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ABSTRACT: In this Letter, we combine the recently introduced transfer tensor method
with the mixed quantum-classical Liouville method. The resulting protocol provides an
accurate, general, flexible and robust new route for simulating the reduced dynamics of
the quantum subsystem for arbitrarily long times, starting with computationally feasible
short-time mixed quantum-classical Liouville dynamical maps. The accuracy and feasibility
of the methodology are demonstrated on a spin-boson benchmark model.

The exponential scaling of computational cost with
increasing dimensionality associated with simulating

quantum dynamics makes it prohibitively expensive for most
systems of practical interest. Mixed quantum-classical methods,
which are based on treating a small subset of degrees of
freedom (DOF) quantum-mechanically while treating the
remaining DOF as classical-like, therefore represent an
appealing alternative when a fully quantum treatment is not
possible. Several such mixed quantum-classical methods have
been proposed, including ones based on a mean-field
approach,1,2 Tully’s surface-hopping,3−9 and hybrids that
combine those two strategies.10−12

The mixed quantum-classical Liouville (MQCL) meth-
od13−15 is arguably the most rigorous mixed quantum-classical
method to date. The MQCL equation can be derived by
formulating the fully quantum-mechanical dynamics within the
partial Wigner representation (i.e., Wigner transforming with
respect to the DOF designated as classical) and taking the limit
in which the mass ratio between the classical and quantum
DOF becomes small.13,14,16−20 Alternatively, the MQCL
equation can also be derived by casting the dynamics of the
quantum subsystem in path integral form, and then linearizing
the forward−backward action in the influence functional21,22

with respect to the difference between forward and backward
paths of the DOF designated as classical (the so-called
linearized semiclassical approximation).23,24 Furthermore, the
MQCL reproduces the exact fully quantum-mechanical
dynamics for an arbitrary quantum subsystem bilinearly
coupled to a harmonic environment.
Although the computational cost involved in solving the

MQCL equation is higher than that involved in either mean-
field or Tully’s surface-hopping techniques, it has been
observed to be more accurate.17,19,20 Several trajectory-based

algorithms have been proposed over the last several years for
solving the MQCL equation and approximate variations of
it.14,24−31 Two such algorithms for simulating MQCL dynamics
in the adiabatic representation are the Sequential Short-Time
Propagation (SSTP) algorithm25,26 and the Trotter-Based
Surface-Hopping (TBSH) algorithm.32 Both SSTP and TBSH
are based on Monte Carlo sampling of multidimensional sums,
which results in a rapid increase in the number of trajectories
required for convergence33 with increasing simulation time. To
reduce the number of trajectories and thereby accelerate
convergence, several techniques (and their combinations) have
been employed, including restricting the maximum number of
nonadiabatic transitions per trajectory,25,26,34−36 transition
filtering,32,34,36−38 and observable cutting.25,29,35 Transition
filtering amounts to rejecting nonadiabatic transitions that
would otherwise lead to a rapid increase of statistical errors.
Observable cutting is based on restricting the statistical weight
of a trajectory if it grows beyond a certain cutoff value. The
momentum-jump approximation13,26,32 is the only approxima-
tion used in simulations of the quantum-classical dynamics with
TBSH and SSTP algorithms.
While potentially useful, methods like transition filtering and

observable cutting for taming the unfavorable scaling of the
computational cost with increasing simulation time are based
on uncontrollable approximations and often assume prior
knowledge of the underlying dynamics. An alternative strategy,
proposed and demonstrated by Shi and Geva,39 is based on
restricting the use of the MQCL equation to the calculation of
the relatively short-lived memory kernel of the Nakajima−
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Zwanzig Generalized Quantum Master equation (GQME).40,41

The required theoretical framework for calculating the memory
kernel from projection-free short-lived so-called system-
dependent bath correlation functions, was developed by Geva
and co-workers and is described in detail in refs 39 and 42. The
memory kernel contains all the information required to account
for the impact of the classical DOF on the quantum DOF.
Importantly, the memory kernel is often observed to be short-
lived with a lifetime which is significantly shorter than the
relaxation time of the quantum subsystem. This implies that the
memory kernel can be calculated from MQCL trajectories
which are shorter than the trajectories that would be required
for a direct MQCL dynamics simulation of the quantum
subsystem relaxation dynamics. Once the memory kernel has
been established, the GQME can be solved numerically exact
for the reduced dynamics of the quantum subsystem with an
arbitrarily long simulation time. More recently, Kelly and
Markland have confirmed the ability of this strategy to
accurately describe the long-time electronic population
relaxation dynamics in the context of the spin-boson model,
by calculating the memory kernel from short-time TBSH-based
trajectories.33

In this Letter we consider the possibility of using the transfer
tensor method (TTM), recently proposed by Cerrillo and
Cao,43 to extend the time range of MQCL-based simulation of
the quantum subsystem reduced dynamics to arbitrarily long
times, using short-time MQCL dynamical maps as input. While
TTM is formally related to the above-mentioned GQME-based
approach,43 it has the advantage of being significantly easier to
implement in practice. This is achieved by encoding the short-
time information in terms of transfer tensors, rather than in
terms of the memory kernel. As shown by Cerrillo and Cao,
although the memory kernel can be obtained from the transfer
tensors, this is not necessary since one can simulate the reduced
quantum subsystem dynamics directly from the transfer
tensors. Furthermore, obtaining the transfer tensors from
short-time MQCL dynamical maps via the iterative procedure
proposed by Cerrillo and Cao is straightforward, while
obtaining the memory kernel via the Geva−Shi method
requires calculating specialized system-dependent bath correla-
tion functions as input and solving integral Volterra
equations.39,42 Finally, within TTM, solving for the reduced
dynamics of the quantum subsystem, is accomplished via a
straightforward matrix multiplication procedure, instead of by
solving a set of coupled non-Markovian equations of motion.
TTM has already been successfully applied to reduce the
computational cost of propagating density operators with the
orthogonal-polynomials-based algorithm (TEDOPA).44 It
should also be noted that TTM is wider in scope, being
straightforwardly applicable to Hamiltonian classical dynamics,
Brownian dynamics, and experimentally obtained time series
such as single molecule spectral trajectories.
We start out by outlining the TTM protocol when applied in

the context of the reduced dynamics of an open quantum
system (for more details, see ref 43). The basic input for TTM
consists of a set of dynamical maps ≡ t( )k k (tk = kΔt, k =
0,1,2,...,kmax, and Δt is the time step), defined by

ρ ρ̂ = ̂t( ) (0)k k (1)

Here, ρ̂(0) and ρ̂(tk) are the reduced density operators that
describe the state of the quantum subsystem at times 0 and tk,
respectively, and kmaxΔt is the memory or correlation time
(defined below). In practice, kmax is determined by increasing its

value until the quantity of interest (e.g., the time dependence of
the excited state population as the system relaxes to
equilibrium) becomes invariant to further increase, up to a
predetermined tolerance.
It should be noted that for a quantum subsystem whose

Hilbert space is of dimension N (e.g., N = 2 for a two-state
system), ρ̂(tk) can be represented by an N × N matrix, or,
equivalently, by an N2-dimensional vector in the corresponding
Liouville space.45 Thus, k is a superoperator, which can be
represented by an N2 × N2 matrix in Liouville space. TTM
therefore requires dynamical maps for all possible N4

combinations of N2 initial and N2
final Liouville space basis

states, {|l⟩⟨j|,l,j = 1,2,...,N}.
Assuming time translational invariance, which is consistent

with the typical case of relaxation to equilibrium governed by a
time-independent overall Hamiltonian, the transfer tensors,
{Tk|k = 1,2,...,kmax} can then be obtained iteratively from the
dynamical maps, via the following identity:43

∑= −
=

−

−T Tn n
m

n

n m m
1

1

(2)

It should be noted that similarly to the dynamical maps, the
transfer tensors are also represented by N2 × N2 matrices in
terms of a basis of one’s choice for the quantum system Hilbert
space.
Propagation of the quantum subsystem density operator can

then be obtained by43

∑ρ ρ̂ = ̂≥
=

−t T t( ) ( )n k
k

k

k n k
1

max

max

(3)

Here, kmaxΔt is the memory or correlation time, such that Tk =
0 for k > kmax. In practical calculations, an accuracy threshold
should be defined and compared to some measure of the
magnitude of the transfer tensors at every time step. The time
when that measure falls below the threshold corresponds to
kmaxΔt. To obtain ρ̂(tn<kmax), the upper limit of the sum in eq 3
needs to be replaced by n.
Importantly, within TTM, knowledge of the dynamical maps

within the finite time interval [0,kmaxΔt], allows one to simulate
the dynamics at times longer than kmaxΔt. Thus, even if the
relaxation of the quantum subsystem occurs on a time scale
longer than kmaxΔt, it can still be calculated from dynamical
input which is restricted to the time interval [0,kmaxΔt]. It
should also be noted that the transfer tensors are closely related
to the memory kernel via the following identity:43

δ= −
ℏ

Δ + Δ⎜ ⎟
⎛
⎝

⎞
⎠T

i
t t1n s n n,1

2

(4)

Here, = Δn t( )n is the memory kernel, δa,b is the

Kronecker delta and · = ̂ ·H( ) [ , ]s S (ĤS is the quantum
subsystem bath-free Hamiltonian). However, explicit calcu-
lation of the memory kernel is not necessary.
We next outline the MQCL method. Within this method, the

state of the overall system is given in terms of an N × N matrix,
where the αα′ matrix element corresponds to a time-dependent
Wigner phase-space density of the classical DOF, ρW

αα′(R,P,t) (R
and P are the position and momentum of the classical DOF,
assumed here to be one-dimensional for the sake of simplicity).
The MQCL equation for this matrix, when cast in terms of the
adiabatic representation, is given by13,14,16−20
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The three terms on the right-hand side (RHS) of eq 5 are (in

the order of appearance): (1) iLαα′ ρW
αα′(R,P,t), which accounts

for classical propagation of the classical DOF on the potential
energy surface (PES) Vαα′(R) = (Vα(R) + Vα′(R))/2, where
Vα(R) is the adiabatic PES associated with adiabatic state |α;R⟩;

(2) iωαα′ ρW
αα′ (R,P,t), where ωαα′ = (Vα(R) − Vα′(R))/ℏ, which

gives rise to a phase factor in the case where α ≠ α′, and results
in dephasing upon averaging over multiple trajectories; (3)

ρ∑ββ αα ββ
ββ

′ ′ ′
′ R P t( , , ), W , which accounts for nonadiabatic

transitions between adiabatic states, and the associated change
in momentum of the classical DOF (explicit expressions for

αα ββ′ ′{ }, can be found in ref 32.).
The elements of the dynamical map superoperator were

obtained by calculating

∫ ∫ ρ ρ=αα ββ
αα β β

′ ′
′ ′t R P R P t R P( ) d d ( , , ) ( , , 0), W W (6)

Here, ρW
β′β (R,P,0) is the β′β phase-space density at time 0 and

ρW
αα′ (R,P,t) is the αα′ phase-space density at time t. The
calculation of the RHS of eq 6 is based on averaging over the
specified number of trajectories generated by the TBSH
method (for more details, see eq 35 in ref 32).
Within the TBSH method, one starts out by writing the

propagator as a product of short time propagators (one per
time step). Each of those short-time propagators is then cast as
a Trotter product of the diagonal adiabatic (terms (1) and (2)
above) and off-diagonal nonadiabatic (term (3) above)
propagators. A momentum-jump approximation,13,26,32 which
is based on assuming that the momentum jumps associated
with nonadiabatic transitions are small, then makes it possible
to put the nonadiabatic propagator in a form that is consistent
with a stochastic trajectory-based surface-hopping simulation
algorithm (the reader is referred to ref 32 for more details). It
should be noted that TBSH represents an improvement over
SSTP in that TBSH requires fewer trajectories to converge and
performs well in the case of strong coupling between quantum
and classical DOF, where SSTP tends to become inaccurate.
Importantly, the computational cost of the TBSH method

increases rapidly with increasing simulation time due to the
exponential growth in the number of trajectories required for
convergence. However, limiting the use of TBSH for generating
short-time dynamical maps, and using those maps as input for
TTM can make it possible to extend TBSH to times longer
than the system correlation time, for which direct application of
TBSH would be prohibitively expensive.
We now demonstrate combining TBSH-based MQCL

dynamical maps with TTM to generate accurate long-time
dynamics on the spin-boson model.46 To this end, we tested
TBSH-TTM on the same spin-boson examples used to
demonstrate TBSH in ref 32. Owing to the form of the
Hamiltonian, MQCL dynamics coincide with the exact
quantum dynamics for this model. Since we use the TBSH
method to solve the MQCL equation, the momentum jump
approximation is the only approximation we use. Comparison
to exact quantum results for the spin-boson model suggests that

the momentum jump approximation is justified for the
examples considered here (see below).
Following ref 32, the spin-boson Hamiltonian we used is

given by

∑σ ω σ̂ = −ℏΩ ̂ +
̂

+ ̂ − ̂ ̂
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟H

P

M
M R c R

2
1
2x

j

N
j

j
j j j j j z

1

2
2 2

(7)

Here, σ̂z = |+⟩⟨+| − |−⟩⟨−| and σ̂x = |+⟩⟨−| + |−⟩⟨+|, Ω is the
coupling coefficient between the two states |+⟩ and |−⟩, and
{R̂j} and {P̂j} are the coordinates and momenta, respectively, of
N independent harmonic bath modes of frequencies {ωj} and
masses {Mj}. The two-level system (TLS) operator σ̂z is
coupled linearly to the coordinates of each of the bath modes,
{R̂j}, with coupling coefficients {cj}.
The harmonic bath spectral density is given by

ω π ζω= ℏ ω ω−J e( )
2

/ c

(8)

where ζ is the Kondo parameter that measures the strength of
system-bath coupling and ωc is the bath cutoff frequency.47,48

Model parameters were adopted from refs 32, 47, 48. A more
detailed discussion on simulating MQCL dynamics via the
TBSH algorithm for the spin-boson model can also be found in
ref 49. Dimensionless variables were used throughout, with the
energy and distance units given by ℏωc and ωℏ M/ j c

respectively. The initial density operator is assumed factorized
ρ̂(0) = ρ̂s(0)ρ̂b with the initial state of the TLS given by ρ̂s(0) =
|+⟩⟨+| and the initial state of the harmonic bath given by

∑ρ β ω̂ = −
̂

+ ̂−

=

⎡

⎣
⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤

⎦
⎥⎥Z

P

M
M Rexp

2
1
2j

N
j

j
j j jb b

1

1

2
2 2

(9)

where Zb is the bath partition function and β is the reciprocal
temperature.
Below, we present results for the relaxation dynamics of

⟨σz(t)⟩ for a TLS coupled to a bath that consist of 200
harmonic oscillators. The time step for the TBSH trajectories
was set to Δt = 0.05. Approximately 108 trajectories were used
for generating results designated as TBSH. Fewer (approx-
imately 105) trajectories over the learning period, kmaxΔt, were
used to generate the dynamical maps that serve as input for
obtaining the transfer tensors leading to results designated as
TTM. kmax in eq 3 was determined so that transfer tensors
vanish at t > kmaxΔt.
Figure 1 shows the relaxation dynamics ⟨σz(t)⟩ for a TLS

with Ω = 0.4, weakly coupled to the bath (ζ = 0.09) at low (β =
12.5) and high (β = 0.25) temperatures. Exact results were
adopted from ref 50. The MQCL results, obtained by averaging
over 108 TBSH trajectories, are observed to coincide with the
exact results at short times, t < 10 and t < 6 for β = 12.5 and β =
0.25, respectively. However, the MQCL-TBSH results are also
observed to become increasingly noisy at longer times, which is
a reflection of the unfavorable scaling with increasing
simulation time of the number of trajectories needed in order
to obtain a converged result. In other words, an increasingly
larger number than 108 trajectories is needed for convergence
for simulation times longer than t = 10 and t = 6, for β = 12.5
and β = 0.25, respectively.
However, a closer examination reveals that the memory time

in this case, kmaxΔt = 2, is significantly shorter than the TLS
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relaxation time. Thus, one can generate accurate transfer
tensors using dynamical maps based on as few as 105

trajectories of length t = 2 (referred to as the learning period).
Using those transfer tensors within the TTM protocol, one can
then simulate the TLS relaxation dynamics for arbitrarily long
times. As can be seen in Figure 1, the TTM-based results
essentially coincide with the exact results throughout the entire
time range for which exact results are available. Thus, through
TTM, MQCL dynamics of the TLS can be obtained on time
scales that are significantly longer than those accessible through
direct application of TBSH with a thousand times as many
trajectories!
Figure 2 shows the relaxation dynamics ⟨σz(t)⟩ for a TLS

with Ω = 1/3, at β = 3.0, for two different system-bath coupling
strengths, ζ = 0.1 and 0.5. As for the case considered in Figure
1, results obtained via averaging over 108 TBSH trajectories
become noisy at t > 7 for ζ = 0.1 and t > 5 for ζ = 0.5.
However, the TTM results, obtained from dynamical maps
based on only 105 TBSH trajectories over a learning period of t
= 2.0 and 2.4, for ζ = 0.1 and 0.5, respectively, are observed to
coincide with the exact results (the latter are adopted from ref
48.). It should be noted that the increase in the learning period
with increasing ζ reflects the stronger TLS-bath coupling and
thereby longer lived correlations between the TLS and the bath.
Finally, in the lower panel of Figure 3 we consider the

relaxation dynamics ⟨σz(t)⟩ for a TLS with Ω = 0.8, which is
strongly coupled to the bath, ζ = 2.0, at β = 0.25. It should be
noted that this is the only example which is somewhat different
than the corresponding example in ref 32. The difference is that
Ω = 1.2 in ref 32 rather than 0.8 as here. The reason for the

change is that Ω = 0.8 provides a better example for our
purposes here. The rapid TLS relaxation in this case makes it
possible for the MQCL dynamics obtained via averaging over
108 TBSH trajectories to capture almost the entire relaxation
before becoming noisy. However, here too TTM-based results
with an even shorter learning period of t ≈ 1 can reproduce the
same results with far fewer (105) trajectories.
For comparison, the upper panel of Figure 3 shows the

relaxation dynamics ⟨σz(t)⟩ for a TLS with Ω = 0.4, which is
weakly coupled to the bath, ζ = 0.13, at β = 1.0. MQCL
dynamics obtained via averaging over 108 TBSH trajectories
becomes noisy at t > 7 for this case. However, the TTM-based
result, obtained from dynamical maps based on only 105 TBSH
trajectories over a learning period of t = 2 is observed to
coincide with the exact results (adopted from refs 51 and 52).
In summary, in this Letter we proposed combining TTM

with TBSH-based MQCL to simulate the dynamics of the
quantum system for longer times than would be possible via a
direct TBSH-based simulation of the MQCL dynamics. Our
results clearly show that TTM makes it possible to accurately
reproduce the system dynamics for arbitrarily long times by
restricting the use of TBSH to calculating short-lived transfer
tensors.
As with any other computational method, the accuracy of

TTM relies on the accuracy of its input. Since TBSH is a
stochastic method, statistical errors in the dynamical maps, and
thereby in the transfer tensors, are unavoidable, and may
accumulate at longer times due to the large number of transfer
tensor multiplications. However, it should be noted that TTM
conserves the hermiticity and trace of the system density

Figure 1. Relaxation dynamics ⟨σz(t)⟩ for a TLS with Ω = 0.4, weakly
coupled to the bath ζ = 0.09, at β = 12.5 (upper panel), and β = 0.25
(lower panel). Shown are the exact results (green triangles), direct
TBSH results (orange dashed line), and the TTM results (solid blue
line) based on a learning period indicated by the red circles.

Figure 2. Relaxation dynamics ⟨σz(t)⟩ for a TLS with Ω = 1/3, ζ = 0.1
and β = 3.0 (upper panel) and Ω = 1/3, ζ = 0.5 and β = 3.0 (lower
panel). Shown are the exact results (green triangles), direct TBSH
results (orange dashed line), and the TTM results (solid blue line)
based on a learning period indicated by the red circles.
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operator, thereby avoiding errors that may arise from not
satisfying those properties. It should also be noted that, at least
for the examples shown, the agreement with the exact results
clearly indicates that those errors are rather small. Furthermore,
cases where the system relaxation time is much longer than the
bath memory time typically correspond to the limit of weak
system-bath coupling, and can therefore be treated perturba-
tively in terms of rate constants.
The resulting TBSH-TTM approach is expected to be

particularly useful when the learning period is significantly
shorter than the quantum system relaxation time. For such
cases, TBSH-TTM bypasses a major obstacle that thus far
limited the range of TBSH applications, namely, the rapid
increase in the number of trajectories required to obtain a
converged result with increasing simulation time. TBSH-TTM
is expected to make applications of TBSH to realistic molecular
models feasible. Work on such applications is underway in our
groups and will be reported in future publications.
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