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ABSTRACT: The symmetrical quasi-classical (SQC) method recently proposed by Miller
and Cotton allows one to simulate nonadiabatic dynamics based on an algorithm with
classical-like scaling with respect to system size. This is made possible by casting the
electronic degrees of freedom in terms of mapping variables that can be propagated in a
classical-like manner. While SQC was shown to be rather accurate when applied to
benchmark models with harmonic electronic potential energy surfaces, it was also found to
become inaccurate and to suffer numerical instabilities when applied to anharmonic
systems. In this paper, we propose an extended SQC (E-SQC) methodology for
overcoming those discrepancies by describing the anharmonic nuclear modes, which are
coupled to the electronic degrees of freedom, in terms of classical-like mapping variables.
The accuracy of E-SQC relative to standard SQC is demonstrated on benchmark models
with quartic and Morse potential energy surfaces.

Nonadiabatic dynamics plays a central role in a variety of
important chemical processes that range from electro-

chemistry to organic photovoltaics.1−12 The inherently
quantum nature of the underlying molecular dynamics makes
simulating such processes in complex molecular systems
challenging.2,13−21 A frequently employed approximation is
based on invoking linear-response to represent the nuclear
degrees of freedom (DOF) in terms of uncoupled harmonic
modes, and describing their coupling to the electronic DOF as
linear in the normal mode coordinates.22 The nuclear DOF and
their coupling to the electronic DOF can then be described in
terms of a spectral density function, which can be conveniently
extracted from classical molecular dynamics (MD) simula-
tions.23,24 Within this framework, one can simulate the
quantum-mechanically exact nonadiabatic dynamics of a system
with a modest number of electronic states (up to ∼10),25−28
but only as long as the linear-response assumption remains
valid.24,29

Despite the popularity of the aforementioned harmonic
model Hamiltonians and their ability to fit many experimental
observations,30 the linear response approximation upon which
they are based can break down in many systems of interest.
One example is hydrogen-bonded systems.31−43 Another
example is charge transfer (CT) processes when they involve
coupling to low-frequency modes and/or take place in
nonpolar environments.44 Yet another example is rate
processes,45,46 such as proton-coupled electron transfer.47−49

In many cases of interest, the anharmonicity can be associated
with a relatively small number of nuclear modes, while the
remaining modes can be treated as harmonic and assumed to
be linearly coupled to the anharmonic modes.50,51

Despite many advances in quantum-mechanically exact
simulation techniques for general anharmonic Hamilto-
nians,52,53 semiclassical and mixed quantum-classical ap-
proaches remain the only viable methodologies for large-scale
simulations of complex technologically and biologically relevant
molecular systems. Such methods include Fewest-Switches
Surface-Hopping (FSSH),54,55 the Ehrenfest method,56 partially
linearized path integral approaches,57,58 Trotter-Based Surface-
Hopping (TBSH),59 the Forward−Backward Trajectory
Solution (FBTS)60,61 of the quantum-classical Liouville
equation (QCLE),62,63 the Linearized Semiclassical (LSC)
method,64−68 the Poisson Bracket Mapping Equation
(PBME),69−71 and the symmetrical Quasi-Classical (SQC)
method.72−78

In this paper, we focus on the SQC method. SQC is based on
the following two components: (1) mapping of the electronic
DOF79 onto classical-like variables in a manner that accounts
for zero-point energy effects, while treating the nuclear DOF as
classical; (2) using symmetrical window functions for initial
sampling of the electronic DOF and estimation of electronic
observables at later times. In a series of recent papers, Miller
and Cotton have shown that SQC provides a rather accurate
description of nonadiabatic dynamics,80 can recover detailed
balance,81 can be straightforwardly applied to systems with a
relatively large number of electronic states,76 and provides a
prescription for obtaining the full electronic density matrix.77
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SQC’s classical-like nature also implies a straightforward
incorporation within standard classical MD simulation
protocols.
It should be noted that usage of SQC has been far more

limited than the above-mentioned competing approximate
methods. This is somewhat surprising in light of the fact that
SQC appears to be able to overcome several of the weaknesses
that other methods suffer from. More specifically, SQC is cost-
effective and scalable, is invariant to the choice of electronic
basis, allows for an initially localized nuclear wavepacket to split
into multiple components that are subject to different forces,
and treats the electronic populations and coherences on the
same footing.
The aforementioned demonstrations of SQC’s accuracy were

mostly based on benchmark models where the nuclear DOF are
treated as harmonic. In a recent paper, Bellonzi, Jain, and
Subotnik82 have shown that adding anharmonicity to the model
can cause the standard SQC approach80 to exhibit numerical
instabilities and violations of detailed balance. In this paper, we
propose a way for overcoming those discrepancies. We do so by
describing the anharmonic nuclear modes directly coupled to
the electronic DOF in terms of classical-like mapping variables.
In what follows, we show that doing so leads to a dramatic
improvement in accuracy, which is robust across a wide range
of anharmonicities and coupling strengths between anharmonic
nuclear modes and electronic DOF.
We start out by considering a Hamiltonian of the following

form:

̂ = ̂ + ̂ + ̂ + ̂ + ̂H H H H H Hs o so b ob (1)

Here,

εσ σ̂ = ℏ ̂ + ℏΔ ̂Hs z x (2)

is a two-state electronic system Hamiltonian, where 2ℏε and
ℏΔ are the electronic bias and electronic coupling between the
two states, σ̂z = |↑⟩⟨↑| − |↓⟩⟨↓| and σ̂x= |↑⟩⟨↓| + |↓⟩⟨↑| (|↑⟩ and
|↓⟩ are the electronic excited and ground states, respectively);
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is the Hamiltonian of the anharmonic primary nuclear mode
directly coupled to the electronic DOF;
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is the Hamiltonian of Nb secondary harmonic bath modes
directly coupled to the primary mode;

σ̂ = ℏ ̂ ̂H c Yso z0 (5)

is the coupling Hamiltonian between the electronic system and
the primary mode, where c0 is the coupling strength;
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=
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k
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k k
1

b

(6)

is the coupling Hamiltonian between the primary mode and
secondary modes, where ck is the coupling strength between the
primary mode and the kth secondary mode.
It should be noted that the approach presented below is not

limited to a two-state system and actually has a favorable scaling
with respect to the number of electronic states. It should also
be noted that our main interest in this paper is in cases where
the potential energy of the primary mode, U (Ŷ), is
anharmonic. In what follows, we will present results obtained
for two types of anharmonic potential energy surfaces (PESs)
(dimensionless variables with energy unit given by ℏΔ and
distance unit by ℏ ΔM/ were used):
•A quartic PES:

ω λ̂ = − ̂ + ̂U Y Y Y( )
1
2 0

2 2 4

(7)

with ω0 = 1.0 and two different values of anharmonic coefficient
λ: (i) λ = 0.1, which corresponds to a double-well PES (see
Figure 1a), and (ii) λ = 2.0, which corresponds to a single-well
PES (see Figure 1b).
•Morse PES:83−85

̂ = − α− ̂U Y D( ) (1 e )Y 2 (8)

In this case, the anharmonicity can be measured by the number
of bound states, Λ = 2D/ω0,

85 where ω0 = α D2 (Λ → ∞
corresponds to the harmonic limit). Below, we report results
for two different sets of parameters: (i) D = 15.0 and α = 0.5,
which corresponds to Λ = 10 (weakly anharmonic, see Figure
1c), and (ii) D = 2.0 and α = 0.5, which corresponds to Λ = 4
(strongly anharmonic; see Figure 1d).

Figure 1. Primary mode anharmonic PESs studied in this work: (a) double-well quartic PES; (b) single-well quartic PES; (c) weakly anharmonic
Morse PES; (d) strongly anharmonic Morse PES.
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Within the standard SQC (S-SQC) method, the electronic
operators {|↑⟩⟨↑|, |↓⟩⟨↓|, |↑⟩⟨↓|, |↓⟩⟨↑|} are written in terms of
the corresponding mapping operators:79,86−88

γ δ| ⟩⟨ | =
ℏ

̂ ̂ + ̂ ̂ − ℏj k q q p p
1

2
( )j k j k jk (9)

Here, j and k are either ↑ or ↓. The optimal value of zero-point
energy parameter γ = 0.36680 was used in all calculations
reported in this paper. This is followed by replacing the nuclear
operators and the electronic mapping operators by their
classical analogues (qĵ → qj, pĵ → pj, Ŷ → Y, P̂Y → PY, X̂j → Xj,
P̂j → Pj). The dynamics of {qj, pj,Y, PY, Xj, Pj} is then governed
by the corresponding classical-like counterpart of the
Hamiltonian in eq 1. Initial sampling of the classical-like
mapping variables, {qj, pj}, is based on top-hat prelimit delta
function windows of width 2γ of the corresponding action
variables, nj = (qj

2 + pj
2)/2ℏ − γ (angle variables are sampled

randomly from [0, 2π]). More specifically, starting in state |↑⟩
implies that n↑ is a random number between (1 − γ, 1 + γ) and
n↓ is a random number between (−γ, γ). The expectation values
of the electronic populations at a later time are obtained using
the same window functions. For example, the population of
state |↑⟩ is determined by the fraction of trajectories with n↑
within (1 − γ, 1 + γ) and n↓ within (−γ, γ).
S-SQC can become inaccurate and/or numerically unstable

in the presence of anharmonicity. However, as we will show
below, those problems can be solved by using a methodology
that we will refer to as extended SQC (E-SQC). E-SQC is
based on representing Ĥs+o = Ĥs + Ĥo + Ĥso, rather than Ĥs in
terms of mapping variables. More specifically, let {|n⟩} and {En}
be the eigenkets and corresponding energy levels of Ĥo, such
that

∑̂ = | ⟩⟨ |
=

H E n no
n

N

n
1 (10)

Although the number of eigenkets of Ĥo is in principle
infinite, in practice one can obtain results at the desirable level
of accuracy within a truncated basis whose size, N, can be
determined by convergence (see the Supporting Information).
Thus, {|λ⟩ = |↑⟩ ⊗ |n⟩, |↓⟩ ⊗ |n⟩} form a basis for the Hilbert
space of the composite system consisting of the electronic DOF
and the primary mode (i.e., the Hilbert space defined by Ĥs+o).
Using this basis, the total Hamiltonian, eq 1, can be written as

∑ ∑λ λ λ λ̂ = | ⟩⟨ ′| + | ⟩⟨ ′| + ̂
λλ

λλ
λλ

λλ
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′H H H H( ) ( )s o ob b
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It should be noted that in our truncated basis, Ĥs+o and Ĥob
are represented by 2N × 2N matrices. The corresponding
matrix elements of the Hamiltonian of eq 11 can be found in
the Supporting Information.
In the next step, we write the operators {|λ⟩⟨λ′|} in terms of

the corresponding mapping operators:

λ λ γ δ| ⟩⟨ ′| =
ℏ
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Similarly to S-SQC, this is followed by replacing the bath and
the mapping operators by their classical analogues (qλ̂ → qλ, p ̂λ
→ pλ, X̂j → Xj, P̂j → Pj). The dynamics of {qλ, pλ, Xj, Pj} is
assumed to be governed by the classical-like Hamiltonian:
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E-SQC involves classical propagation of Nb + 2N DOF, and
is therefore computationally more demanding than S-SQC,
which requires classical propagation of Nb + 3 DOF. However,
this difference is small in the typical case where Nb ≫ N.
Furthermore, the classical-like nature of the dynamics leads to
favorable scaling with the number of DOF.
We start out by considering the case where the primary

mode is decoupled from the bath of secondary modes, Ĥob = 0,
and for which quantum-mechanically exact results can be
obtained (see the Supporting Information). The classical-like
dynamics within either S-SQC or E-SQC was simulated based
on the algorithm of Kelly et al.89 with the time-step set to Δt =
0.05. All the results were obtained by averaging over 5 × 106

trajectories.
The following factorized initial density operator was used:

ρ ρ ρ̂ = ̂ ⊗ ̂(0) s o (14)

The electronic DOF were assumed to start out in the excited
state, ρ̂s(0) = |↑⟩⟨↑|, and the anharmonic primary mode was
assumed to start out in the ground state, ρ̂o(0) = |1⟩⟨1|. Both
symmetrical, ε = 0, and asymmetrical, ε = 1.0, cases were
considered. E-SQC was found to perform equally well in both
cases. In what follows, we only report the results for the
asymmetrical case, ε = 1.0, which is usually considered more
challenging for approximate methods.
The expectation values of σ̂z as a function of time in the case

of a primary mode with a quartic PES, as obtained from S-SQC
and E-SQC, are compared to the corresponding quantum-
mechanically exact results in Figure 2, for weak and strong
coupling (upper and lower panels, respectively). The results
show that S-SQC agrees with the exact results at short times,
and starts to significantly deviate from it at longer times. The
deviations are larger in the case of the double-well PES and
when the coupling is strong. At the same time, E-SQC is seen
to be in a very good agreement with the exact results for both
single-well and double-well cases, as well as for strong and weak
coupling. The size of the truncated primary mode basis, N, used
to generate the results is shown at the lower right corner of
each plot. In the case of a single-well PES and weak coupling N
= 2, while in the case of a double-well PES and strong coupling
N = 6. Thus, larger anharmonicity and stronger coupling is
computationally more demanding.
The expectation values of σ̂z as a function of time in the case

of a primary mode with a Morse PES, obtained from S-SQC
and E-SQC, are compared to the corresponding quantum-
mechanically exact results in Figure 3, for weak and strong
coupling (upper and lower panels, respectively).
Similarly to the case of the quartic PES, S-SQC is seen to

agree with the exact result at short times and significantly
deviate from it at longer times. The deviations are seen to
increase with increasing coupling strength and degree of
anharmonicity. At the same time, E-SQC is seen to be in a very
good agreement with the exact results regardless of the degree
of anharmonicity and coupling strength. The size of the
truncated primary mode basis increases as coupling strength
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changes from weak, for which N = 2, to strong, where N = 4−6.
It is also seen to increase with increasing degree of
anharmonicity.
It should be noted that, in the case where the primary mode

is decoupled from the bath of secondary modes, Ĥob = 0, E-
SQC is based on classical dynamics governed by a Hamiltonian
of a quadratic form, for which one expects SQC to be more
accurate. However, E-SQC also involves additional assumptions
regarding initial sampling and calculating observables by
binning with specific choices of the shape and width of the
window functions. Thus, the deviations between the E-SQC
and exact results in Figures 2 and 3 can be traced back to those
additional assumptions. We next investigate the case where the
anharmonic primary mode is coupled to a bath of harmonic
secondary modes, Ĥob ≠ 0. To this end, we consider a primary
mode with a quartic PES coupled to a bath of secondary modes
described by an Ohmic spectral density with exponential
cutoff22,90

ω π ζω= ℏ ω ω−J e( )
2

/ c

(15)

Here, ζ is the Kondo parameter that measures the strength of
primary-secondary mode coupling, and ωc is the bath cutoff
frequency.
The following factorized initial density operator was used:

ρ ρ ρ ρ̂ = ̂ ⊗ ̂ ⊗ ̂(0) s o b
eq

(16)

The electronic DOF were assumed to start out in the excited
state, ρ̂s(0) = |↑⟩⟨↑|. The anharmonic primary mode was
assumed to start out in the ground state, ρ̂o(0) = |1⟩⟨1|. The

secondary bath modes were assumed to start out at thermal
equilibrium, which corresponds to the following Wigner phase
space density:
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where β is the inverse temperature.
Three sets of parameters were used: (i) ε = 0.0, Δ = 0.3, c0 =

0.05, λ = 0.25, ω0 = 1.2; (ii) ε = 0.0, Δ = 0.1, c0 = 0.3, λ = 0.2,
ω0 = 0.6; (iii) ε = 0.25, Δ = 0.1, c0 = 0.3, λ = 0.2, ω0 = 0.6.
The same values of the Kondo parameter, ζ = 0.1, inverse

temperature, β = 0.2, maximal bath mode frequency, ωmax = 3.0,
and number of secondary bath modes, Nb = 100, were used in
all cases. Dimensionless variables were used with the energy
and distance units given by ℏωc and ωℏ m/ k c for each
secondary bath mode. Initial configurations of the primary and
secondary modes were sampled as described in ref 51. The time
step was set to Δt = 0.05 and results were averaged over 4 ×
106 trajectories. It should be noted that already reasonable
results can be obtained with as few as 5 × 103 trajectories (see
the Supporting Information). In what follows, we compare the
results obtained via E-SQC with results obtained via S-SQC,
FBTS, Ehrenfest, and TBSH. It should be noted that TBSH is
based on the mixed quantum-classical Liouville equation, which
is expected to be the most accurate method.91 We will therefore

Figure 2. Expectation value ⟨σ̂z(t)⟩, as a function of time, in the case of
a primary mode with double-well and single-well quartic PESs (left and
right panels, respectively), as obtained from S-SQC and E-SQC,
compared to the corresponding quantum-mechanically exact result, for
weak and strong coupling (upper and lower panels, respectively).

Figure 3. Expectation value ⟨σ̂z(t)⟩, as a function of time, in the case of
a primary mode with weakly and strongly anharmonic Morse PESs
(left and right panels, respectively), as obtained from S-SQC and E-
SQC, compared to the corresponding quantum-mechanically exact
results, for weak and strong coupling (upper and lower panels,
respectively).
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use the TBSH results as a benchmark for assessing the accuracy
of the other methods.
The expectation values of σ̂z as a function of time is shown in

Figure 4 for the above-mentioned three parameter sets. The left
panel corresponds to parameter set (i). The relatively large
value of the diabatic coupling in this case, Δ = 0.3, makes it
possible to obtain TBSH results for relatively long times, tωc ≈
17. E-SQC is seen to be in excellent agreement with TBSH in
this case, which is indicative of its accuracy. It should be noted
that converged E-SQC results require N = 6. At the same time
S-SQC, FBTS and Ehrenfest are seen to deviate from TBSH.
We also note that these methods appear to underdamp the
oscillatory dynamics of ⟨σ̂z(t)⟩ in comparison to TBSH and E-
SQC.
More pronounced differences between E-SQC and the other

approximate methods are seen for parameter set (ii) (see
middle panel of Figure 4). Here too, the dynamics of ⟨σ̂z(t)⟩ as
predicted by S-SQC, FBTS, and Ehrenfest are seen to be
underdamped compared to that predicted by E-SQC. Although
TBSH is not feasible for this case, the fact that a similar trend
was observed for parameter set (i) suggests that E-SQC is also
more accurate in this case. Further support for this conjecture is
provided in Figure 5, where we compare the exact quantum
dynamics with that predicted by the various approximate
methods for the same set of parameters, but in the absence of
coupling to the secondary harmonic bath. While E-SQC is seen
to be in a very good agreement with the quantum-mechanically
exact result in this case, S-SQC, FBTS, and Ehrenfest are seen
to deviate significantly from it. It should also be noted that it is
unlikely that coupling to the harmonic bath is the source for the
deviations, since S-SQC has been shown to be rather accurate
for harmonic systems. It is therefore likely that the
anharmonicity is the source of those deviations, and the results
suggest that E-SQC does a better job at capturing them than S-
SQC.
The results for parameter set (iii) are shown in the right

panel of Figure 4. The energetic bias present in this case, ε =
0.25, represents a challenge for S-SQC and Ehrenfest methods.
This is because Ehrenfest is known to violate detailed balance,
as does S-SQC in the presence of anharmonicity.82 However,
FBTS and E-SQC are observed to capture detailed balance in
this case. The fact that FBTS is underdamped compared to E-
SQC also suggests that E-SQC is more accurate. As expected,

the basis needed for convergence in this case, N = 12, is
significantly larger than in the unbiased case.
Finally, we note that two general ways of verifying the

convergence of E-SQC calculations with respect to the size of
the truncated primary mode basis N were used in this work.
Both illustrate that E-SQC is a systematically improvable
method. See the Supporting Information for a detailed
discussion and numerical verification of the convergence of
E-SQC with respect to N.
In summary, we proposed a new methodology for over-

coming inaccuracies and numerical instabilities in applications
of S-SQC to anharmonic systems, which is based on describing
the anharmonic nuclear modes in terms of classical-like
mapping variables. The new method, which we named E-
SQC, shares the advantages of S-SQC, namely, low computa-
tional cost, favorable scaling with system size, and straightfor-
ward implementation. At the same time it appears to be
significantly more accurate than S-SQC in the presence of
anharmonicity. E-SQC is expected to make it possible to
simulate nonadiabatic dynamics in molecular systems that
exhibit anharmonicity. A similar approach has been recently
applied by Martinez et al. to the calculation of transient

Figure 4. Expectation value ⟨σ̂z(t)⟩, as a function of time, in the case of a primary mode with a quartic PES coupled to a bath of secondary modes, for
parameter sets (i), (ii), and (iii) (left, middle and right panels, respectively). Shown are the TBSH results (red solid line with red triangles),
Ehrenfest results (orange solid line), E-SQC results (blue dashed line), S-SQC results (gray dash-dotted line) and FBTS results (green dotted line).

Figure 5. Expectation value ⟨σ̂z(t)⟩, as a function of time, in the case of
a primary mode with a quartic PES without coupling to a bath of
secondary modes, for parameter set (ii). Shown are the exact results
(red solid line), Ehrenfest results (orange solid line), E-SQC results
(blue dashed line), S-SQC results (gray dash-dotted line), and FBTS
results (green dotted line).

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.7b03002
J. Phys. Chem. Lett. 2018, 9, 319−326

323

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b03002/suppl_file/jz7b03002_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.7b03002


absorption (TA) pump−probe signals using PBME and FBTS
for a model system that involves harmonic PESs.92 They
illustrated that neither FBTS nor PBME was able to produce a
quantitative agreement with exact population dynamics and TA
signals for multiple simulation parameters irrespective of how
the primary mode was treated. We showed that E-SQC is able
to produce essentially exact population dynamics for a broad
range of parameters. It would be highly desirable to investigate
whether E-SQC can accurately describe linear and nonlinear
absorption spectra for harmonic and anharmonic PESs as well.
Work in this direction is underway and will be reported in
future publications.
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(31) Sańdorfy, C. Hydrogen Bonding: How Much Anharmonicity? J.
Mol. Struct. 2006, 790, 50−54.
(32) Hudson, B. S.; Verdal, N. Vibrational Dynamics in Short, Strong
Symmetric Hydrogen Bonds: General Considerations and Two
Examples. Phys. B 2006, 385, 212−215.
(33) Hanna, G.; Geva, E. Computational Study of the One and Two
Dimensional Infrared Spectra of a Vibrational Mode Strongly Coupled
to Its Environment: Beyond the Cumulant and Condon Approx-
imations. J. Phys. Chem. B 2008, 112, 12991−13004.
(34) Hanna, G.; Geva, E. Isotope Effects on the Vibrational
Relaxation and Multidimensional Infrared Spectra of the Hydrogen
Stretch in a Hydrogen-Bonded Complex Dissolved in a Polar Liquid. J.
Phys. Chem. B 2008, 112, 15793−15800.
(35) Hanna, G.; Geva, E. Multidimensional Spectra via the Mixed
Quantum-Classical Liouville Method: Signatures of Nonequilibrium
Dynamics. J. Phys. Chem. B 2009, 113, 9278−9288.
(36) Hanna, G.; Geva, E. Computational Study of the Signature of
Hydrogen-bond Strength on the Infrared Spectra of a Hydrogen-
Bonded Complex Dissolved in a Polar Liquid. Chem. Phys. 2010, 370,
201.
(37) Hanna, G.; Geva, E. Signature of Nonadiabatic Transitions on
the Pump-Probe Infrared Spectra of a Hydrogen-Bonded Complex
Dissolved in a Polar Solvent: A Computational Study. J. Phys. Chem. B
2011, 115, 5191−5200.
(38) Kwac, K.; Geva, E. Mixed Quantum-Classical Molecular
Dynamics Study of the Hydroxyl Stretch in Methanol/Carbon
Tetrachloride Mixtures: Equilibrium Hydrogen-Bond Structure and
Dynamics at the Ground State and the Infrared Absorption Spectrum.
J. Phys. Chem. B 2011, 115, 9184−9194.
(39) Kwac, K.; Geva, E. Mixed Quantum-Classical Molecular
Dynamics Study of the Hydroxyl Stretch in Methanol/Carbon-
Tetrachloride Mixtures II: Excited State Hydrogen Bonding Structure
and Dynamics, Infrared Emission Spectrum and Excited State Life-
Time. J. Phys. Chem. B 2012, 116, 2856−2866.
(40) Kwac, K.; Geva, E. A Mixed Quantum-Classical Molecular
Dynamics Study of the Hydroxyl Stretch in Methanol/Carbon
Tetrachloride Mixtures III: Nonequilibrium Hydrogen-Bond Dynam-
ics and Infrared Pump-Probe Spectra. J. Phys. Chem. B 2013, 117,
7737−7749.
(41) Kwac, K.; Geva, E. Solvation Dynamics of Formylperylene
Dissolved in Methanol-Acetonitrile Liquid Mixtures: A Molecular
Dynamics Study. J. Phys. Chem. B 2013, 117, 9996−10006.
(42) Kwac, K.; Geva, E. A Mixed Quantum-Classical Molecular
Dynamics Study of anti-Tetrol and syn-Tetrol Dissolved in Liquid
Chloroform: Hydrogen-Bond Structure and Its Signature on the
Infrared Absorption Spectrum. J. Phys. Chem. B 2013, 117, 16493−
16505.
(43) Kwac, K.; Geva, E. A Mixed Quantum-Classical Molecular
Dynamics Study of anti-Tetrol and syn-Tetrol Dissolved in Liquid
Chloroform II: Infrared Emission Spectra, Vibrational Excited-State
Life-Times and Nonequilibrium Hydrogen-Bond Dynamics. J. Phys.
Chem. B 2013, 117, 14457−14467.
(44) Wang, H.; Thoss, M. Quantum Dynamical Simulation of
Electron-Transfer Reactions in an Anharmonic Environment. J. Phys.
Chem. A 2007, 111, 10369−10375.
(45) Onuchic, J. N.; Beratan, D. N.; Hopfield, J. J. Some Aspects of
Electron-Transfer Reaction Dynamics. J. Phys. Chem. 1986, 90, 3707−
3721.
(46) Blumberger, J. Recent Advances in the Theory and Molecular
Simulation of Biological Electron Transfer Reactions. Chem. Rev. 2015,
115, 11191−11238.

(47) Hammes-Schiffer, S. Theoretical Perspectives on Proton-
Coupled Electron Transfer Reactions. Acc. Chem. Res. 2001, 34,
273−281.
(48) Shakib, F.; Hanna, G. Mixed Quantum-Classical Liouville
Approach for Calculating Proton-Coupled Electron-Transfer Rate
Constants. J. Chem. Theory Comput. 2016, 12, 3020−3029.
(49) Ananth, N.; Miller, T. F. Flux-Correlation Approach to
Characterizing Reaction Pathways in Quantum Systems: a Study of
Condensed-Phase Proton-Coupled Electron Transfer. Mol. Phys. 2012,
110, 1009−1015.
(50) Garg, A.; Onuchic, J. N.; Ambegaokar, V. Effect of Friction on
Electron Transfer in Biomolecules. J. Chem. Phys. 1985, 83, 4491−
4503.
(51) Hsieh, C.-Y.; Kapral, R. Correlation Functions in Open
Quantum-Classical Systems. Entropy 2014, 16, 200−220.
(52) Meyer, H.-D.; Manthe, U.; Cederbaum, L. The Multi-
Configurational Time-Dependent Hartree Approach. Chem. Phys.
Lett. 1990, 165, 73−78.
(53) Wang, H. Multilayer Multiconfiguration Time-Dependent
Hartree Theory. J. Phys. Chem. A 2015, 119, 7951−7965.
(54) Tully, J. C. Molecular Dynamics with Electronic Transitions. J.
Chem. Phys. 1990, 93, 1061−1071.
(55) Subotnik, J. E.; Jain, A.; Landry, B.; Petit, A.; Ouyang, W.;
Bellonzi, N. Understanding the Surface Hopping View of Electronic
Transitions and Decoherence. Annu. Rev. Phys. Chem. 2016, 67, 387−
417.
(56) McLachlan, A. A Variational Solution of the Time-Dependent
Schrodinger Equation. Mol. Phys. 1964, 8, 39−44.
(57) Huo, P.; Miller, T. F., III; Coker, D. F. Communication:
Predictive Partial Linearized Path Integral Simulation of Condensed
Phase Electron Transfer Dynamics. J. Chem. Phys. 2013, 139, 151103.
(58) Lambert, R.; Makri, N. Quantum-Classical Path Integral. I.
Classical Memory and Weak Quantum Nonlocality. J. Chem. Phys.
2012, 137, 22A552.
(59) Mac Kernan, D.; Ciccotti, G.; Kapral, R. Trotter-Based
Simulation of Quantum-Classical Dynamics. J. Phys. Chem. B 2008,
112, 424−432.
(60) Hsieh, C.-Y.; Kapral, R. Nonadiabatic Dynamics in Open
Quantum-Classical Systems: Forward-Backward Trajectory Solution. J.
Chem. Phys. 2012, 137, 22A507.
(61) Hsieh, C.-Y.; Kapral, R. Analysis of the Forward-Backward
Trajectory Solution for the Mixed Quantum-Classical Liouville
Equation. J. Chem. Phys. 2013, 138, 134110.
(62) Martens, C. C.; Fang, J. Semiclassical-limit Molecular Dynamics
on Multiple Electronic Surfaces. J. Chem. Phys. 1997, 106, 4918−4930.
(63) Kapral, R.; Ciccotti, G. Mixed Quantum-Classical Dynamics. J.
Chem. Phys. 1999, 110, 8919−8929.
(64) Sun, X.; Geva, E. Equilibrium Fermi’s Golden Rule Charge
Transfer Rate Constants in the Condensed Phase: The Linearized
Semiclassical Method vs Classical Marcus Theory. J. Phys. Chem. A
2016, 120, 2976−2990.
(65) Sun, X.; Geva, E. Nonequilibrium Fermi’s Golden Rule Charge
Transfer Rates via the Linearized Semiclassical Method. J. Chem.
Theory Comput. 2016, 12, 2926−2941.
(66) Sun, X.; Geva, E. Non-Condon Equilibrium Fermi’s Golden
Rule Electronic Transition Rate Constants via the Linearized
Semiclassical Method. J. Chem. Phys. 2016, 144, 244105.
(67) Sun, X.; Geva, E. Non-Condon Nonequilibrium Fermi’s Golden
Rule Rates from the Linearized Semiclassical Method. J. Chem. Phys.
2016, 145, 064109.
(68) Kananenka, A. A.; Sun, X.; Schubert, A.; Dunietz, B. D.; Geva, E.
A Comparative Study of Different Methods for Calculating Electronic
Transition Rates. J. Chem. Phys. 2018, 148, 102304.
(69) Kim, H.; Nassimi, A.; Kapral, R. Quantum-Classical Liouville
Dynamics in the Mapping Basis. J. Chem. Phys. 2008, 129, 084102.
(70) Nassimi, A.; Bonella, S.; Kapral, R. Analysis of the Quantum-
Classical Liouville Equation in the Mapping Basis. J. Chem. Phys. 2010,
133, 134115.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.7b03002
J. Phys. Chem. Lett. 2018, 9, 319−326

325

http://dx.doi.org/10.1021/acs.jpclett.7b03002


(71) Kim, H. W.; Rhee, Y. M. Improving Long Time Behavior of
Poisson Bracket Mapping Equation: A Non-Hamiltonian Approach. J.
Chem. Phys. 2014, 140, 184106.
(72) Miller, W. H.; Cotton, S. J. Classical Molecular Dynamics
Simulation of Electronically Non-Adiabatic Processes. Faraday Discuss.
2016, 195, 9−30.
(73) Cotton, S. J.; Miller, W. H. Symmetrical Windowing for
Quantum States in Quasi-Classical Trajectory Simulations. J. Phys.
Chem. A 2013, 117, 7190−7194.
(74) Cotton, S. J.; Igumenshchev, K.; Miller, W. H. Symmetrical
Windowing for Quantum States in Quasi-Classical Trajectory
Simulations: Application to Electron Transfer. J. Chem. Phys. 2014,
141, 084104.
(75) Cotton, S. J.; Miller, W. H. A Symmetrical Quasi-Classical Spin-
Mapping Model for the Electronic Degrees of Freedom in Non-
Adiabatic Processes. J. Phys. Chem. A 2015, 119, 12138−12145.
(76) Cotton, S. J.; Miller, W. H. The Symmetrical Quasi-Classical
Model for Electronically Non-Adiabatic Processes Applied to Energy
Transfer Dynamics in Site-Exciton Models of Light-Harvesting
Complexes. J. Chem. Theory Comput. 2016, 12, 983−991.
(77) Miller, W. H.; Cotton, S. J. Communication: Wigner Functions
in Action-Angle Variables, Bohr-Sommerfeld Quantization, the
Heisenberg Correspondence Principle, and a Symmetrical Quasi-
Classical Approach to the Full Electronic Density Matrix. J. Chem.
Phys. 2016, 145, 081102.
(78) Cotton, S. J.; Liang, R.; Miller, W. H. On the Adiabatic
Representation of Meyer-Miller Electronic-Nuclear Dynamics. J. Chem.
Phys. 2017, 147, 064112.
(79) Meyer, H. D.; Miller, W. H. A Classical Analog for Electronic
Degrees of Freedom in Nonadiabatic Collision Processes. J. Chem.
Phys. 1979, 70, 3214−3223.
(80) Cotton, S. J.; Miller, W. H. Symmetrical Windowing for
Quantum States in Quasi-Classical Trajectory Simulations: Application
to Electronically Non-Adiabatic Processes. J. Chem. Phys. 2013, 139,
234112.
(81) Miller, W. H.; Cotton, S. J. Communication: Note on Detailed
Balance in Symmetrical Quasi-Classical Models for Electronically Non-
Adiabatic Dynamics. J. Chem. Phys. 2015, 142, 131103.
(82) Bellonzi, N.; Jain, A.; Subotnik, J. E. An Assessment of Mean-
Field Mixed Semiclassical Approaches: Equilibrium Populations and
Algorithm Stability. J. Chem. Phys. 2016, 144, 154110.
(83) Wu, J.; Cao, J. S. Linear and Nonlinear Response Functions of
the Morse Oscillator: Classical Divergence and the Uncertainty
Principle. J. Chem. Phys. 2001, 115, 5381.
(84) Kryvohuz, M.; Cao, J. Quantum-Classical Correspondence in
Response Theory. Phys. Rev. Lett. 2005, 95, 180405.
(85) Lo ́pez-Lo ́pez, S.; Martinazzo, R.; Nest, M. Benchmark
Calculations for Dissipative Dynamics of a System Coupled to an
Anharmonic Bath with the Multiconfiguration Time-Dependent
Hartree Method. J. Chem. Phys. 2011, 134, 094102.
(86) Stock, G.; Thoss, M. Semiclassical Description of Nonadiabatic
Quantum Dynamics. Phys. Rev. Lett. 1997, 78, 578−581.
(87) Miller, W. H. The Semiclassical Initial Value Representation: A
Potentially Practical Way for Adding Quantum Effects to Classical
Molecular Dynamics Simulations. J. Phys. Chem. A 2001, 105, 2942−
2955.
(88) Ananth, N.; Venkataraman, C.; Miller, W. H. Semiclassical
Description of Electronically Nonadiabatic Dynamics via the Initial
Value Representation. J. Chem. Phys. 2007, 127, 084114.
(89) Kelly, A.; van Zon, R.; Schofield, J.; Kapral, R. Mapping
Quantum-Classical Liouville Equation: Projectors and Trajectories. J.
Chem. Phys. 2012, 136, 084101.
(90) Thompson, K.; Makri, N. Influence Functionals with Semi-
classical Propagators in Combined Forward-Backward Time. J. Chem.
Phys. 1999, 110, 1343.
(91) Wan, C.; Schofield, J. Exact and Asymptotic Solutions of the
Mixed Quantum-Classical Liouville Equation. J. Chem. Phys. 2000, 112,
4447−4459.

(92) Martinez, F.; Hanna, G. Mixed Quantum-Classical Simulations
of Transient Absorption Pump−Probe Signals for a Photo-Induced
Electron Transfer Reaction Coupled to an Inner-Sphere Vibrational
Mode. J. Phys. Chem. A 2016, 120, 3196−3205.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.7b03002
J. Phys. Chem. Lett. 2018, 9, 319−326

326

http://dx.doi.org/10.1021/acs.jpclett.7b03002

