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We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum
environment. We exemplify the general framework by studying a two-level quantum system coupled
bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins.
In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally
captures the exact quantum dissipations when noise variables with appropriate statistics for different
bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath
multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise
a family of generalized hierarchical equations by averaging out the noise variables and expand bath
multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical
equations constitute systems of linear equations that provide numerically exact simulations of quantum
dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to
an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary
spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for
the fermionic bath models within our formalism. The spin bath models can be simulated with two
complementary approaches in the present formalism. (I) They can be viewed as an example of non-
Gaussian bath models and be directly handled with the general hierarchical equation approach given
their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a
pair of fermions and be treated as fermionic environments within the present formalism. Published
by AIP Publishing. https://doi.org/10.1063/1.5018725
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A unified stochastic formulation of dissipative quantum dynamics. I.
Generalized hierarchical equations

l. INTRODUCTION

Understanding dissipative quantum dynamics of a system
embedded in a complex environment is an important topic
across various sub-disciplines of physics and chemistry. Sig-
nificant progress in the understanding of condensed phase
dynamics has been achieved within the context of a few proto-
typical models'= such as the Caldeira-Leggett model and the
spin-boson model. In most cases, the environment is modeled
as a bosonic bath, a set of non-interacting harmonic oscillators
whose influences on the system is concisely encoded in a spec-
tral density. The prevalent adoption of bosonic bath models is
based on the arguments that knowing the linear response of an
environment near equilibrium should be sufficient to predict
the dissipative quantum dynamics of the system.

Despite many important advancements in the quantum
dissipation theory that have been made with the standard
bosonic bath models in the past decades, more and more phys-
ical and chemical studies have suggested the essential roles
that other bath models assume. We briefly summarize three
scenarios below.
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A standard bosonic bath model fails to describe intrigu-
ing anharmonic effects, such as intramolecular vibra-
tional energy relaxation and low-frequency solvation etc.
Some past attempts to model such an anharmonic, con-
densed phase environment include (a) using a bath of
non-interacting Morse*~” or quartic oscillators and (b)
mapping anharmonic environment onto effective har-
monic modes®'” with a temperature-dependent spectral
density.

Another prominent example is the fermionic bath model.
Electronic transports through nanostructures, such as
quantum dots or molecular junctions, involve particle
exchange that occurs across the system-bath bound-
ary. Recent developments of several many-body physics
and chemistry methods, such as the dynamical mean-
field theory!' and the density matrix embedding the-
ory,'? reformulate the original problem in such a way
that a crucial part of the methods is to solve an open
quantum impurity model embedded in a fermionic
environment.

The spin (two-level system) bath models have also
received increased attention over the years due to ongo-
ing interests in developing various solid-state quantum
technologies'® under the ultralow temperature when the
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phonon or vibrational modes are frozen and coupling to
other physical spins (such as nuclear spins carried by the
lattice atoms), impurities, or defects in the host material
emerges as the dominant channels of decoherence.

Both bosonic and fermionic environments are Gaussian
baths, which can be exactly treated by the linear response'®
in the path integral formalism. For the non-Gaussian baths,
attaining numerically exact open quantum dynamics would
require either access to higher order response function of
the bath in terms of its multi-time correlation functions or
explicit dynamical treatments of the bath degrees of freedom
(DOFs).

In this work, we extend a stochastic formulation'+1® of
quantum dissipation to all three fundamental bath models: non-
interacting bosons, fermions, and spins. The stochastic formu-
lation is exemplified with a standard model, Eq. (2), in which
a two-level quantum system is bilinearly coupled to a quan-
tum environment. The stochastic Liouville equation (SLE),
Eq. (22), prescribes a simple yet general form of quantum dis-
sipative dynamics when the bath effects are modeled as colored
noises £(¢) and n(¢). Different bath models and bath proper-
ties are distinguished in the present framework by assigning
distinct noise variables and associated statistics. For instance,
the noises are either complex-valued or Grassmann-valued
Gaussian processes, characterized by the two-time correlation
functions such as Eq. (24), depending on whether it is a bosonic
or fermionic bath under consideration. The Grassmann-valued
noises are adopted whenever the environment is composed
of fermionic modes as these algebraic entities would bring
out the Gaussian characteristics of fermionic modes. For
anharmonic environments, such as a spin bath, the required
noises are generally non-Gaussian. Two-time statistics can-
not fully distinguish these processes, and higher order statis-
tics furnished with bath multi-time correlation functions are
needed.

Despite the conceptual simplicity of the SLE, achiev-
ing stable convergences in stochastic simulations has proven
to be challenging in the long-time limit. Even for the most
well-studied bosonic bath models, it is still an active research
topic to develop efficient stochastic simulation schemes !’
today. Our group has successfully applied stochastic path
integral simulations to calculate (imaginary-time) thermal dis-
tributions,?? absorption/emission spectra,”> and energy trans-
fer;22* however, a direct stochastic simulation of real-time
dynamics® remains formidable. In this study, we consider
quantum environments that either exhibit non-Gaussian char-
acteristics or involve fermionic degrees of freedom (and asso-
ciated Grassmann noise in the stochastic formalism). Both sce-
narios present new challenges to developing efficient stochas-
tic simulations. Hence, in subsequent discussions, all numeri-
cal methods developed are strictly deterministic. We note that
it is common to derive exact master equation,26’27 hierarchical
equations of motion (HEOMs),?®?° and hybrid stochastic-
deterministic numerical methods®>**2° from a stochastic for-
mulation of open quantum theory. In Sec. III, we further illus-
trate the usefulness of our stochastic formulation by presenting
a numerical scheme that would be difficult to obtain within
a strictly deterministic framework of open quantum theory.
Furthermore, the stochastic formalism gives straightforward
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prescriptions to compute dynamical quantities such as (F;QOp),
which represents system-bath joint observables, as done in a
recently proposed theory.

Staring from the SLE, we derive numerical schemes to
deterministically simulate quantum dynamics for all three fun-
damental bath models. The key step is to formally average out
the noise variables in the SLE. A common approach is to intro-
duce auxiliary density matrices (ADMs), in close parallel to
the hierarchical equation of motion (HEOM) formalism,>! that
fold noise-induced fluctuations on reduced density matrix in
these auxiliary constructs with their own equations of motion.
To facilitate the formal derivation with the noise averaging, we
consider two distinct ways to expand the ADMs with respect to
a complete set of orthonormal functions in the time domain. In
the first case, the basis set corresponds to the eigenfunctions
of the bath’s two-time correlation functions. This approach
provides an efficient description of open quantum dynamics
for bosonic bath models. Unfortunately, it is not convenient
to extend this approach to study non-Gaussian bath models.
We then investigate another approach inspired by a recent
work on the extended HEOM (eHEOM).3? In this case, we
expand the bath’s multi-time correlation functions in an arbi-
trary set of orthonormal functions. This approach generalizes
eHEOM to the study of non-Gaussian and fermionic bath mod-
els with arbitrary spectral densities and temperature regimes.
Despite having a slightly more complex form, our fermionic
HEOM can be easily related to the existing formalism.* In this
work, we refer to the family of numerical schemes discussed in
this work collectively as the generalized hierarchical equations
(GHESs).

Among the three fundamental classes of bath models,
spin baths deserve more attention. A spin bath can feature
very different physical properties®® from the standard heat
bath composed of non-interacting bosons; especially, when
the bath is composed of localized nuclear/electron spins,'33
defects, and impurities. This kind of spin environment is often
of a finite size and has an extremely narrow bandwidth of
frequencies. To more efficiently handle this situation, we con-
sider a dual-fermion mapping that transforms each spin into
a pair of coupled fermions. At the expense of introducing an
extra set of fermionic DOFs, it becomes possible to recast
the non-Gaussian properties of the original spin bath in terms
of Gaussian processes in the extended space. In a subsequent
work, the Paper I1,® we should further investigate physical
properties of spin bath models.

The paper is organized as follows. In Sec. II, we introduce
thoroughly the stochastic formalism for open quantum sys-
tems embedded in a generic quantum environment. The SLE
is the starting point that we build upon to construct general-
ized hierarchical equations (GHEs), a family of deterministic
simulation methods after formally averaging out the noise vari-
ables. In Sec. III, we study bosonic baths by expanding the
noise processes in terms of the spectral eigenfunctions of the
bath’s two-time correlation function. In Sec. IV, we discuss
the alternative derivation that generalizes the recently intro-
duced extended HEOM to study non-Gaussian bath models
and fermionic bath models. In Sec. V, we introduce the dual-
fermion representation and derive an alternative GHE more
suitable for spin bath models composed of nuclear/electron
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spins. A brief summary is given in Sec. VI. In Appendixes A
and B, we provide additional materials on the stochastic cal-
culus and the Grassmann number to clarify some technical
details of the present work. Appendix C shows how to recover
the influence functional theory from the present stochastic
formalism.

Il. A UNIFIED STOCHASTIC FRAMEWORK
FOR OPEN QUANTUM SYSTEMS

A. The system and bath model

In this study, we consider a two-level quantum sys-
tem bilinearly coupled to a quantum bath composed of
non-interacting modes. The system Hamiltonian reads

A a)() A
H, = + —07, 1
L= g+ 500 (1)
where the subscript index O always refers to the system
spin and & ”‘/ % refers to the x and z elements of the Pauli
matrices.

The total Hamiltonian (for system and bath) can be written
as

H=H,+Hp+Hy =H,+Hg + Z A“B?, 2)

a==%
where the system-bath interacting part, Hy, contains operators
A% and B® acting on the system and bath, respectively. The
pair of superscript indices @ and @ denote an operator and
its adjoint, i.e., (B%)" = B?®. The bath Hamiltonian reads Hg
= k>0 wkbzbk, where the operator bz can be taken as the

bosonic creation operator aT

z, or the spin raising operator o depending on the specific

bath model considered. The bath part of Hin is defined by
B* = Ys0 gkbz, whereas the system part assumes a simple
form A* = o in this study. In short, we will exemplify the
stochastic formalism by using spin-boson-like model where
the bath part can be substituted with free fermions or spins.

Although we focus on a rather specific Hamiltonian given
by Egs. (1) and (2), we note that the stochastic formalism
can accommodate more complex situations. For instance, it
is essential to formulate a fermionic system interacting with
fermionic environments in order to tackle quantum impurity
models and electronic transport problems etc. The present
framework can certainly be generalized to treat a fermionic
system provided that care must be taken to handle negative
signs that arise from the anti-commutivity between fermionic
operators. Reference 37 provides an interesting account in
which the spin-fermion bath model considered in this work
could be useful. A restriction in the present study is the
bilinear coupling between the system and bath such that the
only kind of non-Gaussian baths must be composed of anhar-
monic oscillators or spins. Another class of non-Gaussian
baths models would be composed of harmonic oscillators cou-
pled non-linearly to the system. While we do not address these
additional bath models in this study, we remark that they can
be treated within the stochastic formalism by following the
general strategy laid out in Secs. II B-II D.

We will consider the factorized initial conditions for the
joint density matrix,

the fermionic creation operator
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£0) = ps(0) ® pig', 3

where the bath density matrix ﬁ;q is commonly taken as a
tensor product of thermal states for each individual mode. The
more general class of correlated initial conditions®® will be
addressed in a separate study.

With Eqs. (2) and (3), the dynamics of the composite sys-
tem (system and bath) is obtained by solving the von Neumann
equation

E——Z[H p|. (4)

If only the system is of interest, then one can trace over the
bath DOFs, i.e., ps(t) = Trpp(?). This straightforward com-
putation (full many-body dynamics then partial trace) soon
becomes intractable as the dimension of the Hilbert space
scales exponentially with respect to a possibly large number
of bath modes.

B. Stochastic decoupling of many-body
quantum dynamics

Many open quantum system techniques have been pro-
posed to avoid a direct computation of Eq. (4). In the stochas-
tic approach we adopt here, Eq. (4) can be rigorously re-
expressed in terms of a set of coupled It6 stochastic differential
equations,

dps = —idt H?,pY A% psdWy + PsAYdV,,
\/5
a==x (1_+

&)
dpp = —idt [HB, pB] +— Z dW,B® pp+ — Z dv pBe,

(6)

where most operators and variables in these two equations are
previously defined in Sec. II A and the differential Wiener
increments, dW o (¢) = uqo(t)dt and dV, = v, (t)dt, contain the
white noise variables ,(f) and v, (¢). According to Egs. (5)
and (6), the system and bath are decoupled from each other
but subjected to the same set of random processes, W, (#) and
Va(t), which can be either complex-valued or Grassmann-
valued. To manifest the Gaussian properties of fermionic baths,
it is essential to adopt the Grassmann-valued noises. In these
cases, it is crucial to maintain the order between fermionic
operators and Grassmann-valued noise variables presented in
Eq. (6) as negative signs arise when the order of variables and
operators are switched.
The white noises satisfy the standard relations

La(t) = Va(t) = 0
Ha(OR, (1)) = Vo(OVE, (1)) = 26 4.0:8(t — 1),

@)

where the overlines denote averages over noise realizations.
Any other unspecified two-time correlation functions vanish
exactly. The order of variables in Eq. (7) also matters for
Grassmann-valued noises as explained earlier.

Equation (6) can be further decomposed into correspond-
ing equations for individual modes,
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- . - 1
dpy = —idt [Hyp, pi] + % Z gkdWibY by

a=%

Z gkdV piby, ®)

where k=1,..., Ng, Hpx = wib} by, and pg = ®.7, fi.

With these basic properties laid out, we elucidate how to
rigorously (i.e., without approximation) recover the von Neu-
mann equation, Eq. (4), for the composite system from the
stochastic formalism, Eqgs. (5) and (6). First, the equation of
motion for the joint density matrix p(z) = p(¢)pp(t) is given
by

dp(t) = [dps(D]1pp(1) + ps(Old pp(1)] + dps()d pp(1),  (9)

where the last term is needed to account for all differen-
tials up to O(dr) as the product of the conjugate pairs of
differential Wiener increments such as dW, (1)dW;(t) = 2dt
contributes a term proportional to df on average. Taking the
noise averages of Eq. (9), the first two terms together yield
—idt[ﬁls + I:IB, Pspp] and the last term gives the system-bath
interaction, —idt[flim,m]. Due to the linearity of the von
Neumann equation and the factorized initial condition, the
composite system dynamics is given by p(t) = p(¢)pp(?).
To extract the reduced density matrix, we trace out the bath
DOFs before taking the noise average,

Ps(t) = ps()Trppp(1). (10)

In Eq. (10), it is clear that all the bath-induced dissipative
effects are encoded in the trace of the bath’s density matrix.

Because of the non-unitary dynamics implied in Egs. (5)
and (6), the norm of the stochastically evolved bath density
matrices is not conserved along each path of noise realiza-
tion. The norm conservations emerge after the noise averaging.
However, the variance for the averaged density matrix tends
to grow rapidly in the long-time limit. Getting a converged
result from a straightforward simulation of the stochastic
dynamics discussed so far will quickly become prohibitively
expensive.

The norm fluctuations of pp(¢) can be suppressed by
modifying the stochastic differential equations above to

read
] ¥ idt Z
) % DA AW, + @ D hATAV., (1)
@ @

dpp = —idt [Hg, ] + % ; AW} (B* T B*(t)) ps

dps = —ldl 1= B%(®)

1
— dv:ipp (B — B4(1)), 12
+\/§; D5 ( (1) (12)

where additional stochastic fields
50 Y 8kTrs {pa(t)b? ),
1) =
@ Xy g Trp { ﬁB(t)bk”} , Grassmann-valued,

complex-valued,
(13)

is introduced to ensure Trppp(t) is conserved along each
noise path. In Eqgs. (11) and (12), the top/bottom sign in the
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symbols + (F) refers to complex-valued/Grassmann-valued
noises, respectively. Similarly, [-, -]yrefers to commutator
(complex-valued noise) and anti-commutator (Grassmann-
valued noise) in Eq. (11). After these modifications, the exact
reduced density matrix of the system is given by p4(¢) = ps (7).
Similarly to Egs. (5) and (6), we stress that Egs. (11) and (12)
capture the exact dynamical interactions between the system
and bath.

By introducing B%(t), we incorporate the bath’s fluctuat-
ing and dissipative impacts in the system’s dynamical equation.
Equation (11) and the determination of B%(¢) constitutes the
foundation of open system dynamics in the stochastic frame-
work. In addition to being a methodology of open quantum
systems, it should be clear that the present framework allows
one to calculate explicitly the bath operator involved quantities
of interest.>

C. Bath-induced stochastic fields

From Eq. (13), it is clear that 5%(¢) can be obtained by
formally integrating Eq. (12). For simplicity, we take dV,
= dV and similarly for dW, = dW. This simplification does
not compromise the generality of the results presented below
and applies to the common case of the spin-boson-like model
when the system-bath interacting Hamiltonian is given by Hjy,
= 0§ Y0 &k(bf + by) with B(r) = B (1) + B7(2).

We first consider the Gaussian baths composed of non-
interacting bosons or fermions. The equations of motion for
the creation and annihilation operators for individual modes
read

1 1
db’y = (b ydt + —grdW*G™ + — g dV*G; ™, (14)
k k \/z k \/E k
1 1
d{by) = —iwg(br)dt + —grdW* G, * £ —gdV*G;~,  (15)
V2 Y}

where the top (bottom) sign of + should be used when complex-
valued (Grassmann-valued) noises are adopted. The expecta-
tion values in Egs. (14) and (15) are taken with respect to g (7).
The generalized cumulants are defined as
Gy = (BB F B (16)

For bosonic and fermionic bath models, it is straightforward
to show that the time derivatives of g‘”“z vanish exactly.
Hence, the second order cumulants are determined by the
thermal equilibrium conditions of the initial states. Immedi-
ately, one can identify the relevant quantity Q,:—' = ng;r(wk)
representing either the Bose-Einstein or Fermi-Dirac distri-
bution depending on whether it is a bosonic or fermionic
mode.

Replacing the second order cumulants in Eqgs. (14) and
(15) with an appropriate thermal distribution, one can derive
a closed form expression

B(l)=%/dW*a(I—s)+—/ vy a’(t - s), (17)

where
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® i lgx|? (cos(wit) coth(Bwy /2) — i sin(wyt)), bosonic bath,
a(t) =
S lgkl? (cos(wyt) — i sin(wgt) tanh(Bwy /2)), fermionic bath

stands for the corresponding two-time bath correlation func-
tions. For the Gaussian bath models, Eqs. (11) and (17)
together provide an exact account of the reduced system
dynamics.

Next we illustrate the treatment of non-Gaussian bath
models within the present framework with the spin bath as an
example. In the rest of this section, the analysis only applies
to the complex-valued noises. The determination of 53(z) still
follows the same procedure described at the beginning of this
section up to Egs. (14) and (15). The deviations appear when
one tries to compute the time derivatives of the second cumu-
lants. Common to all non-Gaussian bath models, the second
cumulants are not time invariant. Instead, by iteratively using
Eq. (12), the second and higher order cumulants can be shown
to obey the following general equation:

dG® = idtla|wiGT + %dw; (gl + g )
2
1

+ gV (Gt + gy (19)
where @ = (ay, @». .., a,) specifies a sequence of raising and
lowering spin operators that constitute this particular nth order
cumulant and lal = }};@; with a; = £1 depending on whether
it refers to a raising (+) or lowering (—) operator, respectively.
The time evolution of these bath cumulants forms a simple
hierarchical structure with an nth order cumulant influenced
directly by the n + 1-th order cumulants according to the equa-
tion above where we use [a, *] = (a4, ..., @,, £) to denote
an n + 1-th cumulant obtained by appending a spin operator
to @. A similar definition is implied for [+, a]. More specif-
ically, these cumulants are defined via an inductive relation
that we explicitly demonstrate with an example to obtain a
third-order cumulant starting from a second-order one given in
Eq. (16),

G = BB (b — (b)) + (B (b — (BEN)B)
FBUNB™ B - (b)), (20)

The key step in this inductive procedure is to insert an
operator identity b* — (b*) at the end of each expectation
bracket defining the nth cumulant. If a term is composed of
m expectation brackets, then this insertion should apply to
one bracket at a time and generate m terms for the n + 1-th
cumulant. Similarly, we get G!*¢! by inserting the same oper-
ator identity to the beginning of each expectation bracket
of GY.

For the spin bath, these higher order cumulants do not van-
ish and persist up to all orders. In any calculations, one should
certainly truncate the cumulants at a specific order by impos-
ing the time invariance G;{’(t) = G‘:(O) and evaluate the lower
order cumulants by recursively integrating Eq. (19). Through
this simple prescription, one derives
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(18)

1 ! 1 4
B(t)=— / AW D, (1, 5)+— / dVI®,(t,s)
V2 Jo : V2 Jo

1 3 pt S1 52 .
+($) ///dW;ldWs*de;qM,l(hSl,Sz,S3)+...
0J0 JO

l 3t S| fS2
+|— dV:dV:dV:@4’8(I,S1,S2,S3)+...,
) L[ v
2

where ®,, ,,(?1, ..., t,) stands for an n-time bath correlation
functions with the subscript m used to distinguish the 2!
n-time correlation functions appearing in the stochastic inte-
grations (each involves a unique sequence of noise variables)
in Eq. (21). Comparing to Eq. (17), one can identify @, (¢,
s) and Do(t, s) with a(t — s) and (¢t — s), respectively.
Note that this derivation assumes that the odd-time correlation
functions vanish with respect to the initial thermal equilibrium
state.

D. Stochastic Liouville equation

At this point, we briefly summarize the unified stochas-
tic formalism. Once B(?) is fully determined, Eq. (11) can be
presented in a simple form, the stochastic Liouville equation
(SLE),

dpy = —idt [Hy, ps] % idiApy(DE@) + idip(DATD),  (22)

where the newly defined color noises are

£0) = B() £ —= (o),
V2
1 (23)
n() = B(1) + ﬁV(t)-
In these equations above, the top/bottom signs are
associated with complex-valued/Grassmann-valued noises,
respectively.
In the cases of bosonic baths, B(¢) is given by Eq. (17) and
driven by the complex-valued noises. The color noises then are
fully characterized by the statistical properties,

EME) = a(lr—1']),
EMn@’) = a’ - 1), (24)
n(On(’) = a*(|t = 1')).

Several stochastic simulation algorithms have been proposed
to solve the SLE with the Gaussian noises.

On the other hand, all previous efforts in the stochastic
formulations of the fermionic bath end up with derivations of
either master equations’®3” or hierarchical®**° type of cou-
pled equations. The stochastic framework has simply served
as a means to derive deterministic equations for numerical
simulations. The lack of direct stochastic algorithm is due
to the numerical difficulty to model Grassmann numbers. In
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this study, we support the view that Grassmann numbers are
simply “formal bookkeeping devices” to help formulate the
fermionic path integrals and the formal stochastic equations
of motion with Gaussian properties. Hence, it is critical to
formally eliminate the Grassmann number and the associated
stochastic processes, which will be demonstrated in Sec. V
with numerical illustrations in Sec. V C.

Going beyond the Gaussian baths, B(f) is given by Eq.
(21) which involves multiple-time stochastic integrals. For-
mally, one can still use the same definition of noises, Eq.
(23), and the SLE still prescribes the exact dynamics for
the reduced density matrix. The primary factor distinguish-
ing from the Gaussian baths is the statistical characterization
of the noises. Higher order statistics are no longer trivial for
non-Gaussian processes, and they are determined by the multi-
time correlation functions ®,,,(t, 1, ..., t,—1) in Eq. (21).
For instance, when the fourth order correlation functions are
included in the definition of B(r), additional statistical condi-
tions such as &(#1)&(12)&E(t3)€(t4) would have to be imposed
and related to {4, (11, 12, 13, 14), Dop(ti, 1j)} to fully spec-
ify this noise. Since constructing a purely stochastic method
to simulate Gaussian processes is already a non-trivial task,
simulating non-Gaussian random processes is an even tougher
goal.

In the subsequent discussions, we should devise deter-
ministic numerical methods based on the SLE, Eq. (22), by
formally averaging out the noises. We name the proposed
methods in Secs. III-IV collectively as the generalized hierar-
chical equations (GHESs) in this work. Besides the GHE to be
presented, we note that sophisticated hybrid algorithms?+2°
could also be constructed to combine advantages of both
stochastic and deterministic approaches. We shall leave these
potential extensions in a future study.

lll. SOLUTION I: SPECTRAL EXPANSION
OF STOCHASTIC PROCESSES

In this section, we consider a bosonic Gaussian bath. We
note that Eq. (24) encodes the full dissipative effects induced
by a bath in the stochastic formalism. The microscopic details,
such as Eq. (23), of the noise variables become secondary con-
cerns. This observation allows us to substitute any pairs of
correlated color noises that satisfy Eq. (24) as these statistical
conditions alone do not fully specify the noises present in Eq.
(22). In other words, more than one set of noises can gener-
ate identical quantum dissipative dynamics as long as they all
satisfy Eq. (24) but may differ in other unspecified statistics
such as £(1)&é*(¢') and n(t)n*(¢’) etc. This flexibility with the
choice*!*? of stochastic processes provides opportunities to
fine-tune performances of numerical algorithms.

We propose the following decomposition*? of the noise
variables:

f(t)=Z( ARy + iﬂi«pk(z)ykh/ﬂk/zm(na),

k
OEDY (\/Igwkmx,; — il euy) + wk/zx;z(t)zz) :
k

(25)
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where (x,yx) and (x;, y; ) are independent and real-valued nor-
mal variables with mean 0 and variance 1 while z; = z; + iz;'(
are similarly defined but complex-valued. The other unspeci-
fied functions are obtained from the spectral expansion of the
correlation functions,

at=1) = Y xpOx(t),
k
ar(lt = 1) = ) AZp O (t"), 26)
k
arlt =1 =) Aot
k

where a(t — t') = ag(t — t') + ia;(t — t’), the functions y(t)
(complex-valued in general), ¥ (7) (real-valued), and ¢ ()
(real-valued) form independent sets of orthonormal basis func-
tion over the time domain [0, 7] for the simulation. The spectral
components can be determined explicitly by solving

T
/O ds a(t =) xi(s) = A xr(r) 27

and similar integral equations will yield other sets of basis
functions and the associated eigenvalues. The newly defined
noises in Eq. (25) can be shown to reproduce the two-time
statistics given in Eq. (24).

A crucial assumption of the spectral expansion above is
that correlation functions should be positive semi-definite.
This could be a concern with the quantum correlation func-
tions in the low-temperature regime. However, this problem
can be addressed by modifying the Hamiltonian and re-define
the correlation functions in order to shift the spectral values
by a large constant to avoid negative eigenvalues.

We re-label the newly introduced random variables g
€ {Xks Yhs X[s Vs Zps zli} and expand the reduced density matrix
by43

(1) = ) TmPm(®), = ) (VMo (@1) - H, (25),

(28)

where the function @y, (g) with g = (g1, ..., g) is explicitly
defined in the second line. The mth Hermite polynomial #,,(g)
takes argument of random variables g. The total number of
random variables g; is given by s. Every auxiliary density
matrices o () directly contributes to the determination of
Ps().

Substituting Eqs. (25) and (28) into Eq. (22) and averaging
over all random variables g, one obtains a set of coupled
equations for the density matrices,

Orom = —ilHy, ol +i ) ACnOL(1)Ghyg

kn

—i ) TaAG ()G, (29)
k.

where (1) € ([ ARu(0), \JiAL 8O, VIT2xa0), NI 2
Xk()}, the components of £(¢) in Eq. (25), and similarly 9;{(r)
correspond to the components of 7(f), respectively. In the
above equation, GL . is defined by
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Gr o = Om(2)8x Pa(8)/Prn(2) P (), (30)

where these averages can be done analytically by exploiting
the properties of the Hermite polynomials and Gaussian inte-
grals.* Finally, the exact reduced density matrix is obtained
after averaging out random variables in Eq. (28), which can be
done by invoking the Gaussian integral identities.

The present approach is most suitable to study highly
non-Markovian** environment with exceedingly long mem-
ory effects. When the simulation time length T is restricted
up to the order of the correlation time length T'. of the kernel
(bath’s two-time correlation function) in Eq. (27), the expan-
sions, Eq. (26), are dominated by just a few terms. When T
> T,, the eigenvalue spectrum of Eq. (27) becomes contin-
uous and the number of relevant basis functions in Eq. (26)
keeps growing with respect to the simulation time. Therefore,
it seems practically unfeasible to use the present approach to
generate long-time results. However, one of us has recently
proposed a numerical strategy,® the transfer tensor method
(TTM), to extract a bath’s memory kernel from relatively short-
time but numerically exact quantum dynamical data. Once the
bath’s memory kernel is extracted, an efficient tensor multipli-
cation scheme can be applied to generate arbitrary long-time
dynamics of the reduced density matrix. Within this context,
one just simulates the quantum dynamics up to the charac-
teristic decay time scale of bath’s memory kernel with the
present approach and obtains the rest of the long-time simula-
tions with the help of the TTM. Hence, the present approach
introduces an efficient decomposition of the noise variables
and provides an alternative coupling structure for a system
of differential equations than the standard HEOM in solving
open quantum dynamics. Unfortunately, the present method
is not easily generalizable to accommodate the non-Gaussian
processes.

IV. SOLUTION II: GENERALIZED HIERARCHICAL
EQUATION OF MOTION

We next present another approach, starting from Eq. (22)
again, that yields deterministic equations and more easily to
accommodate non-Gaussian bath models. This time we utilize
Eq. (23) as the definitions for the noises, £(¢) and 1(¢). Follow-
ing the basic procedure of Ref. 29, we average over the noises
in Eq. (22) to get

dps
dt

The noise averages yield an auxiliary density matrix (ADM),
ps&() = psn(t) = psBB(t), by Eq. (23). Working out the equa-
tion of motion for the ADM, one is then required to define
additional ADMs and solve their dynamics too. In this way, a
hierarchy of equations of motion for ADMs develops with the
general structure

= -i[H.p,] - i[4.7B]. 3D

dt[.[)sBm] = dt[ﬁs]Bm + ﬁsdth + dtﬁsdth' (32)

The time derivatives of gy and B are given by Egs. (11) and
(21), respectively. If we group the ADMs into a hierarchical
tier structure according to the exponent i of 3", then it would
be clear soon that the first term of the RHS of Eq. (32) couples
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the present ADM to ones in the (m + 1)-th tier, and the last
term couples the present ADM to others in the (m — 1)-th
tier.

In the rest of this section, we should materialize these ideas
by formulating generalized HEOMs in detail. We separately
consider the cases of complex-valued noises (for bosonic and
non-Gaussian bath models) and Grassmann-valued noises (for
fermionic bath models).

A. Complex-valued noise

Following a recently proposed scheme,?* we introduce a

complete set of orthonormal functions {¢;(r)} and express all
the multi-time correlation functions in Eq. (21) as

L,
(I)n+l,m(ts Iy .. ,tn) = Z X_;H— ’n¢j1(t - tl) e ¢j,1(tn - tl)v
J

(33)

where j = (jq, ..., jn). Due to the completeness, one can also
cast the derivatives of the basis functions in the form

d
—4i(0) = ,Z iy 9y (1. (34)

There are no restrictions on the set of complete orthonor-
mal functions {¢;()} that one can consider in this method.
In principle, if the functional form of the multi-time correla-
tion functions is known, then one should pick an appropriate
set of {¢;(r)} to minimize the expansion terms in Eq. (33).
For instance, in Ref. 32, the set {¢;(r) oc H;(t)exp(—1*/2)}
with H;(¢) the jth Hermite polynomial was used to expand
the correlation function of a bosonic bath in the high-
temperature limit. More generally, the correlation function
for a bosonic bath can be expended by the basis set®
{¢(1)} = {1/V27,sin(nt)/\T,cos(nt)/ VT, . ..}, where these
discrete Fourier components are defined within a finite time
domain {-7, 7}. However, if the multi-time correlation func-
tions for a complex environment are given as a set of sam-
pled data points, then the Chebyshev polynomials constitute
a convenient basis to interpolate high-dimensional multi-time
correlation functions.
Next we define cumulant matrices,

n .ol
i, aljk,O,...
A= , (35)
n “ .. n
Ay, o, » o,...

where each composed of 2" row vectors with indefinite size.

For instance, A; has two row vectors while A, has four row

vectors etc. The mth row vector of matrix A,, contains matrix

elements denoted by (a”. ,a”. ,...a”" . ). Each of these matrix
mytmyy mj

elements can be further interpreted by

1 noopetops Sp—1
a”.(t)z(—) / / / du;, ...dU;
™ v2/) Jo Jo 0 ! "

X @i (s1 =)@, (s2 = 1) ... ¢, (s, = 1),  (36)

where dUSJ. can be either a dW%. or stJ. stochastic variable
depending on index m. With these new notations, the multi-
time correlation functions in Eq. (21) can be concisely encoded
by
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B = ) xj™ " a0, (37)
n,m.j

Now we introduce a set of ADMs

p[Al 1A21[A3] = pys(1) n Ty (1), (38)

n,mk

which implies the noise average over a product of all non-zero
elements of each matrix A; with the stochastically evolved
reduced density matrix of the central spin. The desired reduced
density matrix would correspond to the ADM at the zeroth tier
with all A; being null. Furthermore, the very first ADM we
discuss in Eq. (31) can be cast as

BB = Y x" o (o), (39)

nmj

where each ADM on the RHS of the equation carries only one
non-trivial matrix element a;’u in A,. Finally, the hierarchi-
cal equations of motion for all ADMs can now be put in the
following form:

F) pAl lTA2I[As]- — _; [Hs’p[All[Az][Asl"']

_i 1.1+1,m A, < [ApHm)]--
T g el |

—i Z ¢i, (VA p A1+ i1 [Ar=m] -
n,m.j

i Z ¢;, (0)p [Armr+ 0 0 [A=(mp] -+ g
nm.j

> njj'p'"[”'”l*f”;j’]"'. (40)
nmjj’

This equation involves a few compact notations that we
now explain. We use [A, = (m,j)] to mean adding or remov-
ing an element a’r’nj to the mth row. We also use [a"J - am‘l ]
to denote a replacement of an element in the mth row of A,,.
On the second line, we specify an element in a lower matrix
given by (m’, ji). The variable j; implies removing the first
element of the j array, and the associated index m’ is deter-
mined by removing the first stochastic integral in Eq. (35). We
caution that there is no Ay matrix, and such a term whenever
arises should simply be ignored when interpreting the above
equation. After the first term on the RHS of Eq. (40), we only
explicitly show the matrices A,, affected in each term of the
equation.

This generalized HEOM structure reduces to the recently
proposed eHEOM?*? when only A; cumulant matrix carries
non-zero elements, i.e., only the second cumulant expansion
of an influence functional is taken into account. It is clear that
the higher-order non-Gaussian effects induced by the bath’s
n-time correlation functions will only appear earliest at the (n
— 1)-th tier expansion.

Finally, we remark that the cumulant structure discussed
in Eq. (38) is governed by the details of the stochastic field,
Eq. (21). In the case of quadratic Hamiltonians for bosons
and fermions, Eq. (21) terminates exactly with the first term
(involving the two-time correlation functions) on RHS and
only the second-order cumulant matrix having non-zero ele-
ments in Eq. (38). Beyond these simple cases, similar to the
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many-body Green’s function theory, it is clear that the hier-
archical structure described by Eq. (19) is not closed and
results in having an infinitely series solution for Eq. (21)
in general. Hence, similar to Marcinkiewicz’s theorem,*® the
formally exact solution (within the generalized HEOM frame-
work) should either be supported by ADMs carrying just the
second-order cumulant matrix (for Gaussian bath models) or
carrying an infinite sequence of such cuamulant matrices for all
other cases.

B. Grassmann-valued noise

Next we consider the fermionic bath models with
Grassmann-valued noises. As discussed earlier, the Grassmann
numbers are essential to manifest the Gaussian properties of
fermionic baths. In this case, one can significantly simplify
the generalized HEOM in Sec. IV A. First, the bath-induced
stochastic field can still be decomposed in the form

K
B = > xjai(1), @1
j=1
where the indices m and n are suppressed when compared
to Eq. (37). This is because the Hamiltonian we consider in
this study only allows the fermion Gaussian bath model. Each
element g; are similarly defined as

1 e
a;(t) = (6) /0 dU; ¢i(t - 5), (42)

where dU = dW(dV) (Grassmann-valued), when j < K/2 (or
>K/2). Similar to the algebraic properties of fermionic oper-
ators, there are no higher powers of Grassmann numbers and
each element a,,; can only appear once. This Pauli exclusion
constraint allows us to simplify the representation of fermionic
ADMs. We may specify an m-th tier ADM by

Pa () = ps(D)a' (1) - - -

where n = (ny, ..., ng) with n; = 0 or 1. In this simplified
representation, instead of specifying the non-zero elements as
in Eq. (38), we layout all elements a,,; in an ordered fashion
and employ the binary index n; to denote which basis functions
contribute to a particular ADM. The tier level of an ADM is
determined by the number of basis participating functions, i.e.,
m= Z in;.

Following the general procedure outlined in Eq. (32), the
m-th tier HEOM reads

dPn  ra ml . mt1 In|;
dt = —i [Hs,pn]+zZ(,\/]Apn+1( )™y
J

+ X Pt ACD) (1 =)

+i Z B (OApI (=Dl

dX (1), (43)

+ZZ¢,(0)pm LAGDMn,

* Z U/j’pn/w(_l)lnl’f+|n‘j,”j(1 = 1), 44
7

where |n|; = ’l.:(l).nj and.njz,-/ imply setting n; =0 and nj = 1.

In the above equation, 1; is a vector of zeros except a one at the
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Jjth component. The factors such as n; and (1 — n;) are present
to enforce the Pauli exclusion principle associated with the
fermions.

The structure of the fermionic HEOM certainly resembles
that of the bosonic case. However, a few distinctions are worth
emphasized. First, it is just the Gaussian bath result includ-
ing only A block matrix when compared to the results in
Sec. IV A. Second, the fermionic HEOM truncates exactly at
some finite number of tiers due to the constraint on the array
of binary indices, n;. Extra negative signs arise from the per-
mutations to shift the underlying Grassmann-valued stochastic
variables from their respective positions in Eq. (43) to the left
end of the sequence.

V. SPIN BATH: DUAL-FERMION TRANSFORMATION

We dedicate an entire section to discuss the spin bath from
two distinct perspectives. If one formulates the SLE for a spin
bath model in terms of complex-valued noises, then the bath-
induced stochastic field B(¢) is given by Eq. (21). In this way,
the spin bath is a specific example of non-Gaussian bath mod-
els. The generalized HEOM formulated earlier can be directly
applied in this case. However, in any realistic computations, it
is necessary to truncate the statistical characterization of 5(t)
up to a finite order of multi-time correlation functions in Eq.
(21). While the method is numerically exact, it is computation-
ally prohibitive to calculate beyond the first few higher-order
corrections. When the spin bath is large and can be consid-
ered as a finite-size approximation to a heat bath, one can
show that the linear response approximation!® often yields
accurate results and a leading order correction should be suf-
ficient whenever needed. The relevance of this leading order
correction for spin bath models will be investigated in Paper
11.%

On the other hand, a spin bath composed of nuclear/
electrons spins, as commonly studied in artificial nanostruc-
tures at ultralow temperature regimes, can behave very differ-
ently from a heat bath composed of non-interacting bosons.
There is no particular reason that the linear response and
the first leading order correction should sufficiently account
for quantum dissipations under all circumstances. In this sce-
nario, it could be useful to map each spin mode onto a pair of
coupled fermions. The non-linear mapping allows us to effi-
ciently capture the exact dynamics in an extended Gaussian
bath model.

A. Dual-fermion representation

We consider the following transformation that maps each
spin mode into two fermions via

op = (¢} — c)d] +dy),
o) = i(c] +c)(d] +dp), 43)
0'2 =-2 (Cch - %) ,

where the fermion operators satisfy the canonical anti-

commutation relations. One can verify that the above map-
ping reproduces the correct quantum angular momentum
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commutation relations with the ¢ fermion operators for each
spin, while the presence of additional d fermions makes the
spin operators associated with different modes commute with
each other. We now re-write the Hamiltonian as

H=H;+ Zwk (czck - %) - ng(r(z) (d; +dk) (c; - ck) .

k>0 k>0
(46)

The initial density matrix still maintains a factorized form in
the dual-fermion representation

£0) = P50 (BN, (47)

where p:7(3) is the thermal equilibrium state of the ¢ fermions

at the original inverse temperature § of the spin bath and the
d fermions are in the maximally mixed state which is denoted
by the identity matrix with dimension N = 2", where n is the
number of bath modes. A normalization constant is implied to
associate with the [y matrix.

According to the transformed Hamiltonian in Eq. (46), the
system-bath coupling now involves three-body interactions,
O'(Z)(dz + dk)(CZ — ¢i). Furthermore, the two fermionic baths
portray a non-equilibrium setting with ¢ fermionic bath that
inherits all physical properties of the original spin bath while d
fermionic bath is always initialized in the infinite-temperature
limit regardless of the actual state of the spin bath. We first take
the system and the d fermions together as an enlarged system
and treat the c fermions collectively as a fermionic bath. We
introduce the Grassmann noises to stochastically decouple the
two subsystems,

dpsa = =idt [Hy, poa] =i ) oAk Puad Wi
k

+i Z ﬁst—SAdek’
k

e g AW o
d,Ok = —idt [Hb,ks pk] + f (Bk + Bk) Pk

av;
+——pr (Bx = By),

V2

where By = gl — ci), Be = &iTr{(c] +c)pu(n)}, A
= (d/:r +dy), and Hpy = wkc;ck. The density matrices Pgq
denote the extended system including system spin and all

d fermions, and g; denotes the individual ¢ fermions with
k=1,..., Np.In Eq. (48), the noises are defined by

1
dWy = —dWy - B,
V2

) (49)
dVy = $dvk - Bk,

where dW, and dV/;, are the standard Grassmann noises defined
earlier. Eq. (48) clearly conserve the norm of g (¢) along each
noise path, and we will focus on Eq. (48) and the stochastic
fields, By (t).

Our main interest is just the system spin. Hence, we trace
out the d fermions in Eq. (48) and get
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dyl) = Trg {dpsa}

]+ 1Y [od]
k
()
k

The auxiliary objects, i}, appearing in Eq. (50) are defined
via

Yy = OTr{Ag, -+ Ay, Psal s (S

where k| > - -+ > k,, (s)Tr either implies a standard trace (n is
even) or a super-trace (n is odd), and the new noises

dWy +idV, dW;, — idV,
aWi +1dVe 4 dy, = AWk — Ve (52)

V2 V2

A hierarchical structure is implied in Eq. (50), so we derive
the equations of motion for the auxiliary objects,

dx; =

g = =i [t ] 1 3 ol SHDOM
jek
+iZ [a’é,l//ﬁ:!] dzﬁ(_l)lklzj
jek
+iZ [0’8,1&{’;}] (d% - Bk) (—1)kbi
jek
jek

where [K|>; = Y5 ki
Since the spin bath model is mapped onto an effective
fermionic problem, the uses of Grassmann noises, Eq. (53),

J
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will serve as a starting point to develop deterministic numerical
methods once the Grassmann noises are integrated out.

B. Dual-fermion GHE

To solve Eq. (53), we first define the generalized
ADMs,

pa; =By By (BB, - BiB). (54

where Q = (k, @). The 2 index vectors k and j label pairs of
coupled ¢ and d fermionic modes; furthermore, the two index
vectors are mutually exclusive in the sense that a bath mode
can appear in just one of the two vectors each time. In this
case, the tier-structure of the ADMs are determined by n + m.
Same as the bosonic and fermionic bath results, the desired
reduced density matrix is exactly given by the zeroth tier of
ADMs.

Further notational details of Eq. (54) are explained now.
The vector a is to be paired with the vector k to charac-
terize the first set of stochastic fields B}’ in Eq. (54). More
precisely, each (k;, a; = %) labels one of the two possible
stochastic fields, 8;; = gk[(c;_) and B,;_ = g {ck,), associ-
ated with k;-th ¢ fermion. In dealing with bosonic, fermionic,
and non-Gaussian baths, we need to explicitly use the bath’s
multi-time correlation functions via B = Y (BZ, iBZi)
when formulating the generalized HEOM approach. In the
present case, the stochastic decoupling we introduced in
Sec. V A dictates that each ¢ fermion acts as a bath and
is equipped with its own set of stochastic fields as shown
in Eq. (53). There is no need to expand the bath correla-
tion functions in some orthonormal basis, as each mode’s
correlation functions will be treated explicitly in a Fourier
decomposition.

Repeating the same steps of the derivation as before, we
obtain the generalized HEOM for the spin bath,

nm _ - n,m . n,m . n+1,m . n—1,m+l1
Oy = =itHe, pig1+i ) mwpgy +i > [A o |+ Y e A s )

lek 2k, I¢j
Y

lek

i 2 n+l,m—1 i 2 n—1,m
2 Z 8 (1= 2np(w)) {A’ PQ+<L7>J—1,} "2 Z 81 (1 = 2np(wp)) [A’ psz—u,a,),j] ’

l€jy lek
i 2 n+1,m—1 i 2 n—1,m
t3 lZ 8i (A Poiimic] 5 /Z;‘ @1} (A Py ) - (55
€)Yy €

where Q + (I, ;) means a stochastic field Bl"’ is either added
or removed from the vectors k and @ and, similarly, j + 1;
means an index j =/ is either added or removed from j.

The range of the index values k and j can be extremely
large as we explicitly label each microscopic bath modes. Due
to the hierarchical structure and the way ADMs are defined, it
becomes prohibitively expensive to delve deep down the hier-
archical tiers in many realistic calculations. However, the sit-
uation might not be as dire as it appears. We already discussed
how the present formulation is motivated by the physical

spin-based environment, such as a collection of nuclear spins
in a solid. In such cases, the bath often possesses some symme-
tries allowing simplifications. For instance, most nuclear spins
will precess at the same Lamour frequency, and the coupling
constant is often distance-dependent. Hence, one can construct
spatial “symmetric shells” centered around the system spin in
the 3-dimensional real space such that all bath spins inside a
shell will more or less share the same frequency and system-
bath coupling coefficient. By exploiting this kind of symmetry
arguments, one can combine many ADMs defined in Eq. (54)
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FIG. 1. The real part of the off-diagonal matrix element for the RDM. 50 bath spin discretized from an Ohmic spectral density with w, = 1 and wg = 0.4 and
(Kondo parameter) assumes the value 0.1 (a) and 0.8 (b). 2 hierarchical tiers are used in both cases. Red curves are the numerical results, and black curves are

the exact results.

together to significantly reduce the complexity of the hier-
archical structures. For a perfectly symmetric bath (i.e., one
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025 .

frequency and one system-bath coupling term), one can use
the following compressed ADM:

-0.5
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FIG. 2. The real part of the off-diagonal matrix element for the RDM. 50 bath spins are arranged in a spin-star configuration with g; = 0.05, wy = 0.3, and wy
= 0.4. The number of hierarchical tiers (red curves) are 2 (a), 20 (b), 25 (c), and 50 (d), respectively. The black curves are the exact results.
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p= 3 BBl (56)
la@|=s,|k|=n
where the sum takes into account of all possible combinations
of n modes compatible with the requirement that > ;a; = s.
On the other hand, if one deals with a large spin bath
described by an effective spectral density, then treating the
spin bath as an anharmonic environment and the usage of the
generalized HEOM in Sec. IV A will be more appropriate.
In fact, in the thermodynamical limit, the spin bath can be
accurately approximated as a Gaussian bath and one only needs
to invoke A block matrix in most calculations.

C. Numerical illustrations

We present a few numerical results to illustrate the dual-
fermion GHE method introduced above. Numerical examples
with the generalized HEOM approach will be further studied
in a separate work, Paper I1.3® We will consider various cases
of a pure dephasing model,

H = %0—8"'2%0—}24'082&0—2' (57)
k>0 k>0
An analytical expression for the off-diagonal matrix element
of the reduced density matrix reads

(T s Ly = (T 1p5(0)] Lye "o+t (58)
with

4gi
T(t) = Zln 1- o (1 - cos )|, (59)
k

k>0
where Q = wp/1 + (2gk/wk)2.

First, we consider a 50-spin bath with the parameters (wy,
gr) sampled from the discretization of an Ohmic bath. We
use the general dual-fermion GHE scheme, Eq. (55), to sim-
ulate the off-diagonal matrix element for the density matrix.
Figure 1 shows the results in the weak coupling [panel (a)]
and the strong coupling [panel (b)] cases. Due to each spin
being modeled as a bath, it becomes prohibitive to delve
into further tiers. Nevertheless, with a shallow 2-tier hierar-
chy, the results seem to do reasonably well in the short-time
limit.

In the second case, we consider the spin-star model*’
where all the bath spins look identical, i.e., wy = w’ and g
= g’. This is an often used model to analyze spin bath models.
As shown by the results in Fig. 2, it is critical to go deep down
the hierarchical tiers in order to recover the correct quantum
dissipations. One can only generate this many tiers through
compressing the auxiliary density matrices as in Eq. (56).
This second example illustrates the kind of scenarios where
the dual-fermion GHE could provide an accurate account of
quantum dynamics induced by a spin bath.

VL. CONCLUDING REMARKS

In summary, we advocate the present stochastic frame-
work as a unified approach to extend the study of dissipative
quantum dynamics beyond the standard bosonic bath mod-
els. We exploit the Itd calculus rule to represent any bilinear
interaction between two quantum DOF as white noises. Start-
ing from Eqs. (11) and (12), one can derive the SLE, Eq. (22),
with appropriate statistical conditions, such as Eq. (24), that the
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noises must satisfy. In the Gaussian bath models, the required
conditions only involve two-time statistics determined by the
bath’s correlation functions. In the case of non-Gaussian bath
models, the noises are further characterized by higher order
statistics and the multi-time correlation functions.

We devise a family of GHEs to solve the SLE with deter-
ministic simulations. We consider two separate orthonormal
basis expansions: (1) spectral expansion and (2) generalized
HEOM. The spectral expansion, in Sec. III, allows us to solve
bosonic bath models efficiently when the bath’s two-time cor-
relations assume a simple spectral expansion. This is often
the case for correlation functions with a slow decay. The sec-
ond approach, in Sec. IV, generalizes the eHEOM method to
handle multi-time correlation functions in some arbitrary set of
orthonormal functions. This generalization can provide numer-
ically exact simulations for non-Gaussian (including spin),
fermionic, and bosonic bath models with arbitrary spectral
densities and temperature regimes.

Among the bath models, we extensively discuss the spin
bath. When a spin bath is characterized by a well-behaved spec-
tral density,'? the generalized HEOM in Sec. IV serves as an
efficient approach to simulate dissipative quantum dynamics in
a non-Gaussian bath. For situations requiring more than a few
higher-order response functions, such as baths composed of
almostidentical nuclear/electron spins, an alternative approach
is to first map the spin bath onto an enlarged Gaussian bath
model of fermions via the dual-fermion representation and
apply the dual-fermion GHE in Sec. V B. Numerical examples
are illustrated in Sec. V C.
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APPENDIX A: STOCHASTIC PROCESSES

We focus on the complex-valued stochastic processes in
this appendix. Additional remarks on Grassmann noises will
be made in Appendix B.

The basic Wiener processes considered in this work is
taken to be W(¢t) = fot dsv(s) where the complex-valued noise
has a mean v(7) = 0 and a variance v(t)v*(t') = 25(t — t').
Take a uniform discretization of the time domain, in each time
interval dt; = t; — t;_1, each white noise path reduces to a
sequence of normal random variables {v;...vy}. Hence, at
each time interval, an identical normal distribution is given,

Pi(y.vy = D 4P, (A1)
2r

The variance is chosen to reproduce the Dirac delta function in
the limit Ar — 0. Furthermore, the differential Wiener incre-
ments dW(t) = v(t)dt satisty dW(t)dW*(t) ~ dt as required
for the Brownian motion. The averaging process, implied by
the bar on top of stochastic variables, can now be explicitly
defined as

N
Fvevin=1] / dvidvi P vVOF (i VD). (A2)
i=1
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APPENDIX B: GRASSMANN NUMBERS AND NOISES

Grassmann numbers are algebraic constructs that anti-
commute among themselves and with any fermionic operators.
Given any two Grassmann numbers, x and y, and a fermionic
operator, ¢, they satisfy

xy=-yx and xC= —cx. (BD

Furthermore, the Grassmann numbers commute with the
vacuum state |0) and, consequently, anti-commute with |1)
= ¢7|0). Besides the fermionic operators, these numbers com-
mute with everything else such as the bosonic operators and
spin Pauli matrices.

Due to the anti-commutativity, there are no higher powers
of Grassmann numbers, i.e., x* = 0. For instance, a single-
variate Grassmann function F(x) = a + bx (all variables, a,
b, and x, are Grassmann-valued) can only assume this finite
Taylor-expanded form. In general, every Grassmann function

can be decomposed into odd and even parity, F(x) = Feyen(X)
+ Foqq(x) such that
Foad(x)G(x) = G(=x)Foqa(x),
(B2)
Feyen(x)G(x) = G(x)Feven(x),

where G(x) is another arbitrary function with no particular
parity assumed. The fermionic thermal equilibrium states are
even-parity Grassmann function when represented in terms
of the fermionic coherent states. This even-parity is pre-
served under linear driving with Grassmann-valued noises.
This means that all the Grassmann numbers will commute
with the fermionic bath density matrices in our study.
Another relevant algebraic property for our study is

Tr (xp) = xsTr(p)

=x(0[p10) = (1 p 1)), (B3)

where x is a Grassmann number and sTr{-} is often termed the
super-trace.

Finally, we discuss Grassmann-valued white noises. Sim-
ilar to the discretized complex-valued white noises introduced
earlier, we shall take the noise path as a continuum limit of a
sequence of Grassmann numbers, {xi}lf.\i 1+ We will formally
treat them as random numbers with respect to Grassmann
Gaussians as probability distributions. More precisely, the
following integrals yield the desired first two moments (in
analogy to the complex-valued normal random variables),

= —/dx*dxe‘%” =

— 2 - 2
Xt = X~ /dx*dxe_%” xx* = v

where the Gaussians should be interpreted by the Taylor expan-
sion: ¢ = 1 + xx’. In evaluating the integrals above, we
recall the standard Grassmann calculus rule that integration
with respect to x is equivalent to differentiation with respect
to x. With these basic setups, one can operationally formu-
late Grassmann noises in close analogy to the complex-valued
cases.

(B4)
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APPENDIX C: RELATING STOCHASTIC FORMALISM
AND INFLUENCE FUNCTION THEORY

The connection between the two formalisms is usu-
ally investigated by deriving the stochastic equations from
the influence functional theory via the Hubbard-Stratonovich
transformation.!#!® Nevertheless, to advocate the stochastic
view of quantum dynamics as a rigorous foundation, we estab-
lish the connections in the reversed order. We should restrict
to the standard bosonic bath models, but the extension should
be obvious. We first re-write Eq. (5) as

01ps = —iHL(1)ps + ipsHR(t) — i | Hy +

*(t
Hs_l.v()A

w1 A] 5

+ip; ChH

where the system-bath interaction is given by Eq. (2). In this
revised form, it is immediately clear that

!
Ds(t) = Ty exp (—i/ dsHL(s)) ps(0)T_ exp (+i/
0 0

f

dSHR(S)) ,

(823

where T, is the time-ordering (+) and anti-time-ordering (—)
operator. By inserting a complete set of basis {|«)} at each time
slice, Eq. (C2) can be put in the form

' Dia, ¢Sl 1-iSlar]

@

Ps(@s 1) = /daoda{)ps(ao;o)

<e \/, fy dr(ar+ivy aT) (C3)

where @ = (a, @’) and p(@) = (a’| p |a@).
On the other hand, the trace of pp(t), governed by Eq. (6),
can be expressed as

Tr{pp(D)} = CXP( ds (u(s) +iv(1)) B(t)) (o))

\/_

where B(t) is given by Eq. (17). The exact reduced density
matrix is then obtained after formally averaging out the noises
in the following equation:

ps(@ 1) = psla; )Tr {pp(r)}
= /daod%ps(ao;o)/o Dla, |eSlor1-iSlat]

@

i [ . . ,
X exp (—6/0ds{pﬁas+lvsa/§+l(,us+lvs)83}),

(C5)

where an explicit evaluation of the noise average on the last line
should yield the standard bosonic bath influence functional. To
get the influence functional, F[a-], it is useful to contemplate
the discretized integrals for the noise averaging,

F[af]=/ﬂ
xexp( Z Cl',+lVG,’ )

xexp( \FZ (tti + ivi)(Cijptj —

[24]

At 2 Ay 2y 12
duduidvidvi | —| e > (41 1?)
1 1 271'

iC}. )}) (C6)
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where the bath correlation function C;—; = C(; - t;) is given
by

C@t) = Z g l? (cos(wkt) coth (%) -1 Sin(wkt)) .
k

By using the complex-valued Gaussian integral identity,

Ze, (€7)

/dzdz*e—wzz +az+bz —
w

the standard Feymann-Vermon influence functional is recov-
ered. The procedure outlined in this section is complete and can
be directly applied to non-Gaussian bath models. We briefly
outline the steps to be taken in such a general setting. The key
step is the substitution of B(r) when making a transition from
Eq. (C5) to Eq. (C6). With B(r) given by an infinite series of
the form, Eq. (21), we need to insert not only the single-time
integral of the bath’s two-time correlation functions C(t — t’)
as given in Eq. (C6) but also additional multi-time integrals
of multi-time correlation functions. By repeatedly using the
Gaussian integral identity, one can analytically average out
the noise and obtain the higher order cumulant terms. In gen-
eral, the m-th order cumulant will be composed of products of
m slices of system’s forward and backward path a(¢) and @’(t)
and the bath’s m-time correlation functions.
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