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ABSTRACT: In a conformational nonequilibrium steady state (cNESS), enzyme turnover
is modulated by the underlying conformational dynamics. On the basis of a discrete kinetic
network model, we use an integrated probability flux balance method to derive the cNESS
turnover rate for a conformation-modulated enzymatic reaction. The traditional Michaelis−
Menten (MM) rate equation is extended to a generalized form, which includes non-MM
corrections induced by conformational population currents within combined cyclic kinetic
loops. When conformational detailed balance is satisfied, the turnover rate reduces to the
MM functional form, explaining its general validity. For the first time, a one-to-one
correspondence is established between non-MM terms and combined cyclic loops with
unbalanced conformational currents. Cooperativity resulting from nonequilibrium conforma-
tional dynamics can be achieved in enzymatic reactions, and we provide a novel, rigorous
means of predicting and characterizing such behavior. Our generalized MM equation affords
a systematic approach for exploring cNESS enzyme kinetics.

Conformational dynamics is essential for understanding the
biological functions of enzymes. For decades, the

framework of enzymatic reactions has been the traditional
Michaelis−Menten (MM) mechanism,1 where enzyme−sub-
strate binding initializes an irreversible catalytic reaction to
form a product. The average turnover rate v in a steady state
(SS) follows a hyperbolic dependence on the substrate
concentration [S], v = k2[S]/(KM + [S]), where the catalytic
rate k2 and the Michaelis constant KM characterize this
enzymatic chain reaction. In contrast to the single-conforma-
tion assumption for the traditional MM mechanism, recent
single-molecule experiments2−4 have revealed the existence of
multiple enzymatic conformations, spanning a broad range of
lifetime scales from milliseconds to hours. Conformational
dynamics, including hopping between different conformations
and thermal fluctuations around a single-conformation
potential well, should be incorporated into enzymatic reaction
models for a quantitative study.3,5−18 Slow conformational
dynamics modulate the enzymatic reaction and allow the
enzyme to exist in a conformational nonequilibrium steady
state (cNESS), which involves unbalanced stationary conforma-
tional population currents and permits complex deviations from
MM kinetics (the hyperbolic [S] dependence for v). However,
experimental and theoretical studies have shown MM kinetics
to be valid in the presence of slow conformational dynamics
under certain conditions,3,10,15 although k2 and KM become
averaged over conformations. Is there a unifying theme
governing this surprising behavior?
Non-MM enzyme kinetics have been characterized by

cooperativity for many years.5,6,19 For allosteric enzymes with
multiple binding sites, the binding event at one site can alter the
reaction activity at another site, accelerating (decelerating) the
turnover rate and resulting in positive (negative) coopera-

tivity.19 Another common deviation from MM kinetics is
substrate inhibition, where the turnover rate reaches its
maximum value at a finite substrate concentration and then
decreases at high substrate concentrations.19 For a monomeric
enzyme, all of the above non-MM kinetic behavior, referred
to−in this case−as “kinetic cooperativity,”19 can be achieved by
a completely different mechanism: nonequilibrium conforma-
tional dynamics.5,6,11−15 Can we characterize and predict this
interesting behavior in a cNESS?
Recently, theoretical efforts have been applied to study

conformation-modulated enzyme kinetics by including dynam-
ics along a conformational coordinate. On the basis of the usual
rate approach, some previous work has demonstrated certain
non-MM kinetics under specific conditions.10,12−14,16 Based on
a novel integrated probability flux balance method, non-MM
kinetics were linked to a nonzero conformational population
current, i.e., broken conformational detailed balance, in a two-
conformation model, and a general MM expression was
speculated.15 However, a generalized theory to systematically
analyze cNESS enzyme kinetics is still needed. In this Letter, we
focus on a monomeric enzyme and apply the integrated flux
balance method to derive a generalized form for the turnover
rate, which includes non-MM corrections. We show that when
conformational detailed balance is satisfied, MM kinetics hold,
explaining their general validity. In addition, the deviations
from MM kinetics are analyzed with reduced parameters from
the generalized form of v. For an extended version of our
derivation, we refer readers to ref 20.
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To describe the generalized conformation-modulated re-
action catalyzed by a monomeric enzyme, we introduce a
discrete kinetic network model, which is illustrated in Figure 1a.

This N × M network consists of a vertical conformation
coordinate (1 ≤ i ≤ N) and a horizontal reaction coordinate (1
≤ j ≤ M). For the reaction state index, j = 1 denotes the initial
substrate-unbound enzymatic state (E), whereas j ≥ 2 denotes
intermediate substrate-bound enzymatic states (ES).3,14,15,21−23

Without product states, our network corresponds to a
dissipative system. For an arbitrary site Ri,j, the reaction rates
for the forward (Ri,j → Ri,j+1) and backward (Ri,j → Ri,j−1)
directions are given by ki,j and ki,−(j−1), respectively. The rate for
enzyme−substrate binding, the only step in our model
dependent upon substrate concentration [S], depends linearly
on [S] as ki,1 = ki,1

0 [S] for binding rate constant ki,1
0 , with [S]

maintained constant in most enzymatic experiments. The
conformational dynamics are treated via a kinetic rate approach,
with the interconversion (hopping or diffusion) rates for Ri,j →
Ri+1,j and Ri,j →Ri−1,j given by γi,j and γ−(i−1),j, respectively. We
note that local detailed balance results in the constraint ki,jγ−i,j/
(ki,−jγi,j) = ki+1,jγ−i,j+1/(ki+1,−jγi,j+1) for j ≤ M − 1. However, for
the purposes of our kinetic analysis, it is unnecessary to impose
this relation, as our principal results hold, irrespective of
whether it is satisfied. The rate equation for site Ri,j is written as
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where Pi,j(t) is the probability of an enzyme in site Ri,j at time t,
i.e., the survival probability for the site. Here, γi,i′;j = γi−1,jδi′,i−1 +
γ−i,jδi′,i+1 − [γi,j + γ−(i−1),j]δi′,i denotes the interconversion rates
in the j-th reaction state and kj,j′;i = ki,j−1δj′,j−1 + γi,−jδj′,j+1 −
[ki,j+ki,−(j−1)]δj′,j denotes the reaction rates for the i-th
conformation.
Within the framework of a dissipative enzymatic network, the

average turnover rate v is equivalent to the inverse of the mean
first passage time (MFPT) ⟨t⟩. Using the residence time τi,j =
∫ 0
∞Pi,j(t) dt at each site Ri,j, we can express the MFPT in the N

× M network as a summation of τi,j, i.e., ⟨t⟩ = ∑i,jτi,j. Instead of
inverting the transition matrix,3 we evaluate τi,j by inspecting
integrated probability fluxes,15 which correspond to stationary
population fluxes normalized by v, and these will be shown to
directly reflect conformational nonequilibrium. Along the
horizontal reaction coordinate, the integrated flux for Ri,j →
Ri,j+1 is given by Fi,j = ki,jτi,j − ki,−jτi,j+1. Along the vertical
conformation coordinate, the integrated flux for Ri,j → Ri+1,j is
given by Ji,j = γi,jτi,j − γ−i,jτi+1,j. In addition, we need to specify
the initial condition Pi,j(t = 0) for calculating ⟨t⟩. For a
monomeric enzyme, each turnover event begins with the
substrate-unbound state, and Pi,1(t = 0) defines the initial flux
Fi,0. With the definition of {Fi,j, Ji,j}, we map the original kinetic
network to a flux network as shown in Figure 1b. For each site
Ri,j, the rate equation in eq 1 is replaced by a flux balance
relation

+ = +− −F J F Ji j i j i j i j, 1 1, , , (2)

which is generalized to the probability conservation law: the
total input integrated probability f lux must equal the total output
integrated probability f lux. This conservation law can be
extended to complex first-order kinetic structures including
the N × M network. The flux balance method thus provides a
simple means of calculating the MFPT.
To evaluate the MFPT, we begin with the final reaction state

(j = M) and propagate all the fluxes back to the initial reaction
state (j = 1) based on eq 2. For each site Ri,j, the physical nature
of the first-order kinetics determines that all three variables, τi,j,
Ji,j, and Fi,j, are linear combinations of terminal fluxes Fi,j=M.
The first two variables are formally written as τi,j = ∑i′=1

N ai,j,i′Fi′,M
and Ji,j = ∑i′ci,j,i′Fi′,M, where ai,j,i′ and ci,j,i′ are coefficients
depending on rate constants {k, γ}.20 For example, the
coefficients for the final reaction state are ai,M,i′ = 1/ki,Mδi′,i
and ci,M,i′ = γi,M/ki,Mδi′,i − γ−i,M/ki+1,Mδi′,i+1. Because of the
direction of our reversed flux propagation, only the coefficients
for the initial reaction state are [S] dependent, and they can be
explicitly written as ai,1,i′ = bi,i′/[S] and ci,1,i′ = di,i′/[S]. The
substrate-unbound (Ei = Ri,1) and substrate-bound (ESi =
∑j=2

M Ri,j) states are distinguished by the different [S] depend-
ences of the coefficients. The MFPT is thus given by
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The essential part of our derivation is then to solve for the
terminal fluxes Fi,M.

15,20 The SS condition can be interpreted as
follows: after each product release, the enzyme returns to the
same conformation for the next turnover reaction, i.e., Fi,M =
Fi,0.

7 Applying the probability conservation law to each

Figure 1. (a) Generalized kinetic network scheme for a conformation-
modulated enzymatic reaction. (b) Flux network corresponding to
panel a (see text for details). This figure has been adapted from ref 20
(Wu & Cao, 2011). Copyright © 2012 John Wiley & Sons, Inc.
Adapted by permission of John Wiley & Sons, Inc.
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horizontal chain reaction with a single conformation and
considering the boundary condition at conformations i = 1 and
N, we express the SS condition as a flux constraint, Ji,E+Ji,ES = 0
for i = 1, 2,···, N−1, where Ji,E = Ji,1 and Ji,ES = ∑j = 2

M Ji,j. For each
combined cyclic loop Ei → Ei+1 → ESi+1 → ESi → Ei, there may
exist a stabilized nonequilibrium conformational population
current (see Figure 1b), with Ji,E representing this stationary
current normalized by v. However, Ji,E vanishes when
conformational detailed balance is satisfied, and the SS
condition is further simplified to Ji,ES = 0. We note that
satisfaction of the aforementioned constraint resulting from
local detailed balance still permits nonzero Ji,E. In general, we
assume that there exist Nc (≤ N − 1) nonzero conformational
currents and (N − 1 − Nc) zero ones. In addition to these (N
− 1) current conditions, the normalization condition ∑i=1

N Fi,0 =
1 is needed for fully determining the initial fluxes (due to Fi,0 =
Fi,M). As a result, we derive an N-equation array for Fi,0

· =

⋯

+ + ⋯

+ + ⋯

⋮ ⋮ ⋮

·

⋮

=
⋮

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

C
d

C
d

C
d

C
d

F

FU F

1 1

[S] [S]

[S] [S]

1
0

1,1
1,1

1,2
1,2

2,1
2,1

2,2
2,2

1,0

2,0

(4)

with Ci,i′ = ∑j = 2
M ci,j,i′. Notice that for the (i+1)-th row of matrix

U in eq 4, di,i′/[S] exists only when Ji,E ≠ 0, and Nc rows are [S]
dependent for this matrix. We solve for the initial fluxes by the
matrix inversion Fi,0 = [U−1]i,1. After a tedious but
straightforward derivation,20 Fi,0 is written as

∑= + +
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,

c

(5)

where each sn is assumed to be distinct, and constraints hold for
∑i f i,0 = 1 and ∑i f i,n = 0 for n ≥ 1.
Substituting eq 5 into eq 3, we obtain the key result of this

Letter: the cNESS turnover rate for the N ×M network with Nc
unbalanced conformational currents is given by a generalized
Michaelis−Menten equation
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where the reduced parameters are A0 = ⟨1/k2
eff⟩[S]→∞, B0 =

⟨KM
eff/k2

eff⟩[S]=0, and Bn = ∑i[1/ki,2
eff − Ki,M

eff /(ki,2
effsn)] f i,n. For each

conformational channel, we introduce an effective catalytic rate
ki,2
eff = (∑i′ = 1

N ∑j = 2
M ai′,j,i)

−1 and an effective Michaelis constant
Ki,M
eff = ki,2

eff∑i′bi′,i, which describe the kinetics within that channel
in the decomposed representation of the scheme,20 wherein the
N two-state chain reactions are effectively independent, each
with probability Fi,0. The conformational average is defined as
⟨x⟩[S] = ∑ixiFi,0([S]) for a conformation-dependent variable xi.
In the right-hand side of eq 6, the first two terms retain the
traditional MM form, whereas the remaining Nc terms
introduce non-MM rate behavior, with a 1:1 correspondence
between non-MM terms and combined cyclic loops with
nonzero conformational currents. Our derivations clearly show
that these non-MM terms are induced by the [S]-dependent
conformational distribution F resulting from nonequilibrium

conformational currents. Therefore, MM kinetics are valid
when conformational detailed balance is satisfied, where all Bn
vanish because Fi,0 = f i,0. We note that for the 2 × 2 model, the
sole current J1,E vanishes under the simple conformational
detailed balance condition15,20

γ

γ

γ

γ
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1,2
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(7)

where Ki,M = (ki,−1+ki,2)/ki,1
0 . Explicit calculations for this model

are provided in the Supporting Information.
With nonzero conformational currents, the enzyme kinetics

are expected to exhibit cooperative non-MM behavior. As a
demonstration, the single-loop model with only one current J1,E
and one non-MM term B1/([S] + s1) is first considered. With
other parameters fixed, we calculate turnover rates, v, for the
three values of B1 in Figure 2a. For the two turnover rates

monotonically increasing with [S] (B1 = −1 and 2), we fit them
with the Hill equation, v/vmax = [S]nH/(κ + [S]nH), where the
Hill constant nH > 1 (nH < 1) indicates positive (negative)
cooperativity. The fitting results show that cooperativity is
completely determined by the sign of B1: positive for B1 < 0 and
negative for B1 > 0.20 This result is also reflected in eq 6, where
negative (positive) B1 increases (decreases) the MM turnover
rate (A0 + B0/[S])

−1. The dashed line in Figure 2a shows that a
largely negative B1 + B0 leads to substrate inhibition-like
behavior.20 The cNESS substrate inhibition behavior shows
positive cooperativity at low substrate concentrations, and then
the turnover rate decreases to a nonzero value A0

−1 in the
substrate-saturation limit. Next, we plot the phase diagram of
enzyme kinetics for the single-loop model in Figure 2b, which
only depends on B0 and B1. From this phase diagram, α = B1/B0
is defined as a unique non-MM indicator for single-loop
systems, with negative cooperativity for α > 0, positive
cooperativity for −1 ≤ α < 0, and substrate inhibition for α
< − 1.
The direction of a conformational current alone does not

predict its influence on the cooperativity, which raises the
question of what, in addition to the currents, determines the
type of cooperative behavior. For the two-conformation

Figure 2. (a) Three non-MM turnover rates for the single-loop model
with A0 = B0 = s1 = 1. The circles (B1 = −1) and the up-triangles (B1 =
2) exhibit positive and negative cooperativity, respectively. The two
solid lines are the fit using the Hill equation. The dashed line (B1 =
−2) shows substrate inhibition-like behavior. (b) Phase diagram of
enzyme kinetics for the single-loop model. Two lines, B1 = 0 and B1 =
−B0, separate three regimes of kinetics. Panel a has been adapted from
ref 20 (Wu & Cao, 2011). Copyright © 2012 John Wiley & Sons, Inc.
Adapted by permission of John Wiley & Sons, Inc.
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network, the simplest single-loop model, we can rewrite the
non-MM term as

τ
+

∝ ΔΔ ×
B

s
J

[S]
([S])1

1

eff
1,E (8)

where τΔΔ eff = τΔ eff
1 − τΔ eff

2, with τΔ i
eff = τE

eff
i
− τESi

eff . Here,
the Ei and ESi residence times in the decomposed
representation, each independent of J1,E([S]), are given by

τEi

eff([S]) = Ki,M
eff /(ki,2

eff[S]) and τESi
eff = 1/ki,2

eff, respectively. Also, τE
eff

i

= τEi

eff([S] = s1), where s1 is the value of [S] at which |J1,E([S])| is
at half its maximum and thus represents a characteristic non-

MM substrate concentration. Therefore, τE
eff

i
represents a

characteristic value of τEi

eff([S]), with corresponding character-

istic residence time gradient τΔ i
eff . Thus, τΔΔ eff represents the

difference in characteristic residence time gradient between the
two decomposed conformational channels.
Cooperativity depends upon the interplay between J1,E and

τΔΔ eff . In the two-conformation model, J1,E proceeds from Ei
to ESi in one conformational channel and from ESi to Ei in the
other, as illustrated in Figure 3a−c for a counterclockwise
current, which corresponds to J1,E > 0 based upon our original
definition of Ji,j. In each two-state chain reaction, enzyme
turnover can be thought of as being accelerated (decelerated)
when J1,E proceeds from the state with the slower (faster)
effective characteristic residence time to the state with the faster
(slower) one. In Figure 3a (b), turnover is accelerated
(decelerated) in both chain reactions, resulting in overall
turnover acceleration (deceleration), i.e., positive cooperativity
or substrate inhibition (negative cooperativity). In Figure 3c,
turnover is accelerated in conformation 1 and decelerated in
conformation 2 (the opposite [not shown] is possible as well),
with the cooperativity depending upon the difference in
acceleration between the two channels. Kinetic cooperativity
is thus explained as follows: when J1,E proceeds in the direction
that, on average, corresponds to decreasing (increasing)
effective characteristic residence time, positive cooperativity
or substrate inhibition (negative cooperativity) occurs.
Interestingly, when the effective characteristic residence time
gradient is conformation invariant, MM kinetics are valid, even

in the presence of circulating current (i.e., when τΔΔ eff = 0 and
J1,E ≠ 0 for the two-conformation network). This scenario
represents a unique type of nonequilibrium symmetry in
multidimensional kinetic networks and is not precluded by the

satisfaction of the aforementioned constraint resulting from
local detailed balance.
For the two-loop models with two non-MM terms, the

cNESS enzyme kinetics become more complicated, as
illustrated in a typical phase diagram in Figure 4b. Except for

an unphysical regime where v shows divergence and negativity,
five regimes of enzyme kinetics can be characterized in the
phase space composed of B1 and B2. Similar to the single-loop
model, when monotonically increasing to the maximum value
vmax in the substrate-saturation limit ([S] → ∞), v can exhibit
negative (regime 1) and positive (regime 2) cooperativity. The
separation line between these two kinetic regimes, however, is
hard to rigorously define. The dashed separation line in Figure
4b corresponds to nH = 1, where the Hill constant is empirically
calculated using nH = log 81/log([S]0.9vmax/[S]0.1vmax),

19 and [S]v
is the substrate concentration for v. In regimes 3−5, the
turnover rate v is a nonmonotonic function of [S] (examples
shown in Figure 4a). In regime 3, with vmax occurring at a finite
[S]vmax, the turnover rate exhibits the same substrate inhibition-
like behavior as the single-loop model. Alternatively, an
additional local minimum of v can appear at [S]vmin

(>[S]vmax
),

and v increases at high substrate concentrations instead. Two
examples are shown by the dashed and dotted lines in Figure
4a. Based on a criterion whether the global vmax appears as [S]

Figure 3. (a−c) Three cases depicting the interplay between a current J1,E circulating counterclockwise within a two-conformation loop and τΔΔ eff

(see text for details); such interplay underlies the emergence of kinetic cooperativity. In each conformational channel, a horizontal arrow proceeds
from the state with the faster effective characteristic residence time (see text for details) to the state with the slower one, with J1,E superimposed onto
this view. Note that there are also analogous cases for J1,E proceeding in the clockwise direction.

Figure 4. Enzyme kinetics for the two-loop model with A0 = B0 = s1 =
1 and s2 = 4. (a) Three turnover rates, v, that are nonmonotonic
functions of [S]. Each line shows a typical type of non-MM kinetic
behavior from the regime labeled by the same number in panel b. (b)
Phase diagram determined by two non-MM parameters B1 and B2.
There are five regimes of non-MM behavior (see text for details).
Panel a has been adapted from ref 20 (Wu & Cao, 2011). Copyright ©
2012 John Wiley & Sons, Inc. Adapted by permission of John Wiley &
Sons, Inc.
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→∞ or at a finite [S]vmax, this non-MM kinetic behavior is
further divided into regimes 4 and 5, respectively.
For the generalized Nc-loop model, cNESS enzyme kinetics

can be similarly analyzed using reduced parameters from eq 6.
In the case that all the non-MM parameters Bn are positive
(negative), the turnover rate exhibits negative cooperativity
(positive cooperativity or substrate inhibition). With the
coexistence of positive and negative non-MM parameters,
cooperativity can be qualitatively determined by the small-[S]
expansion of the turnover rate in eq 6, v ∼ B0

−1[S] − (A0B0
−2 +

∑n=1
Nc Bnsn

−1B0
−1)[S]2 + O([S]3). For a largely negative ∑nBn/sn,

the positive quadratic [S] term dominates in v, resulting in
positive cooperativity. When this summation becomes largely
positive, the cancellation between linear and nonlinear terms
can slow the increase of v with [S], inducing negative
cooperativity. The sign of∑nBn/sn is thus a qualitative indicator
of cooperativity. To investigate the substrate inhibition-like
behavior, we expand v in the substrate-saturation limit as v ∼
A0
−1 − (B0+∑nBn)A0

−2[S]−1 + O([S]−2). For ∑nBn < −B0, v is a
decreasing function of [S], and the maximum turnover rate vmax
must appear at a finite [S]. The investigation of other types of
nonmonotonic behavior for v needs the explicit rate form in eq
6.
In summary, we study cNESS enzyme kinetics induced by

population currents from conformational dynamics. Applying
the flux balance method to a discrete N × M kinetic model, we
derive a generalized Michaelis−Menten equation to predict the
[S] dependence of the turnover rate. Using reduced non-MM
parameters, Bn in eq 6, our generalized MM equation provides a
systematic approach to explore cNESS enzyme kinetics.
Compared to the typical rate matrix approach, our flux method
characterizes non-MM enzyme kinetics in a much simpler way.
For example, a unique kinetic indicator α = B1/B0 is defined for
the single-loop model, and phase diagrams are plotted for the
single- and two-loop models. Our study can be extended to
other important biophysical processes following the MM
mechanism, e.g., the movement of molecular motors induced
by ATP binding.24
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