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Abstract
We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of
independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes
in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformationwe can
extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic
subspaces in any dimension and for any system size.We then relate the nature of transport to the
number of excitations in the homogeneous spin lattice, indicating that a single excitation always
propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence
of the interaction between different excitations.

Introduction

Due to the rapid advance in nano-technologies the study of non-equilibrium transport phenomena in quantum
systems, including charge and heat transport, has become amajorfield of study. Furthermore, transport
properties in spin and harmonic oscillators lattices are important because theymodelmany realistic physical
systems. Spin lattices and ladders can be experimentally realized by differentmethods [1–3]. Harmonic
oscillators lattices describe a plethora of different systems including optical cavities arrays [4], trapped ions [5],
and phonons in cubic crystal lattices [6, 7]. Finally, fermionic and bosonic atoms transport can be studied in
optical lattices showing both ballistic and diffusive regimes [8, 9]

The role of dimensionality is crucial in both quantum and classical systems [10]. One-dimensional systems
composed by spins [11, 12] and harmonic oscillators [13] have been previously analysed by the use ofMarkovian
master equations. These analyses show that these systems are ballistic when the transport takes place coherently
and become diffusive if a dephasing channel is locally coupled. This is a typical behaviour of one-dimensional
homogeneous systems in the presence of noise, while disordered systems possess additional features [14]. The
same behaviour is found in harmonic lattices of arbitrary dimension [13]. However, inmultidimensional spin
lattices the results are different, and an analytical solution is lacking. The simplest two-dimension topology, a
ladder, has been analysed byŽnidarič [15], showing that quantum transport is in general anomalous. In fact, this
systemhas a set of ballistic subspaces,making it possible to create ballistic transport by the design of non-local
baths operators and the initial state preparation. It has also been demonstrated experimentally with ultracold
atom in optical lattices that spin systems of one and two-dimension behave very differently [3].

Another canonical problem regardingmultidimensional transport is quantumwalk (QW). It is known that a
QW in a one-dimensional systempropagates faster than classical randomwalks [16]. Inmultidimensional
systems, it has been proved byKempe [17] that a discreteQW in a hypercube hits from corner to corner
exponentially faster than a classical randomwalk. This result has been extended to distorted hypercubes [18] and
to hypercubes embedded inmore complex graphs [19]. Finally, in hypercubic lattices some searching algorithms
based onQWhave been developed showing a speed-up against their classical counterparts [20, 21]. These results
suggest that qubit lattices with only one excitation behave in a superdiffusive way.

Regarding the transport in quantum lattices there are still some open questions:

OPEN ACCESS

RECEIVED

23 September 2015

REVISED

23 February 2016

ACCEPTED FOR PUBLICATION

22March 2016

PUBLISHED

28April 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/4/043044
mailto:manzano@onsager.ugr.es
mailto:jianshu@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/4/043044&domain=pdf&date_stamp=2016-04-28
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/4/043044&domain=pdf&date_stamp=2016-04-28
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


• What is the role of the fermionic and bosonic nature of the system in the transport properties?

• Why spins and harmonic oscillator systems behave differently in lattices with dimension >d 1?

• What is the origin of the ballistic and non-ballistic subspaces found in spin ladders?

• Howdoes the number of excitations in a spin lattice affect transport properties?

In this paperwe study the general case of quantum transport in non-equilibrium lattices composed of
fermionic or bosonic sites.We show that these lattices with an arbitrary dimension can be decomposed into
independent one-dimensional normalmodes. This confirms that both fermionic and bosonic lattices are
ballistic in any dimension and allows us to derive explicit expressions for energy fluxes of uniform fermionic and
bosonic lattices.We then use thismethod to analyse spin d-dimensional lattices showing that ballistic spaces
exist in any dimension and size of the system. Finally, we discuss the implications of this result in hypercubic
latticeQWs and discuss the role of the number of excitations in transport properties.

Latticemodel

The systemswe study are fermionic and bosonic d-dimension lattices. In order to analyse the features of the
transport we couple the system to incoherent thermal baths that drive it out of equilibrium.Due to the effects of
the baths, the system evolves to a time-independent steady state. If the temperatures of the baths are different,
there is afinite energy currentflowing through the system. The dependence of the current on the system size
indicates the nature of the transport.We consider transport to be ballistic if the current is independent of the
system size [12, 13].

Infigure 1 a d=3 latticewith local thermal baths at the end of dimension 3 is displayed. Each site of the
lattice is defined by d indices =l L1 ,...,i i, where Li is the size of the system in dimension i.We define the site
vector ( )= l ll ,..., d1 and the size vector ( )= L LL ,..., d1 . The lattice is connected to thermal baths at the ends of
dimension d, making this the directionwhere the energy transfer takes place. Periodic boundary conditions are
applied to all the remaining dimensions.We also define the reduced vectors to represent all the dimensions but
the last one, ( )= -l ll ,...,r d1 1 and ( )= -L LL ,...,r d1 1 .

The full Hamiltonian of our system can be decomposed into the freeHamiltonian, which depends only on
the occupation number of each site, and the hoppingHamiltonian in each dimension, which is responsible for
transport.We canwrite the totalHamiltonian as = + å =H H Hi

d
ifree 1 (we take  = 1 throughout the paper)

( ) ( )

†

†
   

å

å

w=

= ++

H a a

H g a a

,

h.c. , 1i i l l l l l l

l
l l

l

free

, , , , , , 1, ,i d i d1 1

wereω is the frequency of each site, and gi represents the coupling strength in dimension i. The operators a and
†a are ladder operators that can be either fermionic ( )†f f, or bosonic ( )†b b, , obeying anticommutation and
commutation relations respectively. In the fermionic lattice, as there are no internal degrees of freedom each site

Figure 1. Sketch of a d=3 latticewith =L 31 , =L 22 , and =L 33 . Local thermal baths apply at the terminal sites of dimension 3.
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can contain atmost one fermion ( † † =f f 0
i i ). On the contrary, the bosonic lattice can contain an arbitrary

number of bosons per lattice site.
The system is driven out of equilibriumby bosonic thermal baths locally coupled to the end of the system in

dimension d. The overall dynamics of the system is described by aMarkovianmaster equation [22]

˙ [ ] ( ) r r r r= - + +Hi , . 2L1 d

Here, each of the reservoirs ismodelled by a Lindblad super-operator
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where 1 acts at the beginning of dimension d and Ld
models the bath attached at the end of this dimension.

Thefirst term in i accounts for emission into the reservoir, and the second term for absorption,Γ is the
interaction rate, and ni is themean excitation number at the resonance frequency of the reservoir. For instance,
in the case of a bosonic bath at temperatureTi, [ ( ) ]w= -n T1 exp 1i i (with Boltzmann’s constant kB=1).
We perform the analysis using Bose–Einstein statistics, but the results are independent of the nature of the baths.

The validity of thismaster equation in non-equilibrium systems has been extensively analysed. In [23] a
systemof two interacting harmonic oscillators coupled to thermal baths at different temperatures is studied both
numerically and analytically, concluding that themaster equation (2) is valid in the limit of small intercoupling.
Furthermore, in [13] it is proved that in the case of bosonic lattices with two local baths at the same temperature
the system thermalises in the limit of small intercoupling.

The energy transfer through the lattice can be quantified by the time derivative of the energy expectation
value in the system

˙ ( ˙ ) ( )r= á ñ =E
t

H H
d

d
Tr . 4

This expression should be zero at the steady state. Using themaster equation (2)we can decompose (4) into

˙ ( ) ( ) ≔ ( ) r r= + + =E H H J JTr Tr 0, 51 2 1 2

where J1 and J2 are equal inmagnitude butwith opposite signs. Each of these terms refers to themean energy
interchangedwith each thermal bath per unit of time. This allows us to define the energy flux through the system
as ∣ ∣ ∣ ∣= =J J J1 2 . In regular systems the behaviour of the energy flux is proportional to the behaviour of the spin
or excitationflux. Inmore complicated systems like networks the energy and excitations fluxes can behave
differently [24].

Normal-mode decomposition

To calculate the energy transfer through an arbitrary lattice, we define normalmodes associatedwith all the
dimensions except for d, =a

pa a

a
q n n

L

2 , where a = ¼ -d1, , 1and = ¼a an L1, , [25, 26]. Therefore, we define

themode vector as ( )= ¼ -
-q qq , ,n

d
n

1 1
d1 1 and there are =  =
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d

i1
1 normalmodes.We transform the ladder

operators to the normalmode basis via the following transformation
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where ald
and †ald

are ladder operators in the normalmode basis that fulfils the same commutation/
anticommutation relations as the site ladder operators. Applying this transformation to theHamiltonian (1)
decomposes it into independent terms for eachmode, ( )= åH H qq with
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Also the Lindblad super-operators (3) decompose into independent terms for each normalmode
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Themaster equation (2) unravels into a set ofN independent equations, each of them corresponding to one of
themodes, which behaves as bosonic or fermionic one-dimensional system. Each of these equations is
equivalent to the equation of a one-dimension systemwith the on-site energies shifted by ( )å a=

- ag q2 cosk
d

k
n

1
1 .

Hence, the problemof calculating the energy flux through a d-dimensional lattice can be reduced to
calculating the energy current in a one-dimensional chain. The heat transfer through one-dimensional chains
composed by harmonic oscillator has already been solved in [13]. The one-dimensional fermionic chain is
solved in the appendix. The analytical expressions for the energy flux for eachmode is
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wherewe have introduced the notation ( )g = G +n2 1i i i and ( )= +s n n2 1i i i in the fermionic case. The total
energyflux can be calculated by summing up theflux of each channel, =J NJtotal 1d where J1d is the energyflux of
a uniformone-dimension systemwith on-site energiesω.

The lattice size in the energy transfer dimension plays no role in the amount of energy transfer, as it does not
appear in (9). This result shows that both fermionic and bosonic transports in the absence of noise and disorder
are ballistic with arbitrary size and in any dimension. As ourmodel coincides with theHubbardmodel with no
interactions (U=0), this result explains why in the non-interacting regime there is ballistic transport in optical
lattices bothwith fermionic and bosonic atoms [8, 9].

Even though both fermionic and bosonic transport are ballistic, their dependences on parameters such as the
temperatures are different. In the limit of zero temperature the two converge as g = GlimT i i0i

and
= s nlimT i i0i

. But the situation at finite temperature is very different. The energy currents of one-dimensional
fermionic and bosonic systems are displayed infigure 2 as functions of the temperature of the hot bath (the cold
bath is kept constant at a very low temperature). For small values of the hot bath temperature the currents are
very similar inmagnitude. At higher temperatures the bosonic systemhas a higher energy current than the
fermionic one. This is a consequence of the Pauli exclusion principle that limits the heat capacity of the
fermionic system. In the limit of very high temperature of the hot bath the current of the fermionic lattice
decreases as the temperature increases, similar to spin systems [12].

Finally, we need to point out that there are also non-ballistic systems that can be decomposed into non-
interacting one-dimension channels by the application of normalmode transformation (6). Themode
decomposition can be applied to a broader set ofHamiltonians than that defined in (1). If we relax the condition

Figure 2.Energy current (logarithmic scale) for a fermionic and bosonic system as a function of the temperature of the hot bath.
wG = G = = = =g T0.01, 0.01, 10, 0.0011 2 1 , d=1.
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of homogeneous frequencies and couplings to the condition of having them equal in all the dimensions except
for the direction of transport, then the inhomogeneous system can be decomposed into one-dimension
disordered chains. These disordered one-dimension systems have been broadly studied and are known to
display numerical evidence of non-ballistic behaviour [5, 28].

Spin lattices

In one-dimensional spin systems driven out of equilibriumby thermal baths (XYmodel) the transport is similar
to a homogeneous fermionic chain. In the spin case the current is given by an expression similar to (9) [12]. This
is a natural result as one-dimensional spins systems can bemapped locally to fermions by the Jordan–Wigner
transformation [27]. Spin chains with differentHamiltonians have been broadly studied [11, 12, 28], concluding
that inmost of the cases the transport in a homogeneous and noise-free spin chain is ballistic and it becomes
diffusive in the presence of static or dynamical noise.

On the other hand, the similarity between spin and fermionic systems breaks down if the dimensionality is
larger than one. Aswe have proven, fermionic lattices are ballistic in any dimension as long as the couplings are
homogeneous in each dimension. But it has been demonstrated that this behaviour does not hold for spin
lattices. Even the simplest two-dimension spin lattice, a homogeneous ladder, presents both ballistic and non-
ballistic invariant subspaces. The relative size of the ballistic subspaces goes to zero as the size of the ladder goes
to infinity [15]. This fact highlights the difference between spins and fermions as well as the importance of the
dimensionality in spin transport.

A general spin lattice of dimension d has aHamiltonian similar to the fermionic lattice (1). It can be
decomposed in the form = + å =H H Hi

d
i

spins
free
spins

1
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, , , , , , 1, ,i d i d1 1

where s s+ - are the Pauli raising/lowering operators.
Due to the similarity ofHamiltonians (1) and (10) it is natural to think that themode transformation (6)

should also decompose a d-dimension spin lattice into independent one-dimension spin chains, but this is not
the case. Both bosons and fermions have uniform commutation and anticommutation relations respectively,
but spin systems have not4. Therefore, by applying the transformation (6) to a d-dimension spin lattice, one-
dimensionmode operators can be defined. But these operators have different commutation rules compared to
the original operators in the site basis. Because of that, this transformation does notmap a d-dimension spin
lattice into independent one-dimension spin chains.

Nevertheless, spin systems can be transformed to fermionic systems by the Jordan–Wigner transformation
[27]. This transformation is defined by

( )†  s s s s= =+

<

-

<

f f, , 11
i i

j i
j
z

i i
j i

j
z

where the index i refers to an arbitrary ordering of the spins. Owing to this arbitrariness there is not a unique
representation of the Jordan–Wigner transformation. In one-dimension systemswith next-neighbours
couplings this transformation can be performed in such away that a homogeneous spin chain ismapped into a
homogeneous fermionic chain. This explains why these two systems have the same behaviour. On the other
hand, in systemswithmore than one-dimension this is not true. Due to the non-local character of the Jordan–
Wigner transformation, when it is applied to amultidimensional spinHamiltonian the corresponding fermionic
Hamiltonian includes also non-local terms.

By the use of this transformation, we analyse the simplest spin lattice beyond one-dimension, a ladder.We
order the sites by defining a new index ( )= + -l l l2 11 2 , where =l 1, 21 and =l L1 ,...,2 , and L is the size of
the system in the direction of the energy transfer (seefigure 3). TheHamiltonian of a uniform spin ladder in
terms of the Paulimatrices is

( ) ( ) ( )å å åw s s s s s s= + + + +
=
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2
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2 2 1 2
1
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4
Note that if we have a spin systemwith sites labelled by the index iwe can define the dynamics by the Pauli operators { }s s s+ -, ,i i i

z .We can
then define a set of pseudofermionic operators by stating †s =+ fi i , s =- fi i , and

† s = -f f2i
z

i i . These operators fulfil the
anticommutation relation { }† =f f, 1i i , but operators fromdifferent sites commute [ ]† =f f, 0i j

(" ¹i j). There is no local
transformation that transforms the Pauli operators into fermionic operators.
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After applying the Jordan–Wigner transformation (11)we obtain the fermionicHamiltonian

( ) ( ) ( )† † †å å åw= + + + +
= =

-
=

-

+ +H f f g f f g f f Nh.c. h.c. , 13
l

L

l l
l
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l l
l

L

l l lladder
1

2

1
1

2 2 1 2
1

2 2

2 1

where † †= -N f f f fi i i i i . This expression is similar to the fermionic ladder given by (1), but it includes a new
term that is responsible for the non-ballistic behaviour already found in this system.On the other hand, as stated
in [15] this systemhas a plethora of invariant subspaces. By direct analysis ofHamiltonian (13) the transport
properties of each subspace can be inferred. If any state within a subspace, ∣ ñk , fulfils that ∣ ∣ñ = ñ+N k c kl 1 with a
constant value of c for those values of l that satisfy ∣† ñ ¹+f f k 0

l l 2 or ∣† ñ ¹+f f k 0
l l2 , the system reduces to a

uniform fermion ladder and the transport is therefore ballistic.
The role of the number of excitations in the non-ballistic character of the system is clear from (13). If the

system contains only one excitation it is equivalent to a uniform fermion ladder, as in this case, and the transport
is ballistic. This result can be extended straightforwardly to amore general case of a d-dimension lattice with
arbitrary size, proving that there can be a ballistic spreading of the excitation in all directions and extending
previous results about discreteQWs in high dimensions [17–20] to the continuous domain.

Examples
Invariant subspace
In [15]Žnidarič designed an open spin ladderwith ballistic transport. This design is based on the use of non-
local Lindblad superoperators that keep the system in a ballistic subspace. Together with a proper initial state he
proved by numerical simulation that the flux is independent of the system size. The analysis of this system is
simplified by using a Bell-type basis in the ladder rungs. This basis is defined by the vectors
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vac , 14

i i i i i

i i i i i
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i i i i i

1 , 1

1 , 1

, 1

1 , 1

with i being an odd number and ∣ ñ +vac i i, 1being the vacuum state of sites i and +i 1.
The initial state of the system is composed by alternating entangled states in the form ∣ ñSTST ... or ∣ ñTSTS ... ,

and the Lindblad superoperators act non-locally

∣ ∣
∣ ∣
∣ ∣
∣ ∣ ( )

= ñá
= ñá
= ñá
= ñá

L ITS ST STS ST

L IST TS TST TS

L STS ST STS SI

L ST TS TSTS TI

... ... ,

... ... ,

... ... ,

... ... . 15

1

2

3

4

The effect of the baths in this case is given by the superoperator

{ } ( )† † år r r= -
=

L L L L
1

2
, . 16

i
i i i i

1

4

Wehave not specified temperature or coupling strength for simplicity, as the ballistic character of the system
is independent of these parameters. By applying the Jordan–Wigner transformation (11) the Bell basis elements
can bewritten as a function of fermionic operators

Figure 3. (Left) Spin ladder coupled to two thermal baths at different temperatures. (Right) Labelling of the spin ladder.
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The ballistic character of this subspace can be proved by direct inspection. All the states in the form ∣ ñ +ST i i, 1 (or
∣ ñ +TS i i, 1) are eigenvectors of theHamiltonian and they are therefore invariant. Furthermore, for all the states ∣ ñk
in the form ∣ ñ +SI i i, 1 (or ∣ ∣ ∣ñ ñ ñ+ + +IS TI IT, ,i i i i i i, 1 , 1 , 1)with ∣† ñ ¹+f f k 0

l l 2 or ∣† ñ ¹+f f k 0
l l2 one obtains

∣ ∣ñ = ñ+N SI SIl 1 due to the entangled state of the background. Consequently, this subspace is ballistic, as it can
bemapped into a homogeneous fermion system.

Double exciton subspace
In the absence of hot and cold baths, if a system is prepared in an initial state that belongs to a ballistic subspace it
will propagate ballistically without leaving the subspace. To study this behavourwe have simulated the dynamics
of a closed ladder. This allows us to analyse different initial conditions in away that is impossible with a system
coupled to baths. First, we study the dynamics of a spin ladderwith L=130 and = =g g g1 2 with an initial state
given by

∣ ( ) ( )∣ ( )y s s s sñ = + ñf
f

-
+

+
+ +

+
+0 e vac , 18L L L L1 1

i
2

which is a superposition of two excitations on the top and bottom legs at themiddle of the ladder as it is displayed
infigure 4 (left). To analyse the transport properties we have calculated the second derivative of themean square

displacement of the excitations in the direction of the energy transfer, given by = á ñ
C

x

t

d

d

2
2
2

2 . This is a common

measure of transport properties [29]. For ballistic transport we have a constant value =C ng4 2, where n is the
total number of excitations in the system. The results are displayed in figure 4 (right) for different values off.
Only for f p= the system is in an invariant subspace corresponding to a uniform fermion ladder and the
transport is ballistic. This prediction is confirmed infigure 4 (right) by the constant value ofC=8. The opposite
behaviour is foundwith f = 0, and it is characterized by strong oscillations ofC.

Four exciton subspace
Weprovide another example inspired by [15].We first define the Bell-type state

∣ ( )∣ ( )s sñ = + ñf
f+

+
-

+A
1

2
e vac . 19i i i i i

i
1 , 1

It is clear that ∣ ∣f = ñ = ñS0 and ∣ ∣f p= ñ = ñT . The initial state is defined as

∣ ( ) ∣ ( )y ñ = ñf f fO OSA SA O O0 ... ... , 20

where only the central sites are excited to alternating S andAf states.With f p= one restores the ‘S−T
background’ introduced in [15], where all other sites are in the ground state. The results with four excitations are
shown infigure 5. Similar to the previous example, it is proven that with f p= the system stays in the ballistic
subspace indefinitely. This can also be generalised to states with arbitrarily higher or odd numbers of excitations.
For example, the state ∣ ( ) ∣y ñ = ñO OSTSO O0 ... ... containing three excitations belongs to a ballistic subspace.

Figure 4. Left: sketch of the initial state (18). Right:C for a ladder as a function of time for different values of f. The initial state is given
by (18).
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All the ballistic subspaces of the spin ladder described in [15] correspond to uniform fermion ladders. This
result can be easily extended to general lattices, proving the existence of invariant ballistic subspaces for a spin
lattice of an arbitrary size and dimension. For an open system the transport properties depend on the initial state
and on the explicit formof the Lindblad superoperators thatmodel the interactionwith the baths, so that it is
possible to design systemswithmultiple steady states with different currents [30]. This allows the design of a spin
lattice with ballistic and non-ballistic steady states and the control of the system current by regulating the
symmetries of the system.

Conclusions

Wehave presented in this paper a normalmode decomposition scheme that reduces d-dimensional bosonic and
fermionic uniform lattices of arbitrary dimension into independent one dimension chains. These lattices are
relevant for the study ofmany realistic systems such as optical lattices and cubic crystal lattices. By the use of the
normalmode technique, the analytical expression for the energy transfer in an arbitrary uniform lattice is
derived. For any dimension and size of the lattice, andwith local heat baths acting at the ends of one of the
dimensions, the systembehaves ballistically and the energy transferflux is independent of the system size. This
result holds for both fermionic and bosonic systems.However, the dependence of the energy transfer on the bath
temperature is different for fermionic and bosonic lattices, especially at high temperatures.

Thismethod can also be extended to spin lattices, which has been previously proven as non-ballistic. The
analysis is carried out by applying the Jordan–Wigner transformation, that transforms a spin system into a
fermionic one. The application ofmode-decomposition to spin lattices proves that in general a uniform spin
lattice corresponds to a non-uniform fermionic lattice. Spin lattices havemany invariant subspaces due to the
high symmetry on the system topology. Some of these subspaces are equivalent to fermionic uniform lattices and
are consequently ballistic. The remaining subspaces are equivalent to non-uniform fermionic systems. This
result generalises previous studies of spin ladders to systemswith arbitrary size and dimension.

Finally, by applying themode-decomposition techniquewe demonstrate that a single excitation in a d-
dimension spin lattice always propagates ballistically. This observation is relevant for the development of
algorithms that use continuousQWs in a hypercubic lattice.
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Figure 5.C(t) for a ladder as a function of time. The initial state is given by (20)with four excitations in the centre of the ladder.We
follow the same convention used infigure 4.
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Appendix. Calculation of the energy transfer in a fermionic chain

The calculation of the energy transfer in a one-dimensional fermionic chain can be performed by applying the
samemethod used in [12]. The one-dimensional systemHamiltonian reads

( ) ( )† † †å åw= + +
= =

-

+ +H f f g f f f f , A.21
i

L

i i
i

L

i i i i
1 1

1

1 1

were †f f
i i are the creation/anhilitation fermionic operators, L is the number of sites of the system and  = 1.

The system is driven out of equilibriumby bosonic heat baths connected to the terminal qubits and it is
described by the Lindblad terms

{ }

( ) { } ( )

† †

† †

 r g r r

g r r

= -

+ - -

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

s f f f f

s f f f f

1

2
,

1
1

2
, . A.22

L L L L L L L

L L L L L L

1 1 1 1 1 1 1

1 1 1 1 1 1

The full dynamics of the system is given by the equation

˙ [ ] ( ) r r r r= - + +Hi , . A.23L1

The energy flux is given by

( )

( ) ( ) ( )† † †

 r

g
g

=

= - á ñ - á ñ - á ñ

J H

s f f
g

f f f f

Tr

2
, A.24

1

1 1 1 1
1

1 2 1 2

with ( )g = G +n2 1i i i and ( )= +s n n2 1i i i . The heat current at the steady state can be calculated only from
the excited state population of the first site and the imaginary part of the coherence between this site and the
second one.Due to the structure of themaster equation (A.23) the next-neighbouring sites coherences are purely
real, and the energyflux depends only in thefirst site population (see [12]). Therefore, the problemof calculating
the energyflux is reduced to the problemof calculating the population of the first site at the steady state.

At the steady state the time-derivative of each expectation value is equal to zero. By calculating the factors
†á ñ =f f 0

t k k
d

d
, with =k L1, we obtain the pair of equations

( ) ( )

( ) ( ) ( )

† † †

† † †

g

g

- á ñ = - á ñ + á ñ

- á ñ = á ñ + á ñ- -

s f f g f f f f

s f f g f f f f , A.25L L L L L L L L

1 1 1 1 1 2 1 2

1 1

for the terminal sites.Whereas for the inner sites the result is

( )† † † †á ñ + á ñ = á ñ + á ñ- - + +f f f f f f f f . A.26
k k k k k k k k1 1 1 1

The last equation is obtained by summing up the coherences, †å á ñ ==
-

+f f 0
t k

L
k k

d

d 1
1

1

( ) ( )† † † †g g
á ñ + á ñ = - á ñ + á ñ-f f f f g f f f f

2 2
i . A.27L

L L L L
1

1 2 1 1 1

By solving thesefive equations, we can calculate the first site population †á ñf f
1 1

, and by substituting in the
energyflux equation (A.24)we obtain

( )
( )( )

( )w
g g

g g g g
=

-
+ +

J
g s s

g

4

4
. A.28

d

2
1 2 1 2

1 2
2

1 2
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