve. The stability condition of Ap
for a spherocyte’s membrane is satisfied for all [ > 2
if Apr < (26/R3®)P1, min- As shown in fig. 2, the re-
duced pressure py, and hence Apq, can reach its minimum
Ap1 min as shown by the inequality of eq. (7) under the
experimental conditions [25]. By defining a dimensionless
quantity &€ = ApR3/k, the condition for the existence of a
stable spherocyte’s membrane can be described as

(1, min) = V11 +2(2 = o R). (8)

Instability of a spherocyte’s membrane may occur when
the osmotic pressure Ap; > Api min. Under physio-
logical conditions, the value of the osmotic pressure is
Apy = 1.5Pa [21]. This implies that if Apy min < 1.5Pa,
the spherocyte’s membrane can no longer maintain its
spherical symmetric shape (I = 0), and high-order spher-
ical harmonic modes occur, leading to a morphological
transition to a new preferable shape. As shown in fig. 2,
the value of y for the P min is ~10%, corresponding to
[ ~ 10, under the experimental conditions. If a sphe-
rocyte’s membrane becomes thermodynamically unstable,
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Fig. 3: Phase diagram of RBCs of several manifest morpholog-
ical types. The boundary curve of the shadow area is described
by the stability condition for a spherocyte’s membrane shown
in eq. (8). The dots denote the corresponding values of the
physiological osmotic pressure Apyg = 1.5Pa. In the shadow
area, SCs can stably exist. Instability may occur in the area
above the boundary curve of the shadow area, thus triggering
the morphological transition of SC to EC.

the spherical harmonics with [ = 10 first occurs, implies
the global minimum of free energy functional is shifted to a
new one with lower symmetry than that of a spherocyte’s.
The new global minimum has a [ > 1 spherical harmonic
mode, matching the characterized spiculate shape of an
echinocyte’s memberane, suggesting that a spherocyte’s
membrane tends to deform to an EC’s membrane. This is
in agreement with the experiments [25]. Inspired by the
stability condition of a spherocyte’s membrane obtained in
eq. (8), we constructed a phase diagram using two dimen-
sionless quantities, ¢ = ApR3/k and n = K4 R?/k. In this
2D phase diagram, all the observed RBC membranes with
their elastic and geometric properties can be shown in one
figure for easy comparison by taking advantage of the two
dimensionless variables composed of K4, k, R, and Ap.
The phase diagram in fig. 3 clearly shows the region of
the stable-existing spherocyte, and suggests possible ways
to weaken the stability of the spherocyte and thus pro-
mote a transition SC-EC-DC. These include adjusting the
osmotic pressure and changing the compressibility of the
RBC membrane by modulating the expression of special
proteins in the membrane.

So far, we have derived the stability conditions for the
pathological spherocyte’s membrane shown in egs. (7)
and (8), through a perturbation analysis based on the
free energy functional in eq. (3). We demonstrate that
the observed equilibrium shape of an RBC’s membrane
depends on a set of parameters, which corresponds to a
global minimum of the free energy landscape under exper-
imental conditions. In general, numerically determining

the global minimum of a free energy functional is very
difficult; however, since our present study is based on ex-
perimental results, we can note that an observed shape
of an RBC’s membrane does correspond to a solution of
the variation equation, M F = 0 with 62 F > 0, which
describes a global minimum of the free energy under cor-
responding experimental conditions. In the present work,
we have exploited these experimental data, and expressed
RBC membranes with three different morphologies in a
2D phase diagram constructed by two dimensionless vari-
ables ¢ = ApR3/k and n = K4R?/k. In the phase dia-
gram shown in fig. 3, each point represents a typical RBC
membrane with a certian morphology, based on the mean
values of the properties of a number of RBC membrane
given in ref. [25]. We have investigated the stability of
the pathological spherocyte’s membrane through a per-
turbation analysis, and propose a boundary between the
regions corresponding to SC and EC membranes. Our
results are in reasonable agreement with the experimen-
tal results in ref. [25], which verifies our approach. It is
worth mentioning that the morphology of the RBC also
depends on the concentration of ATP [25]. The deple-
tion of ATP may affect the coupling of spectrin to the
lipid bilayer, resulting in stiffness of the RBC membrane’s
shear modulus, as in the statistical data based on ex-
periments in ref. [25] shown in table 1. The stiffness of
RBC membranes due to ATP depletion was also reported
elsewhere in the literature [23,34]. This stiffness of RBC
membrane’s shear modulus, shifts the values of two di-
mensionless parameters £ and 7, therefore affects the sta-
bility of a spherocyte’s membrane. In fig. 3, we show
a representative point for the ATP-depleted DC’s mem-
brane based on the mean values of measured data for a
number of RBCs, which is denoted as DC(-ATP). The
present results could be further developed by introducing
the ATP concentration-dependent elastic modulus of the
RBC membrane into the elastic energy in eq. (2), to quan-
titatively investigate the influence of cellular ATP on the
morphological transition of an RBC membrane. Another
interesting topic involving the mechanics of RBC is the
interplay of morphological transitions of RBC and the flu-
idity properties of blood flow. For example, the viscosity
of blood increases with increased stiffness of RBCs due to
infection, such as occurs in malaria, which places strain
on the heart to maintain the blood flow. The shear fluid
may in turn alter the morphology of the RBC membrane.
Work on viscosity-induced morphological transitions is in
progress, using similar approaches to that described in the
present work.

In summary, we have studied the morphological transi-
tion of a pathological spherocyte through stability analysis
of the spherocyte’s membrane based on the measurements
given in ref. [25] from studies of the relationships be-
tween the morphology and the elastic properties of RBC
membranes. The present work was inspired by clinical
observations in diseases related to RBC morphology and
elasticity; for example, a prevalence of spherocytes in
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the blood stream, together with stiffening of the RBC
membranes, is usually associated with malaria in hu-
mans. We suggest a phase diagram for the morphologies of
RBC membrane with two dimensionless state parameters,
KaR?/k and ApR3/k, showing the possible parameter
space for the stably existing spherocyte. In general, RBC
membranes should be described in a high-dimensional
state parameter space, with a series of parameters associ-
ated with each membrane, including K 4, k, and R. How-
ever, with the two dimensionless parameters, the state
parameter space is reduced to a two-dimensional one,
thereby simplifing the stability analysis in order to study
the conditions for weakening the stability of a patholog-
ical human spherocyte. We also explain the observed
transition from SCs to ECs following the development
of instability of the spherocyte’s membrane. The results
are in good agreement with recent experimental measure-
ments of the morphologies and mechanical properties of
RBCs [24,25]. Our results could be used as a theoreti-
cal guide for the clinical treatment of diseases related to
RBC membrane morphology and elasticity, such as human
malaria. The present approach could also be used to study
more complicated phenomena related to the mechanical
properties of RBC membranes and other soft materials,
such as viral capsids [45-48].
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