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Tuning the Aharonov-Bohm effect with dephasing in nonequilibrium transport
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The Aharonov-Bohm (AB) effect, which predicts that a magnetic field strongly influences the wave function
of an electrically charged particle, is investigated in a three-site system in terms of the quantum control by an
additional dephasing source. The AB effect leads to a nonmonotonic dependence of the steady-state current on
the gauge phase associated with the molecular ring. This dependence is sensitive to site energy, temperature, and
dephasing, and can be explained using the concept of the dark state. Although the phase effect vanishes in the
steady-state current for strong dephasing, the phase dependence remains visible in an associated waiting-time
distribution, especially at short times. Interestingly, the phase rigidity (i.e., the symmetry of the AB phase)
observed in the steady-state current is now broken in the waiting-time statistics, which can be explained by the
interference between transfer pathways.
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I. INTRODUCTION

The celebrated Aharonov-Bohm (AB) effect predicts that
an electromagnetic potential generated by a magnetic field
influences the complex-valued wave function of electrically
charged particles [1]. This genuine quantum effect with no
classical counterpart has been verified in interference experi-
ments [2–7]. Moreover, the relation of spin-orbit coupling and
the AB effect has been investigated and discussed in relation
to thermal properties [8–10]. Yet, the coherent dynamics of
quantum particles is sensitive to dephasing processes, which
appear due to couplings to the thermal environment. For this
reason, signatures of the AB effect will disappear for a strong
system-environment coupling strength.

To study the interplay of the AB effect and dephasing in
detail, we investigate the transport characteristics of a minimal
AB ring consisting of three sites, which is coupled to a
dephasing heat bath, and its potential for quantum manipu-
lation and control. To explore the related basic questions and
discuss fundamental aspects, we choose this generic model
system with potential applications to more realistic systems
and devices.

We are specially interested in the impact of the crossover
from weak to strong coupling on the AB effect. It is known
from investigations of excitonic and electronic dynamics, that
the interplay of coherent and incoherent dynamics can give
rise to interesting consequences, such as the enhancement of
transport efficiency [11]. To calculate the dynamical proper-
ties of the system, we apply the polaron transformation, which
is frequently used in molecular systems [12,13]. It allows
for an accurate theoretical treatment of arbitrary system-bath
coupling strengths on equal footing. The application of the
polaron transformation to transport problems such as the AB
effect has been only recently studied.
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For weak coupling (compared to the energies of the ring
system), we find that the signatures of the AB effect in the
steady-state transport are well visible, although they are at-
tenuated to some extend. For strong coupling, we find that the
AB signature in the steady state nearly completely vanishes. In
contrast, we find that the impact of the AB effect is apparent in
a waiting-time experiment even for a very strong system-bath
coupling.

In order to pronounce the consequences of the AB effect
on the current, we choose the system parameters so that
the three-level system exhibits a dark state. A dark state is
an eigenstate, at which the wave function on a local site
vanishes due to a completely destructive interference of two
coherent paths which a particle can take. This effect has been
intensively investigated in quantum optics [14,15]. Besides,
there are also investigations about the role of dark states in
electron transport [16,17]. In particular, in combination with
the Coulomb blockade, this effect can be used for a quantum
control of the transport properties. Our model and methods
are well suited to demonstrate new aspects of dark states due
to strong environmental coupling and show how to control the
dark-state mechanism in fermionic transport instead of optics.

Our general findings are relevant for various experimental
systems. Electronic semiconductor nanostructures with their
high experimental control of system parameters and quantum
states allow for precise measurements of the current and its
related full counting statistics [18–24], and have been shown
to exhibit the AB effect [25,26]. Single-molecular junctions,
which consist of a molecule bridging two electronic leads
[27–32] and allow for high-precision current and fluctuation
measurements [33–37], have shown clear signatures of quan-
tum interference in molecular ring structures [38,39]. The
electronic dynamics on the molecules is often subjected to
strong dephasing due to the coupling to vibrational modes and
the environment, which can be effectively described with our
methods. Furthermore, using time-dependent optical fields
enables the creation of an artificial gauge field of uncharged
particles in cold-atom experiments [40,41].
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II. THE SYSTEM

As sketched in Fig. 1(a), the system is coupled to two
electronic reservoirs n = 1, 2 and contains three sites n =
1, 2, 3, which are arranged in a ring geometry. This is a
minimal model which is capable of exhibiting the celebrated
AB effect. The electronic dynamics in molecules is often
strongly coupled to the molecular environment. To take this
into account, we assume that site n = 3 is additionally coupled
to a thermal bath.

A. The Hamiltonian

The Hamiltonian describing the system reads

Hth = Hs + Hs,b + Hb + Hs,r + Hr + Hint, (1)

where

Hs =
3∑

n=1

εnâ†
nân +

3∑
n,m=1

Jn,mâ†
nâm,

Hs,b =
∑

k

Vkâ†
3â3(b̂k + b̂†

k ), Hb =
∑

k

ω̂kb†
kb̂k, (2)

Hs,r =
2∑

n=1

∑
k

Wn,k (â†
nĉn + H.c.), Hr =

2∑
n=1

∑
k

εn,k ĉ†
n,k ĉn,k .

The system Hs is coupled to the electronic reservoirs Hr and
heat bath Hb via the Hamiltonians Hs,r and Hs,b. The coupling
between system and electronic reservoirs Hs,r is assumed
to be weak so that an application of the Redfield equation
with Born-Markov approximation is valid, but we allow for
a strong coupling between system and heat bath Hs,b. The op-
erators ân, ĉn,k shall fulfill fermionic commutation relations,
while b̂n,k are bosonic operators. The term Hint describes the
Coulomb interaction of two particles, which is assumed to be

FIG. 1. (a) A molecular junction consisting of three sites n =
1, 2, 3, which are connected to two electronic leads n = 1, 2 and
a thermal bath n = 3. (b) Sketch of the waiting-time experiment. A
particle jumping into the system at t = t0 is subjected to a coherent
time evolution during t0 < t < t1, before it jumps into reservoir
n = 2 at time t = t1. The waiting-time distribution describes the
jump probability as a function of the time difference τ = t1 − t0.

so strong that at most one particle can be in the system. For
this reason, this term is not further specified.

The AB effect in a tight-binding model can only appear in
a ring geometry. Let us consider a parametrization of the inter-
nal system coupling parameters Jn,m = J (0)

n,meiφn,m with real J (0)
n,m

and φn,m. The coupling between the reservoirs and the system
is parameterized accordingly, namely Wn,k = W (0)

n,k eiϕn,k with

real W (0)
n,k , ϕn,k . The phase factors eiϕn,k can be transformed

away by gauge transformations ĉn,k → ĉn,ke−iϕn,k , rendering
Wn,k real valued. However, if all J (0)

n,m �= 0, it is not possible to
completely render the coupling parameters Jn,m real valued by
gauge transformations. In contrast, the phase

φ = φ2,1 + φ3,2 + φ1,3 mod 2π (3)

can be proven to be invariant under transformations ân →
âne−iφ̃n for arbitrary φ̃n. The phase φ is thus a gauge-invariant
quantity and has physical relevance, i.e., the energies and
the eigenstates of the Hamiltonian depend on φ. This is the
underlying reason for the famous AB effect. In contrast, if the
ring is broken, i.e., J (0)

n,m = 0 for one coupling, the phases can
be removed. For example, such a phase φ appears if there is a
magnetic field perpendicular to the ring [42]. More precisely,
the phase can be expressed in terms of a magnetic field
as φ = e

h Bn A, where Bn is the component of the magnetic
field normal to the ring, A is the ring area and h

2e = 2, 068 ·
10−15 T m2 is the magnetic flux quantum. For a notational
reason, we define Jn = J (0)

n,n+1, where n = 4 corresponds to
n = 1.

B. Dark state

A dark state denotes an eigenstate at which the wave
function on one site of the local basis vanish completely due to
destructive interference. Because of this outstanding property,
dark states have been suggested as quantum memory [43]
and are related to electromagnetically-induced transparency
[14,15,44,45].

If two onsite energies εn are equal, Jn = J and φ = 0, π ,
then the system can be easily diagonalized due to the ap-
pearance of a dark state. Assuming, e.g., ε1 = ε3, we find the
eigenstates ∣∣�dark

0,π

〉 = 1√
2

(â†
1 ∓ â†

3)|vac〉. (4)

with energies Edark
0,π = ε3 ∓ J, for φ = 0, π , respectively. The

wave function is valid for the gauge choice of φ1,2 = φ2,3 = 0
and φ3,1 = 0, π . As these states have no overlap with site
n = 2, they are indeed dark states, which have an essential
influence on the transport properties.

III. METHODS

A. Polaron-transformed Redfield equation

To probe experimentally accessible quantities, we focus
on the steady-state electronic current of particles entering
reservoir n = 2 in the long-time limit of t → ∞, the corre-
sponding noise, and the waiting-time statistics.

We take advantage of the polaron-transformed Redfield
equation [46–48]. The polaron transformation is defined by
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a unitary transformation

Û = eŜâ†
3 â3 with Ŝ =

∑
k

Vk

ωk
(b̂†

k − b̂k ). (5)

Details can be found in Appendix A. The polaron transforma-
tion modifies the Hamiltonian Eq. (2) as follows:

J2 → κ J2, J3 → κ J3, ε3 → ε′
3 = ε3 −

∑
j

|Vk|2
ωk

(6)

Hs,b → H (p)
s,b =

∑
j=1,2

Jj â
†
3â jV̂3, j + H.c. , (7)

with

0 < κ = e− 1
2

∑
k

V 2
k

ωk
coth(βωk/2)

< 1, (8)

V̂3, j = eŜ − κ. (9)

Here, κ is a renormalization parameter, which captures the
influence of the strongly coupled bath on the system, i.e., the
onsite energy of site n = 3 gets renormalized. As explained
in Sec. II B, the constrain ε3 = ε1 is a requirement for the
appearance of the dark state. Yet, due the coupling to the
heat bath, this condition has to be fulfilled by ε′

3. In order to
simplify our analysis, we investigate the system as a function
of ε′

3, so that we can directly control the appearance of the
dark state.

Importantly, the polaron transformation renders the cou-
pling to the bath H (p)

s,b weak in comparison to the system
parameters, so that the application of the common Redfield
equation formalism is justified [49]. In doing so, we obtain
equations of motions for the reduced density matrix of the
system ρ = Tr br (ρtot ), where ρtot denotes the density matrix
of the system plus the reservoirs and the bath, and Tr br(.) de-
notes a trace over the bath and reservoirs’ degrees of freedom.
The equation of motion of the reduced density matrix finally
reads

d

dt
ρ = Wρ, (10)

where W is a time-independent matrix and denotes the Liou-
villian superoperator. Details of the derivation can be found in
Appendix B. This approach can describe both, incoherent and
coherent processes [47], similar to the method considered in
Ref. [50]. In contrast to Ref. [51], the polaron transformation
allows to study the influence of decoherence even for strong
couplings γ .

B. Transport observables

Equation (10) can be amended to take account of transport
statistics. In doing so, we consider the conditioned density
matrix ρ(t, N) with N = (N1, N2) of the central system, which
contains additional information about the number of particles
Nn in reservoir n = 1, 2. To this end, we unravel Eq. (10) as

d

dt
ρ(t, N) = W0ρ(t, N) +

∑
n,σ=±

Wn
σ ρ(t, N(n,−σ ) ), (11)

where W0 describes a time evolution with no particle jumps
from or to the reservoirs. The superoperators Wn

σ add (σ = 1)

or remove (σ = −1) a particle to the system, while corre-
spondingly remove or add it to the reservoir n. The quantity
N(n,σ ) is equal to N but with Nn replaced by Nn + σ .

Applying a Fourier transformation in the particle space
N = (N1, N2), the generalized reduced density matrix ρ(t,χ)
fulfills the equation of motion

d

dt
ρ(t,χ) = W (χ)ρ(t,χ)

= W0ρ(t,χ) +
∑

n,σ=±
eiσχnWn

σ ρ(t,χ), (12)

where χ = (χ1, χ2) are the variables conjugated to N. The
current and the frequency-dependent noise can be calculated
using

iIn = 〈
J (1)

n

〉
, (13)

i2S(2)
n = 〈

J (2)
n + J (1)

n [�0(iω) + �0(−iω)]J (1)
n

〉
, (14)

where J (m)
n ≡ ∂m

χn
W (χ) and �0(z) ≡ [z − W0]−1 [52,53].

As we see later, the statistical distribution P(n,n′ )(τ ) of
the time difference τ between two consecutive jump events
Wn

σ=1 and Wn′
σ ′=−1 contains interesting information about

the system dynamics [54]. This waiting-time experiment is
sketched in Fig. 1(b). At time t = t0, a particle enters the
system from reservoir n. The waiting-time distribution de-
scribes the probability that the particle jumps into reservoir n′
at time t1 = t0 + τ . In between, the dynamics is governed by
the internal properties of the system. Thus the waiting-time
distribution can provide insight to the AB effect and the
dephasing dynamics.

According to Ref. [55], the waiting-time probability distri-
bution can be calculated using

P(n,n′ )(τ ) = Tr
(
Wn′

−1eτW0Wn
1 ρs

)
Tr

(
Wn

1 ρs
) , (15)

where ρs denotes the steady states of the system with ρ̇s = 0
for the dynamics in Eq. (10). The denominator ensures the
normalization ∑

n′

∫ ∞

0
P(n,n′ )(τ )dτ = 1. (16)

Single-electron resolution in transport has been achieved in
single-electron transistor experiments such as in Refs. [18,19].
Moreover, waiting-time distributions have been suggested to
reveal the interplay of the electronic and vibrational degrees
of freedom in molecular junctions [56].

IV. RESULTS

A. Steady-state current

In Fig. 2, we plot the stationary current as a function of the
phase φ for different system parameters. In Fig. 2(a), we focus
on the influence of the system-bath coupling, characterized by
the spectral coupling density

�b(ω) ≡
∑

k

|Vk|2δ(ω − ωk ) = γ
ω3

ω2
c

e−ω/ωc , (17)
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FIG. 2. Steady-state currents Is entering reservoir n = 2. If not
specified, overall parameters are J1 = J2 = J3 = J, ε1 = ε ′

3 = 3J,

ε2 = 4J, �1 = �2 = 0.05J, kBTn = 3J, μ1 = 3.5J, μ2 = 1.5J,

γ = 0.1, ωc = 10J, �(0)
n = 0.005J, ωc,n = 10J , and ω0,n = 2J for

n = 1, 2.

where we have chosen a super-Ohmic parametrization with
cutoff frequency ωc.

For the coupling strength γ = 0, we observe that the
current Is sensitively depends on the phase φ. It is interesting
to see that the current exhibits a local minimum at φ = 0,
while the maximum current is reached here for finite phases
φ = ±φm for the chosen chemical potential of μ1,2. In other
words, transport can be enhanced with the help of the AB
effect, i.e., φ �= 0.

As the system-bath coupling strength γ increases, the φ de-
pendence of the current becomes weaker. A rough explanation
of this behavior is that the AB effect is based on the coherent
wave nature of the charge, i.e., the interference of the two
pathways. Due to the increasing coupling to the thermal bath,
thermal fluctuations increasingly destroy the coherent dynam-
ics. This behavior can be observed in Fig. 2(b), where a raising
temperature leads to enhanced thermal fluctuations, which
suppress the coherent system dynamics and consequently the
φ dependence.

The phase dependence of the current can be understood as
follows. According to the Redfield equation with the Born-
Markov secular approximation, the expression for the current
through the system can be written as

Is =
∑

λ=1,2,3

I (λ)
s , (18)

I (λ)
s = P0

k+
1,λk−

2,λ − k−
1,λk+

2,λ

k−
1,λ + k−

2,λ

, (19)

where

k+
n,λ = |〈λ|â†

n|vac〉|2 fn(Eλ)�n(Eλ) = k−
n,λe

Eλ−μn
kBTn (20)

denotes the transition rates from the vacuum state to the
eigenstates |λ〉 with energy Eλ, induced by reservoir n. P0

denotes the probability that the system is in the vacuum
state. Here, fn(E ) is the Fermi distribution in reservoir n and
�n(ω) = �(0)

n ω2
c,n/[(ω − ω0,n)2 + ω2

c,n].
In Appendix C, we show that the current through the

eigenstate |λ〉 in Eq. (19) can be written as

I (λ)
s = Nλ|J1 (Eλ − ε′

3) + J2J3eφ|2. (21)

This expression illustrates the φ sensitivity and its dependence
on the thermal fluctuations. For an increasing system-bath
coupling γ or for a large temperature T3, the tunneling param-
eters are renormalized as J2 → κJ2 and J3 → κJ3 according
to Eq. (6). For larger γ or T3, the polaron renormalization
parameter κ approaches 0. In that limit, it is clear from Eq. (6)
that the coherence in the polaron-transformed Hamiltonian is
suppressed so that the AB effect vanishes. Accordingly, in
Eq. (21), we find that the I (λ)

s dependence on φ vanishes. A
similar reasoning applies to the factor Nλ. The thermal bath
can thus be used to tune the AB effect and the related time-
reversal symmetry breaking. This is thus reminiscent to the
breaking of spatial symmetries with dephasing as investigated
in Ref. [57].

From Eq. (21), it is hard to determine the optimal phase φm

for the maximum current as the φ dependence of Nλ is com-
plicated, as shown in Appendix C. Moreover, Eq. (21) reveals
that the current strongly depends on the onsite potential ε′

3. In
Fig. 2(c), we depict the phase dependence of the current for
different values of ε′

3. The φ dependence is most significant
if ε′

3 is on the same order as ε1 and ε2. If ε′
3 is detuned from

the other onsite energies, the site n = 3 is hard to reach for
a charge initially located at one of the other sites. For this
reason, the intraring coherence and therefor the AB effect is
weakened. Also the φ dependence looks different depending
on ε′

3. For a large (small) ε′
3, we observe a minimum (max-

imum) current φ = 0, and a maximum (minimum) current at
φ = π . For ε′

3 ≈ ε1, ε2, the maximum current is found at finite
φ = ±φm and exhibits a local minimum at φ = 0. Thus, by
tuning ε′

3, one can control the current-phase dependence.
Furthermore, in Fig. 2(d), we find that by adjusting the

phase φ, we can generate distinct ε′
3 dependencies for the

current. For all φ, we observe that the current for small ε′
3

is lower than for large ε′
3. This happens as we allow here only

for single-electron occupation of the system: If ε′
3 � ε1, ε2

or ε′
3 
 ε1, ε2, then there is an eigenstate strongly localized

at n = 3. For ε′
3 � ε1, ε2, this state is likely occupied with

a charge, so that the transport is blocked. For ε′
3 
 ε1, ε2,

the localized state is likely to be empty, so that the transport
properties are determined by the coherent transition from sites
1 → 2. In particular, for φ = 0, we observe a nonmonotonic
dependence on ε′

3. This can be explained with the appearance
of a dark state as explained in the following section.

B. Role of dark state

The current characteristics can be explained following the
arguments in Ref. [58]. It is strongly related to the appearance
of the dark state as described in Sec. II B. Inserting the energy
for the dark state Edark

0,π below Eq. (5) into the partial current
expression Eq. (21) for φ = 0, π , we find that I (λ)

s = 0, i.e.,
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FIG. 3. Spectral analyis of Fig. 2(a) for γ = 0 (solid lines)
and γ = 5 (dashed lines). In (a), we depict the spectrum of the
polaron-transformed system Hamiltonian and in (b) we depict the
occupation of the eigenstates λ = 0, 1, 2, 3 in the stationary steady
state. λ = 0 corresponds to the empty state. We mark the dark states
for γ = 0 (DS) with arrows. The dark states for γ = 5 are located on
corresponding positions.

the dark state does not contribute to the current. Upon tuning
the phase away from φ = 0 or π , the dark state disappears,
so that all eigenstates contribute to the current. Thus, the dark
state may give rise to a suppression of the transport.

To understand this in detail, we depict in Fig. 3(a) the spec-
trum Eλ of the polaron-transformed system Hamiltonian, and
in Fig. 3(b), the occupation of the corresponding eigenstates
λ. The dark states appear for φ = 0 and φ = π/2 in eigenstate
λ = 1 and λ = 2, respectively. Both are energetically located
on a local maximum of Eλ(φ). For this reason, one might
conclude, that they are less thermally occupied in comparison
to the other φ values. Yet, as we observe in Fig. 3(b), the
occupation nλ of the eigenstate λ exhibits a local maximum,
as the dark state Eq. (5) is only coupled to reservoir n = 1,
but not to reservoirs n = 2. Thus, a charge occupying the dark
state can neither enter reservoir n = 1, because all orbitals are
almost occupied due to the chosen chemical potential μ1 nor
can it enter reservoir n = 2, as the dark state has no overlap
with site n = 2. This leads to an enhanced occupation of the
dark state and to a blockade of the transport.

The presence of a dark state explains the dependence of
the current on φ and ε′

3 in Figs. 2(a) and 2(d). As the dark
state only appears at singular parameter combinations, e.g.,
φ = 0 and ε′

3 = ε1, the current shows a decrease when the
system parameters approach the dark-state configuration. In
Fig. 2(d), the influence of the dark state is not as prominent
for φ = π as for φ = 0, because the dark-state energy Edark

π =
ε1 + J is above the transport window Edark

π > E ∈ (μ2, μ1).
Nevertheless the current for φ = π is significantly smaller
than the current for φ = π/2, which is a consequence of the
dark state.

We emphasize that the dark-state blockade and the mini-
mum in the transmission observed in the molecular transport
experiment [38] are both based on destructive interference
of different charge paths. The experiment demonstrates that
the electronic transport occurs essentially via three localized
molecular orbitals, so that it is strongly related to our model
system. Furthermore, interference experiments related to dark
states have interesting applications such as the interaction

FIG. 4. Figure of merit F ≡ ∂Is/∂Bn defined as the derivative of
the stationary current with respect to the magnetic field component
normal to the ring scaled by the area of the ring A. The curves
correspond to the three cases in Fig. 2(a). We have chosen an
experimental realistic value of �(0)

n = 10 kHz.

free measurements using anti-resonances in optical and solid-
state systems, which are also feasible to coherently detect
dissipation [59–61].

C. Figure of merit

In an experimental investigation, the response of the cur-
rent due to a change of the magnetic field is important. To this
end, we define a figure of merit by

F = ∂Is

∂Bn
, (22)

which we depict, scaled by the ring area A, in Fig. 4. Here
we use the same parameters as in Fig. 2(a), and we choose an
experimentally realistic reservoir coupling of �(0)

n = 10 kHz
[18]. From Fig. 2(a), we can thus conclude that Is(φ ≈ 0.5) ≈
500 s−1. In the following we discuss two examples.

A semiconductor quantum dot (or single electron transis-
tor) has a characteristic size of 1 μm, so that the area of a
triple quantum dot is in the order of A = 1 μm2. φ = 0.5
corresponds to a magnetic field of Bn ≈ 0.3 mT. From Fig. 4,
we find that for this magnetic field the figure of merit is
F = 6 × 105 s−1 T−1, so that an increase of �Bn = 0.01 mT
gives rise to a current change of �Is ≈ 6 s−1. This can be
measured in experiments [18].

Molecules can have ring structures with area A ≈ 1 nm2,
so that a magnetic field of Bn = 300 T is needed to acquire a
phase of φ = 0.5. However, the largest artificially generated
continuous magnetic field is nowadays Bn = 45 T [62]. Thus
the values φ ≈ 0, π in our model refer to interference phe-
nomena in molecular ring structures, such as experimentally
investigated in Refs. [38,39]. Our investigation based on the
polaron transformation helps to reveal the impact of dephas-
ing on the interference in molecular setups, where the cou-
pling between electronic and vibronic degrees of freedom is
crucial.

D. Frequency-dependent noise

Although the current shows a strong dependence on the
phase φ, it is symmetric regarding the inversion φ → −φ.
This symmetry is denoted as phase rigidity [9]. It is related
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FIG. 5. Frequency-dependent noise. The parameters are as in
Fig. 2(a) for γ = 1. Dashed lines depict the energy differences of
two eigenstates �Eλμ = Eλ − Eμ of the polaron-transformed system,
with λ, μ = 1, 2, 3.

to the fact that the current is not sensitive to the details of the
coherent dynamics of the system. To get more information
about the internal dynamics, the frequency-dependent noise
Eq. (14) is a more appropriate observable. We depict the
noise in Fig. 5 as a function of φ and ω. We observe a
mainly frequency independent pattern which results from the
J (2)

n=2 operator in Eq. (14). On top of that, we observe a
frequency-dependent structure. This structure resembles the
energy differences of the eigenstates �Eλμ = Eλ − Eμ, which
we depict in Fig. 5 with dashed lines. Although it thus gives
information about the internal structure of the system, it
nevertheless exhibits a φ ↔ −φ symmetry.

We stress that the phase rigidity is a consequence of the
fact that our system exhibits two electronic reservoirs. It is
well know that the phase rigidity in the stationary current is
broken when increasing the number of electronic reservoirs,
as experimentally demonstrated in Refs. [25,26]. In contrast,
the third terminal in our system is a heat bath, which does
not break the phase rigidity, even not for strong coupling, as
demonstrated here.

E. Waiting-time statistics

In contrast to the stationary current and its noise, the
waiting-time statistics as defined in Eq. (15) indeed violates
the φ ↔ −φ symmetry, similar to the transient current inves-
tigated in Ref. [9]. Figure 6 shows instances of time evolutions
for φ = 0,±π/2. In Figs. 6(a)–6(c), we plot the occupations
of the sites Nn for n = 1, 2, 3 by a particle that has jumped at
time t = t0 from reservoir n = 1 into the system.

In all three cases, we observe an oscillating time evolution
of the site occupations. The total system occupation, which
is initially

∑
n Nn = 1, decreases as a function of time. This

reflects that the charge can leave the three-site system and
enters one of the reservoirs. Interestingly, for φ = +π/2, the
particle first visits site n = 2 and then n = 3. In contrast, for
φ = −π/2, the particle first occupies site n = 3 before it goes
to n = 2. Thus the phase φ steers the path of the particle.

In Figs. 6(d)–6(f), we plot the corresponding waiting-time
distributions that the particle jumps after time τ into reservoir

n = 1, 2. The waiting-time distribution function are strongly
correlated to the occupations of the sites n = 1, 2. Thus the
waiting-time experiment allows to study the internal popula-
tion dynamics of the system.

In Fig. 7, we investigate the waiting-time distribution
P(1,2)(t ) as a function of φ for different parameters. In
Fig. 7(a), we consider the case γ = 0, which exhibits an inter-
esting pattern that breaks the φ ↔ −φ symmetry. In partic-
ular, for φ > 0, the waiting-time distribution reaches faster a
maximum than for a negative φ. This is in agreement with the
explanations of Fig. 6.

Figures 7(b) and 7(c) depict the influence of dephasing
on the waiting-time statistics. In Fig. 7(b), we consider an
intermediate dephasing parameter γ = 1 and observe that the
pattern is essentially equivalent to Fig. 7(a), but more smeared
by decoherence.

The observations in Fig. 7(c), where we consider a strong
system-bath coupling γ = 5, is remarkable. Although the φ

dependence has almost vanished for large times τ J > 4, the
φ dependence is still clearly pronounced for short times.
Here, the influence of the heat bath n = 3 onto the dynamics
becomes particular obvious. A positive φ directs the particle
from site n = 1 to n = 2 at short times, so that the short-time
waiting-time distribution is reminiscence to the γ = 0 case. A
negative φ directs the particle to the dephasing site n = 3, so
that the action of the dephasing is visible even at short times.

In Figs. 7(d) and 7(e), we investigate the influence of the
onsite potential ε′

3 by considering ε′
3 = J and ε′

3 = 7J for
γ = 0. Although the waiting-time distribution is still sensitive
on the phase, the broken symmetry φ ↔ −φ is less obvious
then in Fig. 7(a). This is a consequence of the large detuning
of ε′

3 in comparison to ε1 = 3J and ε2 = 4J , which makes
the transfer over n = 3 unlikely. Thus, the ring structure,
an essential ingredient for the AB effect, is weakened. As
a consequence, the isolated probability maxima observed in
Fig. 7(a) become horizontally extended and connected, so that
they form a bandlike pattern as we can see clearly in Fig. 7(d).
This resembles the decreased dependence on φ. A similar
pattern can be found in Fig. 7(e), at which the bands are more
deformed.

F. Tuning the interference with the Aharonov-Bohm phase

To analytically evaluate the interference effect, we dis-
tribute the dynamics of the charge into the two path ways
which the particle can take as shown in the sketches of Fig. 6.
The probability that the charge is located on site n = 2 at time
t with the initial population at n = 1 at time t = 0 is given by

|〈2|Û (t )|1〉|2 ≈ |〈2|Û (0)(t ) + Û (1)(t )|1〉|2, (23)

where the time evolution operator Û (t ) of the system is
approximated by a sum of two time evolution operators Û (0)

and Û (1). These two operators are related to Û (t ) by replacing
either J3 = J2 → 0 or J1 → 0, respectively.

For simplicity, we assume here that εn = ε, and Jn = J .
The calculation of the right hand site of Eq. (23) can be
performed analytically as shown in Appendix D. We find

|〈2|Û (t )|1〉|2 ≈ ∣∣ieiφ sin(Jt ) − 1
2 + 1

2 cos(
√

2Jt )
∣∣2

. (24)
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FIG. 6. [(a)–(c)] Occupation of the sites n = 1, 2, 3 (dotted-dashed, solid, dashed) as a function of time τ for a charge that enters the
system in Fig. 1 from reservoir n = 1 for different φ. The black dotted line depicts the total occupation of all sites. [(d)–(f)] Waiting-time
distribution P(1,n)(τ ) that the particle jumps into reservoir n = 1 or n = 2 after the time difference τ , as defined in Eq. (15). Overall parameters
are as in Fig. 2(a), but γ = 0 and kBTn = 5J . The phases are φ = 0 [(a) and (d)], π [(b) and (e)], and −π [(c) and (f)].

This expression allows for an intuitive interpretation of the
interference pattern observed in Figs. 7(a)–7(c). We find a
maximum constructive interference for φ = π/2, while for
φ = −π

2 we observe a destructive interference for short times.
Moreover, for φ = π/2 the amplitude is maximal at J t ≈
π/2, while for φ = −π/2, it is maximal for J t ≈ 3π/2.
Although we have assumed that εn are all equal, this is in good
agreement with the observation in Figs. 7(a)–7(c).

However, this approach fails to describe the pattern in
Figs. 7(d)–7(e). In the approximation Eq. (23), we have

assumed that both paths are equally likely. If ε′
3 is detuned

from ε1 and ε2, then the charge will prefer the direct way
1 → 2, as this constitutes a resonant particle transfer. This
preference is not incorporated in Eq. (23).

G. Aharonov-Bohm effect versus dephasing

Figures 7(a)–7(c) shed new light on the dynamics of the
three-site model. Let us compare two observations. First, right
after the charge is localized at t = t0, its dynamics is sensitive

(a) (b) (c)

(d) (e)

FIG. 7. Waiting-time distribution P(1,2)(τ ) for a particle which enters the central system in Fig. 1(a) from reservoir n = 1 and jumps to
reservoir n = 2 as defined in Eq. (15). Overall parameters are the same as in Fig. 2(a), but kBTn = 5J . In (a), (b), and (c), we have chosen
γ = 0, 1, and 5, respectively, and ε ′

3 = 3J . In (d) and (e), the parameters are ε ′
3 = J and ε ′

3 = 7J for γ = 0.
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FIG. 8. (a) Renormalization factor κ as a function of γ . (b) Tran-
sition rates γμ,ν = Wμμ,ν,ν between the eigenstates μ, ν = 1, 2, 3
induced by the heat bath n = 3. Parameters are equal to Fig. 7(a).

to φ and evolves according to the system Hamiltonian and
thus the AB effect, as can be seen in all panels in Fig. 7.
Second, the dephasing does not occur immediately, but the
phase information becomes gradually deleted and vanishes at
long times τ J ≈ 4 in Fig. 7(c). Thus, in contrast to the rapid
onset of the AB effect, the dephasing is a cumulative effect. In
particular, observing Fig. 7(c), we conclude that the dephasing
takes place only when the particle passes site n = 3. Our
findings are consistent with Ref. [63], which demonstrated
that in transport through molecules with localized dephasing
probe decoherence does not take place immediately.

In Fig. 8, we investigate the impact of dephasing onto the
system in more detail. In Fig. 8(a) we depict the dependence
of κ on the system-bath coupling γ . The exponential decrease
according to Eq. (8) is determined by the temperature T3. For
γ = 5 as in Fig. 7(c), we find a reduction of 50%, so that
the ring structure is still quite strong. In Figs. 8(b)–8(d), we
investigate the transition rates gμν determining the thermally
induced transitions between eigenstates μ to ν in the Redfield
equation (10). For the rate g12 at φ = π , we find a crossover
from an increasing rate for small γ to a decreasing rate at
large γ . The maximum can be found around γ = 3. This is a
typical feature for the crossover from week to strong coupling
[11,46]. It is surprising to see in Fig. 8(b) that g12 strongly
depends on φ for γ = 3. While it is maximal at φ = π , it is
minimal for φ = 0. In contrast, g23 exhibits a complementary
behavior.

The rates can be written as a product gμν = C(Eμ −
Eν ) Aμν , where C(x) denotes the bath correlation function
which depends on the energy differences and Aμν depends on
the coupling operators Eq. (9) and the eigenstate wave func-
tion of the polaron-transformed system Hamiltonian. Consid-
ering the spectra for small and large γ in Fig. 3(a), we find
that the spectral dependence on φ reduces for larger γ , as κ

decreases. Thus we can infer that the strong φ dependence
observed in Fig. 8 is caused by the wave function deforma-
tion. The rate g13 is relatively small compared to the other
rates as the thermal activation energy E3 − E1 is relatively
large.

V. CONCLUDING DISCUSSION

The reported study of the interplay of the celebrated AB
effect and dephasing has revealed several intriguing findings.
(1) The interplay of the coherent AB effect subjected to
dephasing is visible in the current through the ring system.
As expected, the signatures of the AB effect in the steady-
state current vanish in the strong dephasing limit, so that the
amplitude of the AB oscillations, i.e., the phase dependence,
is significantly reduced. This reduction can be found for both,
an increasing system-bath coupling and an increasing bath
temperature. Therefore large thermal fluctuations randomize
the coherent phase relation between different pathways and
thus suppress the phase dependence. Yet, surprisingly, the
steady-state current can increase with the dephasing rate,
which can be attributed to the dark-state effect summarized
next.

(2) The AB phase can be used to control the interference
of the two transfer pathways. For a moderate dephasing rate,
the phase can be harnessed to increase the steady-state current
such that the optimal phase for the maximum current appears
at a finite value, φm �= 0, for the chosen chemical potential.
The interplay of constructive and destructive interference is
particularly strong if the system exhibits a dark state for
singular values of the phase. Precisely because of the dark-
state effect, the phase dependence of the current changes its
functional form as the site energy ε3 increases. As the dark
state is an effect, which relies on the coherent nature of the
charges, the impact of the dephasing is clearly manifested in
the response of the dark state on the increasing system-bath
coupling. The phase dependence of the current was signifi-
cantly reduced, when tuning the system parameters away from
the dark-state configuration. This effect is particularly strong,
if one chooses the chemical potentials of the leads so that the
dark state is located in the transport window.

(3) Furthermore, unique signatures of the AB effect, in-
cluding a breaking of the phase rigidity, can be observed in
the waiting-time statistics, which is related to the transient dy-
namics of the system. While the steady-state current exhibits
the symmetry with respect to the sign of the phase, the phase
rigidity breaks down in the waiting-time statistics such that
the positive and negative phases lead to different transient cur-
rents, I (φ, t ) �= I (−φ, t ) for small t . Interestingly, this effect
survives in the waiting-time statistics at short times even in the
presence of a strong system-bath coupling. This observation
reveals that the AB effect dictates the initial dynamics while
dephasing gradually sets in later. Besides dephasing, the AB
impact can be weakened by detuning the on-site potential ε3.
This leads to a significant structural change of the interference
pattern in the waiting-time statistics. In contrast, the interplay
of dephasing and AB effect results in a gradually smearing
of the original pattern. Overall one can thus conclude that the
waiting-time statistics is more sensitive to the interplay of AB
effect and dephasing than the stationary current.
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APPENDIX A: POLARON TRANSFORMATION

1. General Hamiltonian

A generalization of the Hamiltonian in Eq. (1) reads

Htot = Hs + Hb + Hsb + Hr + Hsr, (A1)

where

Hs =
∑

n

εnâ†
nân +

∑
n �=m

Jmnâ†
mân, (A2)

Hr =
∑

nk

�nk ĉ†
nk ĉnk, (A3)

Hs,r =
∑

nk

γnk ĉ†
nkânk + H.c., (A4)

where â†
n and ĉ†

n,k are fermionic creation operators while b̂†
nk

account for the phononic/photonic degrees of freedoms in the
heat baths.

2. Polaron transformation

Here and in the following, we assume that the system is
only weakly coupled to the reservoir, but we want to allow
for an arbitrary coupling strength to the heat baths. To get a
valid analytical description that applies over arbitrary system-
bath coupling strength, we perform a poloran transformation
in the following. Thereby we refer to Ref. [64]. The polaron
transformation is performed by applying the unitary operator

eŜ = e
∑

n,k
gnk
ωnk

â†
nân(b̂†

nk−b̂nk )

=
∏

n

e
∑

k
gnk
ωnk

â†
nân(b̂†

nk−b̂nk ) =
∏

n

eâ†
nânS̃n . (A5)

In doing so, the Hamiltonian (A1) gets modified by Jmn →
Jmnκmκn and Hsb → 1

2

∑
mn Vmn, where

κm = e− 1
2

∑
k

g2
mk

ωmk
coth (βωmk/2)

→ κm = e− ∫ ∞
0

dω
2π

Jm (ω)ω2 coth(βmω/2),

Vmn = eŜm e−Ŝn − κmn. (A6)

Later we want to construct the Redfield equation describing
the reduced dynamics of the system. For this reason, we need
the correlation function

〈Vmn(t )Vm′n′ 〉b = κmκm′κnκn′ (A7)

×[
eλm

m′n′φm (t )+λn
n′m′φn(t ) − 1

]
, (A8)

where λm
m′n′ ≡ δm,n′ − δm,m′ determines the sign and

φm(t ) =
∫ ∞

0

dω

2π

Jm(ω)

ω2
[cos(ωt ) coth(βmω/2) + i sin(ωt )].

(A9)

APPENDIX B: REDFIELD EQUATION IN BORN-MARKOV
APPROXIMATION

To derive the equation of motion of the reduced density
matrix Eq. (10), we follow the steps in Ref. [49]. A general
Hamiltonian describing the coupling to the baths reads

H = Hs + Hb +
∑

α

B̂α ⊗ Âα, (B1)

where Hs and Hb denote the Hamiltonians of the system and
the bath, respectively. They are coupled by a sum of products
of system (Âα) and bath (B̂α) operators.

The Redfield equation in second-order perturbation theory
with Born-Markov approximation reads

d

dt
ρ = −i[Hs, ρ] −

∑
α,β

[Âα, Gα,β ], (B2)

where we have defined

Gα,β = lim
t→∞

∫ t

0
Cα,β (τ )Âβ (−τ )ρ−Cβ,α (−τ )ρÂβ (−τ )dτ

with

Âβ (τ ) = eiHsτ Âβe−iHsτ ,

and the bath correlation function

Cα,β (τ ) = tr[eiHbτ B̂αe−iHbτ Bβρb(0)] (B3)

= 〈B̂α (t )B̂β〉b. (B4)

Here, ρb(0) denotes the initial state of the bath.
We continue to evaluate the integral expression in the

eigenbasis of Hs, which we denote by |a〉, which corresponds
to the eigenvalues ωa. Let us for example consider the term

G (1)
α,β = lim

t→∞

∫ t

0
Cα,β (τ )Âβ (−τ )ρ dτ

=
∫ ∞

0

∑
abcd

Cα,β (τ )Aα
abρcd |a〉〈b||c〉〈d|e−i(ωa−ωb)τ

=
∫ ∞

0
Cα,β (τ )

∑
abc

Aα
abρbc|a〉〈c|e−i(ωa−ωb)τ , (B5)

where we have used the expansion of the operators

ρ =
∑
cd

ρcd |c〉〈d|, Âα =
∑

ab

Aα
ab|a〉〈b|. (B6)

Now we use that we consider large times, so that we can set
t → ∞. We further use that∫ ∞

0
e−iωτCα,β (τ )dτ = C̃α,β (ω), (B7)

so that we finally find

0 = −i(ωad )ρad −
∑

α,β,bc

Aα
abAβ

bcρcdC̃α,β (ωbc)

+
∑

α,β,bc

Aβ

abρbcAα
cdC̃α,β (−ωcd )

+
∑

α,β,bc

Aβ

abρbcAα
cdC̃α,β (ωab)

−
∑

α,β,bc

ρabAα
bcAβ

cdC̃α,β (−ωbc). (B8)
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For the polaron transformed Hamiltonian discussed in
Sec. III A, we identify∑

α

B̂α ⊗ Âα =
∑

n=1,2

Jnâ†
3ân ⊗ V̂3,n + H.c. (B9)

The bath correlation functions Cα,β (τ ) of the V̂3,n are given in
Eq. (A8).

APPENDIX C: APPROXIMATE CURRENT FORMULA

Considering the case of a vanishing system-bath coupling
γ = 0, the stationary state of the Redfield equation with Born,
Markov, and secular approximation fulfills

P0k+
λ = Pλk+

λ , P0 = 1

1 + ∑
λ>0

k+
λ

k−
λ

, (C1)

with Pλ denoting the probabilities to be in eigenstate |λ〉,
and k±

λ = k±
1,λ + k±

2,λ defined in Eq. (20). The current can be
expressed as

Is =
∑
λ>0

k+
1,λP0 − k−

1,λPλ (C2)

=
∑
λ>0

P0
k+

1,λk−
2,λ − k−

1,λk+
2,λ

k−
1,λ + k−

2,λ

(C3)

≡
∑
λ>0

I (λ)
s . (C4)

Let us now introduce the Green’s function by

G(z) ≡ i
1

z + iHs
= i

∑
λ

|λ〉〈λ|
z + iEλ

(C5)

for a complex-valued z. Here, Eλ and |λ〉 denote the eigen-
values and eigenstates of Hs. For a real E , we also define the
retarded (r) and advanced (a) Green’s function by Gr,a(E ) =
limδ→0+ ≡ G(−iE ± δ). Using the Dirac identity

lim
δ→0+

1

x + iδ
= P (x) + iπδ(x), (C6)

it is not hard to see that

1

2i
〈n|Gr (Eλ) − Ga(Eλ)|m〉 = 〈n |λ〉〈λ |m〉 ≡ Gλ,−

nm . (C7)

For this reason, we can rewrite the expression for the current
as

k+
n,λk−

m,λ = |Gλ,−
λ,nm|2�n(Eλ)�m(Eλ) fn(Eλ)[1 − fm(Eλ)],

k+
n,λ = Gλ,−

λ,nn · �n(Eλ) fn(Eλ),

k−
n,λ = Gλ,−

λ,nn · �n(Eλ)[1 − fn(Eλ)]. (C8)

The Green’s function can be easily obtained by inversion
of a 3 × 3 function according to Eq. (C5). In doing so, we
find

〈n|G(z)|m〉 = i
[g(z)]nm

G(z)
, (C9)

where

[g(z)]11 = (z + iε2)(z + iε3) + J2J2,

[g(z)]21 = −iJ1e−iφ (z + iε3) − J2J3,

[g(z)]31 = −J1e−iφJ2 − iJ3(z + iε2),

[g(z)]12 = −J2J3 − iJ1eiφ (z + iε3),

[g(z)]22 = (z + iε1)(z + iε3) + J3J3,

[g(z)]32 = −(z + iε1)iJ2 − J1eiφJ3,

[g(z)]13 = −J1J2eiφ − iJ3(z + iε2),

[g(z)]23 = −i(z + iε1)J2 − J1e−iφJ3,

[g(z)]33 = (z + iε1)(z + iε2) + J1J1,

and

G(z) ≡ det(z + iHe)

= (z + iε1)(z + iε2)(z + iε3) − 2iJ1J2J3 cos(φ)

+ (z + iε2)J2
3 + J2

1 (z + iε3) + J2
2 (z + iε1). (C10)

For a notational reason, we have introduced Jn = J (0)
n,n+1 for

n = 1, 2, 3 with n = 4 corresponds to n = 1. Putting now all
ingredients together, we obtain

I (λ)
s = Nλ|J1 (Eλ − ε3) + J2J3eφ|2, (C11)

with

Nλ = P0

Kλ

�n(Eλ)�m(Eλ) fn(Eλ)[1 − fm(Eλ)]∑
n=1,2 �n(Eλ)gλ

nn[1 − fn(Eλ)]
,

P0 = 1

1 + ∑
λ>0

∑
n=1,2 �n (Eλ )gλ

nn fn (Eλ )∑
n=1,2 �n (Eλ )gλ

nn[1− fn (Eλ )]

,

Kλ =
∏

λ′ �=0,λ

(−i)(Eλ − Eλ′ ),

where we have defined gλ
nm ≡ [g(−iEλ)]n,m.

APPENDIX D: PATH INTERFERENCE

We are interested into the transition probability from site
n = 1 to site n = 2 as discussed in Sec. IV F. To this end, we
have to calculate the matrix elements U (0)

1,2 (t ) and U (1)
1,2 (t ) of

the (conditioned) time evolution operators. For simplicity we
assume ε1,2 = 0 in the following.

To obtain U (0,1)
1,2 (t ), we use that the time-evolution operator

is related to the Green’s function defined in Eq. (C5) by a
Laplace transformation. In doing so, we obtain

∫ ∞

0
e−zt e−iHst = 1

z + iHs
= −iG(z). (D1)
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Setting J2 = J3 = 0 and J1 = J , we apply the inverse Laplace
transformation to

−i〈2|G(z)|1〉 = −iJe−iφ

z2 + J2
→ ieiφ sin(Jt ) = U (0)

1,2 (t ) (D2)

to obtain U (0)
1,2 (t ). To calculate U (1)

1,3 (t ), we set J2 = J3 = J and
J1 = 0. Applying the inverse Laplace transformation to

−i〈2|G(z)|1〉 = −J2

z(z + iε3) + zJ + zJ
(D3)

= −J2

z(z − z1)(z − z2)
(D4)

with

z1,2 = −i
ε3

2
± i

√
ε2

3

4
+ 2J2, (D5)

we obtain

U (1)
1,2 = − J2

z1z2
− J2ez1t

z1(z1 − z2)
− J2ez2t

z1(z2 − z1)
, (D6)

and if additionally assuming ε3 = 0, we find

U (1)
1,2 (t ) = − 1

2 + 1
2 cos(

√
2Jt ). (D7)
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