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The transport properties of disordered systems are known to depend critically on dimensionality. We
study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it
scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the
temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the
localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions
for transport properties as functions of disorder and noise are obtained and applied to real systems: In the
natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in
the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit
and is independent of dimensionality.
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Introduction.—Transport of energy or charge carriers is
of fundamental importance in terms of both scientific
interest and its technological relevance. The seminal work
of Anderson states that the presence of static disorder leads
to a metal-to-insulator transition or even totally prevents
transport in lower dimensions [1,2]. Upon coupling to
fluctuating environment, localized quasiparticles can over-
come energetic barriers, and the system becomes conduc-
tive again [3]. While transport ceases to exist in both the
zero coupling limit (Anderson localization) and the strong
coupling limit (dynamical localization), the intervention of
environmental noise with intermediate strength can maxi-
mize the conductivity [4–6].
Compared to classical hopping kinetics, where the

governing rate equations are given in the coordinate basis,
the motion of quantum particles on a disordered and noisy
lattice is more involved. In fact, in the weak system-
environment coupling limit, the dynamics of the particle
wave function can be cast into rate equations in the
eigenbasis. This implies that quantum enhancement of
the conductivity can be characterized by the average size
of the wave functions, the localization length, since this
corresponds to the step size of each hopping event [6,7]. An
immediate consequence arises if one considers the different
scaling behaviors of the localization length in different
dimensions. It is expected that, for example, the quantum
enhancement is much stronger in 2D with respect to that in
1D, given the same disorder and noise strength.
In this Letter, we investigate the diffusive dynamics of a

quantum particle on a tubular lattice in the axial direction,
in which the transport properties scale between the 1D and
the 2D limits. Recently, the optical and dynamic properties
of excitons in natural [8–10] and synthetic [11–16] self-
assembled tubular molecular aggregates have drawn much
attention. The combination of their quasi-one-dimensional

(wirelike) structure and the attenuation of exciton locali-
zation due to their inherent (locally) 2D nature, makes such
tubular aggregates potentially ideal for exciton transport in,
for instance, photovoltaic devices [17]. A natural order
parameter in this regard is the radius of the tube, where the
axial conductivity is found to be an increasing function of
the radius until a critical radius is reached and levels off as it
approaches the 2D limit. We found that the scaling relation
is universal, independent of the parameters chosen.
Moreover, the critical radius is shown to be directly
proportional to the localization length in the corresponding
2D system. A phenomenological expression is proposed
and shown to reproduce the radius dependence quantita-
tively, which is applied to several real systems in different
limiting parameter regimes and predicts their respective
radius-(in)dependent diffusion constant.
Calculation of quantum diffusion.—The Haken-Strobl-

Reineker (HSR) model is employed to characterize the
system of interest coupled to a classical Markovian noisy
environment [18–20]. The dynamics of the system is
described by the stochastic Schrödinger equation (taking
ℏ ¼ 1)

i
d
dt

jψi ¼ Ĥsjψi þ
X
n

FnðtÞV̂njψi; ð1Þ

where V̂n ¼ jnihnj, FnðtÞ are Gaussian stochastic proc-
esses with zero mean (hFnðtÞi ¼ 0) and finite second order
autocorrelation hFnðtÞFmðsÞi ¼ Γδnmδðt − sÞ, with Γ the
dephasing rate. The system Hamiltonian Ĥs is character-
ized by a nearest-neighbor coupled square lattice with a
periodic boundary condition in one direction (circumfer-
ence) and isotropic coupling constant J. The number of
sites (R) along the tube’s circumference is referred to as the
radius of the tube. The energy of site n, ϵn, is taken to be an
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independent Gaussian random variable with standard
deviation σ.
The central physical observable in this Letter, the

diffusion coefficient D in the direction along unit vector
u, is given by the Green-Kubo expression

DðuÞ ¼ 1

Zs

Z
∞

0

dtTr½e−βĤs ĵðu; tÞĵðuÞ�; ð2Þ

where Zs is the system partition function. In the context of
the HSR model, we will take β ¼ 0 (infinite temperature),
so Zs ¼ N, where N is the size of the system. The time
integration can be carried out analytically.

DðuÞ ¼ 1

N

XN
μ;ν¼1

Γ
Γ2 þ ω2

μν
jĵμνðuÞj2; ð3Þ

where ĵμνðuÞ is the flux operator in the eigenbasis and
ωμν ¼ ωμ − ων is the energy difference between eigenstates
μ and ν. See detailed derivations in the Supplemental
Material [21]. It typically takes up to 100 sites in the axial
direction to converge the results for the range of disorder
strength covered in this Letter. The diffusion coefficient
obtained through Eq. (3) is quantitatively agreeing with that
from propagating Eq. (1) as was done in Ref. [6]. For
consistency, in this Letter, we present the data obtained
with Eq. (3) exclusively. An efficient method of propagat-
ing Eq. (1) in the weak coupling regime (Γ=J ≪ 1) is also
presented in the Supplemental Material [21]. The same
methodology is applicable to the case where the system is
weakly coupled to a real quantum bath in the low temper-
ature regime, as elaborated in later sections.
The present model is exactly solvable in two limiting

cases. First, the dynamics of a homogeneous system
(σ ¼ 0) can be solved analytically and shows transient
ballistic behavior before transitioning to diffusive motion
[6,19]. The dynamics is independent of dimensionality, and
the diffusion coefficient is given by [7]

Dhom ¼ 2J2=Γ; ð4Þ

which can be obtained by assuming Bloch wave functions
ϕμ
m ¼ expðiμmÞ= ffiffiffiffi

N
p

in Eq. (3). In fact, decoupling of
directions is valid as long as the wave functions of the
system can be factorized: ΨðnÞ ¼ ψðn1Þψðn2Þ � � �ψðnMÞ.
One such example is given by stacks of homogeneous rings
with energy bias among different rings [22,23]. In the
opposite extreme, where either disorder (σ=J ≫ 1) or
system-environment coupling (Γ=J ≫ 1) is large, all quan-
tum coherence is destroyed. The particle behaves classi-
cally and can be described by a hopping rate between
connected sites [24–26]

Dhop ¼
2J2Γ

Γ2 þ σ2
: ð5Þ

Since the hopping events are independent along different
directions, independence on dimensionality is also
expected. We conclude that prominent radius dependence
is expected only if the wave functions are nonseparable and
with finite noise strength.
In the weak damping regime with finite disorder, through

a scaling argument, one can show that the diffusion
coefficient can be estimated by

Dcoh ¼ Γξ2; ð6Þ

where ξ is the localization length. This relation is very
useful since it connects the dynamical observable (diffusion
coefficient) with a static property of the system and a single
parameter characterizing the system-environment coupling
[4,6], as will be exploited in the following section. We
provide the detailed derivation of Eqs. (3), (4), and a
heuristic derivation of Eq. (6) in the Supplemental
Material [21].
Numerical results.—We start by discussing the diffusion

constants in 1D and 2D. It has been shown that the
localization length scales linearly with the mean free path
in 1D and exponentially in 2D [27]. A common and useful
measure of the localization length is given by the inverse
participation ratio (IPR), defined for each of the eigenstates
as IPRμ ¼ 1=

P
mjϕμ

mj4. Because of the high temperature
characteristic of the HSR model, we average over all
eigenstates and fit the IPR of disordered 1D and 2D square
lattices according to

ξ1D ¼ IPR1D ∼ a1l; ð7Þ

ðξ2DÞ2 ¼ IPR2D ∼ a2l exp ðb2lÞ; ð8Þ

where l ¼ ðJ2=σ2Þ is the mean free path, and the length
scale is measured in units of the lattice constant. The results
are shown in Fig. 1(a). These expressions provide a simple
way of estimating the diffusion coefficient in the weak
damping regime given the disorder strength σ, where
Eq. (6) applies. Note that, in 1D, the IPR is directly
interpreted as the localization length while, in 2D, its
square root is. This is because it is the diffusion along one
particular direction that concerns us.
Thouless and Kirkpatrick proposed an interpolating

formula for the general case which was proven to be valid
for most of the parameter range of interest [3,6]

Dinterp ¼
��

2J2

Γþ σ=2

�−1=2
þ ðΓξ2Þ−1=2

�−2
: ð9Þ

In Fig. 1(b), this interpolation result is shown as a function
of Γ and compared to the numerically exact results
obtained from Eq. (3), averaging over 100 realizations of
disorder. At a given disorder strength σ, one expects an
optimal dephasing rate maximizing transport [6,28]. The
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interpolation formula not only describes the two limits
correctly, but also captures the maxima almost quantita-
tively, showing the transition between the two transport
mechanisms. Note that this expression also reproduces the
convergence of diffusion constants in different dimensions
in the homogeneous limit, i.e., Eq. (4).
Next, we look at the radius dependence of the diffusion

constant in a tube. Since the diffusive motion in the large
dephasing limit is independent of dimensionality, and the Γ
dependence is well described by Eq. (9), we will focus on
the Redfield regime (Γ=J ≪ 1) while the effect of finite Γ is
analyzed in the Supplemental Material [21]. This depend-
ence should be bounded from below by the results of 1D
diffusion and from above by 2D diffusion, as seen in
Fig. 1(c). The diffusion constant increases as the tube radius
R increases until the trend is attenuated at the inflection
point R ¼ Rc, denoted as the critical radius. This radius
dependence is universal across the entirety of the parameter
space we scanned, as shown in Fig. 2, where the data are
rescaled according to the phenomenological expression

DðRÞ ¼ D1D þ ðD2D −D1DÞS
�
R − 1

Rc

�
; ð10Þ

where Sð0Þ ¼ 0, Sð∞Þ ¼ 1, and dS=dx is everywhere
positive for x > 0. Here, we chose SðxÞ ¼ 2 arctanðxÞ=π

[29]. To demonstrate the generality of this observation, we
also present the universality found for systems with a
realistic quantum bath treated under the secular Redfield
approximation (right inset, Fig. 2). With the details
described in the Supplemental Material [21], this method
accurately models the low temperature thermal activated
transport regime that complements the HSR model [30,31],
as indicated by the linearly spaced curves on the log-log
scaled right inset of Fig. 2. This exponential regime bridges
the temperature independent regime near zero temperature
and linearly scaling regime at moderate temperature shown
in our previous study [7]. The model has also been shown
to explain the temperature dependent exciton properties of
molecular aggregates relevant to our discussion in the next
section [32,33].
The universality can be explained by the following

interpretation. One expects a strong radius dependence
of the diffusion coefficient only if the particle wave
function fully delocalizes around the tube. This is no
longer valid as the radius becomes larger than its critical
value, where the wave function only partially occupies the
space in the circumferential direction. Essentially, this
picture identifies the critical radius with the localization

FIG. 1. (a) IPR dependence on the disorder strength in 1D and
2D. The parameters fitted in Eqs. (7) and (8) (solid lines) are
a1 ¼ 6.2 and ða2; b2Þ ¼ ð67; 6.7Þ. The numerical data are shown
in symbols. We use 4900 sites for 1D system (black circles), and
2D systems with 70 × 70 (blue circles) and 90 × 90 (blue
asterisks) square lattices. (b) Comparison between the results
of Eq. (3) and those of Eq. (9). The lower (black) circles and solid
line refer to 1D systems and the upper (blue) circles and line
represent 2D systems. In both cases, we set σ=J ¼ 1. (c) Radius
dependence ofD with σ=J ¼ 1 and Γ=J ¼ 10−4. The solid line is
the fitting according to Eq. (10), with the corresponding fitted
parameters Rc and D2D indicated.

FIG. 2. Relative diffusion coefficient ~D ¼ ½DðRÞ −
D1D�=ðD2D −D1DÞ as a function of rescaled radius
~R ¼ ðR − 1Þ=Rc. The solid line is the fitting function SðxÞ and
the dashed line indicates ~R ¼ 1. Inset (left) shows data from
Eq. (3) before rescaling: From top (σ=J ¼ 2, blue) to bottom
(σ=J ¼ 5, red) with 0.5 increment and interpolating color
gradient. Inset (right) shows data from the quantum bath
calculations with varying temperatures: From top (T=J ¼ 7,
red) to bottom (T=J ¼ 0.7, blue) with 0.7 decrement.

FIG. 3. Schematic illustration of the origin of universal radius
scaling of transport rate in tubes.
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length in the corresponding 2D system, as is illustrated in
Fig. 3. In determining the radius dependence, one compares
two length scales of the system: the circumference of the
tube and the inherent localization length along the circum-
ference. This makes our theory predictive on the axial
diffusion coefficients of general tubular systems, given the
knowledge of the localization length obtained from experi-
ments or ab initio calculations, as demonstrated in the next
section. We note that this picture can also be applied to
understanding the optical selection rules for the dichroism
spectra of tubular systems [34].
Estimates for real systems.—There are numerous exam-

ples of exciton transport in tubular aggregates consisting of
organic chromophores. Amongst the best known examples
found in nature are the chlorosomes in green sulfur bacteria
[8], which serve as the antenna of the light-harvesting
apparatus. Diffusive transport of excitons in chlorosomes
has been identified [35,36]. The above scaling argument
predicts the exciton diffusion on chlorosome tubes to be in
the 2D limit, because the critical radius Rc is much smaller
than the typical radius found in the organism, see Table I
[37]. This implies that the chlorosomes fully exploit the
enhancement and robustness of quantum transport in 2D
compared to 1D, while taking the advantage of a broad
absorption spectrum induced by strong homogeneous (Γ)
and inhomogeneous (σ) broadening mechanisms [38].
Families of synthetic self-assembled tubular molecular

aggregates exist as well, mimicking chlorosomes with axial
length up to the micron scale [11,41,42]. One such
aggregate, composed of the dye molecule C8S3, has been
recently characterized [14,43]. Because of the reduced
static disorder and strong exciton coupling strength
(J ≈ 8σ, see Table I), the system is in the homogeneous
limit and the diffusion coefficient becomes independent of
dimensionality or radius. This conclusion is supported by
the well-defined absorption selection rules arising from the
wave functions fully delocalized around the circumferences
[14,41]. The large localization length in such systems can
be utilized in transporting the excitons efficiently along the
tubes [17,43].
There are other instances where radius (in)dependence of

transport in tubular systems is seen. It has been shown that

the exciton mobility in semiconducting single-walled
carbon nanotubes increases linearly with the radius [44].
This implies that the reduced disorder in clean carbon
nanotube samples gives rise to large localization length
[45], so the system is in the R ≪ Rc limit that shows linear
radius dependence. In addition, molecular tubes based on
tobacco mosaic virus protein monomers designed to mimic
natural light-harvesting arrays were synthesized [46]. It is
found that the exciton dynamics can be described appro-
priately by classical hopping kinetics [40,47]; thus, the
independence of dimensionality is predicted (see Table I).
Last, quantum diffusion of excitons in aggregated phyco-
cyanin thin films has been experimentally characterized
recently [48], where the delocalization of excitons explains
the enhancement of the diffusion length compared to the
estimate of classical hopping theory. While this artificial
system serves as an example of quantum diffusion in 2D,
the naturally occurring form of phycocyanin in most
cyanobacteria self-assembles into a finite 1D wire [49].
It is our ongoing effort to analyze this interesting system in
this regard.
Both the HSR model and the secular Redfield method

applied to isotropic nearest-neighbor coupled square latti-
ces are an oversimplification of the real systems [37].
Richer physical content can be expected when considering
more realistic aspects. For example, it has been shown that
environmental memory effects can enhance diffusive trans-
port [25,36]. The anisotropy from nontrivial molecular
arrangement could, for example, render a helical character
to the exciton wave function [34,50–52]. Moreover, the
statistics of disorder [53] and long-range interactions [54]
are both critical in determining the localization length. We
expect the R dependence to be more involved in these and
other possible generalizations, since the functional depend-
ence of the localization length on the additional model
parameters varies. However, once given these parameters
and, thus, the localization length, the transition from 1D to
2D can be compactly characterized by the ratio between the
radius and the localization length. Consequently, we
believe the universal scaling relation investigated in this
Letter can serve as a generic guidance. Finally, the
theoretical framework developed here also applies to, for

TABLE I. Parameters and axial exciton diffusion estimated [37] for three exemplary real tubular systems at room temperature. J, σ, Γ
are given in cm−1, diffusion coefficients are in nm2=ps, and R (Rc) is unitless representing the (critical) number of molecules in the
circumference. The parameters for J, σ, Γ, and R from top to bottom are deduced from Refs. [36], [39], [14], and [40], respectively. The
other quantities are calculated using Eqs. (7), (8), and (9). We take Rc ¼ ξ2D since the ratio between ξ2D from Eq. (8) and the fitted Rc
from Eq. (10) are close to unity in our calculations.

J σ Γ D1D D2D Rc R

Chlorosome 400 1000 350 26 35 6 100
C8S3 tube 2000 250 300 2800 2900 � � � 30=60
TMV tubea 50 3000 400 0.6 0.6 1 17
aTobacco mosaic virus.
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example, the in-plane exciton mobility as a function of the
thickness of thin films, which is predicted to scale between
the 2D and the 3D limits.
Conclusion.—We have developed a theoretical frame-

work and efficient numerical procedure to model exciton
dynamics in tubular molecular aggregates in the presence
of environmental noise and disorder based on the HSR
model and the secular Redfield model. The central obser-
vation is that the diffusion coefficient along the axial
direction increases as a function of the tube radius. This
dependence is found to be universal across the full
parameter range of interest, and can be succinctly charac-
terized by the ratio between the tube circumference and the
localization length of the corresponding 2D system. For
the chlorosome tubes found in green sulfur bacteria, the
exciton transport is found to be in the 2D limit. On the other
hand, in a synthetic system with self-assembled cyanine
dye molecules mimicking chlorosomes, the excitons are in
the homogeneous limit where independence of dimension-
ality is predicted. Our findings are useful when exploiting
the structure-property relation in designing robust and
efficient artificial light-harvesting devices.
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