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Transitions in genetic toggle switches driven by dynamic disorder
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In biochemical systems, intrinsic noise may drive the system switch from one stable state to another.
We investigate how kinetic switching between stable states in a bistable network is influenced by
dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action
method, we first investigate the optimal transition paths and the corresponding minimum actions
based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability
distribution. For the continuous probability distribution of the rate coefficient, we then consider two
models of dynamic disorder in which reaction coefficients undergo different stochastic processes with
the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and
in the other they follow continuous Langevin dynamics. We find that regulation of the parameters
modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in
bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition
paths, transition probabilities, and the stationary probability distribution of the network. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4948461]

. INTRODUCTION

Single molecule studies have demonstrated that enzy-
matic behavior is different from the static picture gleaned
from ensemble averaged experiments,'™ and a growing
body of theoretical work has examined the consequences
of fluctuating chemical kinetics in protein interaction
networks.*> Enzymatic rates of catalysis can fluctuate over
several orders of magnitude.® Recent single molecule studies
from Iversen et al. have shown that this type of behavior
is even exhibited in bistable networks that are involved in
the earliest stages of T-cell signaling in the immune system.®
The particular behavior outlined in that work shows that
enzymatic rate constants can remain at a fixed value for
an interval of time before jumping and resampling from a
heavy tailed distribution.®? Throughout this paper, we will
model such a behavior by a stochastic process in which the
time intervals between switching events are exponentially
distributed with a parameter A s~' that we call the switching
rate. The single molecule studies find that, interestingly,
allosteric regulation can affect both the switching rate A,
and the shape of the probability distribution p(k) that the rate
parameters draw from. It was shown through computational
studies that the presence of dynamic disorder'® can make
the network more stable than it would be if all kinetic
parameters acted at a single average value and did not
fluctuate, in the sense that a stronger signal input would
be required for the network to switch from one basin to the
other.

In this paper, we investigate the effects of dynamic
disorder in a general toggle switch model with bistability.!'~!3
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We first investigate a relatively simple model where
the rate parameter k draws from a discrete probability
distribution. This discrete distribution model is simple
enough for us to examine the optimal transition paths
between stable states and the corresponding actions by using
the geometric minimum action method (gMAM).!®!7 The
results of the optimal transition paths illustrate a deviation
between the optimal path and the average transition path
obtained from chemical rate equations. And, as expected,
the optimal paths converge to the average path when
we increase the switching rate. The increasing switching
rate also dramatically reduces the minimum action, which
means that the dynamic disorder makes the system more
stable.

We then consider a more complex genetic toggle switch
model in which the rate parameter k draws from a continuous
heavy tailed distribution. We see that by tuning the shape of
the distribution p(k) from which a particular rate constant
samples, or by tuning the switching rate A, the equilibrium
probability mass function (PMF) is significantly changed
and therefore one stable basin can be greatly stabilized
relative to the other. This means that the dynamic disorder
(and specifically allosteric control of the parameters of the
model) can dramatically influence the mean first passage
time for transition from one stable basin to the other. We
investigate this behavior both in the small system limit
by looking at Gillespie simulations of the toggle switch
network, and also in the large volume, fixed concentration
limit by using numerical procedures to investigate how
the minimum action path is influenced by the presence of
dynamic disorder. We find that the results are qualitatively
unchanged when the stochastic rate parameter follows a
Markov jump process as opposed to stochastic Langevin
dynamics.

Published by AIP Publishing.
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Il. GENETIC TOGGLE SWITCHES
WITH THREE ISOMERS

In genetic toggle switches, a pair of genes mutually
represses each other.!'™!3 A pair of genes encodes proteins
A and B, respectively, called transcription factors. Protein A
and B in turn form homodimers A, and B, which bind to
regulatory regions of DNA, called operators (O, and Oy,), of
the respective other gene. The binding of A; to the operator Oy,
represses the production of protein B and vice versa. We count
the total copy numbers of the transcription factors A (N4) and
B (Np) which include those in homodimers and those bound
to the operators. Within a region in parameter space, the
genetic toggle switches have two possible stable states: a state
with a large concentration of ¢4 and a small concentration of
cp, or the other state with small c4 and large cp.'*

To incorporate dynamic disorder into the model, we
investigate a model in which, due to fluctuating conformational
changes, the unbinding rate of A, from the operator O, is
not fixed but instead fluctuates. We study an asymmetric
model in which only polymer A, has a fluctuating unbinding
rate. To examine the optimal transition paths and find the
corresponding minimum actions, we begin with a relatively
simple model where the unbinding rate of O,A, samples
from a discrete probability distribution, P; = 0.1, P, = 0.8,
and P; = 0.1. In other words, there are three conformations
of polymer Ay, Aj, A3, and A3 with different unbinding rates,
and these homodimers switch among each other governed by
a rule of transition probability matrix,

A A A
A IRf R R;
"4 R R Ry,
A R R Ry

R

where Ry = 0.1,R, = 0.8,R; = 0.1.

We model the genetic toggle switches as a discrete
Markov jump process with the reaction scheme in Figure 1
and Table I. The values of the rate constants are chosen based
on Warren’s paper.'* We assume that there is only one copy
of the genome in the genetic toggle switch.
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A. Optimal transition paths

As described in Sec. I, genetic switches normally have
bimodality and the intrinsic noise can drive the genetic
switches from one stable state to the other. From the
large deviation theory, the probability of a rare transition
between stable states is dominated by the probability of
the optimal transition path with the minimum action.'®!
In this section, we investigate the most probable transition
paths for the genetic switches with different switching rates
(1) by implementing the geometric minimum action method
(eMAM)."”

We first obtain the stable states by solving ordinary
differential equations (ODEs) with different switching rates
based on the reaction scheme in Table I. We plot these
stable states in Figure 2. The x and y axes represent
the concentrations of species A (C4 = ca + 2(c ALt et oy
+ CObAé + €opA2 + CObAg)) and B (Cp = cp + 2(cp, + Co,B,)),
respectively. Note that stable states, for both high A (labeled
as a in Figure 2) and low A (labeled as b), of the system with
different switching rates are distinct from each other. As the
switching rate increases, the stable states shift in the direction
of less A and more B (top left in Figure 2). The reason is
that polymers A, switch among each other on operators and
the overall behavior will be closer to the situation with mean
value of the unbinding rate, k, = 5, which is larger than the
most probable value of the unbinding rate, k,, = 4.625. And
the larger unbinding rate of A, leads to more production of B.

By using the gMAM method, we then find the forward
(from a to b) and backward (from b to a) optimal paths
between these stable states, which are drawn in solid lines
and dashed lines, respectively, in Figure 2. The forward and
backward optimal paths do not coincide, which implies that
the system does not obey detailed balance. More interestingly,
when we increase the switching rate, both forward and
backward paths converge to the middle green lines. The
reason for the convergence is probably because the large
switching rate diminishes the stochastic effect of the system
with fluctuating conformational changes. To validate this
argument, we then investigate the mean paths of the transitions.
We choose two different state points, ¢ and d, which are close

gene b

genea
v
rotein A | ‘
i <
/ !
A A

oY OO oY

polymer A} polymer A polymer A,

®
l

FIG. 1. The model of the genetic tog-
gle switches. Genes a and b encode
proteins A and B, respectively. Protein
A and B in turn form homodimers A,
with three conformations, and B, which
bind to regulatory regions of DNA of
the respective other gene. The binding
of A to the operator Oy, represses the
production of protein B and vice versa.
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TABLE 1. Reaction scheme of genetic toggle switches with three isomers of Aj. (i) kK and k, are the forward
and backward rate constants of the corresponding reactions. (ii) Py 2 3 are the distribution probabilities of three
polymers A». (iii) R1,2,3 are the switching probabilities of three polymers A». (iv) A is the switching rate.

Reactions ks kp
Production of proteins 0,5 0,+A Op— Op+B 1
Degradation of proteins A—0 B—0 0.8
Formation of dimers A+A= Aé B+B=B; 10P, 5
A+A=AZ 10P, 5
A+A=A] 10P3 5
Binding/unbinding to operators Op+Al=0pA) 0,+B,=0,B; 10 3
Op+AJ = 0pA} 10 4.625
Op+A3 = 0pA3 10 10
Switching among dimers A; = A% AR, AR,
Al=A3 AR;3 AR,
Al= A3 AR3 AR
OpA} = OpA} AR, ARy
OpAj = 0pA3 AR;3 AR,
OpA2=0pA3 AR;3 ARy

to a and b, respectively. Because they are unstable states, they
will move to the stable states a and b, respectively.

We obtain the average transition paths by solving ODE
where the system evolves with deterministic characteristics.
The results in Figure 3(a) show that, from c to b, the average
transition path is very different from the optimal paths when
the switching rate is relatively small. However, when the
switching rate is large, the optimal path coincides with the
average path obtained by solving ODE. This observation
demonstrates the decline of the stochastic characteristics due
to the enhanced switching behavior among isomers.

To clearly see the difference between the optimal paths
and the average path, we plot the deviation between them as
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FIG. 2. The optimal paths with the minimum actions. The solid lines and
dashed lines are forward (from a to b) and backward (from b to a) transition
paths, respectively. The x and y axes are the concentrations of species A
and B, respectively. Different colored lines represent systems with different
switching rates. The inset highlights the difference and convergence of the
optimal paths around state point b.

a function of the concentration of A in Figure 3(b). We pick
three switching rates 0.5, 1, and 10 and plot the deviations
correspondingly. When the concentration of A is smaller, the
deviation is larger due to the fluctuation. Also, a smaller
switching rate results in a larger deviation.

B. The minimum action

According to the large deviation theory, the transition
rate of a rare event is a negative exponential function of the
action of the optimal path, K ~ A exp(—V §*), where S* is the
minimum action and V is the volume of the system.?’ If the
minimum action is smaller, the probability of the transition
will be larger. Thus, we use the minimum action to describe
the probability of the transition between stable states.

In Figure 4, we plot the minimum action as a function
of the switching rate among isomers A,. The action decreases
dramatically as the switching rate increases, and then plateaus
for large switching rate. The decrease of the action indicates
that a larger switching rate makes this system easier to shift
from high A state to low A state. The reason for the plateau
is that, at the large switching rate, the isomers A, are well
mixed and the system behaves as the average, where the action
reaches the lower-bound limit. The results demonstrate that
the fluctuations of conformational polymers slow down the
rare transition between stable states of the system.

lll. CONTINUOUS SPACE MODEL
A. Discrete jumps

We then extend the simple genetic toggle switch model
to a more complex one where rate coefficient samples from
a continuous heavy tailed distribution instead of a discrete
distribution. We begin by investigating the behavior of this
toggle switch network in the small copy number limit using
the Gillespie algorithm.?!~2*> We first carry out the simulations
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FIG. 3. (a) The optimal path with the minimum action is different from the average paths. The forward and backward optimal transition paths are indicated by
dashed black and green lines, respectively. The average paths are indicated by cyan cross lines. The inset highlights the difference between the optimal paths and
the average path between states b and c. (b) The deviation between the optimal paths and the average path as a function of the concentration of A.

for a model of dynamic disorder in which individual rate
parameters remain at one value for a random, exponentially
distributed amount of time (parameterized by a switching rate
A s71), before redrawing a value from a prescribed distribution.
Following experimental evidence which shows fluctuating rate
constants draw from heavy tailed distribution,>”8 we allow
the rate constants to sample from a log normal distribution.
We carry out these simulations with only one copy of genome
in the simulation box like the discrete distribution case in
Sec. IV. For this model, the state space is continuous as an
individual rate constant samples from a continuous probability
distribution, but the jumps are discrete.

Because of the fluctuating conformational changes of
polymer A,, the unbinding rate of A, to the operator O,
samples from a lognormal distribution. We fix the mean
value of the lognormal distribution at a value known to
yield a bistable network and look at the effect of changing
the variance/skewness of the distribution. For the lognormal
distribution, changing the variance while keeping the mean
fixed requires us to change both the y and o parameters of the
exponentiated normal. We first investigate a model in which
the fluctuation in rate parameter occurs only when the dimer
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FIG. 4. The minimum action as a function of switching rate. The data points
are marked by crosses. The action decreases dramatically as the switching
rate increases, and then plateaus for large switching rate.

A, is unbound from the operator Oy, but after dimer A, binds
to the operator, it is fixed in one conformational change.

Throughout, the average value that an individual rate
constant draws from is chosen to be 5. We find that, upon
increasing the standard deviation in the distribution that a rate
constant k chooses from over a range from less than one to ten,
the mean first passage time to transition from a state of high
A to low A (including those in homodimers and those bound
to the operators) is significantly increased (Figure 5(a)).

The physical explanation behind the dramatic increase in
mean first passage time is that, as we increase the standard
deviation of the underlying lognormal distribution that an
individual rate parameter draws from, we change the skew of
the distribution. The consequence is that the most probable
value (mode) of the probability distribution an off rate of A,
is drawn from decreases to lower and lower values. This in
turn means that a polymer A, will remain bound for a longer
time on average, and thus does a better job at repressing the
production protein B. Mathematically, if we specify a mean
E[k] and variance Var(k) for an individual off rate k, we
determine the parameters of the lognormal distribution by the
inversion,

Var(k)
E[k]?

The parameter o increases monotonically with Var(k) and the
skewness of the lognormal distribution (given by (e’Iz -1
Veo? — 1) grows monotonically with ¢. The parameter u
decreases monotonically with increasing o, and the mode
of the lognormal distribution, given by e"=? decreases
monotonically with Var(k). Therefore, mathematically we
shift the most probable values of the off rate to values that are
much lower than the average E[k].

As expected, initializing the system in the low A basin
(using Monte Carlo sampling of the network to pick the initial
point) and measuring the mean first passage time to transition
to a state of high A follows the opposite trend noted above.
Namely, increasing the variance of the lognormal distribution
serves to decrease the mean first passage time for this reverse
transition (Figure 5(b)).
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FIG. 5. (a) Here we plot the mean first passage time to transition from a state of high A to a state of low A. The stable basins are found by Monte Carlo
simulation, and we use A =0, B > 7 for low A state and B =0, A > 7 for high A state. The x axis is the standard deviation in the lognormal distribution for k, not
the parameter o~ of the lognormal. (b) Here we plot the mean first passage time to transition from a state of low A to a state of high A as a function of increasing
the standard deviation in the distribution of off rates for an individual polymer A from the operator. The trend is the reverse of that from Figure 5(a).

Indeed, studying the probability mass function (PMF) for
the Toggle switch model with dynamic disorder shows that the
basin of low A and high B is destabilized upon increasing the
variance in the off rate of an individual polymer A, (Figure 6).

Of course, for a model in which the polymer does not
switch when it is bound to the operator, we cannot see much
interesting behavior with respect to the parameter 1. As long
as the average time for an individual polymer to rebind is
larger than 1/4, the polymer will on average have resampled
its kinetic off rate before rebinding. Upon increasing A any
further, the statistics of the network should be unchanged
since it will not matter whether the polymer has resampled its
kinetic off rate once or multiple times.

To examine a model that is more sensitive to A, we
simulated the same network but instead let the polymer
conformation fluctuate when it is bound to the operator.
What we see in this case is also fairly intuitive. When the
switching rate is very low and o is large, a polymer that has
just sampled a kinetic off rate that is far below the average
value will get frozen at that particular value for the duration of
its time on the operator. It will then, on average, remain bound
for a long time and do a better job at inhibiting the production

Var(k)=1.0

Number A

0 5 10 0 5
Number B

Var(k)=10.0

of protein B. If we increase the switching rate 1, we expect
that the system will begin to behave as if it was acting at
its average value. This can be shown in more mathematically
precise language using renewal theory.?* Therefore, as we
increase the switching rate A, the mean first passage time for
transition from high A to low A decreases (Figure 7).

B. Continuous jumps

To demonstrate that the results are robust to the type of
model we consider, we also look at a continuous model in
which the kinetic off rate evolves continuously following a
Langevin dynamics of the following form:

ke = exp(ks),  dk, = A(u - k)de + (V2022) dZ,. (2)
That is, the rate parameter is an exponential of an Ornstein-
Uhlenbeck (OU) process. We let k, denote the value of
the OU process at time ¢, and k, the value of the actual
kinetic parameter. This process is chosen since the steady
state distribution of the OU process is a normal distribution,
and thus the stationary distribution of the k, is lognormal,

Var(k)=25.0
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FIG. 6. Joint PMF’s for the (number of A, number of B) molecules are plotted here (for A =1.0). These PMF’s are plotted for the model in which kinetic off
rates vary continuously on the DNA (though the location of peaks is unchanged for the discrete model). By increasing the value of var(k) of the underlying
stochastic process, we see that the stable basin corresponding to high B and low A is destabilized. The colors vary between 0 and 0.08. These are calculated by
running a single trajectory of simulation length 10° s with a time increment of dz = 1073 and sampling every 1 s.
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FIG. 7. Mean first passage times to transition from A >7,B=0 to A
=0, B >7 are computed for various values of A and Var(k)=10,25. We do
the calculation for both a discrete jump model and a continuous jump model,
labeled DJCS, CJCS, respectively. In these parameter regimes, the mean first
passage times are comparable for both models. Importantly, increasing A
allows faster transitions as the system behaves closer to the mean value.
Increasing Var(k) increases the skewness and therefore decreases the MFPT.
For the A = 10° value in the continuous jump model, a time discretization of
107*is used.

which will mimic the stationary distribution sampled in the
previous model. The value A plays functionally the same role
as it did in the previous case. Though it does not appear in
the overall stationary distribution of the OU process, it does
modulate how rapidly the value k, changes in an instant of
time dr.

Simulating the above process is much more computation-
ally expensive. Now, we must discretize time by picking a dr
such that the sum of all rates for various reaction events in the
continuous time Markov process simulated by the Gillespie
process above is small relative to dt. Let the rate for reaction
event i be p;. Then, in an instant of time df, we first ask
whether a reaction occurred or not, where the probability for
the reaction to occur is the cumulative distribution function
(CDF) of the exponential distribution with parameter };; p;. If
areaction did occur, we choose its value from the multinomial
defined by the p;. Importantly, dr must be sufficiently small
such that the probability for more than one reaction event to
occur is essentially zero.

We find qualitatively the same results as before.
Increasing the value of Var(k) at a fixed A will increase the
mean first passage time from high A to low A, while increasing
A at a fixed value of Var(k) will decrease the mean first passage
time from high A to low A (Figure 7). Quantitatively, the mean
first passage time for both the continuous and discrete models
is very similar, with the continuous model appearing to have
a slightly larger MFPT for low 1. We explore this in more
detail in the Appendix.

IV. CONCLUSION

In this paper, we have studied how kinetic switching
between stable states in biological networks is influenced by

J. Chem. Phys. 144, 175104 (2016)

dynamic disorder or conformational fluctuations in the rate
coefficients. We carried out simulation and analysis based
on a general genetic toggle switch model. In the model, the
unbinding rate of polymers from the operators fluctuates with
the switching rate, A.

First, we have studied a model where the rate parameter
samples from a discrete probability distribution. The model
is simple enough for us to study the optimal transition paths
and the minimum actions by using large deviations theory
and the geometric minimum action method (gMAM). We
varied the switching rate over three orders of magnitude to
reflect fluctuations of enzymatic rates of catalysis observed in
single molecule experiments. Under different conditions with
different switching rates, we obtained two stable states for
each case by solving chemical rate equations. As the switching
rate increases, the stable states shift in the direction of less
A and more B. We demonstrate that the optimal transition
paths converge to the average path obtained by solving
mass action ODEs. At a fixed switching rate, the smaller
the concentration of A is, the larger is the deviation. The
reason for this is fewer A makes the system more stochastic.
Furthermore, according to the large deviation theory, the
transition probability is a natural exponential function of the
negative minimum action. We calculated minimum actions for
different cases with different switching rates. The minimum
action exponentially decays with respect to switching rate.
The results indicate that dynamic disorder makes the system
more stable.

We then considered the genetic toggle switch model in
which the rate parameter draws from a continuous heavy tailed
distribution. For this case, we have modeled the system first
as a discrete Markov jump process and then under continuous
Langevin dynamics. Both models produce qualitatively similar
results. Under the condition of fixed switching rate A, the mean
first passage time from high A to low A increases with the
variance Var(k) in the distribution of off rates for an individual
polymer A, from the operator. On the other hand, when we
fix the variance Var(k), the mean first passage time from high
A to low A decreases as the switching rate A increases.

Overall, the regulation of the parameters modulating the
dynamic disorder plays an important role in shaping the
statistics of optimal transition paths, transition probabilities,
and the stationary probability distribution of the network.
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APPENDIX: TIME CORRELATION FUNCTIONS
FOR DISCRETE AND CONTINUOUS MODELS

As was shown in the main text, both the discrete and
continuous models have quantitatively very similar mean first
passage times. Here, we compare the two models further to
understand why they behave so similarly. To compare the
discrete and continuous models further, we will look here
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at the time correlation function C(k,,kq) calculated as the
correlation between the kinetic parameter k; and the time O
value ko. The continuous model follows an exponential of
an OU process. We denote the OU process by k, such that
k; = exp(k;). The transition density for the OU process is
given by

O 1
J ke, ko) = \fm exp

ook, s k)}}

202 1 —e2U
=N (u(1 — ™) + koe™ ¥, (1 — e7217))

= N(u(@),o(t)?)

(we will make use of the time dependent mean and variance
of the k; later in calculating the correlation function). The

(AL)

J

J. Chem. Phys. 144, 175104 (2016)

stationary density of & is of course N (u, o). Using the mean
and variance of a lognormal distribution allows us to calculate
the time correlation function as

Elexp(k,) exp(ko)] — E[exp(ko)]?
Var(exp(ko))

_ Elexp(k,) exp(ko)] — €2+

- (60—2 _ 1)62p+0'2 ’

C(ktv k()) =

(A2)

Note that we can actually calculate the integral E[e’zf e'EU]
making use of a simple identity which can be proven easily by
completing the square. For any random variable x ~ N (u,0?)
and any constant A, one can show that

e/ly+/120'2/2.

E[e"] = (A3)

Breaking the integral up and carrying out the &, integrals first,
we get

E[efrefo] = / (/ E’ErN(lEf;#(t),cr(t)z)dlzt) "N (ko .0 dko

= exp {,u(l —e M)+

=exp {,u(l —e M+

=exp{2u+ o +eMa?}.

This leads to the simple expression for the time correlation
function given by

exp{e o?} -1

C(kts kO) = o2 1
e —

) (A5)
which we will denote by Coy(t).

We now compare the above model with the discrete jump
model in which each rate k; remains at its value for a random
exponentially distributed interval and then redraws from a
prescribed distribution. In this case, the time correlation
function is very simple to compute and does not depend

on the parameters of the distribution, which we call below
E[k], E[k?],

E[k.ko] = Exo[Elk:|kolko]
= Biolko(koe " + E[k](1 — e))]

= E[k*]e™ " + E[k]*(1 — e~ ). (A6)

This demonstrates that the time correlation function of this
behavior is C(k;, ko) = e~*'. For small o2, the exponentiated
OU correlation function approaches

—At 2
I+e™o _l—e_“

A7
1+02-1 (AT)

and the two correlation functions are approximately equal.
We expect the most difference between the two processes for

0_2(1 _ e—z/lz>

o2 (1 _ e—uz)

}/elzo(exp(,u)ﬂ)N(];O; ,u,0'2)d120

2 —/lt+12
+ e+ 1)+ %}

(A4)

(

large o2, when the OU correlation function is

exp{e Yo?}
2

= exp{o(e™" - )} (A8)

eD’
and the correlations die off with a large magnitude negative
exponent for the exponentiated OU process. The results are
intuitive. Because the correlation function for the continuous
process is a double exponential in A, it drops off more rapidly.
For small values of A, we know that the discrete model will
get frozen at a single parameter value for the duration of its
dwell time, while the continuous model will still explore some
of the surrounding values of its probability distribution p(k).
This explains some of the differences seen in the mean first
passage times from the continuous process and the discrete
process (Figure 7).

To explain why the stochastic processes in the kinetic
off rate do not lead to significantly big differences between
the MFPT behavior for both networks (even at large values
of o when the above analysis demonstrates the two models
to be most different), we compute the average dwell time for
a polymer following both above behaviors (by Monte Carlo
sampling). For each sample, we initialize the system with a
single polymer on the operator and draw the initial kinetic
parameter from the lognormal with , o-. For the exponentiated
OU, we discretize time and in each instant d¢ update the value
of k;, and also ask if unbinding occurred in the last increment,
which does so with probability 1 — %9,
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Var(k)=25.0

—Exp. OU
—— Standard

FIG. 8. We compute the expected
dwell time of a polymer A on the op-
erator for the continuous (labeled Exp.
OU) and discrete model (labeled Stan-
dard) by Monte Carlo sampling. We
find that the expected dwell times are
comparable in both processes, which
explains why the mean first passage
times computed in the main text are
similar for both models.
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For the jump Markov process, we simply simulate the
continuous time Markov process. At any instant in time t when
the parameter is k,, there are two competing exponentials:
unbinding which occurs with rate k,, and parameter switching
which occurs with rate 1. We use the Gillespie method, and
redraw the value of k, when the reaction event “rate switching”
occurs. We see that the expected dwell time is essentially the
same for both models in the parameter regime that is shown
to give bistability (Figure 8).
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