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We use the “generalized hierarchical equation of motion” proposed in Paper I [C.-Y. Hsieh and J. Cao,
J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The
present methodology allows a systematic incorporation of higher-order anharmonic effects of the
bath in dynamical calculations. We investigate the leading order corrections to the linear response
approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a
bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or elec-
tron spins. The main difference resides with how the bath frequency and the system-bath coupling
parameters are distributed in an environment. When discretized from a continuous spectral density, the
system-bath coupling typically scales as ∼1/

√
NB where NB is the number of bath spins. This scaling

suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approxi-
mations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings
are directly deduced from spin-spin interactions and do not necessarily obey the 1/

√
NB scaling. It

is not always possible to justify the linear response approximations in this case. Furthermore, if the
spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly
non-Markovian and persistent dynamics that is beyond the linear response treatments. Published by
AIP Publishing. https://doi.org/10.1063/1.5018726

I. INTRODUCTION

Understanding the dissipative quantum dynamics1,2 of a
system embedded in a complex environment is an important
topic across various sub-disciplines of physics and chemistry.
Significant progress in the understanding of condensed phase
dynamics has been achieved within the context of a few proto-
typical models3–5 such as the Caldeira-Leggett model and spin-
boson model. The environment is often modeled as a bosonic
bath characterized with a spectral density, from which bath-
induced decoherence can be deduced. This prevalent adoption
of bosonic baths is based on the following considerations: (1)
the simple mathematical tractability of a Gaussian bath model,
(2) the linear response of an environment is often sufficient to
account for quantum dissipations, and (3) the spectral den-
sity can be extracted from the classical molecular dynamics
simulations.

Despite the above-mentioned merits, there exist scenar-
ios in which the “bosonization” of an environment is inade-
quate. For instance, the electron-transfer reaction in condensed
phase is often approximated with the spin boson model. The
abstract model treats the generic quantum environment as
a set of harmonic oscillators, which corresponds to taking
only the linear response of solvent effects outside a solva-
tion shell while imposing a “harmonic approximation” on

a)Electronic mail: jianshu@mit.edu

the vibration modes inside the shell. The anharmonicity and
higher-order nonlinear response can be substantial when the
donor-acceptor complex is strongly coupled to some low-
frequency vibrational modes or present in nonpolar liquids. To
better understand the anharmonic effects of the environment,
several groups including ours6,7 have studied correlation func-
tions of anharmonic oscillators and a generalized spin boson
model with a bath of independent Morse or quartic oscilla-
tors. Similarly, a spin bath can be viewed as an extreme limit
of anharmonic oscillators and provides additional insights
into condensed phase dynamics. Another popular approach is
the Garg-Onuchic-Ambegaokar model8 in which the charge
transfer process is modeled as a spin coupled to a central
oscillator that is in turn coupled to a set of harmonic oscil-
lators.9 The anharmonic effects on the electronic transitions
could be tuned by specifying the potential profile of this central
oscillator.

On the other hand, spin bath models composed of elec-
tron or nuclear spins have received increased attentions
due to ongoing interests in developing various solid-state
quantum technologies10–12 under the ultralow-temperature
regime when interactions with the phonons or vibrational
modes are strongly suppressed. For these spin-based environ-
ments, the spectral density is no longer a convenient char-
acterization of the bath. Instead, each bath spin is explic-
itly specified with the parameters {ωk , gk}, the intrin-
sic energy scale, and the system-bath coupling coefficients,
respectively.
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In this work, we investigate corrections13 to the standard
linear response treatment of quantum dissipations induced
by a spin bath. To quantitatively capture these higher-order
responses, we utilize the generalized hierarchical equation of
motion (gHEOM) method, proposed in Paper I,14 to incor-
porate higher-order cumulants of an influence functional
into an extended HEOM framework15,16 through a stochas-
tic formulation.17–20 Even though it is possible to derive the
gHEOM directly through the path integral influence functional
approach,21 we emphasize that the stochastic approach pro-
vides an extension to additional methodology developments
such as hybrid deterministic-stochastic algorithms.22,23 This
is a direction we are pursuing. Due to the enormous numer-
ical efforts needed to generate accurate long-time results,
we restrict the numerical illustrations in the short-time limit.
Recently, our group24 and others25–28 have proposed methods
to construct the memory kernel of a generic bath from numer-
ically exact short-time dynamical results. Hence, the gHEOM
provides an invaluable tool to capture the anharmonicity and
non-Gaussian effects of a generic quantum environment when
used along with the other methods to correctly reproduce
long-time results. Furthermore, starting from the stochastic
formalism or the gHEOM, it also serves as a starting point
to derive master equations29 incorporating these higher-order
nonlinear effects and can be more efficiently solved to extract
long-time results.

As alluded earlier, we cover both scenarios: the spin bath
as a specific realization of an anharmonic condensed-phase
environment and the physical spin bath composed of nuclear
or electron spins. In this work, we always explicitly take a
spin bath as a collection of finite number of spins except in
Appendix B For physical spin bath models, this restriction
reflects the reality that there could only be a finite number of
spins in the surrounding environment. For an anharmonic con-
densed phase environment, if we simply take the spin bath as
a realization of an infinitely large heat bath, then it has been
rigorously shown30,31 that all higher-order response functions
must vanish in the thermodynamic limit. On the other hand,
if we perform atomic simulation of solvents in a condensed
phase, the anharmonicity can probably be attributed to a few
prominent degrees of freedom. Therefore, we restrict the num-
ber of bath spins in order to probe the effects of higher-order
response functions. Many earlier studies32–37 on the spin bath
focused on the thermodynamic limit and restricted to ana-
lyze the linear response only. Some interesting phenomena
include more coherent population dynamics34 in the nonadia-
batic regime at elevated temperature and the onset of negative
thermal conductivity33 in a molecular junction coupled to two
large spin baths held at different temperatures. In Appendix B,
we report our own investigation on differences between a spin
bath and a bosonic bath in the linear response limit when the
spin bath can be accurately mapped onto an effective bosonic
bath.

In this work, the main difference between the two types
of environment comes down to how the parameters {ωk , gk}
are assigned to each bath spin as explained later. In gen-
eral, we find that the anharmonicity is more pronounced at
the low-frequency end when the spectral density for con-
densed phase environment is the commonly adopted Ohmic

form. Therefore, a slow spin bath at low temperatures could
potentially pose the most difficulty for a linear response
treatment of the bath. On the other hand, for a physi-
cal spin bath model, highly non-Markovian and persistent
dynamics38–42 emerge under a combination of narrowly dis-
tributed bath parameters and highly symmetrical system-
bath Hamiltonians. To accurately reproduce these results may
require taking the higher-order response of the spin bath into
account.

The paper is organized as follows. In Sec. II, we intro-
duce the spin bath models of interest. In Sec. III, we provide
a brief account of the stochastic formalism14 and how to use
it to derive the gHEOM with a systematic inclusion of higher-
order cumulants of an influence functional. In Sec. IV, we
first discuss an exactly solvable dephasing model to stress the
importance of higher-order cumulant corrections (HOCCs)
and present a benchmark to validate our numerical method
then move on to study both finite size representation of the
condensed-phase environment and an Ising spin bath. A brief
summary is given in Sec. V. In Appendix A, we provide
additional materials on the stochastic derivation of the gen-
eralized HEOM. In Appendix B, we investigate the linear
response effects of the spin bath in the thermodynamic limit
and identify physical signatures that one can use to distinguish
a spin-based condensed-phase environment from a bosonic
one.

II. SPIN BATH MODELS

We consider the following Hamiltonian in this work:

Ĥ = Ĥs + ĤB + Ĥ int

=
ε

2
σ̂z

0 +
∆

2
σ̂x

0 + ĤB + Ĥ int, (1)

where ĤB =
∑

k>0(ωk/2)σ̂z
k and the standard partition of the

system (subscript s), bath (subscript B), and mutual interac-
tion (subscript int) is implied. In the above equation, σx

k and
σz

k denote the x and z components of the Pauli matrices for
the kth spin. The index 0 is reserved for the system spin.
The general spin-spin interaction takes the form σ̂α0 σ̂

β
1 , where

α/β denotes the Cartesian components of Pauli matrices.
Among the choices, most common system-bath interactions
read

Ĥ int =




∑
k>0 gkσ̂

z
0σ̂

x
k ,∑

k>0 gkσ̂
z
0σ̂

z
k ,∑

k>0 gk(σ̂+
0 σ̂
−
k + σ̂−0 σ̂

+
k ),∑

k>0 gk(σ̂x
0σ̂

x
k + σ̂y

0σ̂
y
k + σ̂z

0σ̂
z
k),

(2)

where σ±k = (σx
k ± iσy

k)/2. In this work, we should explicitly
consider first two interaction forms. The first form is appro-
priate for modeling the condensed-phase environment, while
the second form is useful in the decoherence study in quantum
computing and related contexts.

A. Anharmonic condensed-phase environment

One simple-model approach to investigate anharmonicity
of a condensed-phase environment is to generalize the typi-
cal bosonic bath by substituting harmonic oscillators with the
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quartic oscillators or Morse oscillators.43 We briefly illustrate
the steps to obtain a spin bath model corresponding to the
low-energy spaces of a bath of Morse oscillators.6

We still begin with Eq. (1) but having a different bath
part,

ĤB=
∑
k>0

*
,

P2
k

2
+ Dk

(
1 − e−αkXk

)2+
-

,

Ĥ int=σ̂
z
0

∑
k>0

ckXk .
(3)

The nth eigen-energy of the kth Morse oscillator is given by

En,k = ωk

(
n +

1
2

)
− χk

(
n +

1
2

)2

, (4)

where the fundamental frequency ωk = αk
√

2Dk and the
anharmonicity factor χk = α2

k/2. Following Ref. 43, one
can characterize the anharmonicity of each mode by impos-
ing a parameter, Λ (the number of bound states in a Morse
oscillator). Under the condition of fixed Λ, one gets

Dk =
ωkΛ

2
, αk =

√
ωk

Λ
, and χk =

ωk

2Λ
, (5)

for each Morse oscillator with a free parameter ωk . As clearly
implied in Eqs. (3) and (4), the Morse potential and the energy
level spacing smoothly reduce back to those of a harmonic
oscillator in the limit ofΛ→∞. The recovered harmonic bath
is characterized by

ĤB =
∑
k>0

*
,

P2
k

2
+

1
2
ω2

k X2
k
+
-

,

Ĥ int = σ̂
z
0

∑
k>0

ckXk .
(6)

On the other hand, by setting Λ = 2, an effective spin bath
emerges. Equation (3) can now be cast as

ĤB =
∑
k>0

ωk

2
σ̂z

k ,

Ĥ int = σ̂
z
0

∑
k>0

ck
√

2ωk
σ̂x

k

(7)

which correspond to the first interaction form in Eq. (2).
The mapping of a generic anharmonic environment onto a

spin bath is more universal than the specific example of Morse
oscillators. A general approach to achieve the mapping is to
formulate an influence functional of the bath and then perform
a cumulant expansion, which characterizes the bath-induced
decoherence through multi-time correlation functions. One
then has a clear set of criteria to construct a spin bath to repro-
duce the bath’s response up to a specific cumulant expansion
order. This is achievable as a set of spins (or qubits) constitute
a versatile quantum simulator44 that can simulate other simple
quantum systems.

B. Physical spin bath

In the present context, the spin bath is not just a conceptual
model but represent the actual spin-based environment com-
posed of nuclear/electron spins in the surrounding medium
of a physical system. Depending on details regarding a sys-
tem, spin-spin interactions could take on a number of different

forms such as the Ising, flip-flop (or XX), and Heisenberg
interactions in Eq. (2). For simplicity, we investigate the Ising
interaction45,46 in addition to the first form of interaction in
Eq. (2).

The physical spin bath must contain a finite number of
bath spins. In certain systems, such as electrically gated quan-
tum dots10 in GaAs, there could be as many as 105–106 nuclear
spins within the quantum-dot confining potential. While only a
small fraction of bath spins are strongly coupled to the system,
it is often possible to make semi-classical approximations to
simplify the calculations. On the other hand, for NV (Nitro-
gen Vacancy) centers12 and the related system, the relevant
spin bath contains only 101–102 spins. The bath could be
potentially too small for a semi-classical approximation and
too large for a full dynamical simulation. Although we have
seen impressive advances in simulation methods34,35,47–49 for
large spin systems in the last decade, there still exist rooms for
improvement.

C. Spin bath parameters

A finite-size bath model is fully characterized by pairs of
parameters, {ωk , gk}. In modeling physical spin systems, these
parameters are often randomly drawn from narrow probability
distributions as done and justified in earlier studies.50–52 In
particular, we will sample both ωk and gk from the uniform
distributions.

When addressing spin baths as a representation for anhar-
monic condensed phase environment, we consider an alterna-
tive assignment of parameters, {ωk , gk}, by discretizing an
Ohmic spectral density, J(ω) ∝ ω exp(�ω/ωc), according to
the scheme given in Ref. 31. In the thermodynamic limit, it
has already been shown31 that the spin bath can be exactly
mapped onto a bosonic one with a temperature-dependent
spectral density,

Jeff(ω) = tanh

(
βω

2

)
J(ω). (8)

Our present focus is to investigate the non-Gaussian bath
effects beyond the effective spectral density prescription.

III. METHODOLOGY
A. Stochastic decoupling of many-body
quantum dynamics

We now present an approach to systematically incorpo-
rate the nonlinear bath effects into the HEOM framework
through a stochastic calculus-based derivation. Given the
model described earlier, the exact quantum dynamics of the
composite system (central spin and the bath) can be cast into
a set of coupled stochastic differential equations,

d ρ̃s = − idt
[
Ĥs, ρ̃s

]
− idtB(t)

[
A, ρ̃s

]
−

i
√

2
dW∗A ρ̃s +

i
√

2
dV ∗ ρ̃sA, (9)

d ρ̃B = − idt
[
ĤB, ρ̃B

]
+

1
√

2
dW (B − B(t)) ρ̃B

+
1
√

2
dV ρ̃B (B − B(t)) , (10)
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where ρ̃s/B(t) refers to the stochastically evolved density matri-
ces in the presence of the white noises, implied by the Wiener
differential increments dW and dV, and the bath-induced
stochastic field acting on the system,

B(t) =
∑

k

gkTrB

{
ρ̃B(t)σx

k

}
. (11)

The reduced quantum dynamics of the central spin is recovered
after averaging ρ̃s(t) over different noise realizations in the
above equations,

ρs(t) = E( ρ̃s(t)). (12)

As implied in Eq. (9), the dissipative effects of the bath are
completely captured by the interplay of the stochastic field
B(t) and the white noises. To determine the stochastic field,
one can use Eq. (10) to derive a closed-form expression for
B(t) in the case of bosonic bath,

B(t) =
1
√

2

(∫ t

0
dW (s)α(s) +

∫ t

0
dV (s)α∗(s)

)
, (13)

where α(t) = ∫
∞

0 dωJ(ω) (coth(βω/2) cos(ωt) − i sin(ωt)) is
the two-time correlation functions. For non-Gaussian bath
models, such as the spin bath, the stochastic field is determined
by the multi-time correlation functions as follows:

B(t) =
1
√

2

∫ t

0
dW (s)Φ2,1(t, s) +

1
√

2

∫ t

0
dV (s)Φ2,2(t, 2)

+

(
1
√

2

)3 ∫ t

0

∫ s1

0

∫ s2

0
dW (s1)dW (s2)dW (s3)

×Φ4,1(t, s1, s2, s3) + · · · +

(
1
√

2

)3 ∫ t

0

∫ s1

0

∫ s2

0
dV (s1)

× dV (s2)dV (s3)Φ4,8(t, s1, s2, s3) + . . . , (14)

where the definition on correlation functions Φn,m(t, t1, . . . ,
tn�1) are delegated to Appendix A. Equation (14) assumes
that the odd-time correlation functions vanish with respect
to the initial thermal equilibrium state. For now, we simply
note that there are 2n�1 possible n-time correlation functions.
The second subscript m = 1, . . . , 2n�1 labels these functions.
Not all of the n-time correlation functions are independent;
every correlation function and its complex conjugate version
are counted separately in this case. The motivation to dis-
tinguish the correlation functions is actually to differentiate
all possible sequences of multiple integrations of noise vari-
ables associated with the n-time correlation functions as shown
in Eq. (14). In this equation, we have explicitly expanded
this formal expression up to the fourth-order correlation
functions.

Substituting Eq. (14) into Eq. (9), one then derives a closed
stochastic differential equation for the central spin. Direct
stochastic simulation schemes so far have only been proposed
for the Gaussian baths when the stochastic field is exactly
defined by the second cumulant as in Eq. (13). In this case,
the stochastic field can be combined with the white noises
to define color noises with statistical properties specified by
the bath’s two-time correlation function. When higher-order
cumulant terms are needed to properly characterize B(t), a
direct stochastic simulation becomes significantly more com-
plicated. In this study, we choose to convert Eqs. (9) and (14)

to a hierarchy of deterministic equations involving auxiliary
density matrices (ADMs).

B. Generalized hierarchical equations of motion

To derive the hierarchical equation, we begin with Eq. (9)
and take a formal ensemble average of the noises to get

dρs

dt
= −i

[
Ĥs, ρs

]
− i

[
A, E (B(t) ρ̃s)

]
. (15)

To arrive at the above equation, we invoke the relation of Eq.
(12) and the fact E(dW ) = E(dV ) = 0. This deterministic
equation now involves an auxiliary density matrix E(B(t) ρ̃s(t))
that needs to be solved too. Working out the equation of motion
for the auxiliary density matrix (ADM), one is then required
to define additional ADMs and a hierarchy forms.

Following a recently proposed scheme, we introduce a
complete set of orthonormal functions {φj(t)} and express all
the multi-time correlation functions as

Φn+1,m(t, t1, . . . , tn) =
∑

jjj

χn+1,m
jjj φj1 (t − t1) · · · φjn (tn − t1),

(16)

where j = (j1, . . . , jn). Due to completeness, one can also cast
the derivatives of the basis functions in the form

d
dt
φj(t) =

∑
j′
ηjj′φj′(t). (17)

Next, we define the cumulant block matrices

An =



an
1j1
· · · an

1jk
, 0, . . .

...
an

2nk1
· · · an

2njk
, 0, . . .



, (18)

where each is composed of 2n+1 row vectors with indefinite
size and the 0 in each row implies all zeros beyond this point.
For instance, A1 has two row vectors, while A2 has four row
vectors, etc. The mth row vector of matrix An contains matrix
elements denoted by (an

mj1
, an

mj2
, . . . an

mjk
). Each of this matrix

element can be further interpreted by

an
mj ≡

(
1
√

2

)n ∫ t

0

∫ s1

0
. . .

∫ sn−1

0
dU(s1) . . . dU(sn)φj1 (t − s1)

× φj2 (s2 − s1) · · · φjn (sn − s1), (19)

where dU(sj) can be either a dW (sj) or dV (sj) stochastic vari-
able depending on index m. With these new notations, the
multi-time correlation functions in Eq. (14) are now concisely
encoded by

B(t) =
∑
n,m,jjj

χn+1,m
jjj an

mjjj. (20)

Now we introduce a set of ADMs

ρ[A1][A2][A3] · · · ≡ E *.
,

∏
n,m,k

an
mjk

ρ̃s(t)
+/
-

, (21)

which implies the noise average over a product of all non-zero
elements of each matrix Ai with the stochastically evolved
reduced density matrix of the central spin. The desired reduced
density matrix would correspond to the ADM in which all
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matrices are empty. Furthermore, the very first ADM we
discuss in Eq. (15) can be cast as

E (B(t) ρ̃s) =
∑
n,m,jjj

χn+1,m
jjj ρ...[An]...(t), (22)

where each ADM, ρ...[An]..., on the RHS of the equation carries
only one non-trivial matrix element an

m,jjj in An. Finally, the
hierarchical equations of motion for all ADMs can now be put
in the following form:

∂t ρ
[A1][A2][A3] = − i

[
Hs, ρ

[A1][A2][A3]
]

− i
∑
n,m,jjj

χn,m
jjj

[
A, ρ· · ·[An+(m,jjj)]· · ·

]

− i
∑
n,m,jjj

φj1 (0)Aρ· · ·[An−1+(m′,jjj1)][An−(m,jjj)]· · ·

− i
∑
n,m,jjj

φj1 (0)ρ· · ·[An−1+(m′,jjj1)][An−(m,jjj)]· · ·A

+
∑
n,m,j

ηjj′ ρ
· · ·
[
an

mj→an
mj′

]
· · ·. (23)

In this equation, we introduce a few compact notations that we
now explain. We use

[
An ± (m, jjj)

]
to mean adding or remov-

ing an element an
mjjj to the mth row. We also use

[
an

mj → an
mj’

]

to denote a replacement of an element in the mth row of
An. On the second line, we specify an element in a lower
matrix given by (m′, j1). The variable j1 implies removing
the first element of the j array and the associated index m′

is determined by removing the first stochastic integral in Eq.
(19). After the first term on the RHS of Eq. (23), we only
explicitly show the matrices An affected in each term of the
equation.

IV. RESULTS AND DISCUSSIONS

In the following numerical examples, we investigate the
dynamics of a central spin coupled to a spin bath, Eq. (1).
The first two forms of system-bath interactions in Eq. (2) will
be addressed. We use the gHEOM to simulate dynamics and
adopt the Chebyshev polynomials as the functional basis to
interpolate high-dimensional multi-time correlation functions.
We note that there exist simpler choices15 of functional basis
when only the two-time correlation functions are needed as
in the bosonic bath models. We consider the standard initial
conditions,

ρ̂(0) = ρ̂s(0) ⊗ ρ̂eq
B , (24)

where the bath density matrix is simply a tensor product of the
thermal equilibrium state for each individual mode. Since we
only consider a finite-size spin bath in all examples in this sec-
tion, the bath itself should not be considered as a heat reservoir.
One approach53 to more realistically model an environment is
to couple the finite number of bath spins to an underlying heat
bath (a continuum of harmonic oscillators), and then it is justi-
fied to adopt the thermal equilibrium initial condition. On the
other hand, if there is a clear separation of time scale between
the coherent spin dynamics and the spin-lattice relaxation, then
it is also justified to investigate the dynamical evolution of
spin degrees of freedom up to the time scale bounded by the
spin-lattice relaxation.

Through the examples in this section, we investigate
whether it is generally a valid idea to map a spin bath model
onto an effective bosonic one, such as obtained through a
second-order cumulant expansion of the spin bath’s influ-
ence functional. The gHEOM presented in Sec. III B will
be used to quantify the contributions of higher-order cumu-
lant corrections to the quantum dynamics of the central
spin.

A. Pure dephasing

We first analyze a pure dephasing model,54 i.e., ∆ = 0
in Eq. (1), and adopt the first interaction Ĥ int = σ̂z

0

∑
k gkσ̂

x
k

in Eq. (2). This case can be analytically solved and provides
insights into the higher-order response functions of the bath.
The coherence of the central spin can be expressed as

〈↑| ρs(t) |↓〉 = 〈↑| ρs(0) |↓〉 e−iε teΓ(t), (25)

where the decoherence factor Γ(t) reads

Γ(t) =
∑

k

ln
〈
eiH(k)

+ te−iH(k)
− t

〉
=

∑
k

ln

1 −

4g2
k

Ω2
k

(1 − cosΩk t)


≈
∑

k



4g2
k

ω2
k

(1 − cos(ωk t)) − *
,

4g2
k

ω2
k

+
-

2

sin(ωk t)

× (sin(ωk t) − ωk t)] , (26)

with Ĥ (k)
± = (ω/2)σ̂z

k ± gkσ̂
x
k and Ωk = ωk

√
1 + (4g2

k/ω
2
k ). In

the last line, we expand Γ(t) to get the two leading contribu-
tions with respect to λk = 4g2

k/ω
2
k . These two terms corre-

spond to the second-order and fourth-order cumulant expan-
sions of the influence functional for this particular model,
respectively.

Even with this simple case, one can draw important
remarks regarding spin bath mediated decoherence. First of
all, the exact result in Eq. (26) implies that the perturbations
coming from a specific spin bath mode are modulated with
an interaction renormalized frequency Ωk as opposed to the
bare frequency ωk , which is the way bosonic modes perturb
a system through a linear coupling. The origin of this inter-
action dressed Ωk can be understood by inspecting the time
evolution of Pauli matrices associated with individual spin
modes,

σ̂±k (t) = e±iωtσ̂±k (0) ∓ igk

∫ t

0
dτe±iωk (t−τ)σ̂z

k(τ),

σ̂z
k(t) = σ̂z

k(0) − i2gk

∫ t

0
dτ

(
σ̂+

k (τ) − σ̂−k (τ)
)

.

(27)

By converting the raising and lowering Pauli matrices into
the x and y Pauli matrices, it is obvious that different compo-
nents of the bath spin get coupled together via the system-
bath interaction in a non-trivial way and renormalize the
frequency at which a spin precesses. There is no such cou-
pling of the internal structure for harmonic oscillators due to
the fundamental differences in the commutation properties of
bosonic creation/annihilation operators and Pauli matrices for
spins.
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Second, when λk � 1, then Ωk is significantly shifted
from the bare frequency ωk . The density of states of the bath
will be dramatically re-organized with respect to Ωk . Any
methods expanding aroundωk will be difficult to provide accu-
rate results when system-bath coupling is strong and/or when
ωk is small. A striking example would be a single-frequency
bath, in which all modes possess the identical energy scale
ωk = ω and are coupled non-uniformly to the system. For a
bosonic bath as well as the second-order cumulant expansion
for a spin bath, there is essentially no dephasing. Accord-
ing to the second-order result in Eq. (26), the coherence
of the central spin is periodically recovered at time points
ωt = n2π with n as an integer. However, for an exact treat-
ment of the spin bath, non-trivial dephasing happens as long
as not all coupling coefficients gk are identical. Due to the
system-bath interaction, the single-frequency distribution of
ω can be broadened to a finite bandwidth corresponding to the
dressed Ωk . This analysis is confirmed in Fig. 1, where the
exact result (green) undergoes a practically irreversible decay
but not for the second-order result (red). In the figure, we also
consider a modified second-order cumulant result (blue dot-
ted) which expands the decoherence function Γ(t) with respect
toΩk instead ofωk . As shown, this modified expansion works
extremely well. In general, this dressing of Ωk implies that
a faster dephasing rate is expected from a spin bath when
compared to a similar bosonic bath, i.e., a bath of harmonic
oscillators sharing the same set of {ωk , gk}. We remark that
the example (Fig. 1) concerns with a finite-size environment,
and a full recurrence of the initial state is possible in theory.
However, as discussed in Ref. 55, the recurrence time quickly
becomes exceedingly long (with respect to the bath size) and
the full recurrence should not be expected under most realistic
circumstances.

Finally, the temperature independence of Γ(t) in Eq.
(26) is another distinguishing property to set apart the spin
bath from what has been known for the bosonic bath mod-
els. This temperature-independent dephasing can already be
inferred from the expression of the effective spectral den-
sity in Eq. (8) and is further confirmed to hold beyond the
linear response regime in this pure dephasing model as the
temperature factors are missing in the exact expression in
Eq. (26).

To estimate the contributions of higher-order cumu-
lant corrections (HOCCs) to the central spin deocherence,
we note that the fourth-order cumulants in the last line of

FIG. 1. The magnitude of quantum coherence, |〈↑|ρs(t)|↓〉|, for a central spin
coupled to 200 bath spins with the same frequency, ωk = ω. The coupling
coefficients gk are sampled from a uniform distribution. The green, red, and
blue-dashed curves correspond to the exact, second-order, and modified (see
the text) second-order expansion of Γ(t).

Eq. (26) can become dominant under two conditions: (1) the
perturbation parameters satisfy λk > 1 and/or (2) when
t > 1/(λ2

kωk) such that the terms linearly proportional to ωk t
dominate the second-order cumulant. The second condition
implies a potential linear time t divergence. This instability
is an artifact of cumulant expansion and can be removed by
introducing higher-order cumulants. When the bath parame-
ters {ωk , gk} are obtained by discretizing a continuous spectral
density as discussed in Sec. II C, all λk ∼ 1/NB can be made
arbitrarily small when sufficiently large number of spin modes
are used. Hence, the artificial divergence due to the unstable
part of the fourth-order cumulants can often be suppressed
within the typical time domain for simulating condensed-phase
dynamics. However, even if just a few modes, satisfying λk ≥ 1,
could potentially contribute immensely to the overall HOCCs
because of the logarithmic form for each spin’s contribution
to the exact expression for Γ(t) in Eq. (26).

As mentioned in the case of physical spin models,13 there
is no reason that λk should be related to the number of bath
spins. Hence, the effects of HOCCs can become noticeable if
not all λk are sufficiently small within the simulation time win-
dow to suppress the divergence associated with the unstable
part of higher-order cumulants. In Fig. 2, we look at the dephas-
ing rate, Γ(t)/t, for two different cases to analyze HOCCs. The
initial condition of the central spin is taken to be the pure
state |ψ〉 = 1√

2
(|↑〉 + |↓〉). This calculation also serves as a

benchmark to validate that the gHEOM correctly resolves the
second and fourth cumulant contributions when compared to
the exact expansions in Eq. (26). The parameters ε = 2 and
∆ = 0 are used for the system Hamiltonian. We assign random
samples of {ωk , gk} from two uniform distributions centered
on ωo and go, respectively, with details given in the figure
caption. In panel (a), the fourth-order results can sufficiently
reproduce the exact rate and it starts to deviate from the linear
response rate around t ∼ 3. In panel (b), by further increas-
ing the average coupling g0, even the fourth-order corrections
start to fall short of reproducing the exact rate around t ∼ 3.
For both cases considered in Fig. 2, λk < 1 hold for all bath
modes, which ensures all perturbative expansion parameters
λk are well behaved in the short-time limit. It is clear that
the HOCCs become important to simulate the system relax-
ation when the spin bath parameters do not satisfy the scaling
relation λk ∼ 1/NB.

B. Anharmonic condensed-phase environment

We consider the same model as in Sec. IV A but with∆, 0
in Eq. (1). The central spin could suffer relaxation due to inter-
action with the bath in this case. The parameters, {ωk , gk}, are
assigned by discretizing an Ohmic spectral density. This finite-
size restriction is a necessity to observe any deviations from
linear response results as explained in the Introduction. Fur-
thermore, the discretization allows us to numerically compute
the multi-time correlation functions, needed for the gHEOM
calculations, by summing over contributions from each bath
spins.

One can estimate the leading order corrections beyond
the linear response approximation by a perturbative expansion
with respect to λk as done in Sec. IV A. We first analyze
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FIG. 2. The decoherence rate Γ(t)/t as function of time. The red, black, and blue curves are the exact rate, the fourth-order rate, and the second-order rate
according to Eq. (26). The open circles on the curves are generated numerically from the gHEOM method. The bath is composed of 50 spins with parameters
ωk and gk sampled uniformly from the following ranges. Panel (a): ωk ∈ [0.4, 0.6] and gk ∈ [0.08, 0.12]. Panel (b): ωk ∈ [0.4, 0.6] and gk ∈ [0.18, 0.22].

the population dynamics in the Markovian limit. We adapt
the NIBA (Non-Interacting Blip Approximation) equation to
the spin bath model33 with a symmetric system Hamiltonian,
Hs =

∆
2σ

x
0. We find

d
dt
〈σz

0(t)〉 = −∆2
∫ t

0
dse−QR(t−s) cos (QI (t − s)) 〈σz

0(s)〉, (28)

where the QR and QI functions read

QR(t) ≈
∑

k



λk(1 − cos (ωk t)) +

λ2
k

2

×

[
sin(ωk t)ωk t + sin2(ωk t)sech2

(
βωk

2

)]}
,

QI (t) ≈
∑

k





λk sin(ωk t) +

λ2
k

2
[sin(2ωk t) − cos(ωk t)ωk t]



× tanh

(
βωk

2

)}
,

(29)

with λk ≡ (4gk/ωk)2. Equation (28) is a second-order expan-
sion (with respect to the off-diagonal element, ∆) of the mem-
ory kernel. The functions, QR(t) and QI (t), in Eq. (29) are
further expanded up to λ2

k . If one only retains the first term,
proportional to λk , then QR(t) and QI (t) reduce to the stan-
dard NIBA expressions for an effective bosonic bath with a
temperature dependent spectral density, Eq. (8).

To finish the Markovian approximation, we replace
〈σz

0(s)〉with 〈σz
0(t)〉 on the RHS of Eq. (28), extend the integra-

tion limit to infinity in both directions, and perform a short-time
expansion of QR and QI to keep terms up to ∼t2. One then
integrates out the memory kernel in Eq. (28) and obtains a
simple rate equation with the Fermi golden rule rate given
by

k = ∆2
√

π

a1
(1 + ξ)−1/2 exp *

,
−

b2
1

4a1

(1 + ζ)2

1 + ξ
+
-

≈ ∆2
√

π

a1
exp *

,
−

b2
1

4a1

+
-

exp

(
−

1
2
ξ

)
= klin exp

(
−

1
2
ξ

)
, (30)

where ξ = a2/a1, ζ = b2/b1, a1 =
∑

k λkω
2
k/2, a2 =

∑
k λ

2
k tanh

(βωk/2)ω2
k/2, b1 =

∑
kλkωk tanh(βωk /2), and b2 =

∑
k λ

2
kωk

tanh(βωk/2)/2. As λk → 0, the rate approaches to the lin-
ear response/effective bosonic bath results: k → klin. The
expression on the second and third lines constitutes a good
approximation when both ξ and ζ are small. In particular, the
last exponential factor isolates the leading-order correction
to the rate constant, η = exp

(
− 1

2 ξ
)
. Whenever the scaling

λk ∼ 1/NB is imposed, ξ will scale as 1/NB too and η will
be exponentially suppressed. Furthermore, we note that the
leading-order correction reduces the relaxation rate at low tem-
peratures and gradually converges to the linear response result
klin with increasing temperature due to the factor tanh(βωk /2)
contained in the a2 variable.

Next, we investigate numerically the convergence of a
spin bath to the linear response results within the gHEOM cal-
culations. We use the following parameters ∆ = 1 and ε = 0
for the system Hamiltonian and the spectral density parame-
ters: ωc = ∆, β∆ = 2, α = 2.3. For Ohmic spectral density,
the coupling coefficients satisfy g2

k ∝ ωk and the perturbative
parameter λk ∝1/ωk . Therefore, the low-frequency bath modes
are more severely influenced by the system-bath interactions
with Ωk = ωk

√
1 + λk shifted further from ωk . To investigate

deviations from the linear response results, the highest fre-
quency we consider is ωmax = 2ωc in the discretization. The
convergence of dynamics is demonstrated in Figs. 3(a) and
3(b); the population and the coherences of the central spin are
plotted up to ∆t = 3.5, respectively, for a total number of 35,
70, 105, 210, and 500 spins including up to the fourth-order
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FIG. 3. Convergence study of the population and coherence dynamics with respect to the number of spins discretized from an Ohmic spectral density. The
population (a) and coherence (b) dynamics are obtained with the fourth-order gHEOM. For the 500-spin case, the fourth-order results essentially converge to
the second-order results for both population and coherence dynamics.

cumulant expansions. As the number of bath spins increase,
the results converge smoothly to those of the condensed phase
environment in the thermodynamic limit. At NB = 500, the
fourth-order results already converge with the second-order
results.

Next, we investigate the temperature dependence of
HOCCs. The same set of Hamiltonian and bath’s spectral
density parameters as above is used except the temperature
will be varied for analyses. We use a set of NB = 35 spins
for illustration. In many earlier studies, distinctive proper-
ties of a spin bath (in comparison to a bosonic counterpart)
are found to be temperature-related and are attributed to the
temperature-dependent spectral density, Eq. (8). However,
restricting the discussions to the effective spectral density
implies the comparisons focused on the linear response limit.
We would like to further analyze the contributions of HOCCs

to these temperature-dependent effects. In Fig. 4(b), we com-
pare the second-order (dashed curves) and fourth-order (solid
curves) results to inspect the contribution of the HOCCs. In
short, the HOCCs become more pronounced when the tem-
perature is lowered and the divergence between second-order
and fourth-order results increases. The numerical results are
also consistent with the earlier conclusion drawn from the
rate expression, Eq. (30). Similar observations31,34 have been
reported in the literature where it was found that more number
of discretized bath spins are needed to reach the linear response
limit at low temperatures. Despite the simple argument that the
linear response of a spin and a harmonic oscillator converge
in the zero temperature limit, the two bath models actually
do not converge except in the cases of large bath size. This is
because the higher-order response functions for spins become
more prominent in the low temperature regime. The primary

FIG. 4. Temperature dependence of the population (a) and coherence (b) dynamics. In both panels, four temperature cases β∆ = 0.25 (red), β∆ = 0.5 (blue, +),
β∆ = 1.0 (green, ×), and β∆ = 1.5 (black, o) are considered. The solid and dashed curves correspond to the second-order and fourth-order gHEOM calculations,
respectively.
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FIG. 5. The real (a) and imaginary (b) parts of coherence, 〈↑|ρs(t)|↓〉, for a central spin coupled to 50 bath spins. The system Hamiltonian is absent, i.e., ε = 0
and ∆ = 0. The bath parameters are randomly drawn from the ranges ωk ∈ [14, 15] and gk ∈ [0.006, 0.0018], and β = 0.2.

reason is due to the way the temperature enters the correlation
functions as tanh(βωk /2).

C. Ising spin bath

Finally, we consider another system-bath interaction,
Ĥ int = σ̂

z
0

∑
k gkσ̂

z
k . The Ising spin-spin interaction prohibits

bath spins to be flipped but still entangles the system and
bath. While this spin bath model is appropriate in certain
quantum computing contexts,45,46 it does not relate to a con-
densed phase environment. Hence, we will follow the phys-
ical spin bath approach to sample ωk and gk from uniform
distributions.

We first consider a pure dephasing case with ∆ = 0. The
coherence of the central spin can be cast in the general form
of Eq. (25) but with a different decoherence function,

Γ(t) =
∑

k

ln (cos(2gk t) − iγk sin(2gk t)) , (31)

where γk = tanh(βωk /2). Unlike the previous pure-dephasing
model in Sec. IV A, Γ(t) acquires a temperature dependence
throughγk . Since ĤB and Ĥ int commutes, the bath Hamiltonian
can be removed from the dynamical equation in a rotated frame
and no dressed bath frequenciesΩk appear as in Sec. IV A. For
the Ising spin bath, the bath frequencies ωk enter the decoher-
ence function through γk , reflecting the thermal equilibrium
initial condition ρ

eq
B .

According to Eq. (31), γk modulate the magnitude of
Γ(t) and the Ising spin bath becomes less efficient at interact-
ing with the system in the high-temperature limit and/or the
low-frequency limit when γk � 1. The system-bath coupling
coefficients gk determine the oscillatory behaviors of Γ(t) in
the time domain. When gk are narrowly distributed around a
mean value go, one expects a partially periodic recurrence of
Γ(t).

Now we investigate the effects of HOCCs. Two points
make the Ising spin model an interesting case to analyze.
First, an expansion of Eq. (31) with respect to gk reveals
that the even cumulants do not contribute to the imaginary
component of Γ(t), which drives a rotation of the central
spin on the Bloch sphere. A second-order cumulant expan-
sion will completely miss this rotation. This point is illustrated
in Fig. 5 where the central spin’s initial condition is taken
to be |ψs(0)〉 = (|↑〉 + |↓〉)/

√
2. The second-order result (red

curve) reproduces the real part of the coherence, 〈↑|ρs(t)|↓〉,
but completely misses the growth of the imaginary compo-
nent. Once we incorporate the third and fourth cumulants in
the calculation, the result (green curve) converges better to

FIG. 6. The real part of coherence, 〈↑|ρs(t)|↓〉, for a central spin coupled to 30
bath spins. The blue, red, and green curves represent the exact, second-order,
and higher-order cumulant results. The system Hamiltonian parameters are
ε = 1 and ∆ = 0. The bath parameters are randomly drawn from the rangesωk
∈ [7.8, 8.1] and gk ∈ [0.005, 0.007], and β = 0.5.
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FIG. 7. The coherence (a) and population (b) dynamics for a central spin coupled to 45 bath spins. The red and blue curves represent the second-order and
higher-order cumulant results. The system Hamiltonian parameters are ε = 1 and ∆ = 1. The bath parameters are randomly drawn from the ranges ωk ∈

[6.8, 7.2] and gk ∈ [0.04, 0.06], and β = 0.5.

the exact one in Fig. 5(b). Second, take B =
∑

k gkσ̂
z
k as the

bath part of Ĥ int, and it is easy to verify that the multi-time
correlation functions, such as Tr

{
ρ

eq
B B(t1)B(t2) . . . B(tn)

}
, are

time invariant (i.e., the memory kernel of the bath do not decay
in time). The highly non-Markovian nature of the Ising spin
bath can give rise to non-trivial steady states in the long time
limit. In Fig. 6, we consider another case and find that the
second-order result suggests a fully decayed coherence while
the exact result shows a persistent oscillation. Although the
higher-order result (green curve) can better capture the on-
going oscillating behavior in the transient regime, the artificial
divergence of cumulant expansion (explained in Sec. IV A)
suggests that more cumulant terms should be included within
the simulated time domain. In Fig. 6, we stop plotting the
higher-order result (green curve) just before some divergent
trend appears.

Going beyond the pure dephasing case, we restore the
off-diagonal coupling ∆. We examine both the coherence and
population dynamics in Fig. 7. Similar to the pure dephas-
ing case, one expects a slow decoherence when gk are nar-
rowly distributed. For both coherence and population dynam-
ics, we identify that the clear insufficiency of second-order
results and higher-order cumulants again helps us to restore
the coherence and the beatings of the population dynamics in
the transient regime. In Fig. 7, we stop plotting the higher-
order result (blue curve) just before some divergent trend
appears.

V. CONCLUSIONS

In summary, we use our recently proposed gHEOM to
investigate the effects of HOCCs on the quantum dissipations
induced by finite-size spin bath models. The gHEOM can
systematically incorporate the higher-order cumulants of the
bath’s influence functional into calculations. The controlled

access to non-Gaussian effects of the bath allows us to assess
the sufficiency of a linear response approximation. Besides the
spin baths, the methodology can be similarly applied towards
other types of anharmonic environments. However, due to the
prohibitive numerical resources required to accurately charac-
terize the high-dimensional multi-time correlation functions,
the best usage of this method is to combine it with the trans-
fer tensor method (TTM) proposed by one of us. One can
use the gHEOM to quantitatively capture the exact short-
time dissipative dynamics embedded in a non-Gaussian bath.
These short-time results are then fed to the TTM method to
reproduce the correct memory kernel of the environment and
allow an efficient and stable long-time simulation of dissipative
dynamics.

Through the analyses done in Sec. IV B, we find that
the linear response approximation provides a highly efficient
and accurate result for a finite spin bath over a wide range of
parameters. This is mainly because the next leading order cor-
rection scales as 1/NB in the cumulant expansion. We present
one “extreme” result for a relatively slow Ohmic bath in order
to observe appreciable corrections coming from the higher-
order cumulant terms in the short time limit. Even in this case,
the higher-order effects still vanish when NB = 500. Although,
the low-temperature condition should exacerbate the discrep-
ancy between the exact and linear-response results, we find
the actual effects rather minimal in the short-time limit. Con-
sidering the significant numerical costs to access higher-order
cumulants, it certainly makes the linear response approxima-
tion a highly appealing option in dealing with a spin-based
condensed phase environment. In Appendix B, we further
investigate the differences between a spin and bosonic bath
in the linear response limit. We confirm the lack of apprecia-
ble temperature dependence on the dissipative dynamics and
the emergence of negative differential thermal conductance
(NDTC) are two robust physical signatures to distinguish a
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spin bath from a corresponding bosonic one as explained in
the Appendix B.

It is much simpler to devise numerical examples in which
the higher-order cumulants play critical roles in a physical
spin bath model. The most critical factor is the probability
distribution for {ωk , gk}. Narrow distributions will make the
spin bath model more difficult for linear-response approxima-
tions, and it is likely to have such narrow distributions in real
spin-based environments. In such cases, the linear-response
results could deviate extremely from the exact results such
as shown in Figs. 1 and 6. Second, for a highly symmetric
spin-spin interaction such as the Ising Hamiltonian consid-
ered in Sec. IV C, the second-order cumulants fail to generate
a rotation of the spin state, which could only be accounted
by the odd-order cumulants. Finally, the physical spin bath
could be difficult to handle due to the possibility of extreme
non-Markovianity. In the Ising Hamiltonian example, we see
the extreme case of having all baths’ multi-time correlation
functions to be time-invariant and we need to expand deep
down the hierarchy to obtain converged results. The highly
non-Markovian nature of spin bath is not a rare exception.
In addition to the Ising Hamiltonian, the flip-flop and Heisen-
berg Hamiltonian in combination with a narrow distribution of
{ωk , gk} can also result in highly symmetric systems (cen-
tral spin plus the bath) with a rich set of non-Markovian and
persistent dynamics. With the gHEOM method, we can sys-
tematically incorporate higher-order cumulants to improve the
simulation results for physical spin bath models.
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APPENDIX A: STOCHASTIC MEAN FIELD
AND MULTI-TIME CORRELATION FUNCTIONS

From Eq. (11), it is clear that equation of motions for
B(t) can be obtained from the stochastic dynamical equations
for the bath density matrix in Eq. (10). More specifically, the
time evolution of the stochastic field B = ∑

k gk(〈b†k〉+ 〈bk〉) is
jointly determined by

d〈b†k〉 = iωk〈b
†

k〉dt +
1
√

2
gkdW∗G+−

k +
1
√

2
gkdV ∗G−+

k , (A1)

d〈bk〉 = −iωk〈bk〉dt +
1
√

2
gkdW∗G−+

k +
1
√

2
gkdV ∗G+−

k . (A2)

The expectation values in Eqs. (A1) and (A2) are taken with
respect to the stochastically evolved ρ̃k(t). The generalized
cumulants above are defined as

Gα1α2
k = 〈bα1

k bα2
k 〉 − 〈b

α1
k 〉〈b

α2
k 〉. (A3)

In this case of bosonic bath models, it is straightforward to
show that the time derivatives of Gα1α2

k vanish exactly. Hence,
the second-order cumulants are determined by the thermal
equilibrium conditions of the initial states. Immediately, one
can identify the relevant quantity G+−

k = nB(ωk), the Bose-
Einstein distribution for the thermal state of the bath. The time

invariance of the second-order cumulants makes Eqs. (A1)
and (A2) amenable to deriving a closed-form solution. On the
other hand, for the non-Gaussian bath such as the spin bath,
the second-order cumulants are not time invariant. One way to
determine their time evolution is to work out their equations
of motion by iteratively applying Eq. (10). It is straightfor-
ward to show that these equations couple different orders of
generalized cumulants,

dGαααk = idt |ααα |ωkGαααk +
1
√

2
dW∗s

(
G[ααα,+]

k + G[ααα,−]
k

)
+

1
√

2
dV ∗s

(
G[+,ααα]

k + G[−,ααα]
k

)
, (A4)

where α = (α1, α2, . . . , αn) specifies a sequence of raising and
lowering spin operators that constitute this particular nth order
cumulant and |α| =

∑
iαi with αi = ±1 depending on whether

it refers to a raising (+) or lowering (�) operator, respectively.
We use [α, ±] ≡ (α1, . . . , αn, ±) to denote an n + 1-th cumu-
lant obtained by appending a spin operator to α. A similar
definition is implied for [±, α]. More specifically, these cumu-
lants are defined via an inductive relation that we explicitly
demonstrate with an example to obtain a third-order cumulant
starting from a second-order one given in Eq. (A3),

G[(α1,α2),±]
k = 〈bα1 bα2 (b± − 〈b±〉)〉 + 〈bα1 (b± − 〈b±〉)〉〈bα2〉

+ 〈bα1〉〈bα2 (b± − 〈b±〉)〉. (A5)

The key step in this inductive procedure is to insert an operator
identity b± � 〈b±〉 at the end of each expectation bracket defin-
ing the nth cumulant. If a term is composed of m expectation
brackets, then this insertion should apply to one bracket at a
time and generate m terms for the n + 1-th cumulant. Simi-
larly, we get G[±,ααα] by inserting the same operator identity to
the beginning of each expectation bracket of Gαααk .

For the spin bath, these higher-order cumulants persist up
to all orders. In any calculations, one should certainly trun-
cate the cumulants at a specific kth order by imposing the
time invariance, Gααα

k (t) = Gααα
k (0), and evaluate the lower-order

cumulants by recursively integrating Eq. (A4). Through this
simple prescription, one derives Eq. (14).

APPENDIX B: PHYSICAL SIGNATURES OF THE SPIN
BATH MODELS IN THE THERMODYNAMIC LIMIT

In the main text, we focus predominantly on the higher-
order corrections to the quantum dissipations induced by a
spin bath. Now, we turn attention to the linear response limit
and we look for physical signatures that can distinguish the
spin and bosonic bath models. The condensed-phase spin bath
(with practically infinite number of modes) can be rigorously
mapped onto an effective bosonic bath with a temperature-
dependent spectral density, Eq. (8). To facilitate the calcu-
lations in this appendix, we should take the spin bath as an
effective bosonic model and adopt the superohmic spectral
density for convenience. The results below compliment those
of earlier studies33–37 on the same subject.

1. Electronic coherence of a two-level system

We first compare the dynamics of a dimer coupled to (1)
a bosonic bath and (2) a spin bath. The spectral densities for
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FIG. 8. Relaxation in the presence of a bosonic bath (left) and a spin bath (right) at high and low temperatures.

the two models read

Jb(ω) = 2K
ω3

ω2
c

e−ω/ωc ,

Js(ω) = 2K
ω3

ω2
c

e−ω/ωc tanh (βω/2) ,

(B1)

where the subscript b/s denotes the bosonic bath and the spin
(effective bosonic) bath models, respectively. In the study of
FMO (Fenna-Matthews-Olson)-like molecular systems, sur-
prisingly long coherence times were discovered and success-
fully explained through an enhanced NIBA formalism5 which
takes into account the first-order blip interactions. By consider-
ing the same dimer system and a similar set of experimentally
relevant parameters as in Ref. 56, we investigate how much
the coherent population dynamics of an effective dimer will
change when the environment is replaced by a spin bath with an
identical set of parameters as the original harmonics-oscillator
based condensed phase. The enhanced NIBA formalism is also
adopted here as it provides sufficiently accurate results over
a long time span in the parameter regime considered here.
The parameters are K = 0.16, ε /∆ = 0.6, ωc/∆ = 2.0, and
∆ ≈ 106.2 cm�1.

From Fig. 8, the dimer’s population dynamics in the
presence of the bosonic [panel (a)] and the spin [panel (b)]
baths at two different temperatures: T = 290 K and 75 K are
presented. The significant temperature-dependent relaxation
is observed in the standard bosonic bath, while the almost
temperature independent relaxation is found in the spin bath
model. These results confirm that the atypical temperature
dependence of a spin bath induced relaxation can be quite pro-
nounced and easily detected in the experimentally accessible
regime.

2. Energy transport through a non-equilibrium junction

We next explore additional features of a spin-based envi-
ronment in the non-equilibrium situations. We study the
energy transport across a molecular junction connected to two
heat baths composed of non-interacting spins. The extended
double-bath model should read

Ĥ = Ĥs +
∑
µ=L,R

ĤB,µ +
∑

k,µ=L,R

σ̂z
0(gkµσ

†

k,µ + gkµσk,µ), (B2)

where Ĥs and ĤB ,µ are the standard system and bath Hamilto-
nian with µ= L, R to denote the two baths at the left or right end.
Recent studies33,57 tried to model anharmonic junctions with
the spin bath and hinted several qualitative differences in the
transport phenomena. In this work, we adopt a non-equilibrium
polaron-transformed Redfield equation (NE-PTRE) in con-
junction with the full counting statistics to compute the steady-
state energy transfer through the junction. In Refs. 58 and 59,
it was demonstrated that NE-PTRE can be reliably used to cal-
culate energy currents (through a molecular junction coupled
to bosonic baths) from the weak to the strong system-bath cou-
pling regimes as the corresponding analytical expressions for
the energy current reduced elegantly to either the standard Red-
field (weak coupling) or NIBA (strong coupling) results in the
appropriate limits. In this study, we apply the NE-PTRE for-
malism to calculate and compare the energy current through
the junction while contacted by (a) two spin baths and (b)
two bosonic baths held at different temperatures. Similar to
Appendix B 1, the actual calculations below will treat the spin
bath as an effective bosonic bath. The same superohmic spec-
tral density, Eq. (B1), is adopted here. The parameters are
∆ = 1, ε = 10, ωc = 10, and K = 3.5. The left and right baths
share an identical set of parameters except the temperature,
and the fast bath (or scaling) limit with ωc � 1 is imposed in
both bath models.

In Fig. 9, the heat transfer exhibits a negative differential
thermal conductance (NDTC) for spin baths but not for bosonic
baths. The temperatures, kBTα, are measured in terms of ∆
with kB = 1 in the present case. We remark that the NDTC
(for bosonic bath models) reported in some earlier studies are
found to be an artifact of the Marcus approximation (over a
wide range of parameter regimes) as clarified by the NE-PTRE
method reported in Ref. 58. In Fig. 9, the NE-PTRE predicts
the NDTC for the spin bath model but not for the bosonic bath
model. In a separate work (not shown here), we also investigate
a single-frequency spin bath and compute the energy current
by using the NIBA method and find the same NDTC appearing
in the strong coupling regime. This helps us to validate that
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FIG. 9. The steady-state energy current through a two-level junction as a
function of the temperature difference between the left and right baths.
The energy current for the spin bath (blue, dotted) and bosonic bath (red,
solid) in the strong coupling regimes, respectively. The temperature increment
∆T = TL � TR is applied symmetrically to both baths such that TL + TR is
fixed.

the present result is not specific to a particular spectral density.
This qualitative difference between the bosonic and spin baths
results makes the NDTC another strong physical signature to
distinguish the two bath models.

Finally, we remark that additional physical signatures
could exist if the central spin is coupled asymmetrically60

(different operator form for system part of the coupling Hamil-
tonians to the left and right baths) to the two baths in the
transport model considered here. These points are worth fur-
ther investigations as they are relevant to the design of quantum
heat engines.
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