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Abstract

In this work, we combine an established method for open quantum systems—the time evolving
density matrix using orthogonal polynomials algorithm—with the transfer tensors formalism, a new
tool for the analysis, compression and propagation of non-Markovian processes. A compact
propagator is generated out of sample trajectories covering the correlation time of the bath. This
enables the investigation of previously inaccessible long-time dynamics with linear effort, such as
those ensuing from low temperature regimes with arbitrary, possibly highly structured, spectral
densities. We briefly introduce both methods, followed by a benchmark to prove viability and
combination synergies. Subsequently we illustrate the capabilities of this approach at the hand of
specific examples and conclude our analysis by highlighting possible further applications of our
method.

1. Introduction

Ranging from condensed matter physics or quantum technologies to biological chemistry, the experimental
ability to accurately probe and analyze quantum systems in strong contact with highly structured environmental
degrees of freedom for extended periods of time has become a reality [1-6]. Under certain conditions it is
possible to model the observations by using approximate methods such as perturbative approaches [7, 8],
frequently supplemented with Markovian assumptions [9—11]. Beyond their regime of validity, the task of
exactly treating the dynamics of open quantum systems faces the challenge of an unfavorable scaling in the
required resources. Nevertheless, many tools have been developed that address a wide variety non-Markovian
scenarios for short time simulations or for specific conditions and approximations.

Exact procedures such as projection operator techniques serve to derive formally exact master equations that
can involve a memory kernel as in the Nakajima—Zwanzig formalism [12] or have a generator that is local in
time, like the so-called time-convolutionless master equations [13]. The path integral formulation [14] provides
an alternative perspective especially suitable for harmonic baths thanks to the Feynmann—Vernon influence
functional [15]. Practical implementation of these formal treatments requires perturbative expansions in terms
of some specific parameter, be it weak damping, high temperature, short memory time, or short simulation time
[16—19]. An exhaustive list is not within the scope of this work, but some additional instances include the non-
Markovian quantum state diffusion approach [20], the hierarchy of equations of motion (HEOM) [17, 21],
iterative path integral resummations [22], multilayer multiconfigurational time-dependent Hartree methods
[23], explicit computation of the Nakajima—Zwanzig memory kernel [24, 25] and the time-convolutionless
kernel [26] or mixed quantum-—classical methods [27-29]. Alternatively, the harmonic bath assumption renders
possible the use of stochastic Gaussian sampling of the bath operator or the influence functional [30-33]. Hybrid
stochastic-deterministic methods have appeared recently as well [34]. Another option is to simulate the density
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matrix of both the system and the complete environment by employing an efficient description of the bath or
gradually introducing select degrees of freedom [35-37]. To this class of methods belongs the ‘time evolving
density matrix using orthogonal polynomials algorithm’ (TEDOPA) [38, 39]. This method uses a stable
numerical transformation to map the environment into a chain of harmonic oscillators, which can then be
simulated together with the system using efficient quantum many body techniques [40]. Although a more
thorough discussion follows below, as compared to other simulation methods TEDOPA is especially suitable for
simulation of quadratic harmonic baths with arbitrarily shaped spectral-densities in the low-temperature
regime and is not restricted to small coupling or Ohmic baths.

For any exact simulation method it is generally the case that the size of the propagator or that of the
stochastic sample scales unfavorably with the time length of the simulation or the corresponding perturbative
expansion order. Then the question arises whether there are regimes where this scaling can be mitigated in some
form, i.e. ifan effective propagator of a reduced size can be extracted with the intention of facilitating long-time
simulations. In the present work we address this question combining TEDOPA with a tool quantifying the bath’s
back-action on the system as in the Nakajima—Zwanzig formalism. This tool is known as the transfer tensor
method (TTM) [41], which has been shown to provide considerable acceleration in the context of non-
Markovian open quantum system simulations as well as in large classical systems [42]. This is achieved by
blackbox learning from sample exact trajectories for some short initial period and subsequent generation of a
compact multiplicative propagator for the system degrees of freedom alone. This propagator is the set of discrete
elements of the integration of the Nakajima—Zwanzig equation which, similarly to the memory kernel, decay at
the rate of the bath correlation function. This justifies the definition of a memory cutoff, corresponding to the
maximum time for which non-Markovian effects are to be considered. The method does not require input of a
microscopic description of the problem and just involves straightforward analysis of the evolution of the system
density matrix. In this sense, TTM is directly applicable to any state propagation simulator. For a learning period
longer than the environment correlation time, the propagator accurately reproduces the long time system
dynamics with linear effort. Another possibility to exploit the decay of the memory effects in dissipative systems
is to explicitly calculate the Nakajima—Zwanzig memory kernel [24, 25]. Although this is in general a demanding
task, it is possible for specific systems and has been implemented with the help of quantum Monte-Carlo
methods [25, 43] or multilayer multiconfigurational time-dependent Hartree methods [44, 45]. With TTM an
explicit computation of the memory kernel is avoided and a discretized propagator is directly obtained. This
propagator grows linearly with the correlation time of the bath, improving on the size of some deterministic
simulation methods of linear propagation effort [17, 18]. Itis a general and flexible approach that does not
depend on the form of the environment or the interaction, while TEDOPA is not restricted to weak system-bath
coupling, high temperatures or specific spectral densities. Therefore, they constitute ideal partners and a study of
their combined performance represents a natural research question.

We start the discussion in section 2 by providing a general analysis of both TEDOPA and TTM, thereby
specifying the regime in which their combination is expected to be most productive. In addition, tools for the
error assessment are provided. In section 3 we provide a benchmark between the proposed combination and the
exact result and confirm perfect agreement. Finally, in section 4 relevant applications of the TEDOPA-TTM
combination are proposed which include Ohmic and non-Ohmic spectral densities, low temperature
simulations and computations of absorption spectra.

2. The method

2.1. A numerically exact open quantum system simulator

TEDOPA [38, 39] is a numerically exact and certifiable simulation method for open quantum system dynamics
[46]. Itapplies to general systems under linear interaction with an environment modeled by a set of independent
harmonic oscillators such that the total Hamiltonian H can be split into the system, the environment and the
interaction between the two as

H= Hsys + Henv + Hino (D
xmax
Henv = 0 dx g(x)a;ax) (2)
xm‘dx
Hio= [ deh(o)(al + a0A, 3)

Here a; and a, denote the bosonic creation and annihilation operators corresponding to the environmental
mode x. The coefficients g (x) can be identified as the environmental dispersion relation. The interaction term
Hiy assigns each mode a coupling strength 1 (x) between its displacement a, + a, and a general system
operator A.
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Together with the temperature, the functions g (x) and 4 (x) characterize the harmonic environment
uniquely and define the spectral density ] (w) as

dg ' (w)

J (W) = 7h*[g7 " (w)]
dw

4)
Here g7 '[g(x)] = g[g~!(x)] = x and g(x) is monotonically growing. The quantity dgd—lw(w)éw can be interpreted
as the number of quantized modes with frequencies between w and w + éw (for éw — 0). We consider spectral
densities subject to a hard cut-off at frequency wp,; this in turn defines the cut-off X, in equations (2) and (3)
as Xmax = & (Whe)-

TEDOPA uses a two-stage sequence to enable full treatment of the system and environment degrees of
freedom. In a first step, an analytic transformation based on orthogonal polynomials converts the star-shaped
system-environment structure into a one-dimensional geometry, where the system couples only to the first site
of a semi-infinite chain of harmonic oscillators that contains only nearest-neighbour interactions. This is
accomplished by use of a unitary transformation U, which defines new harmonic oscillators with creation and
annihilation operators b, , b, given by

Un (x) = h(x)p, (x), )

X max

b = dx U, (x)a). (6)
Here p, (x) are orthogonal polynomials defined with respect to the measure dy: (x) = h?(x)dx and the three-
term recurrence relation

pk+1(x) = (x - ak)pk(x) - ﬂkpkfl(x)) (7)

with p | (x) = 0and ka positive integer or zero. This transformation can be performed analytically for specific
spectral densities [39, 47]. For arbitrarily shaped spectral densities a numerically stable approach has been
developed [38, 48]. Mappings using orthogonal polynomials have been shown to be exact for quadratic
Hamiltonians [49].

The recurrence relation (7) results in the one-dimensional configuration with the Hamiltonian

~
H = Hys + nyA(by + b)) + > wab,i by,
n=0

+ Znn (b;bn+1 + bnb;;r+1)- (8)

n=0

For alinear dispersion relation g (x) = g'x, w, = g'a,and 1, = g’\/3, 11 . Due to the form of the emerging
linear geometry, this first stage of TEDOPA is coined ‘chain mapping’. One dimensional quantum many body
systems can be efficiently simulated with the well established time dependent density matrix renormalization
group (t-DMRG) algorithm [50-52]. Its application to evaluate the dynamics of the system and the transformed
environment constitutes the second stage of TEDOPA. The long ranged correlations appearing in the original
star-shaped geometry advise against the application of t-DMRG in that picture: it is the nearest neighbor
structure that makes the numerical t-DMRG approach particularly efficient. Recent works consider the
possibility to use generalized matrix product state formulations for treatment of star-shaped baths as well [53].

For a complete account of TEDOPA’s inner workings refer to [38, 39, 54]. Suffice it to say that three main
aspects distinguish it from other open quantum-system methods. First, it does not restrict the ratio A between
inner-system couplings and system-environment couplings, unlike numerous other methods (which assume
either A > lor A < 1). Second, the spectral density characterizing the system-environment interaction may
assume any arbitrary shape, including a wide variety of sharp features that may be related to long-lived
vibrational modes [38, 55, 56]. Such spectral densities are often encountered in spectral densities reconstructed
from experimental data, e.g. in biological settings [57]. And third, while applicable to all temperatures, due to its
scaling properties TEDOPA is inherently well-suited for simulations in the low-temperature domain.

Naturally, however, exact numerical methods tend to be costly and an effort to save on the associated
computational demands is desirable. Where the transfer tensor method can be applied, these costs can be
reduced and challenging long time simulations become accessible.

2.2.Non-Markovian dynamical maps: transfer tensor method

The transfer tensor method [41] reduces the numerical effort of TEDOPA simulations for a large class of non-
Markovian environments. Its key idea is to relate the initial stages of the system’s evolution to later times by
efficiently determining the dynamical correlations built up between system and environment. This is achieved
by the reconstruction of dynamical maps for short initial evolution times and their subsequent transformation
into so-called transfer tensors.
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A dynamical map is defined for an initial condition where the state of the system and the state of the
environment are separable, and it fully determines the reduced state of the system p () when applied to an initial
condition p (0)

p(t) = £, 0)p(0). ®

For a time independent Hamiltonian H such as equation (1), equation (9) is related to the solution of the time-
translationally invariant Nakajima—Zwanzig equation

p(t) = —iLsp + fot de'’K(t — t)p(t), (10)

where L;p = [Hys, p]isthe Liouvillian of the system alone and K (¢ — '), is the memory kernel arising from
the system-bath interaction Hy,,.

The input for TTM is a set of dynamical maps & = E(#, 0), where a discretisation time step 6t (fy = két)is
used. These dynamical maps are obtained easily from the evolution of all distinct initial basis states of the
system’s density matrix. The transfer tensors are then iteratively defined by

n—1
Ty= & — S To (11
m=1

According to this definition, the transfer tensor Ty then quantifies the correlation in the dynamical map & with
the non-Markovian effects built up during the previous k time steps.
Further, the discretization of the memory kernel K is directly related to these tensors by the time step 6t

T = Ki6t?, (12)

where ICi = KC(#;) is the discretized memory kernel at time #;. The system Hamiltonian is itself accessible from
the first transfer tensor by

T = (1 — iL6t). (13)

These tensors can be used to propagate the system to arbitrary later times as long as they cover the relevant
part of the memory kernel. Assuming a finite coherence time of the bath fy,4,, the transfer tensors will decay
sufficiently fast that a cutoff K can be defined such that T; = 0for k > K. Then, p(t,) forn > K canbe
expressed simply as

K

p(tn) = D Tip (). (14)
k=1
TTM is applicable in a variety of interesting cases, scaling favorably in system size and length of the

environment’s correlation time. Due to its nature it also does not rely on assumptions about the system’s

parameters or environmental couplings. Thus it is usable as a powerful black box tool which, given initial

trajectories, subsequently delivers the evolution trajectories for later times. For a more complete account of this

tool refer to [41].

2.3. Synergies

The combination of both methods facilitates the simulation of open quantum systems in regimes that were
previously inaccessible. Exceptionally relevant is the ability to perform long-time simulations of low-
temperature, highly structured harmonic environments at merely a fraction of the computational cost which
would be necessary if only TEDOPA were applied. Evidence for this is provided by simple examination of some
of the features of each of the methods. On the one hand, TEDOPA is based on a matrix product operator (MPO)
description of the complete system plus environment density matrix. Settings leading to low occupation
numbers of environmental oscillators—such as low temperatures—are especially suitable as they reduce the
MPO’s number and size. In addition TEDOPA is not limited to a specific analytical form of spectral density. On
the other hand, recurrence effects originating at the chain’s boundary limit the time for which accurate
simulation is possible. Because TTM only requires sample system trajectories for as long as bath correlations are
present, the required chain length is then not anymore determined by the target simulation time. The
combination of TTM and TEDOPA is therefore most useful in highly non-Markovian regimes where bath
correlation times are comparable to the maximum simulation time that TEDOPA can reach before recurrences
appear.

2.4. Parameters and accuracy
Here we analyze relevant parametric cutoffs for the control of the accuracy of numerical simulations that
combine TEDOPA and TTM.
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In the case of TEDOPA one can distinguish between parameters related to the chain mapping and to the
t-DMRG propagation. The semi-infinite chain of oscillators generated by the mapping necessarily requires the
truncation of both the chain length N and the Hilbert space dimension d for each oscillator at a reasonable
value. Those are native TEDOPA error sources and they have a direct effect on the recurrence time of the
simulation and the maximum temperature that may be simulated, respectively. It should be noted that the error
incurred by these two approximations can be upper-bounded rigorously by analytical expressions [46]. The
effect of other relevant parameters, namely the MPO’s matrix size (y x x)and the timestep 0t, are already
well-known from the time-evolving block decimation (TEBD) algorithm [51]. To reach the accuracy required by
TTM, care needs to be taken in adjusting these parameters to bound the total error of TEDOPA sufficiently.
Some indications on how to accomplish this are provided in the present section.

The maximum time t,,,, before unphysical back-actions of the environment due to reflections at the end of
the chain appear is related to the chain length N. Usually all chain coefficients are of the same order of magnitude
and hence the simulation time #,,,, scales roughly linearly with N. This reveals one of the benefits of the
application of TTM on TEDOPA: the chain length can be truncated according to the length of the bath
correlation time, allocating the simulation resources properly and shortening simulation times considerably in
many cases of relevance (see figure 7). The exact relationship between Nand f,,,,x may be derived analytically
through the use of Lieb—Robinson bounds [46] or numerically by trial-and-error: by setting the chain in an
initial state |10...0) and following the evolution of the number operator n on the firstsite, O = n ® 1 ® ...®l,
until a recurrence occurs.

The second native TEDOPA parameter is the local dimension d of the single oscillators constituting the
environment. For a given temperature, the occupation of the single oscillators can be determined exactly, giving
arough scale of the necessary truncation level. Some error will be introduced necessarily but this can be upper-
bounded analytically as explained in [46]. On the other hand, numerical benchmark calculations with increasing
local dimensions will generally yield sufficiently accurate results.

A further subtlety in the chain mapping consists in the determination of an adequate hard cutoff
frequency wy, of the spectral density. For instance, the slow approach to zero for large frequencies of the Drude—
Lorentz bath imposes a careful convergence check of the resulting physical behavior. For further discussions of
these effects refer to [54].

While some error sources (like the cutoff in the chain length) introduce, if treated correctly, virtually no error
atall, the matrix size x necessarily does so due to the nature of the MPO. However, as already studied in the
context of the TEBD algorithm, this error can be monitored during the time evolution [50]. This resultsin a
quantity very similar to the discarded weight known from DMRG

Wdiscarded = 1 — Zeiz- (15)
1
This quantifies the deviation from the targeted state using the discarded eigenvalues e;. This error propagates in a
non-trivial fashion and it is advisable to perform convergence checks in the dynamics under variation of the size
of x. Anadditional source of error is derivated from the Suzuki—Trotter decomposition used in the TEBD part
of TEDOPA.

It should be noted that the magnitude of the singular values kept during MPO-procedures should not fall
below some threshold e,. The transfer tensors determined by TTM do decay rapidly, falling to comparatively low
magnitudes, and singular values corrupted by numerical noise deteriorates the interpretation of results as well as
the propagation procedure.

Finally, for TTM the important quantity to keep track of in simulations is the norm of the memory kernel.
This corresponds to the norm of the transfer tensors divided by the squared time step §¢. This magnitude should
exhibit a sufficiently fast decay so that the remaining tail can be neglected. Additionally, the time step 6t must be
such that it provides a good resolution of the features of the memory kernel.

3. Benchmark

In this section we verify the combination of TEDOPA with TTM by comparing the obtained transfer tensors
with those originating from another numerically exact simulation method for non-Markovian systems under
the same conditions. The chosen benchmark regime is the Ohmic Drude—Lorentz bath and the additional
simulation method is the hierarchy of equations of motion (HEOM) [17].

We consider the spin-boson model (SBM) and define the (monomeric) system Hamiltonian

1 1
Hy = EEUZ + EAO'X. (16)
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Figure 1. Effect on the population dynamics of the spin of three different non-Ohmic spectral densities J; , 3 (see main text for
functional forms) at inverse temperature § = ¢ and verification of the predictability of trajectories by TTM. Black dashed lines are
TEDOPA simulation results, colored lines are TTM’s predictions; TTM learning times are denoted by orange lines (roughly until
t=10e71Y).

Here we set /z = 1, a convention we will stick to from now on, and express all frequencies in units of . We
employ the standard SBM notation where ¢ corresponds to the energy bias between ground and excited state, A
is the tunneling matrix element, and ¢; (i = x, y, z) are the Pauli matrices corresponding to the 7'th spatial
direction. The system interaction operator A is defined as the excited state projector |e) {e|. We choose the
parameter A = 0.6¢,and an Ohmic spectral density of the Drude-Lorentz form

J (@) = Ay—r

@ +9%)’

with parameters A = ¢ and v = 10¢ respectively identifying a scaling of the interaction strength and a soft
cutoff frequency. Thus the bath reorganization energy A\, = f J (w)dwis A, = 5.89¢. Alarge hard cutoff
whe = 320¢ has been employed to meet the aforementioned convergence requirements of TEDOPA under
Drude-Lorentz baths.

Ataninverse temperature of 3 = 0.5¢, TEDOPA exhibits favorable cutoffs and HEOM simulations are
accurate, which enables benchmarking. The resulting elements of the memory kernel obtained by TTM applied
to TEDOPA’s initial trajectories are compared with those retrieved from HEOM [17] simulations of the same
system. We have confirmed agreement in a broad range of additional regimes accessible to both TEDOPA and
HEOM. Further the system’s Hamiltonian has successfully been recovered from the first transfer tensor. This
also corroborates the ability of TTM to extract the same dynamical tensors irrespective of the simulation method
used for the generation of the trajectories. We will now turn to applications on hitherto inaccessible regimes to
illustrate the strengths of the TEDOPA-TTM combination.

17)

4. Applications

4.1. Non-Ohmic spectra

By construction, TEDOPA is inherently suited to treat spectral densities of arbitrary shape. When considering
non-Ohmic spectral densities, Markovian approaches are well-known to anomalously suppress the effect of
pure dephasing contributions [58, 59]. In this section we present an analysis of the dynamical effects of three
different non-Ohmic spectral densities, namely

Jiw) = N w? e/, (18)

h(w) = X\ w’ e/ (19)

J5(w) = A VW e /e, (20)

To facilitate comparison, all of them exhibit the same exponential decay with w, = 0.3¢ and are subject to a hard
cutoffat wy,, = 10¢. Alsothe parameters Ay = 1.8¢,\; = 1.0cand A3 = 0.6¢ havebeen chosenin

such a way that they all share the same reorganization energy A, = 0.3¢. Thus the average interaction strength
between system and environment is the same and the functional form of the spectral density is the factor
responsible for disparate dynamics. The resulting dissimilar amplitudes and decay rates of the oscillations due to
the different spectral densities are illustrated in figure 1. The tunneling strength is, as in previous section,

6
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Figure 2. Time evolution of the excited state population subject to an environment with super-Ohmic spectral density J, (w) at
[ = e.Black crosses denote the TEDOPA-only evolution, while the TTM predictions (colored lines) show a gradual convergence
upon increased learning time. The full 100 learning steps correspond to time t = 10e .
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Figure 3. Decay of a monomeric system’s population in the SBM, subject to an environment with super-Ohmic spectral density J, (w)
at different inverse temperatures (3. For better clarity only the first few oscillations are shown. Solid lines correspond to TEDOPA-
only simulations with verified accuracy. The orange initial part of each curve corresponds to the learning period. The decay of the
tensor norm for the learning period is shown in the inset.

A = 0.6¢.0ne can observe that, for the fastest bath J,, oscillations are sustained for a longer time, while this
ability decreases for spectral densities centered in lower frequencies J; and almost disappears for the very slow
bath represented by J5. Some brief initial time is sufficient to generate the transfer tensors and predict the further
evolution, whereupon high-accuracy TEDOPA simulations are used to verify these predictions.

The suitability of the TEDOPA-TTM combination is supported by the fact that these simulations require on
the order of just 100 tensors to converge to the exact results that have been obtained by full TEDOPA
simulations, as shown in figure 2. This translates into about an order of magnitude faster results for TTM-
TEDOPA combination than for TEDOPA alone. Further improvements in simulation speed are possible and are
discussed in section 4.4.

4.2. Low temperatures

To further illustrate the power of our approach, we present results for a broad range of low to very low
temperatures, upto 5 = 10¢. For the super-Ohmic spectral density J, (w) we show in figure 3 that it is possible
to simulate the dynamics of a monomeric system at various inverse temperatures and the same system
parameters as in the previous example. For the case of spectral density J; (w) we employ TTM to propagate the
system until the steady state is reached (figure 4) and plot the steady-state occupation of the excited state for

7
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Figure 4. Thermalization of the system’s population subject to an environment with spectral density J; (w) at different temperatures.

The combination TEDOPA-TTM has been used and verified with TEDOPA-only simulations. The decay of the tensor norm for the
learning period is shown in the inset.
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Figure 5. Excited state population in the steady state for a monomeric system subject to spectral density J; (w), plotted over the inverse
temperature (3. The steady state is determined by TTM evolution of the initial TEDOPA trajectories. The line is a guide to the eye.

various inverse temperatures (3 in figure 5. The insets in figures 3 and 4 show the memory kernel’s decay over
several orders of magnitude for the corresponding spectral densities. It is this decay which certifies the possibility
to use the tensors for long-time propagation of the dynamics.

4.3. Absorption spectrum
The combination of TEDOPA and TTM is especially indicated for applications where accurate simulation of
long time dynamics is crucial. The determination of absorption spectra belongs to this class of problems and we
analyze here the more complex case of a dimeric system consisting of two coupled monomers.

The coupled dimeric system in the single excitation manifold consists of two excited states |e;), |e;) and a
common ground state |¢), and is described by the Hamiltonian

Hqys = eller) (el + elez) (eal + T () (ea] + le2) (ei]), (21)

where parameters ¢; = €, €; = 2¢, and exchange interaction strength J = 0.6¢ are chosen. Each of the two
systems is coupled to a bath. Without loss of generality we assume both environments are described by the same
spectral density J; (w) and at temperature 5 = €.

The absorption spectrum is calculated as the Fourier transform of the two point correlation function of the
dipole operator ji = p,ley) (g| + p,lez) (gl + h.c.

Cufu(t’ 0) = <ﬂ(t)ﬂ(0)> (22)
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Figure 6. Peak structure of the absorption spectrum of a dimeric system for different values of the system-environment coupling
strength. The emergence of the vibrational fine structure is apparent for increasing strength of the coupling to the environment.

= tr[e i ip (0)], (23)

between times t = 0 and t = 7 such that the steady state has been reached at 7.

In the limit of weak interaction with the environment, the absorption spectrum emerging from Hamiltonian
equation (21) exhibits two peaks in the one-exciton subspace. One of them is shown in the \; = 0.018¢ line
(green) of figure 6, corresponding to the second excited state in the excitonic manifold at a wavelength of around
0.3635. For higher coupling strengths with the environment, the emergence of the vibrational fine structure
splits the peak in two, which is shown in the A; = 0.18¢ line (blue) and the \; = 1.8¢ line (black).

It will be interesting to compare the efficiency of the approach presented here with other approaches such as
stochastic path integral methods which has recently been developed to calculate absorption and emission spectra
[17] specifically for low temperatures and long times.

4.4. Simulation time
The ability of the TEDOPA-TTM combination to explore new simulation regimes is a consequence of the
extraordinary savings in computational resources. We will explore these in terms of the ‘wall time’ t,,, the
physical time required for the simulation to be executed as measured by an external clock.

Three factors have a direct influence on simulation time:

+ bath coherence time ty,q,,
+ chainlength Nand

* system dimension diy.
TTM requires the simulation of d;,s trajectories until fy,, one for each independent initial density matrix.
Although this overhead may become inconvenient for systems of large dimension, the computation may be
parallelized to avoid a scaling of £,, with dy,. Even without parallelization, numerical studies often require
exploration of alarge number of independent initial conditions anyway.

Due to the efficiency of multiplicative propagation with TTM (equation (14)), nearly the totality of the wall
time t,, required for a simulation until ¢y, is employed in the initial generation of the tensors until #,,, with
TEDOPA. Therefore, one may consider t,, to be essentially independent of #,,. This makes the TTM-TEDOPA
combination suitable for long time simulations, i.e. cases where fgy, > fyah. There is an additional benefit in
shortening simulations with TEDOPA to i, since this reduces the necessary chain length N.

The scaling of the wall time ¢,, necessary to perform a TEDOPA simulation of timestep 6t until t,,, can be
expressed as

foath -
t, oc N2 (24)
ot

where dependence on three factors has been made explicit: the number of sites N, the number of time steps 2t

ot
and afactor f denoting the average wall time necessary to simulate one chain site during one time step 6t.
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Figure 7. Data points show single-core TEDOPA wall times ¢,, for a specific simulation time t; the respective line of the same color is
the corresponding quadratic fit. Black lines show the simulation time for the same physical setting upon employing the combination
of TEDOPA and TTM. The TTM-part grows linearly as can be seen in the inset (on the main panel the slope of these lines is so small
that they appear horizontal). Note the different scales on the vertical axis between main plot and inset.

However, in order to avoid end-of-chain recurrences, for a simulation time #,,, one requires

N o toath - ¥, (25)
sites N'in the environment, given an average propagation speed ¥ in the chain. Thus a total wall time of

vt
t,, X Etgath =c- tﬁath, (26)

is needed where cis a scenario-dependent constant.

The global speedup provided by the TTM-TEDOPA combination is illustrated in figure 7 for three instances
with different spectral densities. The near independence of t,, on tg,, is shown for large t;,,. As shown in the
inset, in reality t,, increases linearly with ¢, although with a negligible slope. For simulations with TEDOPA
alone, the quadratic dependence expressed in equation (26) extends beyond ty,e, until £gp,.

5. Conclusion and outlook

In this work we demonstrated that the combination of TEDOPA and TTM result in an enhanced simulation
method of general non-Markovian open-quantum-systems especially well-suited for (but not restricted to) low-
temperature regimes and highly structured spectral densities. The formulation in terms of a multiplicative
operator whose size is independent of the goal simulation time facilitates exploration of much longer, so far
inaccessible timescales.

We verified the feasibility of this combination by a benchmark and presented applications for various
spectral densities to highlight the flexibility of our method. Further to the paradigmatic examples presented,
even larger benefits can be expected upon application to simulations which are post-processed by some
averaging-type method. These are often noise-tolerant or noise-stable, so small deviations do not change the
characteristic features of the final result. This type of analysis are expected to be of crucial importance for
providing accurate microscopic models of the dynamical behavior of mesoscopic systems and therefore a better
understanding of how coherent effects still manifest in those time and length scales [60—63].
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