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Abstract
In this work, we combine an establishedmethod for open quantum systems—the time evolving
densitymatrix using orthogonal polynomials algorithm—with the transfer tensors formalism, a new
tool for the analysis, compression and propagation of non-Markovian processes. A compact
propagator is generated out of sample trajectories covering the correlation time of the bath. This
enables the investigation of previously inaccessible long-time dynamics with linear effort, such as
those ensuing from low temperature regimeswith arbitrary, possibly highly structured, spectral
densities.We briefly introduce bothmethods, followed by a benchmark to prove viability and
combination synergies. Subsequently we illustrate the capabilities of this approach at the hand of
specific examples and conclude our analysis by highlighting possible further applications of our
method.

1. Introduction

Ranging from condensedmatter physics or quantum technologies to biological chemistry, the experimental
ability to accurately probe and analyze quantum systems in strong contact with highly structured environmental
degrees of freedom for extended periods of time has become a reality [1–6]. Under certain conditions it is
possible tomodel the observations by using approximatemethods such as perturbative approaches [7, 8],
frequently supplementedwithMarkovian assumptions [9–11]. Beyond their regime of validity, the task of
exactly treating the dynamics of open quantum systems faces the challenge of an unfavorable scaling in the
required resources. Nevertheless,many tools have been developed that address awide variety non-Markovian
scenarios for short time simulations or for specific conditions and approximations.

Exact procedures such as projection operator techniques serve to derive formally exactmaster equations that
can involve amemory kernel as in theNakajima–Zwanzig formalism [12] or have a generator that is local in
time, like the so-called time-convolutionlessmaster equations [13]. The path integral formulation [14]provides
an alternative perspective especially suitable for harmonic baths thanks to the Feynmann–Vernon influence
functional [15]. Practical implementation of these formal treatments requires perturbative expansions in terms
of some specific parameter, be it weak damping, high temperature, shortmemory time, or short simulation time
[16–19]. An exhaustive list is not within the scope of this work, but some additional instances include the non-
Markovian quantum state diffusion approach [20], the hierarchy of equations ofmotion (HEOM) [17, 21],
iterative path integral resummations [22], multilayermulticonfigurational time-dependentHartreemethods
[23], explicit computation of theNakajima–Zwanzigmemory kernel [24, 25] and the time-convolutionless
kernel [26] ormixed quantum–classicalmethods [27–29]. Alternatively, the harmonic bath assumption renders
possible the use of stochastic Gaussian sampling of the bath operator or the influence functional [30–33]. Hybrid
stochastic-deterministicmethods have appeared recently as well [34]. Another option is to simulate the density
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matrix of both the system and the complete environment by employing an efficient description of the bath or
gradually introducing select degrees of freedom [35–37]. To this class ofmethods belongs the ‘time evolving
densitymatrix using orthogonal polynomials algorithm’ (TEDOPA) [38, 39]. Thismethod uses a stable
numerical transformation tomap the environment into a chain of harmonic oscillators, which can then be
simulated togetherwith the systemusing efficient quantummany body techniques [40]. Although amore
thorough discussion follows below, as compared to other simulationmethods TEDOPA is especially suitable for
simulation of quadratic harmonic bathswith arbitrarily shaped spectral-densities in the low-temperature
regime and is not restricted to small coupling orOhmic baths.

For any exact simulationmethod it is generally the case that the size of the propagator or that of the
stochastic sample scales unfavorably with the time length of the simulation or the corresponding perturbative
expansion order. Then the question arises whether there are regimeswhere this scaling can bemitigated in some
form, i.e.if an effective propagator of a reduced size can be extractedwith the intention of facilitating long-time
simulations. In the present workwe address this question combining TEDOPAwith a tool quantifying the bath’s
back-action on the system as in theNakajima–Zwanzig formalism. This tool is known as the transfer tensor
method (TTM) [41], which has been shown to provide considerable acceleration in the context of non-
Markovian open quantum system simulations aswell as in large classical systems [42]. This is achieved by
blackbox learning from sample exact trajectories for some short initial period and subsequent generation of a
compactmultiplicative propagator for the systemdegrees of freedomalone. This propagator is the set of discrete
elements of the integration of theNakajima–Zwanzig equationwhich, similarly to thememory kernel, decay at
the rate of the bath correlation function. This justifies the definition of amemory cutoff, corresponding to the
maximum time forwhich non-Markovian effects are to be considered. Themethod does not require input of a
microscopic description of the problem and just involves straightforward analysis of the evolution of the system
densitymatrix. In this sense, TTM is directly applicable to any state propagation simulator. For a learning period
longer than the environment correlation time, the propagator accurately reproduces the long time system
dynamics with linear effort. Another possibility to exploit the decay of thememory effects in dissipative systems
is to explicitly calculate theNakajima–Zwanzigmemory kernel [24, 25]. Although this is in general a demanding
task, it is possible for specific systems and has been implementedwith the help of quantumMonte-Carlo
methods [25, 43] ormultilayermulticonfigurational time-dependentHartreemethods [44, 45].With TTMan
explicit computation of thememory kernel is avoided and a discretized propagator is directly obtained. This
propagator grows linearly with the correlation time of the bath, improving on the size of some deterministic
simulationmethods of linear propagation effort [17, 18]. It is a general andflexible approach that does not
depend on the formof the environment or the interaction, while TEDOPA is not restricted toweak system-bath
coupling, high temperatures or specific spectral densities. Therefore, they constitute ideal partners and a study of
their combined performance represents a natural research question.

We start the discussion in section 2 by providing a general analysis of both TEDOPA andTTM, thereby
specifying the regime inwhich their combination is expected to bemost productive. In addition, tools for the
error assessment are provided. In section 3we provide a benchmark between the proposed combination and the
exact result and confirmperfect agreement. Finally, in section 4 relevant applications of the TEDOPA-TTM
combination are proposedwhich includeOhmic and non-Ohmic spectral densities, low temperature
simulations and computations of absorption spectra.

2. Themethod

2.1. A numerically exact open quantum system simulator
TEDOPA [38, 39] is a numerically exact and certifiable simulationmethod for open quantum systemdynamics
[46]. It applies to general systems under linear interactionwith an environmentmodeled by a set of independent
harmonic oscillators such that the totalHamiltonianH can be split into the system, the environment and the
interaction between the two as

H H H H , 1sys env int ( )= + +

H x g x a ad , 2
x

x xenv
0

max

( ) ( )†ò=

H x h x a a Ad . 3
x

x xint
0

max

( )( ) ( )†ò= +

Here ax
† and ax denote the bosonic creation and annihilation operators corresponding to the environmental

mode x. The coefficients g x( ) can be identified as the environmental dispersion relation. The interaction term
Hint assigns eachmode a coupling strengthh x( ) between its displacement a ax x

† + and a general system
operatorA.
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Together with the temperature, the functions g x( ) and h x( ) characterize the harmonic environment
uniquely and define the spectral density J ( )w as

J h g
gd

d
. 42 1

1

( ) [ ( )] ( ) ( )w p w
w

w
= -

-

Here g g x g g x x1 1[ ( )] [ ( )]= =- - and g(x) ismonotonically growing. The quantity
gd

d

1( )dww
w

-

can be interpreted
as the number of quantizedmodeswith frequencies betweenω andω+δω (for δω→ 0).We consider spectral
densities subject to a hard cut-off at frequency ;hcw this in turn defines the cut-off xmax in equations (2) and (3)
as x gmax

1
hc( )w= - .

TEDOPAuses a two-stage sequence to enable full treatment of the system and environment degrees of
freedom. In a first step, an analytic transformation based on orthogonal polynomials converts the star-shaped
system-environment structure into a one-dimensional geometry, where the system couples only to the first site
of a semi-infinite chain of harmonic oscillators that contains only nearest-neighbour interactions. This is
accomplished by use of a unitary transformationU, which defines newharmonic oscillators with creation and
annihilation operators bn

†, bn given by

U x h x p x , 5n n( ) ( ) ( ) ( )=

b x U x ad . 6n

x

n x
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Here p xn ( ) are orthogonal polynomials definedwith respect to themeasure x h x xd d2( ) ( )m = and the three-
term recurrence relation

p x x p x p x , 7k k k k k1 1( ) ( ) ( ) ( ) ( )a b= - -+ -

with p x 01( ) º- and k a positive integer or zero. This transformation can be performed analytically for specific
spectral densities [39, 47]. For arbitrarily shaped spectral densities a numerically stable approach has been
developed [38, 48].Mappings using orthogonal polynomials have been shown to be exact for quadratic
Hamiltonians [49].

The recurrence relation (7) results in the one-dimensional configurationwith theHamiltonian
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For a linear dispersion relation g x g x( ) = ¢ , gn nw a= ¢ and gn n 1h b= ¢ + . Due to the formof the emerging
linear geometry, thisfirst stage of TEDOPA is coined ‘chainmapping’. One dimensional quantummany body
systems can be efficiently simulatedwith thewell established time dependent densitymatrix renormalization
group (t-DMRG) algorithm [50–52]. Its application to evaluate the dynamics of the system and the transformed
environment constitutes the second stage of TEDOPA. The long ranged correlations appearing in the original
star-shaped geometry advise against the application of t-DMRG in that picture: it is the nearest neighbor
structure thatmakes the numerical t-DMRGapproach particularly efficient. Recent works consider the
possibility to use generalizedmatrix product state formulations for treatment of star-shaped baths as well [53].

For a complete account of TEDOPA’s innerworkings refer to [38, 39, 54]. Suffice it to say that threemain
aspects distinguish it fromother open quantum-systemmethods. First, it does not restrict the ratiol between
inner-system couplings and system-environment couplings, unlike numerous othermethods (which assume
either 1l  or 1l  ). Second, the spectral density characterizing the system-environment interactionmay
assume any arbitrary shape, including awide variety of sharp features thatmay be related to long-lived
vibrationalmodes [38, 55, 56]. Such spectral densities are often encountered in spectral densities reconstructed
from experimental data, e.g. in biological settings [57]. And third, while applicable to all temperatures, due to its
scaling properties TEDOPA is inherently well-suited for simulations in the low-temperature domain.

Naturally, however, exact numericalmethods tend to be costly and an effort to save on the associated
computational demands is desirable.Where the transfer tensormethod can be applied, these costs can be
reduced and challenging long time simulations become accessible.

2.2. Non-Markovian dynamicalmaps: transfer tensormethod
The transfer tensormethod [41] reduces the numerical effort of TEDOPA simulations for a large class of non-
Markovian environments. Its key idea is to relate the initial stages of the system’s evolution to later times by
efficiently determining the dynamical correlations built up between system and environment. This is achieved
by the reconstruction of dynamicalmaps for short initial evolution times and their subsequent transformation
into so-called transfer tensors.
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Adynamicalmap is defined for an initial conditionwhere the state of the system and the state of the
environment are separable, and it fully determines the reduced state of the system t( )r when applied to an initial
condition 0( )r

t t, 0 0 . 9( ) ( ) ( ) ( )r r=

For a time independentHamiltonianH such as equation (1), equation (9) is related to the solution of the time-
translationally invariantNakajima–Zwanzig equation

t t t t ti d , 10s

t

0
˙ ( ) ( ) ( ) ( ) òr r r= - + ¢ - ¢ ¢

where H ,s sys[ ] r r= is the Liouvillian of the system alone and t t( ) - ¢ , is thememory kernel arising from
the system-bath interactionHint.

The input for TTM is a set of dynamicalmaps t , 0k k( ) = , where a discretisation time step td (t k tk dº ) is
used. These dynamicalmaps are obtained easily from the evolution of all distinct initial basis states of the
system’s densitymatrix. The transfer tensors are then iteratively defined by

T T . 11n n
m

n

n m m
1

1

( ) å= -
=

-

-

According to this definition, the transfer tensorTk then quantifies the correlation in the dynamicalmap k with
the non-Markovian effects built up during the previousk time steps.

Further, the discretization of thememory kernel is directly related to these tensors by the time step td

T t , 12k k
2 ( ) d=

where tk k( ) = is the discretizedmemory kernel at time tk. The systemHamiltonian is itself accessible from
thefirst transfer tensor by

T ti . 13s1 ( ) ( )  d= -

These tensors can be used to propagate the system to arbitrary later times as long as they cover the relevant
part of thememory kernel. Assuming a finite coherence time of the bath tbath, the transfer tensors will decay
sufficiently fast that a cutoffK can be defined such thatTk=0 for k K> . Then, tn( )r for n K> can be
expressed simply as

t T t . 14n
k

K

k n k
1

( ) ( ) ( )år r=
=

-

TTM is applicable in a variety of interesting cases, scaling favorably in system size and length of the
environment’s correlation time. Due to its nature it also does not rely on assumptions about the system’s
parameters or environmental couplings. Thus it is usable as a powerful black box tool which, given initial
trajectories, subsequently delivers the evolution trajectories for later times. For amore complete account of this
tool refer to [41].

2.3. Synergies
The combination of bothmethods facilitates the simulation of open quantum systems in regimes that were
previously inaccessible. Exceptionally relevant is the ability to perform long-time simulations of low-
temperature, highly structured harmonic environments atmerely a fraction of the computational cost which
would be necessary if only TEDOPAwere applied. Evidence for this is provided by simple examination of some
of the features of each of themethods. On the one hand, TEDOPA is based on amatrix product operator (MPO)
description of the complete systemplus environment densitymatrix. Settings leading to lowoccupation
numbers of environmental oscillators—such as low temperatures—are especially suitable as they reduce the
MPO’s number and size. In additionTEDOPA is not limited to a specific analytical formof spectral density. On
the other hand, recurrence effects originating at the chain’s boundary limit the time forwhich accurate
simulation is possible. Because TTMonly requires sample system trajectories for as long as bath correlations are
present, the required chain length is then not anymore determined by the target simulation time. The
combination of TTMandTEDOPA is thereforemost useful in highly non-Markovian regimeswhere bath
correlation times are comparable to themaximum simulation time that TEDOPA can reach before recurrences
appear.

2.4. Parameters and accuracy
Herewe analyze relevant parametric cutoffs for the control of the accuracy of numerical simulations that
combine TEDOPA andTTM.
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In the case of TEDOPAone can distinguish between parameters related to the chainmapping and to the
t-DMRGpropagation. The semi-infinite chain of oscillators generated by themapping necessarily requires the
truncation of both the chain lengthN and theHilbert space dimensiond for each oscillator at a reasonable
value. Those are native TEDOPA error sources and they have a direct effect on the recurrence time of the
simulation and themaximum temperature thatmay be simulated, respectively. It should be noted that the error
incurred by these two approximations can be upper-bounded rigorously by analytical expressions [46]. The
effect of other relevant parameters, namely theMPO’smatrix size( )c c´ and the time step td , are already
well-known from the time-evolving block decimation (TEBD) algorithm [51]. To reach the accuracy required by
TTM, care needs to be taken in adjusting these parameters to bound the total error of TEDOPA sufficiently.
Some indications on how to accomplish this are provided in the present section.

Themaximum time tmax before unphysical back-actions of the environment due to reflections at the end of
the chain appear is related to the chain lengthN. Usually all chain coefficients are of the same order ofmagnitude
and hence the simulation time tmax scales roughly linearly withN. This reveals one of the benefits of the
application of TTMonTEDOPA: the chain length can be truncated according to the length of the bath
correlation time, allocating the simulation resources properly and shortening simulation times considerably in
many cases of relevance (see figure 7). The exact relationship betweenN and tmax may be derived analytically
through the use of Lieb–Robinson bounds [46] or numerically by trial-and-error: by setting the chain in an
initial state 10 0∣ ¼ ñand following the evolution of the number operator n on thefirst site, O n  = Ä Ä ¼Ä ,
until a recurrence occurs.

The second native TEDOPAparameter is the local dimensiond of the single oscillators constituting the
environment. For a given temperature, the occupation of the single oscillators can be determined exactly, giving
a rough scale of the necessary truncation level. Some error will be introduced necessarily but this can be upper-
bounded analytically as explained in [46]. On the other hand, numerical benchmark calculationswith increasing
local dimensionswill generally yield sufficiently accurate results.

A further subtlety in the chainmapping consists in the determination of an adequate hard cutoff
frequency hcw of the spectral density. For instance, the slow approach to zero for large frequencies of theDrude–
Lorentz bath imposes a careful convergence check of the resulting physical behavior. For further discussions of
these effects refer to [54].

While some error sources (like the cutoff in the chain length) introduce, if treated correctly, virtually no error
at all, thematrix sizec necessarily does so due to the nature of theMPO.However, as already studied in the
context of the TEBD algorithm, this error can bemonitored during the time evolution [50]. This results in a
quantity very similar to the discardedweight known fromDMRG

w e1 . 15
i

idiscarded
2 ( )å= -

This quantifies the deviation from the targeted state using the discarded eigenvalues ei. This error propagates in a
non-trivial fashion and it is advisable to perform convergence checks in the dynamics under variation of the size
of c. An additional source of error is derivated from the Suzuki–Trotter decomposition used in the TEBDpart
of TEDOPA.

It should be noted that themagnitude of the singular values kept duringMPO-procedures should not fall
below some threshold e0. The transfer tensors determined byTTMdo decay rapidly, falling to comparatively low
magnitudes, and singular values corrupted by numerical noise deteriorates the interpretation of results as well as
the propagation procedure.

Finally, for TTM the important quantity to keep track of in simulations is the normof thememory kernel.
This corresponds to the normof the transfer tensors divided by the squared time step td . Thismagnitude should
exhibit a sufficiently fast decay so that the remaining tail can be neglected. Additionally, the time step td must be
such that it provides a good resolution of the features of thememory kernel.

3. Benchmark

In this sectionwe verify the combination of TEDOPAwith TTMby comparing the obtained transfer tensors
with those originating from another numerically exact simulationmethod for non-Markovian systems under
the same conditions. The chosen benchmark regime is theOhmicDrude–Lorentz bath and the additional
simulationmethod is the hierarchy of equations ofmotion (HEOM) [17].

We consider the spin-bosonmodel (SBM) and define the (monomeric) systemHamiltonian

H
1

2

1

2
. 16z xsys ( )s s= + D
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Herewe set 1 = , a conventionwewill stick to fromnowon, and express all frequencies in units of ò.We
employ the standard SBMnotationwhere  corresponds to the energy bias between ground and excited state,D
is the tunnelingmatrix element, and is i x y z, ,( )= are the Paulimatrices corresponding to the i’th spatial
direction. The system interaction operatorA is defined as the excited state projector e e∣ ∣ñá .We choose the
parameter 0.6D = , and anOhmic spectral density of theDrude–Lorentz form

J , 17
2 2

( )
( )

( )w lg
w

w g
=

+

with parameters l = and 10g = respectively identifying a scaling of the interaction strength and a soft
cutoff frequency. Thus the bath reorganization energy J dr ( )òl w w= is 5.89r l = . A large hard cutoff

320hc w = has been employed tomeet the aforementioned convergence requirements of TEDOPAunder
Drude–Lorentz baths.

At an inverse temperature of 0.5b = , TEDOPA exhibits favorable cutoffs andHEOMsimulations are
accurate, which enables benchmarking. The resulting elements of thememory kernel obtained byTTMapplied
to TEDOPA’s initial trajectories are comparedwith those retrieved fromHEOM [17] simulations of the same
system.Wehave confirmed agreement in a broad range of additional regimes accessible to both TEDOPA and
HEOM. Further the system’sHamiltonian has successfully been recovered from the first transfer tensor. This
also corroborates the ability of TTM to extract the same dynamical tensors irrespective of the simulationmethod
used for the generation of the trajectories.Wewill now turn to applications on hitherto inaccessible regimes to
illustrate the strengths of the TEDOPA-TTMcombination.

4. Applications

4.1. Non-Ohmic spectra
By construction, TEDOPA is inherently suited to treat spectral densities of arbitrary shape.When considering
non-Ohmic spectral densities,Markovian approaches are well-known to anomalously suppress the effect of
pure dephasing contributions [58, 59]. In this sectionwe present an analysis of the dynamical effects of three
different non-Ohmic spectral densities, namely

J e , 181 1
3 c( ) ( )w l w= w w-

J e , 192 2
5 c( ) ( )w l w= w w-

J e . 203 3
c( ) ( )w l w= w w-

To facilitate comparison, all of them exhibit the same exponential decaywith 0.3c w = and are subject to a hard
cutoff at 10hc w = . Also the parameters 1.81 l = , 1.02 l = and 0.63 l = have been chosen in
such away that they all share the same reorganization energy 0.3r l = . Thus the average interaction strength
between system and environment is the same and the functional formof the spectral density is the factor
responsible for disparate dynamics. The resulting dissimilar amplitudes and decay rates of the oscillations due to
the different spectral densities are illustrated infigure 1. The tunneling strength is, as in previous section,

Figure 1.Effect on the population dynamics of the spin of three different non-Ohmic spectral densities J1,2,3 (seemain text for
functional forms) at inverse temperature b = and verification of the predictability of trajectories by TTM.Black dashed lines are
TEDOPA simulation results, colored lines are TTM’s predictions; TTM learning times are denoted by orange lines (roughly until
t 10 1= - ).
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0.6D = . One can observe that, for the fastest bath J2, oscillations are sustained for a longer time, while this
ability decreases for spectral densities centered in lower frequencies J1 and almost disappears for the very slow
bath represented by J3. Some brief initial time is sufficient to generate the transfer tensors and predict the further
evolution, whereupon high-accuracy TEDOPA simulations are used to verify these predictions.

The suitability of the TEDOPA-TTMcombination is supported by the fact that these simulations require on
the order of just 100 tensors to converge to the exact results that have been obtained by full TEDOPA
simulations, as shown infigure 2. This translates into about an order ofmagnitude faster results for TTM-
TEDOPA combination than for TEDOPA alone. Further improvements in simulation speed are possible and are
discussed in section 4.4.

4.2. Low temperatures
To further illustrate the power of our approach, we present results for a broad range of low to very low
temperatures, up to 10b = . For the super-Ohmic spectral density J2 ( )w we show infigure 3 that it is possible
to simulate the dynamics of amonomeric system at various inverse temperatures and the same system
parameters as in the previous example. For the case of spectral density J1 ( )w we employ TTM to propagate the
systemuntil the steady state is reached (figure 4) and plot the steady-state occupation of the excited state for

Figure 2.Time evolution of the excited state population subject to an environment with super-Ohmic spectral density J2 ( )w at
b = . Black crosses denote the TEDOPA-only evolution, while the TTMpredictions (colored lines) show a gradual convergence

upon increased learning time. The full 100 learning steps correspond to time t 10 1= - .

Figure 3.Decay of amonomeric system’s population in the SBM, subject to an environment with super-Ohmic spectral density J2 ( )w
at different inverse temperaturesb . For better clarity only the first few oscillations are shown. Solid lines correspond to TEDOPA-
only simulationswith verified accuracy. The orange initial part of each curve corresponds to the learning period. The decay of the
tensor norm for the learning period is shown in the inset.
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various inverse temperaturesb infigure 5. The insets infigures 3 and 4 show thememory kernel’s decay over
several orders ofmagnitude for the corresponding spectral densities. It is this decaywhich certifies the possibility
to use the tensors for long-time propagation of the dynamics.

4.3. Absorption spectrum
The combination of TEDOPA andTTM is especially indicated for applications where accurate simulation of
long time dynamics is crucial. The determination of absorption spectra belongs to this class of problems andwe
analyze here themore complex case of a dimeric system consisting of two coupledmonomers.

The coupled dimeric system in the single excitationmanifold consists of two excited states e1∣ ñ, e2∣ ñand a
common ground state g∣ ñ, and is described by theHamiltonian

H e e e e J e e e e , 21sys 1 1 1 2 2 2 1 2 2 1∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣) ( ) = ñá + ñá + ñá + ñá

where parameters 1 º , 22 = , and exchange interaction strength J 0.6= are chosen. Each of the two
systems is coupled to a bath.Without loss of generality we assume both environments are described by the same
spectral density J1 ( )w and at temperature b = .

The absorption spectrum is calculated as the Fourier transformof the two point correlation function of the
dipole operator e g e g h.c.1 1 2 2ˆ ∣ ∣ ∣ ∣m m m= ñá + ñá +

C t t, 0 0 22( ) ˆ ( ) ˆ ( ) ( )m m= á ñm m-

Figure 4.Thermalization of the system’s population subject to an environmentwith spectral density J1 ( )w at different temperatures.
The combination TEDOPA-TTMhas been used and verifiedwith TEDOPA-only simulations. The decay of the tensor norm for the
learning period is shown in the inset.

Figure 5.Excited state population in the steady state for amonomeric system subject to spectral density J1 ( )w , plotted over the inverse
temperatureb . The steady state is determined by TTMevolution of the initial TEDOPA trajectories. The line is a guide to the eye.

8

New J. Phys. 18 (2016) 023035 RRosenbach et al



tr e e 0 , 23Ht Hti i[ ˆ ˆ ( )] ( )m mr= -

between times t=0 and t t= such that the steady state has been reached at τ.
In the limit of weak interactionwith the environment, the absorption spectrum emerging fromHamiltonian

equation (21) exhibits two peaks in the one-exciton subspace. One of them is shown in the 0.0181 l = line
(green) offigure 6, corresponding to the second excited state in the excitonicmanifold at awavelength of around
0.363 c


. For higher coupling strengths with the environment, the emergence of the vibrational fine structure

splits the peak in two, which is shown in the 0.181 l = line (blue) and the 1.81 l = line (black).
It will be interesting to compare the efficiency of the approach presented herewith other approaches such as

stochastic path integralmethodswhich has recently been developed to calculate absorption and emission spectra
[17] specifically for low temperatures and long times.

4.4. Simulation time
The ability of the TEDOPA-TTMcombination to explore new simulation regimes is a consequence of the
extraordinary savings in computational resources.Wewill explore these in terms of the ‘wall time’ tw, the
physical time required for the simulation to be executed asmeasured by an external clock.

Three factors have a direct influence on simulation time:

• bath coherence time tbath,

• chain lengthN and

• systemdimension dsys.

TTM requires the simulation of dsys
2 trajectories until tbath, one for each independent initial densitymatrix.

Although this overheadmay become inconvenient for systems of large dimension, the computationmay be
parallelized to avoid a scaling of twwith dsys. Evenwithout parallelization, numerical studies often require
exploration of a large number of independent initial conditions anyway.

Due to the efficiency ofmultiplicative propagationwith TTM (equation (14)), nearly the totality of thewall
time tw required for a simulation until tsim is employed in the initial generation of the tensors until tbath with
TEDOPA. Therefore, onemay consider tw to be essentially independent of tsim. Thismakes the TTM-TEDOPA
combination suitable for long time simulations, i.e.cases where t tsim bath . There is an additional benefit in
shortening simulationswith TEDOPA to tbath, since this reduces the necessary chain lengthN.

The scaling of thewall time tw necessary to perform aTEDOPA simulation of timestep td until tbath can be
expressed as

t N
t

t
t , 24w

bath ¯ ( )
d

µ

where dependence on three factors has beenmade explicit: the number of sitesN, the number of time steps t

t
bath

d
and a factort̄ denoting the averagewall time necessary to simulate one chain site during one time step td .

Figure 6.Peak structure of the absorption spectrumof a dimeric system for different values of the system-environment coupling
strength. The emergence of the vibrational fine structure is apparent for increasing strength of the coupling to the environment.
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However, in order to avoid end-of-chain recurrences, for a simulation timetbath one requires

N t v, 25bath · ¯ ( )µ

sitesN in the environment, given an average propagation speed v̄ in the chain. Thus a total wall time of

t
vt

t
t c t , 26w bath

2
bath
2¯¯

· ( )
d

µ º

is neededwhere c is a scenario-dependent constant.
The global speedup provided by the TTM-TEDOPA combination is illustrated in figure 7 for three instances

with different spectral densities. The near independence of tw on tsim is shown for large tsim. As shown in the
inset, in reality tw increases linearly with tsim, althoughwith a negligible slope. For simulationswith TEDOPA
alone, the quadratic dependence expressed in equation (26) extends beyond tbath until tsim.

5. Conclusion and outlook

In this workwe demonstrated that the combination of TEDOPA andTTMresult in an enhanced simulation
method of general non-Markovian open-quantum-systems especially well-suited for (but not restricted to) low-
temperature regimes and highly structured spectral densities. The formulation in terms of amultiplicative
operatorwhose size is independent of the goal simulation time facilitates exploration ofmuch longer, so far
inaccessible timescales.

We verified the feasibility of this combination by a benchmark and presented applications for various
spectral densities to highlight theflexibility of ourmethod. Further to the paradigmatic examples presented,
even larger benefits can be expected upon application to simulationswhich are post-processed by some
averaging-typemethod. These are often noise-tolerant or noise-stable, so small deviations do not change the
characteristic features of the final result. This type of analysis are expected to be of crucial importance for
providing accuratemicroscopicmodels of the dynamical behavior ofmesoscopic systems and therefore a better
understanding of how coherent effects stillmanifest in those time and length scales [60–63].

Acknowledgments

Thisworkwas supported by theAlexander vonHumboldt-Professorship, the EU Integrating project SIQS, the
EUSTREP projects PAPETS,QUCHIP and EQUAM,National Science Foundation (NSF) (GrantNo. CHE-
1112825) andDefense AdvancedResearch Projects Agency (DARPA) (GrantNo.N99001-10-1-4063), theMIT-
Germany Seed Fund, and the ERCSynergy grant BioQ. Computational resources used included bwUniCluster,
supported by theMinistry of Science, Research and the Arts Baden-Württemberg and theUniversities of the
State of Baden-Württemberg, Germany, within the framework programbwHPC.
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of TEDOPA andTTM. The TTM-part grows linearly as can be seen in the inset (on themain panel the slope of these lines is so small
that they appear horizontal). Note the different scales on the vertical axis betweenmain plot and inset.
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