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ABSTRACT: Recently, we described a pathway analysis
technique (paper 1) for analyzing generic schemes for single-
molecule kinetics based upon the first-passage time distribution.
Here, we employ this method to derive expressions for the
Poisson indicator, a normalized measure of stochastic variation
(essentially equivalent to the Fano factor and Mandel’s Q
parameter), for various renewal (i.e., memoryless) enzymatic
reactions. We examine its dependence on substrate concentration, without assuming all steps follow Poissonian kinetics. Based
upon fitting to the functional forms of the first two waiting time moments, we show that, to second order, the non-Poissonian
kinetics are generally underdetermined but can be specified in certain scenarios. For an enzymatic reaction with an arbitrary
intermediate topology, we identify a generic minimum of the Poisson indicator as a function of substrate concentration, which
can be used to tune substrate concentration to the stochastic fluctuations and to estimate the largest number of underlying
consecutive links in a turnover cycle. We identify a local maximum of the Poisson indicator (with respect to substrate
concentration) for a renewal process as a signature of competitive binding, either between a substrate and an inhibitor or
between multiple substrates. Our analysis explores the rich connections between Poisson indicator measurements and
microscopic kinetic mechanisms.

1. INTRODUCTION
Single-molecule spectroscopy techniques have allowed the
study of single biomolecular complexes at a level of detail
previously unattainable.1 Escaping the averaging of measured
quantities inherent in ensemble measurements, single-molecule
studies offer insights into the details of the dynamic behavior of
biomolecules.2,3 In particular, these studies provide information
on the underlying kinetic scheme that is unavailable through
traditional, bulk measurements of chemical kinetics.4,5 At their
core, single-molecule studies of enzymes and motor proteins
interrogate the waiting time between reaction events, such as
the conversion of substrate to product or the stepping of a
motor protein along a filament. The waiting time varies
stochastically over the course of the observation of the
molecule, and sufficiently long time traces allow the waiting
time probability distribution to be described.6 Given a kinetic
mechanism, a mathematical expression for this waiting time
distribution in terms of kinetic parameters, such as rate
constants and reactant or product concentrations, may be
derived. Furthermore, expressions for the moments of the
distribution and the correlations between events may be
obtained and compared to experimental observations.
From a theoretical standpoint, it is important to first

determine the information content available from single-
molecule data7 and then make connections to a generic
scheme. Previous work has addressed the relation of single-
molecule data to reaction network connectivity and developed a
mathematical framework for treating data within a given
reaction scheme.6,8−14 In a complementary fashion, we have
described a pathway analysis approach to generic reaction
schemes for single-molecule kinetics (paper 1).15 In contrast to

other approaches, pathway analysis may be easily adapted to
arbitrary reaction scheme topologies. This method provides a
straightforward prescription for decomposing a proposed
scheme via two basic kinetic motifs, sequential and branching.
Second, our approach requires no assumption of Poissonian
kinetics (i.e., rate processes), allowing each step to be treated
with the greatest possible generality. As in paper 1,15 the
current study deals with renewal (i.e., memoryless) processes
and, as a result, does not capture memory effects in the action
of single enzymes, as described previously experimentally and
theoretically.6,16 A subsequent paper will generalize our method
to arbitrary nonrenewal processes (paper 3).
This previous work15 provided calculation of the first waiting

time moment (i.e., mean first-passage time) for generalized
enzymatic schemes, which is directly related to the turnover
rate for the process. The turnover rate and mean first-passage
time can be determined from ensemble-averaging; however,
higher-order moments, which contain information on the
underlying kinetic scheme of the enzymatic reaction,17−21 are
unique to single-molecule measurements. In particular, the
Poisson indicator, a measure of stochastic fluctuations,15

captures deviation from Poissonian statistics, taking on a
positive value for bunching behavior, a negative value for
antibunching behavior, and vanishing for a Poisson process.22

The dependence of the Poisson indicator on substrate
concentration can then inform which steps adhere to or violate
Poissonian statistics. Moreover, the Poisson indicator is
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essentially equivalent to other normalized measures of the
variance, including Mandel’s Q parameter from photon
statistics,23 the randomness parameter from studies of
molecular motors,24 and the Fano factor.25

This paper is organized as follows: in section 2, we extend
the previously introduced pathway analysis to the calculation of
the second moment of the waiting time distribution. We
examine a generic model of enzymatic reactions that can
generate all possible kinetic models with the same basic
topological connectivity and contains no assumptions upon the
form of the underlying kinetic scheme. As stated earlier, the
only constraint is that the overall reaction must be a renewal
process. In section 3.1, we employ this approach for the generic
enzymatic reaction to evaluate the maximal information content
of experimental determinations of the second waiting time
moment and, in particular, to examine the dependence of the
second moment on substrate concentration. Our results include
functional forms for the dependence of both the first (related to
the turnover rate) and second (related to the Poisson indicator)
reaction waiting time moments on substrate concentration, as
well as explicit expressions in terms of the waiting time
moments for individual steps. We analyze these functional
forms and explore their connections to important experimental
limits. In sections 3.2 and 3.3, we extend earlier, similar
results19,20 to the more complex cases of competitive inhibition
and competition between multiple substrates, respectively, and
the resulting expressions for the Poisson indicator differ
qualitatively from these earlier results. In section 4, we
conclude.

2. THEORETICAL METHODS
Let ϕ(t) represent the waiting time distribution, which
describes the distribution of times between successive reaction
events. The moments of the waiting time distribution are given

by ∫ ϕ⟨ ⟩ = = − ϕ∞ ̂

=
t t t t( )d ( 1)n n n s

s
s0

d ( )
d

0

n

n , where ϕ̂(s) denotes

the Laplace transform of ϕ(t), defined as ϕ̂(s) = ∫ 0
∞e−stϕ(t) dt.

Our challenge is then to formulate the waiting time distribution
for a generic enzymatic reaction. The model we treat is
illustrated in Figure 1. Here, states 1 and 2 are connected by a

reversible step, with an arbitrary topology after state 2, before a
final, irreversible transition (or set of transitions)which can
be experimentally monitoredto product P. Upon the creation
of a product molecule, we assume that the enzyme regenerates
quickly and irreversibly to state 1 (the initial free enzyme state),
where it begins another turnover. In our model, enzyme
turnover is a renewal process because it always begins in the
same state. In keeping with the Michaelis−Menten model of
enzymatic reactions, the first step corresponds to substrate
binding to the enzyme,15 which we assume to have a single

substrate-binding site, making this the only step with
dependence on substrate concentration. There may exist
many intermediate underlying states between the substrate
binding step and final transition(s) to product. We refer to this
(possible) aggregate of states as the bound/intermediate state
B, which may undergo non-Poissonian decay due to its
(possible) internal dynamics, some of which may involve
branching out of the chain as well as cyclic loops.
Now, if we let Qij(s) denote the waiting time distribution for

the i-to-j transition in the Laplace domain, we can write the
overall waiting time (i.e., first-passage time) distribution in the
Laplace domain as

ϕ ̂ =
− ̃

= + ̃ + ̃ + ̃ +
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where Q1P(s) is the waiting time distribution for the passage
from state 1 to the product, and Q̃11(s) represents the waiting
time distribution for the passage out of and back to state 1.15

Each term in the infinite summation can be understood as
follows: the first term corresponds to the passage from state 1
to product P without returning to state 1, the second term
corresponds to the passage from state 1 to product P while
returning to state 1 exactly once, the third term corresponds to
the passage while returning to state 1 exactly twice, and so on
and so forth. Examining only the initial free enzyme state and
the bound/intermediate state, we can write

=Q s Q s Q s( ) ( ) ( )1P 1B BP (2)

̃ =Q s Q s Q s( ) ( ) ( )11 1B B1 (3)

where Q1B(s) is the waiting time distribution for substrate
binding, QB1(s) is the waiting time distribution for substrate
unbinding, and QBP(s) is the waiting time distribution for
product formation (i.e., the conversion of substrate to product
after binding). Now, the overall waiting time distribution is
given by

ϕ ̂ =
−

s
Q s Q s

Q s Q s
( )

( ) ( )

1 ( ) ( )
1B BP

1B B1 (4)

This scheme comprises a generic model for enzyme kinetics. It
treats explicitly the substrate binding step with waiting time
distribution Q1B(s), while treating in generality the decay of the
bound/intermediate state with the distributions QB1(s) and
QBP(s).
In the Laplace domain, these waiting time distributions can

be expanded in terms of their moments as

= − ⟨ ⟩ + ⟨ ⟩ − ···
⎛
⎝⎜

⎞
⎠⎟Q s q s t

s
t( ) 1

2ij ij ij ij

2
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where the branching probabilities qij account for the normal-
ization of probability, with ∑jqij = 1 and∑jqij⟨tij

k⟩ = ⟨τi
k⟩, the kth

moment for the decay time (i.e., dwell time) of state i.
Expanding the overall waiting time distribution in terms of the
moments for the individual steps, as in eq 5, yields

ϕ α
β

̂ =
−

s( )
1 (6)

with

Figure 1. Generic enzymatic reaction scheme. The aggregate of
intermediate states between the initial free enzyme (state 1) and final
transition(s) to product P, referred to as the bound/intermediate state
B, has an arbitrary internal topology. q denotes the branching
probability for advancing to product from state 2.
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where ⟨τ1⟩ and ⟨τ1
2⟩ are the first and second waiting time

moments for the decay of the initial free enzyme state, ⟨tBP⟩
and ⟨tBP

2 ⟩ are the first and second waiting time moments for
product formation, and ⟨tB1⟩ and ⟨tB1

2 ⟩ are the first and second
moments for substrate unbinding. The product formation
branching probability q expresses the probability of advancing
to product after substrate binding. From an expression for the
overall waiting time distribution, the calculation of waiting time

moments is straightforward. Given ϕ ̂ = α
β−s( )

1
, and observing

that (1 − β) |s=0 = α|s=0, the first moment (i.e., mean first-
passage time) is expressed as

ϕ α β
α

⟨ ⟩ = −
̂

= − ̇ + ̇

= =

t
s

s
d ( )

d
( )

s s0 0 (9)

where x ̇ denotes differentiation of x with respect to the Laplace
variable.
While the mean first-passage time can be determined from

bulk measurements, higher-order moments, which contain
information on microscopic mechanisms,17−21,26 are unique to
single-molecule analysis. The Poisson indicator, which meas-
u re s s tocha s t i c fluc tua t ions , i s e xp re s s ed a s 1 5

= −⟨ ⟩ − ⟨ ⟩
⟨ ⟩t( ) 1N t N t

N t
( ) ( )

( )

2 2

, where ⟨N(t)⟩ and ⟨N(t)2⟩ are the

first and second moments for the number of turnover events N
occurring within the measurement time window t. The first
moment ⟨N(t)⟩ is asymptotically related to the mean first-
passage time as22 ⟨N(t)⟩ ∼ t/⟨t⟩. We are interested in the long-
time limit ≡ →∞P tlim ( )t , which we simply refer to hereafter
as the Poisson indicator (essentially equivalent to the Fano
factor25 and Mandel’s Q parameter23). Asymptotically, N(t) is
Gaussian distributed for a renewal process, with27

⟨ ⟩ − ⟨ ⟩ ∼ ⟨ ⟩ − ⟨ ⟩
⟨ ⟩

N t N t t( ) ( ) t t
t

2 2 2 2
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P
t t

t
22 2

2
(10)

The Poisson indicator describes the deviation of a statistical
process from Poissonian behavior, assuming a positive value for
the bunching of events (super-Poissonian statistics), a negative
value for the antibunching of events (sub-Poissonian statistics),
and vanishing for a Poisson process.22 This quantity and
equivalent measures of variation are frequently calculated in
experimental studies and can serve to indicate the presence of
dynamic disorder in particular reaction steps.17 Of particular
interest, the sign of the Poisson indicator yields information
about the topology of the kinetic mechanism: negative values of
P correspond to kinetics dominated by sequential, multistep
reactions, while positive values of P are associated with kinetics
dominated by a competing trapping process.20,28 In fact, when
no branching occurs out of an enzymatic chain with an
irreversible final step, ≤P 0.28 Given the above functional form
for ϕ̂(s), the numerator of the Poisson indicator can be
calculated as

α β
α

α
α

α β⟨ ⟩ − ⟨ ⟩ = ̈ + ̈
− ̇ ̇ + ̇

=

t t2
2

( )
s

2 2
2

0 (11)

3. RESULTS AND DISCUSSION
3.1. Generic Enzymatic Reaction. Applying eqs 6−9 and

11 to the generic model of enzyme catalysis (Figure 1) yields
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where ⟨τB⟩ = q⟨tBP⟩ + (1 − q)⟨tB1⟩ and ⟨τB
2⟩ = q⟨tBP

2 ⟩ + (1 −
q)⟨tB1

2 ⟩ are the first and second waiting time moments,
respectively, for bound/intermediate state decay.

3.1.1. Functional Forms and Parameter Specification. In
order to connect the above expressions to experimental
determinations of the Poisson indicator, we must examine
their dependence on substrate concentration [S]. This
dependence can be addressed by treating substrate binding as
a pseudo-first-order rate step, which implies that substrate
binding is a Poisson process (i.e., ⟨τ1

2⟩ − 2⟨τ1⟩
2 = 0) and

τ⟨ ⟩ =
k1
1

1B
, with pseudo-first-order rate k1B = k1B° [S], where k1B°

is the rate constant for substrate binding. Experimental studies
of single enzymes have confirmed the validity of this
assumption,16 and its application leads to

τ⟨ ⟩ =
°
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Finally, the Poisson indicator for the enzymatic reaction is given
by

τ τ

τ
=
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This result gives a general functional form for the substrate
dependence of the Poisson indicator under the assumption of
pseudo-first-order kinetics for substrate binding:

=
+

+( )
P

B

C
([S])

A
[S]

1
[S]

2

(17)

for constants A, B, and C independent of [S], with expressions

= − ° ⟨ ⟩A qk t2 1B BP (18)

τ τ= ° ⟨ ⟩ − ⟨ ⟩⟨ ⟩B q k t( ) ( 2 )1B
2

B
2

B BP (19)

τ= ° ⟨ ⟩C k1B B (20)

This result is analogous to those reported elsewhere.19,20,29

From eqs 14 and 16, we see that, to second order, five
parameters are needed to describe the non-Poissonian kinetics
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of the generic enzymatic reaction (with Poissonian binding):
k1B° , q, ⟨τB⟩, ⟨tBP⟩, and ⟨τB

2⟩. However, fitting measured data to
these functional forms (with respect to [S]) for the first waiting
time moment and Poisson indicator together only gives four
independent parameters, [qk1B° ]

−1, ⟨τB⟩/q, A, and B, since C
(given in eq 20) is not independent of [qk1B° ]

−1 and ⟨τB⟩/q.
Thus, to second order, the generic scheme kinetics are
underdetermined by one parameter. However, if k1B° is known
or can be estimated, then the kinetics can be specified.
Alternatively, if the enzyme is highly efficient (referred to as a
“perfectly evolved enzyme”30), such that the turnover rate is
limited only by the rate of diffusion of substrate to the active
site of the enzyme, we may assume that virtually every substrate
binding event leads to product. In our model, this corresponds
to q ≈ 1, which results in ⟨τB⟩ ≈ ⟨tBP⟩ and ⟨τB

2⟩ ≈ ⟨tBP
2 ⟩. Now,

three parameters are needed to describe the kinetics, and three
can be obtained from fitting (since A is no longer independent
of [qk1B° ]

−1 and ⟨τB⟩/q); thus, the kinetics can be specified
under this assumption. Additionally, if the bound/intermediate
state undergoes Poissonian decay (i.e., the unbinding and
product formation transitions are rate steps), then ⟨τB

2⟩ −
2⟨τB⟩

2 = 0 and ⟨τB⟩ = ⟨tB1⟩ = ⟨tBP⟩, eliminating two kinetic
parameters and causing B (given in eq 19) to vanish, thereby
permitting the kinetics to be specified. It should also be noted
that our result for the first waiting time moment (eq 14)
follows the Michaelis−Menten functional form; this is
consistent with earlier work demonstrating that mechanisms
of arbitrary complexity yield a turnover rate with a hyperbolic
dependence on [S] for zero conformational current.31−33

Representative plots of the Poisson indicator versus [S] appear
in Figure 2. Qualitatively, the Poisson indicator approaches
finite limits at small and large [S] and may feature a local
minimum.

3.1.2. Minimum of Poisson Indicator and Topological
Bound. The Poisson indicator is a measure of dispersion in
N(t), with sub-Poissonian statistics corresponding to less
dispersion than that for a Poisson process. For nonzero A
and C, when B > 0, <P([S]) 0 for 0 < [S] < −A/B; when B ≤
0, <P([S]) 0 for [S] > 0. Thus, for any set of obtainable,
nonzero A and C, there always exists a (finite or infinite) range
of substrate concentrations at which sub-Poissonian behavior is

achievable, even when branching occurs within the bound/
intermediate state. The Poisson indicator as a function of [S]
has one stationary point at

τ
τ* = ° ⟨ ⟩

⟨ ⟩
− ⟨ ⟩

−⎡
⎣
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⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥k

t
[S] 1B

B
2

BP
B

1

(21)

which is only realizable when [S]* ≥ 0. For (i) ⟨τB
2⟩ > ⟨τB⟩⟨tBP⟩,

P([S]) is minimized at [S]*, where τ* = − ⟨ ⟩ ⟨ ⟩P q t([S] ) /BP
2

B
2 ,

which can never correspond to a local maximum. For (ii) ⟨τB
2⟩

≤ ⟨τB⟩ ⟨tBP⟩, P([S]) is monotonic and achieves a minimum of
q(⟨τB

2⟩ − 2⟨τB⟩⟨tBP⟩)/⟨τB⟩
2 as [S] → ∞ (⟨τB

2⟩ = 0.515 curve in
Figure 2). In either case, the minimum of P([S]) corresponds
to the point of minimal dispersion (with respect to [S]); thus,
[S] can be tuned to the stochastic fluctuations to minimize
turnover event dispersion.
For the reaction of an enzyme with a single binding site and

an irreversible final step (or set of steps), the Poisson indicator
is bounded by34 ≥ −−P M 1max

1 , where Mmax is the largest value
of M, the number of consecutive links in a turnover cycle, with
a network possibly containing multiple turnover cycles. In our
model, for a unicyclic network (which may still involve
branching within the bound/intermediate state), M (and
hence, Mmax) corresponds to the number of underlying
sequential (unbranched) rate steps in the scheme; however,
since the bound/intermediate state can contain cyclic loops,
and since multiple underlying transitions to product can be
present, the generic scheme can represent a multicyclic
network. The corresponding bound for Mmax is given by

≥ + −M P[ 1]max
1, which is saturated when all links in the

turnover cycle that corresponds to Mmax are irreversible with
identical rates and the rates of any branching steps out of this
cycle are zero, which corresponds to the longest homogeneous,
sequential chain that can be formed in the network.34 This
topological bound can be modified using the minimum of
P([S]). For (i) ⟨τB2⟩ > ⟨τB⟩ ⟨tBP⟩, Mmax is bounded by

τ
≥ −

⟨ ⟩
⟨ ⟩

−⎡
⎣⎢

⎤
⎦⎥M q

t
1max

BP
2

B
2

1

(22)

For (ii) ⟨τB
2⟩ ≤ ⟨τB⟩ ⟨tBP⟩, we have

τ τ
τ

≥ +
⟨ ⟩ − ⟨ ⟩⟨ ⟩

⟨ ⟩

−⎡
⎣⎢

⎤
⎦⎥M q

t
1

2
max

B
2

B BP

B
2

1

(23)

Thus, eq 22 or 23 can be used to estimate the largest number of
underlying consecutive rate steps in a turnover cycle (see
Appendix A for a demonstrative example). Notably, both of
these bounds are independent of k1B° , as are the inequalities
identifying the two cases. We note that even though the generic
scheme kinetics are generally underdetermined by one
parameter, the expressions in eqs 21−23, along with the
minimum of P([S]) (and ⟨τB

2⟩/(⟨τB⟩⟨tBP⟩) to identify the case),
can be evaluated from measurements of the first two waiting
time moments and [S], without the need for any assumptions.

3.1.3. Limiting Behavior of Poisson Indicator. The pathway
analysis described above offers a simple route to the calculation
of waiting time moments, without the assumption of a
particular rate model. Ultimately, the goal is to connect
experimental determinations of waiting time moments to
features of the underlying mechanism. From the analytical
expressions for the Poisson indicator as a function of substrate

Figure 2. Plot of the Poisson indicator versus substrate concentration
for the generic enzymatic reaction (eq 16). The kinetic parameters
chosen are k1B° = 1, q = 0.5, ⟨τB⟩ = 0.55, and ⟨tBP⟩ = 1, with ⟨τB

2⟩ given
in the legend.
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concentration, we can now examine the experimentally
accessible limits.
As can be seen from eq 16, in the limit of low substrate

concentration, the Poisson indicator vanishes. This is a
consequence of the assumption that substrate binding is a
pseudo-first-order rate process. At very low substrate
concentration, substrate binding becomes the rate-determining
step for the enzymatic process. Since the Poisson indicator
reflects the statistical properties of the waiting time for the
overall reaction, if the waiting time for the reaction is
dominated by a single step, the Poisson indicator will reflect
the statistical properties of that step. Hence, at very low
substrate concentration, the Poisson indicator vanishes. This is
supported by the experimental observation of Poissonian
kinetics for single enzymes at very low substrate concen-
trations.16 As is also apparent from eq 16, at low substrate
concentration, we have, to leading order,

≈ − ° ⟨ ⟩P qk t([S]) 2 [S]1B BP (24)

indicating that sub-Poissonian behavior, as well as a linear
dependence of the Poisson indicator on [S], is always expected
at sufficiently low substrate concentration. This corresponds to
substrate binding being so much slower than bound/
intermediate state decay (⟨τ1⟩ ≫ ⟨τB⟩) that the latter process
becomes effectively Poissonian (⟨τB

2⟩ − 2⟨τB⟩
2 ≈ 0 and ⟨τB⟩ ≈

⟨tB1⟩ ≈ ⟨tBP⟩), irrespective of the complexity of the underlying
dynamics. That is, the unbinding and product formation
transitions behave as rate steps with rates kB1 = (1 − q)/⟨τB⟩
and kBP = q/⟨τB⟩, respectively, as the generic scheme reduces to
the Michaelis−Menten scheme shown in Figure 3a (with k1B° [S]
≪ 1/⟨τB⟩), resulting in sub-Poissonian statistics.

In the limit of high substrate concentration, the Poisson
indicator approaches a constant value. Substrate binding
becomes arbitrarily fast at high substrate concentrations, so
the Poisson indicator will reflect the statistical properties of the
steps not dependent upon substrate concentration. For the
generic enzymatic reaction, the large-[S] limit is given by

τ τ
τ

=
⟨ ⟩ − ⟨ ⟩⟨ ⟩

⟨ ⟩→∞P q
t2

[S]
B
2

B BP

B
2

(25)

which is recovered when ⟨τ1⟩ ≪ ⟨τB⟩. This corresponds to
instantaneous substrate binding (Q1B ≈ 1), with turnover
effectively beginning in state 2 and unbinding proceeding back
into state 2, as shown in the reduced scheme in Figure 3b. We
note that →∞P[S] vanishes when the bound/intermediate state
is unaggregated (i.e., contains a single underlying state,
undergoing Poissonian decay) and can be positive when
branching occurs within the bound/intermediate state. The
expression for →∞P[S] can be simplified with basic assumptions
about the nature of the enzymatic system. Under the
aforementioned perfectly evolved enzyme assumption (in
which q ≈ 1), the large-[S] limit of the Poisson indicator
simplifies to

≈
⟨ ⟩ − ⟨ ⟩

⟨ ⟩
≡→∞P

t t
t

P
2

[S]
BP
2

BP
2

BP
2 BP

(26)

where we have defined PBP as the Poisson indicator for product
formation. Therefore, for an enzyme of this type, determination
of the Poisson indicator at high substrate concentration directly
informs upon the statistical properties of the step(s) converting
substrate to product after substrate binding. In a similar vein,
we can consider the case of an enzyme where product
formation is much slower than substrate unbinding, which
corresponds to the limit q → 0 in our model. The large-[S]
limit of the Poisson indicator is then given by

≈
−

⟨ ⟩ − ⟨ ⟩⟨ ⟩
⟨ ⟩

=
−

+
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q
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where ≡ ⟨ ⟩ − ⟨ ⟩
⟨ ⟩

P t t
tB1

2B1
2

B1
2

B1
2 . Hence, in this case, the large-[S] limit

depends upon the Poisson indicator for the substrate unbinding
process and a normalized measure of the difference in average
waiting time for substrate unbinding and product formation.
These limits offer another means of tying experimental
measurements of the Poisson indicator to the underlying
statistics, in addition to the possibility of directly fitting
experimental data to the general functional form of the Poisson
indicator.
We now proceed to extend our approach to more complex

reaction schemes.
3.2. Competitive Inhibition. As a further example of our

approach, we examine a generalized scheme for enzymatic
reactions with competitive inhibition (Figure 4). We note that
inhibited single-molecule reactions have experimental rele-
vance35 and have been the subject of theoretical studies
involving rate processes.29,36

Now, the free enzyme may bind either substrate or inhibitor,
reaching state 2 or 2* with probability p or (1 − p),
respectively. Like the bound/intermediate state, the inhibited
state I may be an aggregate of states with an arbitrary internal
topology; thus, it may undergo non-Poissonian decay.
Following the same analysis as before, the overall waiting
time distribution takes the form

Figure 3. Reduced representations of the generic enzymatic scheme at
low (a) and high (b) substrate concentration. (a) At low substrate
concentration, substrate binding is much slower than bound/
intermediate state decay (⟨τ1⟩ ≫ ⟨τB⟩), resulting in the latter process
becoming effectively Poissonian, i.e., the unbinding and product
formation transitions behave as rate steps, as the scheme reduces to a
Michaelis−Menten model. (b) At high substrate concentration,
substrate binding effectively occurs instantaneously (Q1B ≈ 1), as
turnover begins in state 2 and unbinding proceeds directly back into
state 2.
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̂ =
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Q s Q s Q s Q s
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1 ( ) ( ) ( ) ( ) 1
1B BP

1B B1 1I I1
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where Q1B(s) and QB1(s) are the waiting time distributions for
substrate binding and unbinding, Q1I(s) and QI1(s) are the
distributions for inhibitor binding and unbinding, and QBP(s) is
the distribution for product formation. The constants α and β
are then

α = − ⟨ + ⟩ + ⟨ + ⟩ −
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where ⟨t1B⟩ and ⟨t1B
2 ⟩ are the first and second moments for the

substrate binding waiting time, ⟨t1I⟩ and ⟨t1I
2 ⟩ are the first and

second moments for the inhibitor binding waiting time, and
⟨τI⟩ and ⟨τI

2⟩ are the first and second moments for the decay
time of the inhibited state. Again, we can examine the
dependence on the concentrations of substrate and inhibitor
by assuming that the binding of each is a rate process. This
assumption leads to ⟨t1B

k ⟩ = ⟨t1I
k ⟩ = ⟨τ1

k⟩, where ⟨τ1
k⟩ = p⟨t1B

k ⟩ +
(1 − p)⟨t1I

k ⟩, with

τ⟨ ⟩ =
+k k
1

1
1B 1I (31)

=
+

p
k

k k
1B

1B 1I (32)

and ⟨τ1
2⟩ − 2⟨τ1⟩

2 = 0 for pseudo-first-order rate k1I = k1I° [I],
where k1I° is the rate constant for inhibitor binding, and [I] is
the inhibitor concentration.
The first overall waiting time moment for the enzymatic

reaction in the presence of a competitive inhibitor is then

τ
τ⟨ ⟩ =
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Now, calculation of the Poisson indicator as before yields

=
+

+( )
P

B

C
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A
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1
[S]

2

(34)

where A, B, and C now depend upon the inhibitor
concentration and are given by

τ
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Notably, this is the same basic functional form (with respect to
[S]) as that in the uninhibited case (eq 17). To second order,
eight parameters are needed to describe the non-Poissonian
kinetics (with Poissonian binding): k1B° , k1I° , q, ⟨τB⟩, ⟨τI⟩, ⟨tBP⟩,
⟨τB

2⟩, and ⟨τI
2⟩. However, eqs 33−37 indicate that fitting (with

respect to [S] and [I]) to second order only gives six
independent parameters, making the kinetics underdetermined
by two parameters. However, the number of underdetermined
parameters can be reduced in several situations. (i) If either k1B°
or k1I° is known, then one kinetic parameter can be eliminated
(two if both are known). (ii) If inhibitor unbinding is a rate
process with rate kI1, then ⟨τI⟩ = 1/kI1 and ⟨τI

2⟩ − 2⟨τI⟩
2 = 0,

which eliminates one kinetic parameter. (iii) If the afore-
mentioned perfectly evolved enzyme assumption holds, then
the number of underdetermined parameters is reduced by one
(as shown in section 3.1.1). (iv) If the bound/intermediate
state undergoes Poissonian decay, then the number of
underdetermined parameters is also reduced by one (as
shown in section 3.1.1). Thus, the kinetics can be specified in
a variety of ways.
Figure 5a illustrates the dependence of the Poisson indicator

on substrate concentration across a range of inhibitor
concentrations. As was the case for the uninhibited reaction,
the Poisson indicator vanishes at very low substrate
concentration and adopts the form given in eq 25 at high
substrate concentration. The large-[S] limits match for these
two cases because, from eqs 31 and 32, when k1B° [S] ≫ k1I° [I],
τ⟨ ⟩ ≈ °k1

1
[S]1B

and p ≈ 1. Qualitative differences are evident

between Figures 2 and 5a. In particular, a local maximum (with
respect to [S]) can be achieved with a competitive inhibitor
when AC > B and C > 2B/A. This unique feature corresponds
to the point of maximal dispersion for a given, obtainable A, B,
and C (capable of achieving one). We note that P([S]) may
instead achieve a local minimum or no realizable local
extremum. In the presence of a competitive inhibitor, eq 24
for low [S] does not generally apply (except in the limit of
vanishing [I]). In fact, under certain conditions, the Poisson
indicator can be non-negative at all substrate concentrations,
precluding sub-Poissonian behavior. Similarly, the Poisson
indicator can be nonpositive at all substrate concentrations
under certain conditions (behavior not shown in Figure 5a),
even when a competitive inhibitor is present.
The inherent asymmetry between inhibitor and substrate is

demonstrated in Figure 5b, where the Poisson indicator is

Figure 4. Generalized enzymatic reaction incorporating competitively
inhibited state I, which can be an aggregate of states with an arbitrary
internal topology. p and q are the branching probabilities for binding
substrate (versus inhibitor) and for advancing to product from state 2,
respectively.
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plotted against inhibitor concentration across a range of
substrate concentrations. The Poisson indicator can attain a
local maximum (with respect to [I]), which corresponds to the
point of maximal dispersion for a given set of conditions (under
which one can be achieved). We note that P([I]) may instead
achieve a local minimum or no realizable local extremum (cases
not shown in Figure 5b). In the limit of saturating [I], P
vanishes because inhibitor binding becomes the only feasible
transition. As is to be expected, eqs 35−37 above reduce to the
results for the generic enzymatic reaction in the limit of
vanishing [I].
3.3. Multiple Substrates. Our methodology can also be

applied to more complex systems. In fact, generalization to a
reaction with multiple substrates is straightforward. The scheme
for this case is illustrated in Figure 6. The waiting time
distribution for the conversion of any one of the n substrates to
its corresponding product is given by

ϕ α
β

̂ =
∑

− ∑
=

−
s

Q s Q s

Q s Q s
( )

( ) ( )

1 ( ) ( ) 1
i

i

EB B P

EB B E

i i

i i (38)

where QEBi
(s) is the waiting time distribution for the binding of

substrate Si, QBiE(s) is the distribution for the unbinding of

substrate Si, and QBiP(s) is the distribution for the conversion of
bound/intermediate state Bi to the corresponding product Pi.
In terms of the waiting time moments for the individual steps,

∑α = − ⟨ + ⟩ + ⟨ + ⟩
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where qi is the branching probability for the formation of
product Pi, ⟨tEBi

⟩ and ⟨tEBi

2 ⟩ are the first and second waiting time

moments for the binding of substrate Si, ⟨tBiE⟩ and ⟨tBiE
2 ⟩ are the

first and second waiting time moments for the unbinding of
substrate Si, and ⟨tBiP⟩ and ⟨tBiP

2 ⟩ are the first and second
moments for the formation of product Pi. Assuming that the
binding of any substrate is a rate process, then ⟨tEBi

⟩ = ⟨τE⟩ and

⟨tEBi

2 ⟩ = ⟨τE
2⟩, where ⟨τE⟩ = ∑ipi⟨tEBi

⟩ and ⟨τE
2⟩ = ∑ipi⟨tEBi

2 ⟩ are
the first and second waiting time moments, respectively, for the
decay of the initial free enzyme state, with pi representing the
probability of binding substrate Si. We now have pi and ⟨τE⟩
given by

=
∑

p
k

ki
i

EB

EB

i

i (41)

τ⟨ ⟩ =
∑ k

1

i
E

EBi (42)

as well as ⟨τE
2⟩ − 2⟨τE⟩

2 = 0, with pseudo-first-order rate kEBi
=

kEBi
° [Si], where kEBi

° is the rate constant for the binding of
substrate Si.
The first moment for the overall waiting time in the presence

of multiple substrates is expressed as

Figure 5. (a) Plot of the Poisson indicator versus substrate
concentration at fixed inhibitor concentration. The numerical
parameters are k1B° = 1, k1I° = 1, q = 0.5, ⟨τB⟩ = 0.55, ⟨τI⟩ = 3, ⟨tBP⟩
= 1, ⟨τB

2⟩ = 1.765, and ⟨τI
2⟩ = 20, with [I] given in the legend. (b) Plot

of the Poisson indicator versus inhibitor concentration at fixed
substrate concentration. The numerical parameters are identical to
those in (a), except now [S] is given in the legend.

Figure 6. Generalized enzymatic reaction featuring n competing
substrates with concentrations [S1], [S2], ..., [Sn].

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.7b01516
J. Phys. Chem. B XXXX, XXX, XXX−XXX

G

http://dx.doi.org/10.1021/acs.jpcb.7b01516


τ
⟨ ⟩ =

+ ∑ ° ⟨ ⟩
∑ °

t
k

q k

1 [S ]

[S ]
i i

i i i

EB B

EB

i i

i (43)

where ⟨τBi
⟩ = qi⟨tBiP⟩ + (1 − qi)⟨tBiE⟩ is the first waiting time

moment for the decay of bound/intermediate state Bi. Now, if
we choose to examine the dependence of the Poisson indicator
on the concentration of a single substrate [Sk], it will have the
following functional form:

=
+ +
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which notably departs from the functional form presented
above for the single-substrate and competitively inhibited cases
(eq 17). The constants A, B, C, and D, all independent of [Sk],
have expressions
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where ⟨τBi

2 ⟩ = qi⟨tBiP
2 ⟩ + (1 − qi)⟨tBiE

2 ⟩ is the second waiting time
moment for the decay of bound/intermediate state Bi, and we
have defined

τ
ζ =

+ ∑ ° ⟨ ⟩≠ k
1

1 [S ]i k iEB Bi i (49)

As a simple example of the behavior of the Poisson indicator in
the presence of multiple substrates, the Poisson indicator is
calculated for two competing substrates Sa and Sb. In Figure 7,
the Poisson indicator is plotted against the concentration of Sa
at a fixed concentration of Sb. We note that in this plot, ⟨tBbE

2 ⟩

and ⟨tBbP
2 ⟩ are held fixed while qb is varied, causing ⟨τBb

2 ⟩ to also

vary, but qb could instead be varied while holding ⟨τBb

2 ⟩ fixed.
For [Sa] = 0, the single-substrate result at fixed [Sb] is

obtained as = =P A([S ] 0)a , which can be nonzero, differing
from =P([S] 0) for the above two cases. In the limit of
saturating [Sa], the single-substrate form for →∞P[S ]a

(eq 25) is
obtained. It should be noted that earlier results are recovered in
the appropriate limits: setting [Si≠k] = 0 recovers the single-
substrate expression for P([S ])k (eq 16). In addition, for only
two competing substrates Sa and Sb, as in Figure 7, setting the
branching probability qb = 0 recovers the competitive inhibition
result for P([S ])a (eqs 34−37), where [Sb] corresponds to the
inhibitor concentration. In fact, P([S ])a can achieve a local
maximum similar to that shown in Figure 5a for competitive
inhibition. We identify the presence of such a maximum for a

renewal process as a signature of competitive binding, either
between a substrate and an inhibitor or between multiple
substrates. Finally, if the substrates are taken to be identical,
that is [S] = [S1] = [S2] = ... = [Sn], then eq 44 describes the
Poisson indicator for an enzymatic reaction of a single substrate
with multiple, parallel pathways, nearly analogous to earlier
results for ion channel statistics.20

4. CONCLUSIONS
A general methodology for calculating second moments for the
waiting time between reaction events has been introduced and
applied to the analysis of enzymatic reactions. All of the
flexibility conferred by the self-consistent pathway analysis
method (paper 1)15 is retained, and the approach can be
applied to many diverse cases. Our approach is currently
restricted to renewal processes but will be extended to
nonrenewal processes in a subsequent paper (paper 3). In
the current study, the principal results concern a generic
enzymatic reaction as well as the more complex cases of
competitive inhibition and multiple substrates, without
assuming all states undergo Poissonian decay. The use of a
generic model of enzyme catalysis allows the determination of
the maximum information content of measurements of the
Poisson indicator and first waiting time moment. Furthermore,
analytical expressions for the Poisson indicator as a function of
substrate concentration allow connections to be made between
experimental data and kinetic models.
Our specific findings are summarized as follows: (i) based

upon fitting to the functional forms of the first two waiting time
moments, the non-Poissonian kinetics are generally under-
determined to second order but can be specified under certain
circumstances. (ii) For a generic enzymatic scheme with an
arbitrary intermediate topology, sub-Poissonian statistics can
always (for nontrivial kinetics) be achieved for a certain range
of substrate concentrations, even when branching occurs out of
the intermediate state(s). (iii) We have identified a generic
minimum of the Poisson indicator (with respect to substrate
concentration), and this can be used to tune substrate
concentration to the stochastic fluctuations, attaining minimal
turnover event dispersion, and to estimate the largest number

Figure 7. Plot of the Poisson indicator versus [Sa] for two competing
substrates Sa and Sb. The numerical parameters are kEBa

° = 1, kEBb
° = 1, qa

= 0.5, [Sb] = 1, ⟨τBa
⟩ = 0.55, ⟨tBaP⟩ = 1, ⟨tBbE⟩ = 0.3, ⟨tBbP⟩ = 10, ⟨τBa

2 ⟩ =

1.765, ⟨tBbE
2 ⟩ = 0.25, and ⟨tBbP

2 ⟩ = 250, with qb given in the legend. Note
that the case of qb = 0 is equivalent to substrate Sa competing with
inhibitor Sb.
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of underlying consecutive rate steps in a turnover cycle
(demonstrative example provided in Appendix A). (iv) At high
and low substrate concentration, the Poisson indicator reflects
the effective reduction of the generic enzymatic scheme based
upon the rate-determining process. (v) We have identified a
local maximum of the Poisson indicator as a function of
substrate concentration for a renewal process as a signature of
competitive binding, either between a substrate and an inhibitor
or between multiple substrates. Our analysis may be easily
extended to other single-molecule experiments, offering the
same benefits. In particular, application to the study of motor
proteins may be fruitful due to the presence of reaction steps
dependent upon substrate concentration as well as the applied
mechanical force.37

■ APPENDIX A
Here, we provide a demonstrative example of how the
functional forms of the mean first-passage time and Poisson

indicator for the generic enzymatic reaction scheme in Figure 1
(shown in eqs 14 and 17, respectively) can be used to reveal
experimentally accessible information about the underlying
scheme. Consider the underlying reaction scheme illustrated in
Figure 8, which consists of a three-link chain. In a single-
enzyme experiment, the intermediate topology, i.e., what occurs
between substrate binding and the final transition to product, is
presumably not known. Thus, we aim to show the information
about this intermediate topology that can be obtained from
measurements of the first two waiting time moments and [S].
In order to obtain the four independent, experimentally

accessible parameters in eqs 14 and 17, [qk1B° ]
−1, ⟨τB⟩/q, A, and

B, we first evaluate the non-Poissonian kinetic parameters q,
⟨tBP⟩, ⟨τB⟩, and ⟨τB

2⟩ from the underlying rates shown in Figure
8. As indicated in section 3.1.1, these non-Poissonian kinetic
parameters cannot generally all be obtained from experiments
(although they can be in certain scenarios, one of which we
address below); thus, we evaluate them here as a means of
obtaining the aforementioned experimentally accessible param-
eters. For this scheme, QB1(s) and QBP(s) are expressed in
terms of the waiting time distributions for the underlying
transitions as

=
−

Q s
Q s

Q s Q s
( )

( )

1 ( ) ( )B1
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23 32 (50)
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Q s
Q s Q s
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The waiting time distributions for the underlying transitions are
expanded in terms of their moments according to eq 5, and
since each underlying transition is a rate process, qij = kij/
(∑jkij) and ⟨tij

n⟩ = n!qij
n/kij

n. The product formation branching

probability q = QBP(s = 0) is thus expressed in terms of the
underlying rates as

=
+ +

q
k k

k k k k k( )
23 3P

21 32 3P 23 3P (52)

The distribution QBP(s) is differentiated to obtain ⟨tBP⟩ =
−q−1dQBP(s)/ds|s=0 as

⟨ ⟩ =
+ + +

+ +
t

k k k k
k k k k k( )BP

21 23 32 3P

21 32 3P 23 3P (53)

Similarly, the B decay time distribution, [QB1(s) + QBP(s)], is
differentiated to obtain ⟨τB⟩ = −d/ds[QB1(s) + QBP(s)]|s=0 and
⟨τB

2⟩ = d2/ds2[QB1(s) + QBP(s)]|s=0 as

τ⟨ ⟩ =
+ +
+ +

k k k
k k k k k( )B

23 32 3P

21 32 3P 23 3P (54)

Figure 8. Example of an underlying enzymatic reaction scheme
corresponding to the generic model in Figure 1. The values of the
underlying rate constants are k1B° = 1, k21 = 0.5, k23 = 2, k32 = 0.6, and
k3P = 3.

Figure 9. Plots of the (a) mean first-passage time and (b) Poisson
indicator versus substrate concentration for the underlying enzymatic
reaction scheme shown in Figure 8. The values of the four
independent, experimentally accessible parameters from the general
functional forms of the mean first-passage time and Poisson indicator
(shown in eqs 14 and 17, respectively) are [qk1B° ]

−1 = 1.3, ⟨τB⟩/q =
0.933, A = −1.20, and B = −0.197.
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For the values of the underlying rates given in Figure 8, q = 10/
13, ⟨tBP⟩ = 61/78, ⟨τB⟩ = 28/39, and ⟨τB

2⟩ = 1318/1521. Thus,
[qk1B° ]

−1 = 1.3, ⟨τB⟩/q = 0.933, A = −1.20, and B = −0.197, with
C = (⟨τB⟩/q)/[qk1B° ]

−1 = 0.718. Now, the mean first-passage
time and Poisson indicator are evaluated as functions of [S]
from eqs 14 and 17−20 and plotted in Figure 9, with these
plots resembling what could be obtained in a single-enzyme
experiment.
From the mean first-passage time and Poisson indicator as

functions of [S], we can now use the generic minimum of
P([S]) to estimate the number of consecutive links in the
underlying turnover cycle. We note that because the underlying
scheme is unicyclic, Mmax = M, although this would not
necessarily be known in an experiment. Since AC < 2B here
(i.e., ⟨τB

2⟩ > ⟨τB⟩ ⟨tBP⟩), P([S]) is minimized at [S]*, so the
inequality for M in eq 22 is applicable. From this inequality, the
lower bound on M is [1 + A2/(4[AC − B])]−1 = 2.2. Since this
is not a whole number, and since the underlying scheme cannot
be a homogeneous, sequential chain (which would minimize P
with respect to the entire set of underlying rates) due to q being
less than unity, the underlying cycle must contain at least three
rate steps. Therefore, from the experimentally accessible
information, M is estimated to be 3, whichas we know
from Figure 8is the correct number of underlying links.
Thus, in this case, the underlying reaction scheme can be
completely inferred from measurements of the first two waiting
time moments and [S]. In addition, if k1B° is known or can be
estimated, then q, ⟨tBP⟩, ⟨τB⟩, and ⟨τB

2⟩ can all be determined
from the experimentally accessible parameters, permitting
complete specification of the non-Poissonian kinetics (with
Poissonian binding) and, in this case, determination of all
underlying rates (since there are exactly four besides that for
substrate binding).
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