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ABSTRACT: We recently developed a pathway analysis frame-
work (paper 1) for describing single-molecule kinetics for renewal
(i.e., memoryless) processes based on the decomposition of a
kinetic scheme into generic structures. In our approach, waiting
time distribution functions corresponding to such structures are
expressed in terms of self-consistent pathway solutions and
concatenated to form measurable probability distribution
functions (PDFs), affording a simple way to decompose and
recombine a network. Here, we extend this framework to
nonrenewal processes, which involve correlations between events,
and employ it to formulate waiting time PDFs, including the first-
passage time PDF, for a general kinetic network model. Our
technique does not require the assumption of Poissonian kinetics,
permitting a more general kinetic description than the usual rate
approach, with minimal topological restrictiveness. To demonstrate the usefulness of this technique, we provide explicit
calculations for our general model, which we adapt to two generic schemes for single-enzyme turnover with conformational
interconversion. For each generic scheme, wherein the intermediate state(s) need not undergo Poissonian decay, the functional
dependence of the mean first-passage time on the concentration of an external substrate is analyzed. When conformational
detailed balance is satisfied, the enzyme turnover rate (related to the mean first-passage time) reduces to the celebrated
Michaelis−Menten functional form, consistent with our previous work involving a similar scheme with all rate processes, thereby
establishing further generality to this intriguing result. Our framework affords a general and intuitive approach for evaluating
measurable waiting time PDFs and their moments, making it a potentially useful kinetic tool for a wide variety of single-molecule
processes.

1. INTRODUCTION

Condensed-phase spectroscopic advances have afforded the
observation of real-time biomolecule trajectories at the single-
molecule (SM) level.1,2 Such time traces offer information on
microscopic kinetics that is often unobtainable from ensemble-
averaged measurements, such as the effect of dynamic disorder
due to conformational interconversion on enzyme turnover.3−5

An SM experiment permits the measurement of probability
distribution functions (PDFs) of the waiting times between
detectable molecular events, those of which can be used for
kinetic analysis. One such PDF of interest, the first-passage
time PDF ϕ(t), can be employed to evaluate several key
quantities, including the mean first-passage time, which is
related to the turnover rate (in the context of enzyme
kinetics),6,7 velocity (for molecular motors),8 or flux through
an ion channel (for ion transport).9 From a theoretical
perspective, it is thus useful to build kinetic models
characterized by such measurable PDFs to make suitable
connections to SM experiments.
The underlying transitions of an SM kinetic scheme, by

definition, are (first-order) rate processes (i.e., linear kinetic
transitions), with the underlying states each undergoing

Poissonian decay characterized by a monoexponential decay
time (i.e., dwell time) PDF. It is often the case in SM
experiments, however, that some states in a proposed scheme
undergo non-Poissonian decay (characterized by, for instance,
multiexponential, stretched exponential, or power law decay
time PDFs10) due to hidden internal dynamics and thus
represent aggregates of states,11 rather than underlying ones.
Transitions out of such aggregated states cannot be properly
treated as rate processes,12 so it is advantageous to describe
them by waiting time distribution functions of arbitrary form.13

The waiting time distribution formalism is based on such
transition waiting time distribution functions and can be used
to formulate measurable PDFs, including ϕ(t), without
necessitating the assumption of Poissonian kinetics.10 This
permits a more general time/probability kinetic description,
which has fewer topological restrictions than the typical rate
approach. This alternative description has been developed by
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Ninio for the mean first-passage time,14 but the waiting time
distribution framework extends it to the entire PDFs.
Recently, we developed a self-consistent pathway approach

(paper 1),10 equivalent to the waiting time distribution
formalism, based on the decomposition of an SM scheme
into generic structures (motifs). In our framework, waiting time
distribution functions corresponding to such motifs are written
in terms of self-consistent pathway solutions and concatenated
to construct measurable PDFs in an intuitive manner,
permitting a straightforward means of decomposing and
recombining a network. Subsequently, we employed this
approach to study stochastic fluctuations in enzyme turnover
events for a generic scheme containing an aggregated
intermediate state with an arbitrary internal topology (paper
2).12 Unlike a predetermined scheme, a generic scheme can
generate all possible kinetic models with the same basic
topological connectivity, requiring minimal assumptions on the
form of the underlying scheme. These analyses, however, were
restricted to renewal processes, which are characterized by
independent and identically distributed events.15 At the SM
level, processes are often nonrenewal in nature (with
measurable memory effects3,16,17), particularly those involving
enzymes, which undergo conformational fluctuations on many
time scales.18 Here, we extend our self-consistent pathway
framework to nonrenewal processes and apply it to generic
schemes for single-enzyme turnover. The hallmarks of our
approach are its incorporation of self-consistency, focus on
measurable waiting time PDFs, suitability for a more general
time/probability kinetic description, and connection to SM
networks that may involve non-Poisson decay processes.
This article is organized as follows: In Section 2, we

introduce the established waiting time distribution framework,
which can be used to formulate measurable PDFs,10 in the
context of nonrenewal SM processes. In Section 3, we develop
kinetic motifs involving transitions between SM state manifolds
and discuss how they can be employed to equivalently
construct measurable waiting time PDFs in a more mathemati-
cally compact fashion. By examining a general kinetic network
model, we demonstrate in Section 4 how such measurable
PDFs can be expressed in terms of self-consistent pathway
solutions based on these motifs. In Section 5, we present
explicit calculations for such a model, which we adapt to two
generic schemes for enzyme turnover with conformational
interconversion. For each generic scheme, we examine the
functional dependence of the mean first-passage time on the
concentration of an external substrate.

2. NONRENEWAL WAITING TIME DISTRIBUTION
FORMALISM

In this section, we make some basic definitions and introduce
the established waiting time distribution formalism10 in the
context of nonrenewal SM processes. This is equivalent to the
novel self-consistent pathway framework we develop in
Sections 3 and 4, but as we explain in Section 3, our pathway
technique is more mathematically compact and less redundant.
Herein, we refer to an SM scheme as being composed of
discrete states, each of which may or may not be aggregated,
connected by unmonitored and monitored kinetic transitions.
To avoid non-Markovian memory,11 which is different from
nonrenewal memory, we require that all transitions into an
aggregate proceed into the same underlying (i.e., intra-
aggregate) state. We refer to a kinetic step as a set of forward
and reverse transitions connecting two states. A step can be

reversible or irreversible, and two states may be connected by
more than one step. We restrict our analysis to schemes with
irreversible monitored steps and consider an event to be the
occurrence of a monitored transition. Driving sources are
assumed to be time-independent. Thus, because the monitored
steps are irreversible, for nontrivial kinetics, the system
eventually reaches a nonequilibrium steady state as the inherent
thermodynamic inconsistency of the scheme precludes
equilibrium behavior. We refer to an event state as a state
into which at least one monitored transition proceeds. A
scheme with a single event state must correspond to a renewal
process (even if it includes multiple monitored transitions);
however, a renewal process can involve multiple event states
(example in Section 5.2) as long as the consecutive-event
difference distribution function vanishes (see the Supporting
Information for details). A nonrenewal process necessarily
involves multiple event states and is characterized by memory
effects3,16,17 (i.e., correlations between events), which often
arise due to the presence of multiple types of transitions (e.g.,
chemical and conformational transitions). As shown in paper
1,10 a renewal process is completely specified by ϕ(t) (the PDF
of the waiting time between consecutive events [first-passage
time]), i.e., all quantities corresponding to SM measurements
can be readily determined once ϕ(t) is known. A nonrenewal
process is described by a set of PDFs, which can be
inhomogeneously averaged to obtain measurable PDFs,
including ϕ(t). However, ϕ(t) does not describe multievent
kinetics for nonrenewal processes (discussed in the Supporting
Information).
Consider a closed, X-state SM kinetic network described by

A(Ξ), where Ξ is a state coordinate with the discrete
representation Ξj for 1 ≤ j ≤ X. The state corresponding to
Ξj is thus represented by A(Ξj) = Aj. The waiting time matrix
for the scheme Q(t) is defined as Qi,j(t) = ∑μQi,j

(μ)(t), where
Qi,j

(μ)(t) is the waiting time distribution function for transition μ
from Aj to Ai because the two states may be connected by
multiple steps. For instance, in the SM version of the
Michaelis−Menten (MM) model for enzyme turnover
(discussed in Section 5.2), the unbound and substrate-bound
enzymatic states are connected by a substrate binding/
dissociation step as well as a catalytic step. When transition μ
from Aj to Ai is a rate process, Qi,j

(μ)(t) = ki,j
(μ) exp[−kjt], with

corresponding rate ki,j
(μ) and Aj depletion rate kj = ∑i≠j,μki,j

(μ). In
the waiting time distribution formulation, however, Qi,j

(μ)(t) can
take on an arbitrary form; thus, the Aj decay time PDF∑iQi,j(t)
need not be monoexponential. For a scheme with all rate
processes, the waiting time distribution formalism becomes
equivalent to the transition rate matrix formalism, wherein the
kinetics can be described by the rate matrix K, where Ki,j = δi,jkj
− (1 − δi,j)∑μki,j

(μ), with the master equation, Ṗ(t) = −KP(t),
for the population distribution vector P(t). In the remainder of
this section, we focus on the waiting time distribution
framework for formulating measurable PDFs for nonrenewal
processes (as we did in paper 1 for renewal processes10), but we
indicate the forms that key quantities reduce to in this special
case of equivalence.
The waiting time matrix can be separated into monitored and

unmonitored parts as follows: Q(t) = Q0(t) + Q′(t), with Qi,j′ (t)
= ∑μQi,j′(μ)(t), where Qi,j′(μ)(t) is the waiting time distribution
function for monitored transition μ from Aj to Ai, and Q0(t)
represents the contribution of the unmonitored transitions.
Note that Qi,j′ (t) may differ from Qi,j(t) because not all Aj-to-Ai
transitions are necessarily monitored. We note that in the rate
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matrix formalism, K can be written as K = K0 − K′, with Ki,j′ =
(1 − δi,j)∑μki,j′(μ), where ki,j′(μ) is the rate for monitored transition
μ from Aj to Ai, and K0 represents the remaining part of K.
Next, we define the first-passage time matrix as

Φ̌ = ̌ ′ − ̌ −s s sQ I Q( ) ( )[ ( )]X 0
1

(1)

where the Laplace transform of a function h(t) is given by ȟ(s)
= ∫ 0

∞dt e−st h(t), and IX is the identity matrix of order X. Here,
Φ̌i.k(s) is the waiting time distribution function for (i) traveling
from Ak to a state Aj without making a monitored transition
([IX − Q̌0(s)]j,k

−1 contribution) and then (ii) making a
monitored transition from Aj to Ai (Q̌i,j′ (s) contribution), and
it is only nonzero for nonzero ∑jQi,j′ (t) (although it need not
be). Thus, ∑iΦi,k(t) represents the waiting time PDF for
beginning in Ak and making a monitored transition. We note

that in the rate matrix formalism, Φ(t) = K′G0(t). In general,
the Green’s function G(t) describes the population evolution as
P(t) = G(t)P(0), where, in the rate matrix formalism, G(t) =
exp[−Kt], with Ǧ(s) = [sIX + K]−1 and G0(t) = exp[−K0t].
We obtain ϕ(t) by averaging the set of PDFs {∑iΦi,k(t): 1 ≤

k ≤ X} inhomogeneously with the set of weights {P̅k
ev: 1≤ k ≤

X}. That is

∑ϕ Φ= ̅
=

t t P( ) [ ( ) ]
i

X

i
1

ev

(2)

where the event-averaged population distribution P̅ev is given
by the solution to

Figure 1. Examples of higher-order kinetic motifs based on transitions between state manifolds. The transition from manifold Bj to Bi is described by
the waiting time matrix Wi,j(t). (a) Sequential motif corresponding to a three-link chain of irreversible manifold steps. (b) Sequential motif similar to
that of (a) but with manifold back-branching due to the reversible manifold step between B2 and B3. (c) Branching motif corresponding to a two-
channel manifold decay process.
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∫ Φ Φ̅ = ̅ = ̌ ̅
∞

t tP P Pd ( ) (0)ev

0

ev ev
(3)

with the constraint

∑ ̅ =
=

P 1
k

X

k
1

ev

(4)

Here, P̅ev reflects how the population is distributed, on average,
immediately following an event, serving as the event-averaged
initial condition. Note ∫ 0

∞dt h(t) = ȟ(0) for a function h(t).
Quantities presented herein employing P̅ev are referred to as
being event-averaged. Alternatively, the time-averaged initial
condition can be used, which is discussed in the Supporting
Information. We note that P̅k

ev is only nonzero for nonzero
δk,i∑jQi,j′ (t). Thus, for a renewal process with a single event
state, P̅k

ev reduces to δk,i and ϕ(t) becomes equal to Φ(t)i,i,
consistent with our formulation in paper 1.10 Note that P̅ev

corresponds to the eigenvector of ∫ 0
∞dtΦ(t) with an

eigenvalue of unity. Additionally, ϕ(t) is properly normalized,
such that ∫ 0

∞dt ϕ(t) = 1. In the Supporting Information, we use
the framework presented in this section to formulate
expressions corresponding to four different types of SM
measurements.

3. KINETIC MOTIFS
An SM kinetic scheme can be decomposed into subschemes14

corresponding to sequential and branching motifs, each of
which can be described by a waiting time distribution
function.10 The waiting time distribution function for the
basic sequential motif corresponding to a chain of irreversible
steps connecting Al to Ai is given by Q̌i,l

seq,irr (s) = Πj=l
i−1Q̌j+1,j(s).

In general, for Al separated from Ai by at least three links, the
waiting time distribution function for traveling from Al to Ai via
a path wherein the only transitions involving these two states
are the Al-to-Ak and Aj-to-Ai transitions, i.e., the Al-to-Ai

sequential motif, is expressed as Q̌i,l
seq(s) = Q̌i,j(s)Q̌ j,k(s)Q̌k,l(s).

Here, Q̌ j,k(s) is the waiting time distribution function for
traveling from Ak to Aj via all possible paths within the motif
and is based on the solution to a self-consistent equation when
this set of paths contains at least one reversible step (i.e., “back-
branching”). The waiting time PDF for the motif correspond-
ing to the Aj decay process, i.e., branching out of Aj, is given by
Qj

branch(t) = ∑iQi,j(t). For a renewal process with a single event
state, the waiting time distribution functions corresponding to
these sequential and branching motifs can be concatenated to
form ϕ(t) (see ref 10 for examples); we note that this approach
requires adaptation to a given generic scheme. For a process
with multiple event states, however, we seek to use motifs to
construct a matrix composed of waiting time distribution
functions that can be employed to obtain measurable PDFs via
inhomogeneous averaging.
As mentioned in Section 2, Φi,k(t) is only nonzero for

nonzero ∑jQi,j′ (t) (although it need not be) and as seen from
eq 2, it only contributes to ϕ(t) when P̅k

ev is nonzero. It would
thus be mathematically advantageous to have a matrix Ω(t)
containing fewer zero elements than Φ(t) as well as fewer
nonzero elements that do not contribute to ϕ(t). Here, we
present the underpinnings for formulating Ω(t), the first-
passage time pathway matrix, via higher-order kinetic motifs.
We begin by introducing an event coordinate Θ with the
discrete representation Θl for 1 ≤ l ≤ Y, where Y is the number
of event states (i.e., the number of rows in Φ(t) with nonzero

elements, or equivalently, the number of nonzero elements of
P̅ev). On the basis of the topology of the scheme, we introduce
a secondary coordinate Λ with the discrete representation Λj.
We then map the single-coordinate network described by A(Ξ)
to a dual-coordinate network described by À(Θ,Λ) (see Section
4 for an example), wherein the state corresponding to Θl, Λj is
represented by À(Θl,Λj) = Àl,j. We refer to the manifold of
states corresponding to Λj as B(Λj) = Bj, which consists of at
most Y states. In essence, Θ describes the internal topologies of
such manifolds, and Λ distinguishes the manifolds and defines
the direction of effective propagation (e.g., the horizontal
direction for the model discussed in Section 4), which involves
transitions between manifolds. We describe the Bj-to-Bi
manifold transition by its corresponding waiting time matrix
Wi,j(t) and can identify higher-order kinetic motifs based on
such transitions between manifolds, with Wi,j(t) representing a
higher-order analogue of Qi,j(t). Here, W

i,j(t) is a square matrix
of order Y, with element Wk,l

i,j (t) representing the waiting time
distribution function for traveling (i) from Àl,j to Àk,j via Θ-
direction transitions within Bj and then (ii) from Àk,j to Àk,i via a
Λ direction transition. An SM scheme with multiple event
states can be decomposed into higher-order sequential and
branching motifs (examples in Figure 1), each of which can be
described by a corresponding waiting time matrix. We now
express the higher-order analogues of the motifs presented
earlier. Additionally, we refer hereafter to transitions between
manifolds simply as transitions, where one is monitored
(contains the monitored-state transitions) and the rest are
unmonitored. Whether a transition is a state or manifold
transition should be clear from context.
The waiting time matrix for the sequential motif correspond-

ing to a chain of irreversible manifold steps connecting Bl to Bi
with only Bj-to-Bj+1 (for l ≤ j < i) transitions (example in Figure
1a) is given by

∏̌ = ̌
= −

+s sW W( ) ( )i l

l

j i
j j

seq,irr
,

1
1,

(5)

Here, the product index j counts down from i − 1 to l, such that
W̌l+1,l(s) is the rightmost matrix in the product. For Bl separated
from Bi by at least three transitions, the waiting time matrix for
traveling from Bl to Bi via a path wherein the only transitions
involving these two manifolds are the Bl-to-Bk and Bj-to-Bi
transitions, i.e., the Bl-to-Bi sequential motif (example in Figure
1b), is expressed as

̌ = ̌ ̌ ̌s s s sW W W W( ) ( ) ( ) ( )i l i j j k k l
seq
, , , ,

(6)

Here W̌ j,k(s) is the waiting time matrix for traveling from Bk to
Bj via all possible paths (involving transitions between
manifolds) within the motif and is based on the solution to a
self-consistent matrix equation when this set of paths contains
at least one reversible step between manifolds (i.e., manifold
back-branching). For the motif in Figure 1b, W̌seq

4,1(s) =
W̌4,3(s)W̌ 3,2(s)W̌2,1(s), where W̌3,2(s) is expressed in the
recurrence relation W̌3,2(s) = W̌3,2(s) + W̌3,2(s) W̌2,3(s)
W̌3,2(s) [or equivalently, W̌ 3,2(s) = W̌3,2(s) + W̌3,2(s) W̌2,3(s)-
W̌3,2(s)], which has the self-consistent solution W̌3,2(s) =
W̌3,2(s)[I2 − W̌2,3(s)W̌3,2(s)]−1 [or W̌3,2(s) = [I2 − W̌3,2(s)
W̌2,3(s)]−1W̌3,2(s)].
The waiting time matrix for the motif corresponding to the Bj

manifold decay process, i.e., manifold branching out of Bj
(example in Figure 1c), is given by
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∑=t tW W( ) ( )j

i

i j
branch
( ) ,

(7)

For a renewal process with a single event state, Y = 1, and eqs
5−7 reduce to their scalar analogues. The waiting time matrices
corresponding to these higher-order sequential and branching
motifs can be concatenated (see Section 4 for an example) to
form Ω(t) (a square matrix of order Y); we note that this
approach requires adaptation to a given generic scheme. We
obtain ϕ(t) by averaging the set of waiting time PDFs
{∑kΩk,l(t): 1 ≤ l ≤ Y} inhomogeneously with the set of weights
{Fl

ev: 1 ≤ l ≤ Y}. That is, ϕ(t) = ∑k=1
Y [Ω(t)Fev]k, where the

integrated event survival probability flux distribution vector Fev

is given by the solution to Fev = ∫ 0
∞dt Ω(t)Fev with the

constraint ∑l=1
Y Fl

ev = 1. The survival probability distribution is
discussed in the Supporting Information. Here, Fev, a
dimensionless measure of the stationary event population flux
distribution, reflects how the flux via the monitored transitions
is distributed amongst the Y event states, with its elements
corresponding to the nonzero elements of P̅ev. Note that Fev

corresponds to the eigenvector of ∫ 0
∞dt Ω(t) with an

eigenvalue of unity. Additionally, Ω(t) and Fev can be employed
to obtain the event-averaged joint PDF for a sequence of events
(formulated in the Supporting Information), which can be used
to characterize the correlations between events.16 In the
following section, we use the higher-order motifs introduced
here to formulate Ω(t), Fev, and ϕ(t) for a general kinetic
model.

4. PATHWAY SOLUTIONS FOR A GENERAL KINETIC
MODEL

Consider an L × M SM kinetic network consisting of
unmonitored, reversible nearest-neighbor steps with monitored,
irreversible periodic steps on one end (shown in Figure 2).
Such a network can be used to model a number of (potentially)
nonrenewal processes, including enzyme turnover with
conformational interconversion (i.e., conformation-modulated
enzyme turnover),6,7 and transport through a discretized ion
channel with multiple empty states.9 Here, we use transition
waiting time distribution functions of arbitrary form to express
Ω(t) for this general network in terms of self-consistent
pathway solutions. The matrix Ω(t) can be used to obtain
measurable waiting time PDFs, including ϕ(t), which we
formulate here as well. The key results of the section, eqs
12−15, are equivalent to eqs 1−4 for this scheme.
In our model, we employ the dual-coordinate system

described in Section 3, with Θ = V and Λ = H, where H and
V correspond to the horizontal and vertical directions,
respectively, in Figure 2; note that Y = L here. Presumably,
each coordinate corresponds to a different type of transition,
e.g., for conformation-modulated enzyme turnover, transitions
in the H and V directions represent chemical and conforma-
tional transitions, respectively. As mentioned in Section 2, we
require all transitions into an aggregate to proceed into the
same underlying state. Consider Àl,m: the waiting time
distribution function for the unmonitored transition from this

Figure 2. General L × M SM kinetic network model (see the text for details). Transitions are described by waiting time distribution functions of
arbitrary form.
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state to Àl,n in the H direction is Q̌n←m|l(s) and that to Àk,m in
the V direction is Řk←l|m(s). The monitored Àl,M-to-Àl,1 H
direction transition corresponds to Q̌M+1←M|l(s). We expand
Q̌n←m|l(s) and Řk←l|m(s) about s = 0 in terms of their moments
as Q̌n←m|l(s) = qn←m|l[1 − ⟨tQn←m|l

⟩s + O(s2)] and Řk←l|m(s) =

rk←l|m[1 − ⟨tRk←l|m
⟩s + O(s2)], where the corresponding

branching probabilities qn←m|l and rk←l|m account for proper
normalization and are constrained by the normalization
condition

∑ ∑+ =← | ← |q r 1
n

n m l
k

k l m
(8)

We note that local detailed balance, which is violated in the
monitored steps, results in the constraint qm+1←m|lrl←l+1|m/
(rl+1←l|mqm←m+1|l) =rl←l+1|m+1qm+1←m|l+1/(qm←m+1|l+1rl+1←l|m+1) for
m < M. However, it is unnecessary to impose this relation for
the purposes of our kinetic analysis, as our principal results
hold, regardless of whether it is satisfied.
We begin our formulation by defining a waiting time matrix

Ǔ(m)(s) for V direction transitions within Bm as Ǔk,l
(m)(s) =

Řk←l|m(s). Next, we define a matrix Ťn,m(s) describing H
direction transitions as Ťj,k

n,m(s) = δj,kQ̌n←m|k(s). These matrices
are then used to construct the waiting time matrix

̌ = ̌ − ̌ −s s sW T I U( ) ( )[ ( )]n m n m
L

m, , ( ) 1
(9)

which corresponds to the unmonitored Bm-to-Bn transition for n
≤ M and the monitored BM-to-B1 transition for m = M and n =
M + 1. The waiting time matrix Ž(m)(s), which accounts for
manifold back-branching, corresponds to the passage out of and
back to Bm via all possible paths (involving transitions between
manifolds) in the region Hn : n ≤ m and is expressed in the
recurrence relation

̌ = + ̌ ̌ ̌ ̌− − −s s s s sZ I Z W Z W( ) ( ) ( ) ( ) ( )m
L

m m m m m m( ) ( ) , 1 ( 1) 1,

(10)

which has the self-consistent solution

̌ = − ̌ ̌ ̌− − − −s s s sZ I W Z W( ) [ ( ) ( ) ( )]m
L

m m m m m( ) , 1 ( 1) 1, 1
(11)

with Ž(1) = IL. We note that the right-hand side of eq 11 can be
expanded as ∑i=0

∞ [W̌m,m−1(s)Ž(m−1)(s)W̌m−1,m(s)]i, where
[W̌m,m−1(s)Ž(m−1)(s)W̌m−1,m(s)]i corresponds to the passage of
and back to Bm i times via paths (involving transitions between
manifolds) in the region Hn : n ≤ m. We use these pathway
solutions to obtain Ω̌(s) via concatenation as

∏Ω̌ = ̌ ̌
=

+s s sW Z( ) ( ) ( )
m M

m m m

1

1, ( )

(12)

The first-passage time PDF is then given by

∑ϕ Ω̌ = ̌
=

s s F( ) [ ( ) ]
j

L

j
1

ev

(13)

where Fev is given by the solution to

Ω= ̌F F(0)ev ev
(14)

with the constraint

∑ =
=

F 1
l

L

l
1

ev

(15)

5. EXPLICIT CALCULATIONS
5.1. General Four-State Model. Here, we provide explicit

calculations for the kinetic model considered in Section 4 with
L = M = 2. In Section 5.1, rather than using the typical rate
description, we employ a more general time/probability
description,14,19 which has the added advantage of more
compact expressions. We begin by considering Fev and the
mean first-passage time ⟨t⟩ = ∫ 0

∞dt ϕ(t)t = −dϕ̌(s)/ds|s=0,
which can be expressed as (derivations in the Supporting
Information)

=
+

+
← | ← | ← | ← | ← |

← | ← | ← | ← | ← |

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟D

q q r r q

q q r r q
F

[ ]

[ ]
ev 3 2 1 2 1 1 1 2 1 1 2 2 2 1 2

3 2 2 2 1 2 2 1 1 2 1 2 2 1 1 (16)

and

τ

τ

τ

τ

⟨ ⟩ = ̀ + +

+ + ̀ +

+ + + ̀

+ + ̀ +

← | ← | ← | ← |

← | ← | ← | ← | ← |

← | ← | ← | ← | ← |

← | ← | ← | ← | ← | ← |

t D q q r r

q q q q r

r q q q r

r q q r r q

( [( )

( )] [( )

( )] [

] [ ])

1,1 1 2 1 3 2 1 1 2 2 1 2 1

1 2 2 3 2 2 2,1 1 2 2 3 2 2 2 1 2

2 1 1 1 2 1 3 2 1 1,2 2 1 1 1 2 1

1 2 2 2 1 2 2,2 2 1 2 2 1 1 2 1 2 2 1 1
(17)

where

= +

+ +

−
← | ← | ← | ← | ← |

← | ← | ← | ← | ← |

D q q r r q

q q r r q

( )

( )

1
3 2 1 2 1 1 1 2 1 1 2 2 2 1 2

3 2 2 2 1 2 2 1 1 2 1 2 2 1 1 (18)

and the mean Àl,m decay time (discussed in the Supporting
Information) is given by τ ̀l ,m = ∑nqn←m | l⟨tQn←m | l

⟩ +

∑krk←l|m⟨tRk←l|m
⟩. Equations 17 and 18 show that, in its most

general form, ⟨t⟩ is compactly expressed in terms of branching
probabilities and mean decay times, consistent with the
approach developed by Ninio.14 Thus, for our first-order (in
t) analysis, it is unnecessary to expand the transition waiting
time distribution functions beyond their first-order (in s) terms.
In general, these expansions can be truncated at the order
corresponding to that of the highest-order waiting time
moment being calculated. Note that the branching probabilities
are constrained by eq 8, such that only 6 are independent here
(5 if the aforementioned constraint resulting from local detailed
balance (see Section 4) is satisfied); thus, 10 parameters (or 9)
are needed to specify ⟨t⟩, which corresponds to the number of
rates necessary to specify the kinetics in the rate description,
i.e., the number of independent (based on the local detailed
balance constraint) transitions in the scheme. In fact, even
when the kinetics are non-Poissonian, this one-to-one
correspondence between independent transitions and param-
eters necessary for specification of the kinetics holds to first
order in t (but not higher12). Also, note that Fev is expressed in
terms of only branching probabilities in this description.
The mean first-passage time can be written as6,7,20 ⟨t⟩ =

∑l
L∑m

Mτl̀,m
res, where τl̀,m

res is the mean Àl,m residence time (discussed
in the Supporting Information). For L = M = 2,

τ τ

τ τ

τ τ

τ τ

̀ = ̀ + + +

̀ = ̀ + + +

̀ = ̀ +

̀ = ̀ +

← | ← | ← | ← | ← | ← |

← | ← | ← | ← | ← | ← |

← | ← | ← | ← |

← | ← | ← | ← |

D q q r r q q

D q q r r q q

D q r r q

D q r r q

[( ) ( ( )]

[( ) ( ( )]

[ ]

[ ]

1,1
res

1,1 1 2 1 3 2 1 1 2 2 1 2 1 1 2 2 3 2 2

2,1
res

2,1 1 2 2 3 2 2 2 1 2 2 1 1 1 2 1 3 2 1

1,2
res

1,2 2 1 1 1 2 1 1 2 2 2 1 2

2,2
res

2,2 2 1 2 2 1 1 2 1 2 2 1 1 (19)
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We can now write the integrated +H direction survival
probability flux in the time/probability description as

τ
τ

τ
τ

=
̀
̀

−
̀
̀← − |

−

−
− ← |F q ql m m m l

l m

l m
m m l

l m

l m
, 1

, 1
res

, 1
1

,
res

, (20)

which corresponds to the unmonitored step between Àl,m−1 and
Àl,M for 1 < m ≤ M and the monitored Àl,M-to-Àl,1 transition for
m = M + 1. Here, Fl,1 ≡ Fl,M+1 = Fl

ev; thus, ∑l=1
L Fl,1 = 1. Because

τl̀,m
res ∝ τl̀,m, Fl,m depends only upon branching probabilities in
this description. We note that Fl,2 = [(IL − W̌1,2(0))Ž(2)(0)
W̌2,1(0)Fev]l, which reduces to its corresponding form in eq 20.
We can similarly write the integrated +V direction survival
probability flux for the step between Àl−1,m and Àl,m as

τ
τ

τ
τ

=
̀
̀

−
̀
̀← − |

−

−
− ← |J r rl m l l m

l m

l m
l l m

l m

l m
, 1

1,
res

1,
1

,
res

, (21)

with J1,m = 0. We note that the stationary population fluxes
corresponding to Fl,m and Jl,m can be expressed as Fl,m

s = Fl,m/⟨t⟩
and Jl,m

s = Jl,m/⟨t⟩, respectively. Thus, Fl,m and Jl,m are event-
normalized measures of their stationary analogues. By

population conservation, we can write a flux balance relation
for Àl,m as Fl,m + Jl,m = Fl,m+1 + Jl+1,m. This can be employed, in
conjunction with other expressions formulated in this para-
graph, to perform the flux balance procedure (previously done
using the rate description6,7) as an alternative method for
evaluating ⟨t⟩ in the time/probability description. We note that
all expressions presented in this paragraph are applicable to
schemes with arbitrarily large L and M, except that for τl̀,m

res with
L = M = 2.
The flux balance relations for Àl,1 and Àl,2 can be combined to

show J2,1 = −J2,2 = J, the stationary modulatory population
current for our four-state model normalized by ⟨t⟩−1, which
implies F1,2 + F2,2 = 1. In the context of enzyme turnover with
conformational interconversion, modulatory current corre-
sponds to conformational current. We express J as

= +

− +
← | ← | ← | ← | ← |

← | ← | ← | ← | ← |

J D q r q q r

q r q q r

[ ( )

( ) ]
2 1 2 2 1 1 1 2 1 3 2 1 1 2 2

2 1 1 1 2 1 1 2 2 3 2 2 2 1 2 (22)

and this vanishes under the modulatory detailed balance
condition

Figure 3. Generic schemes I (a) and II (b) for single-enzyme turnover with conformational interconversion. Each unbound enzymatic state is
unaggregated, so transitions out of it are rate processes. Transitions out of the possibly aggregated bound enzymatic state(s) may be non-Poissonian
and are thus described by waiting time distribution functions of arbitrary form. We note that generic scheme II (b) corresponds to a renewal process
even though it involves a nontrivial event-averaged initial condition.
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+
=

+← | ← | ← |

← | ← |

← | ← | ← |

← | ← |

r q q

r q

r q q

r q

( ) ( )2 1 1 1 2 1 3 2 1

2 1 2 2 1 1

1 2 1 1 2 2 3 2 2

1 2 2 2 1 2 (23)

which is satisfied when the probabilities of traversing the four-
state loop in the clockwise and counterclockwise directions are
equal. We note that the satisfaction of the aforementioned
constraint resulting from local detailed balance still permits the
violation of modulatory detailed balance. In addition, the
satisfaction of modulatory detailed balance does not imply the
satisfaction of (global) detailed balance, which is always
violated here for nontrivial kinetics.
5.2. Generic Schemes for Enzyme Turnover. We now

consider two generic schemes for single-enzyme turnover with
conformational interconversion (illustrated in Figure 3). A
generic scheme, rather than a predetermined one, can generate
all possible kinetic models with the same basic topological
connectivity and thus requires minimal assumptions on the
form of the underlying scheme. Generic scheme I (shown in
Figure 3a) is an extension of our four-state model from Section
5.1, with r1←2|2 = r2←1|2 = 0. Here, À1,2 and À2,2 may be
aggregates and thus have arbitrarily complex internal top-
ologies. As a result, the scheme corresponds to all possible
models with two parallel (although not necessarily symmetric)
pathways. In generic scheme II (illustrated in Figure 3b), À1,2
and À2,2 are replaced by a new state À2, which may be an
aggregate, with B2 consisting only of À2. Within the framework
of our formulation in Section 4, this is achieved by making the
definitions [I2 − Ǔ(2)(s)]k,l

−1 ≡ 1 and τ1̀,2 = τ2̀,2 ≡ τ2̀ (for a first-
order [in t] analysis), thereby turning our four-state model
from Section 5.1 into a three-state generic scheme.
We are interested in the dependence of ⟨t⟩ on an external

substrate, S, whose chemical conversion to product is catalyzed
by a single enzyme. In our models, S can bind (B1-to-B2
transition) to the free enzyme, E (state manifold represented by
B1), to form a substrate-bound enzymatic complex, which may
be converted to additional bound enzymatic complexes,
depending on the underlying mechanism. Here, B2 represents
the state manifold for the bound enzymatic complex(es), EX,
which can return to the unbound form via unbinding
(unmonitored B2-to-B1 transition) or product formation
(monitored B2-to-B1 transition), with the latter marking the
completion of a turnover. Manifold B1 consists of two
unaggregated states, but the state(s) in B2 may be aggregated.
We assume the enzyme undergoes fast and irreversible
regeneration, such that another turnover can begin immediately
following the formation of a product molecule. In addition,
reverse product formation is assumed to be much slower than S
binding, making enzyme turnover irreversible here. We assume
the enzyme has a single binding site; thus, S binding is the only
transition-dependent upon S concentration [S], which is large
relative to that of the single enzyme and maintained externally,
such that it is effectively time-independent, and the nonlinear
kinetic binding process can be treated as pseudolinear.
Turnover is modulated by the slow conformational dynamics
of E, such that V direction transitions within B1 represent
conformational changes. In generic scheme I, the conforma-
tional dynamics of EX are much slower than the chemical
transitions within and out of À1,2 and À2,2, so they are neglected.
In generic scheme II, the conformational dynamics of the first
bound enzymatic complex are so fast that the complex (but not
necessarily the system) achieves conformational equilibrium,
although any subsequent enzymatic complexes need not be in

conformational equilibrium. We note that this scheme
corresponds to a renewal process, even though it involves a
nontrivial event-averaged initial condition, because the
enzymatic pathways converge at the first bound enzymatic
complex, so the conformational history is “forgotten” between
events.
In generic schemes I and II, B1 consists of unaggregated

states. Thus, in both cases, the transitions out of Àl,1 are rate
processes, with pseudolinear S-binding rate k2←1|l and
conformational interconversion rate γk←l|1, such that

γ
=

∑ +← |
← |

← | ← |
q

k
kl

l

k k l l
2 1

2 1

1 2 1 (24)

∑τ γ̀ = +← | ← |

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥kl

k
k l l,1 1 2 1

and (the nonzero) rk←l|1 is specified by eq 8. The S-binding rate
is proportional to [S]; thus, we introduce [S] as k2←1|l =
k2←1|l° [S], with rate constant k2←1|l° . The functional dependence
of ⟨t⟩ on [S] can now be determined with the state(s) in B2
possibly being aggregated. This is advantageous because
enzyme turnover can proceed through multiple intermediate
complexes6,7,21 (beyond just a single enzyme−substrate
complex); thus, we can capture the transition dynamics of
these additional intermediates in a simple manner, without loss
of generality. Furthermore, we previously showed6,7 that the
effect of slow conformational dynamics on the functional form
of ⟨t([S])⟩ for the arbitrarily large model considered in Section
4, with all rate processes, is governed by the interplay between
B1 and the combined manifold corresponding to the set {Bn: n
> 1}. In fact, in the absence of stationary conformational
currents between these two manifolds, the turnover rate (i.e.,
the steady-state rate of product formation), given by v = ⟨t⟩−1

when the monitored steps are irreversible, reduces to the
Michaelis−Menten (MM) functional form (with respect to
[S]), consistent with experimental work18 and additional
theoretical analysis.22 The celebrated MM equation, which
corresponds to the scheme in Section 4 with L = 1, M = 2, and
all rate processes, is23 vMM([S]) = [1/k3←2 + KM/(k3←2[S])]

−1,
where KM = (k1←2 + k3←2)/k2←1° . Thus, with only the
assumption of fast conformational dynamics for the first
bound enzymatic complex, generic scheme II, an M = 2
scheme, can capture the interesting effects of modulation (to
first order in t) corresponding to a network with M arbitrarily
larger than 2, without loss of generality. With the above in
mind, we investigate v([S]) for generic schemes I and II, with a
particular emphasis on the role of conformational dynamics.
For generic scheme I, ⟨t([S])⟩ is obtained by substituting eq

24, k2←1|l = k2←1|l° [S]∀l and r1←2|2 = r2←1|2 = 0 into eqs 17 and 18
and imposing the constraint in eq 8, resulting in

⟨ ⟩ = +t S a
b
S

([ ])
[ ] (25)

where

τ γ τ γ
α

γ γ
α

=
̀ ° + ̀ °

=
+

← | ← | ← | ← |

← | ← |

a
k k

b

1,2 2 1 1 1 2 1 2,2 2 1 2 2 1 1

2 1 1 1 2 1

(26)
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with α = q3←2|1k2←1|1° γ1←2|1 + q3←2|2k2←1|2° γ2←1|1. Note that eight
parameters are needed here to specify the non-Poissonian
kinetics (to first order in t). Because J = 0 here, v([S]) follows
the MM functional form, consistent with previous predictions
involving all rate processes.6,7 Equations 25 and 26 generalize
the mean first-passage time for arbitrary parallel (although not
necessarily symmetric) enzymatic pathways.
For generic scheme II, ⟨t([S])⟩ is expressed as (derivations in

the Supporting Information)

⟨ ⟩ = + +
+

t S a
b
S

b
S c

([ ])
[ ] [ ]0

0 1

1 (27)

where

τ
β

=
̀

a0
2

(28)

γ γ
β

=
+

° °
← | ← |

← | ← |
b

c k k0
2 1 1 1 2 1

1 2 1 1 2 1 2

γ γ
β

=
° − ° ́ − ́← | ← | ← | ← |b

k k K K

c

(1/ 1/ )( )M M
1

2 1 1 2 1 2 2 1 1 1 2 1

1

1 2

γ γ
=

°
+

°
← |

← |

← |

← |
c

k k1
2 1 1

2 1 1

1 2 1

2 1 2

with β = q3←2|1 + q3←2|2 and ḰMl
= (q1←2|l + q3←2|l)/k2←1|l° . For

transitions out of À2, the normalization condition in eq 8 is
modified to ∑l,nqn←2|l = 1 (although eq 8 still holds for
transitions out of Àl,1). Thus, eight parameters are needed here
to specify the mean first-passage time; however, if the
aforementioned constraint resulting from local detailed balance
(see Section 4), which is modified here to γ2←1|1q1←2|1/k2←1|1° =
γ1←2|1q1←2|2/k2←1|2° , is satisfied, then only seven parameters are
needed. In addition, a0, b0, and c1 cannot be negative but b1 can.
Equation 27 shows that, for generic scheme II, ⟨t([S])⟩ follows
the single-conformation functional form with a non-MM
correction term. Notably, this is the same basic functional
form for ⟨t([S])⟩ as that obtained for a conformation-
modulated scheme with two symmetric conformational
channels of arbitrary length.6,7 Thus, when À2 is unaggregated,
we achieve a minimal model for conformational nonequilibrium
enzyme kinetics. The conformational current for generic
scheme II is given by J([S]) = (γ2←1|1ḰM1

− γ1←2|1ḰM2
)/

[β([S] + c1)], which is related to the non-MM correction term
in eq 27 as

+
∝

°
−

°← | ← |

⎛
⎝⎜

⎞
⎠⎟

b
S c k k

J S
[ ]

1 1
([ ])1

1 2 1 1 2 1 2 (29)

As expected, b1 vanishes when J = 0, which is achieved under
the conformational detailed balance condition

γ γ́ = ́
← | ← |K KM M2 1 1 1 2 11 2 (30)

Additionally, b1 can vanish under the alternative condition
k2←1|1° = k2←1|2° , even for nonzero J. The general condition for
this alternative reduction has been formulated for symmetric
conformational channels,7 but in this case, because the
enzymatic pathways converge at the first bound enzymatic
complex, it reduces to the simple condition of equal binding
rate constants for the two initial conformations. Thus, we see
that conformational detailed balance is a sufficient but not

necessary condition for MM kinetics. We note that b1/b0
represents a unique non-MM parameter for characterizing
cooperativity resulting from nonequilibrium conformational
dynamics; we refer readers to our previous work6,7 for a
rigorous analysis of predicting and characterizing such behavior
and note that this topic has been a point of focus in other
recent studies19,24,25 as well.

6. CONCLUSIONS
In this article, a recently developed pathway technique (paper
1)10 for describing SM kinetics has been extended to
nonrenewal processes, which involve correlations between
events. Our approach employs transition waiting time
distribution functions of arbitrary form, avoiding the need to
assume Poissonian kinetics. This is particularly advantageous
for kinetic schemes involving hidden intermediates, the
dynamics of which can be accounted for implicitly, without
loss of generality. We have formulated measurable waiting time
PDFs for a general kinetic network model in terms of solutions
to self-consistent pathway equations. Additionally, we have
performed explicit calculations for such a model, which we have
adapted to two generic schemes for conformation-modulated
enzyme turnover. The functional form of the mean first-passage
time, with respect to the concentration of an external substrate,
has been examined for each generic scheme, wherein the
intermediate state(s) need not undergo Poissonian decay. In
the absence of conformational current, the enzyme turnover
rate reduces to the MM functional form, consistent with
previous studies on similar schemes with all rate processes,6,7,22

thereby establishing further generality to this intriguing finding.
In addition to enzyme turnover, our framework may serve as a
useful kinetic tool for other SM processes, including molecular
motor translocation,8 ion transport,9 and fluorescence
emission,10 as well as for single-nanoparticle catalysis.26
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